
Automatic Test Generation from UML Sequence 

Diagrams for Android Mobiles
 

Anbunathan R 
Test Manager and Research Scholar 

Bharathiar University  

Coimbatore, India 

anbunathan.r@gmail.com 

Anirban Basu 

Professor, Department of CSE 

APS College of Engineering 

Bangalore, India 

abasu@anirbanbasu.in 

 
Abstract— Automatic generation of test cases for functional 

testing is a challenging task. It involves complex sub tasks such as 

capturing user scenarios, parsing user scenarios to generate test 

cases, ensuring test coverage criteria, test script generation from 

test cases, test execution and report generation. In this paper, a 

method is proposed to generate test cases after parsing Sequence 

diagram and thereafter generating XML based test cases, and 

subsequently APK based test scripts for Android mobiles. A tool 

called Virtual Test Engineer (VTE) has been developed based on 

this method, which is used for testing several Android 

applications. In this paper it is explained how navigation through 

menu tree of Android mobile is achieved through a menu tree 

data base. The effectiveness of this method is discussed from 

experimental results. Comparison has been made of the proposed 

method with others and the proposed method has been found to 

be more effective. 

Keywords— Android mobile testing; Test framework; Test 

automation; Menu tree navigation; Test case generation; Test 

script generation; APK generation; XML generation; Model based 

testing. 

 

I.  INTRODUCTION  

Testing involves activities such as identifying test cases 
from requirement document, designing test cases to ensure test 
coverage, writing scripts to automate test execution etc. From 
requirement document, normal and alternative flow test cases 
are identified. Test design techniques are used to identify test 
cases from requirements to ensure test coverage. Test 
automation involves activities such as choosing an automation 
framework, writing scripts using a programming language, 
executing scripts automatically to generate test report etc. 

With the increase in use of UML diagrams in capturing 
requirements, generating test cases from UML diagrams  is 
gaining more attention, as it helps to be more systematic, and 
focused and facilitates automated testing [1]. Systematic 
testing ensures every combination of input is tried. Focused 
testing explores the information about where bugs likely to be 
found. Automated testing helps to produce and run the greatest 
number of consistent, repeatable and reusable tests [9].  

Test automation involves many challenges in terms of test 
design, test generation and test execution. Some are listed 
below: 

 Reusability of scripts 

 Support for programming constructs (Ex: loop) 

 Test design automation 

 Test generation automation 

 Test execution automation 

 Support for verification points (Ex: Text, log) 

 PC connectivity independence 

 Handle menu tree changes 

In this paper, a method is proposed to meet the above 
challenges. The objective of this method is to generate 
inexpensive, reusable, portable tests automatically for testing 
mobile devices, irrespective of changing UI menu items, pixel 
relocations, changing form factors. In this approach, UML 
Sequence diagram is used for capturing test scenarios. XML 
Metadata Interchange (XMI) [14] file obtained from Sequence 
diagram is parsed to derive Control Flow Graphs (CFG). From 
CFG, XML based test cases are arrived. Navigation through 
menu tree of mobile device is achieved by using menu tree 
database [15]. An APK is generated to handle this XML file 
and menu tree database and then execute test cases on target 
device.  

This method is illustrated through detailed block diagrams. 
Algorithms used in this method are explained. Extensive 
experimentation is done at different stages such as test design, 
test generation and test execution, to cross check effectiveness 
of algorithms. A detailed case study is given as a proof of 
concept to systematically generate tests from Sequence 
diagram based scenarios. Also this method is compared with 
other methods available in literature. 

II. RELATED WORK 

This section discusses various methods that have been 

proposed for test automation. Several test automation 

frameworks [2, 16] are available in literature. 

In [3], D. Kundu et al. proposed a method to parse 

Sequence diagram based XMI file and then generate Control 

Flow Graph (CFG). Different Sequence diagram components 

such as Messages, Operands, Combined fragments, Guards are 

considered. A Java based application parses XMI file, 

recognizes components such as messages, operands and 

Manuscript Click here to download Manuscript Automatic Test Generation
from UML Sequence Diagrams for Android mobiles 1.0.docx

http://www.editorialmanager.com/ijseke/download.aspx?id=20660&guid=85d514f3-b5dc-431e-8fbc-8eba8acbfa89&scheme=1
http://www.editorialmanager.com/ijseke/download.aspx?id=20660&guid=85d514f3-b5dc-431e-8fbc-8eba8acbfa89&scheme=1


combined fragments, and then extracts Nodes, Edges, and 

Guards to generate CFG. A defined set of rules are applied, 

which are based on the program structures such as loop, alt, 

break etc. and then CFG is arrived.  

Ruifeng Chen et al. [4] proposed a Selenium based 

automation framework. XML based test suites are generated, 

which comprise of test cases. Each test case consists of one or 

more test steps. Each test step is composed of Selenese and 

verification tags. Each Selenese includes command, locator 

and value. The command can be user actions such as typing 

text or clicking button. A Java based test script is generated 

automatically from XML test case. This script is automatically 

executed to generate HTML based test report.    

Tuomas Pajumen et al. [5] proposed a keyword/action 

driven test automation framework. In this approach, model 

based testing tool called TEMA is integrated with Robot 

framework. Labeled State Transition System (LSTS) based 

models are created to represent test cases. These test cases 

comprises of high level key words. These high level keywords 

are mapped with low level keywords provided by Robot 

library. When test cases are executed Robot generates user 

events such as typing text, click button etc. 

Tommi Takala et al. [6] proposed a keyword/action driven 

test automation framework for testing Android mobile. TEMA 

toolset is used to create LSTS models to capture scenarios. To 

generate low level events, tools such as Monkey and 

Hierarchy viewer are used. Monkey is used to simulate user 

input events. Hierarchy viewer is used to capture UI layout 

information. 

In [7], P.Costa et al. proposed Pattern Based GUI Testing 

(PBGT) approach. Models are created using PARADIGM-

DSL language, which supports User Interface Test Patterns 

(UITP) such as Call UITP, Input UITP etc to test web 

applications. Call UITP is used to check functionality of 

corresponding invocation of a link, which leads to a different 

web page. Input UITP is used to test input fields, when valid 

and invalid inputs are given. PARADIGM-ME helps to map 

web elements with UITPs. PARADIGM-TG generates test 

cases from model. PARADIGM-TE executes these test cases. 

To test mobile application, a Selendroid based driver is 

developed to generate low level user action events in mobile 

device. 

  In [8], D. Amalfitano et al. proposed a method to test 

Android application by considering both user events and 

context events. User events are generated by user such as click 

button, type text etc. Context events are generated by system 

such as GPS signal loss and recovery, Network instability, 

USB plugging etc. Three different techniques are adopted to 

consider context event patterns. First technique is manually 

injecting context event and then test the application. Second 

technique is mutating the existing test case with context event 

pattern and then test. Third is exploration technique, 

iteratively inject context event patterns and test behavior of 

application. These techniques are applied to JUnit test cases.  

In [18], Domenico et al. proposed a GUI (Graphical User 

Interface) crawling-based framework to test Android mobiles. 

This framework works along with Robotium framework [20] 

for analyzing the components of a running Android 

application. Using this info, it generates firable events to crawl 

through various widgets and detects crashes. 

In [19], Lulu et al. proposed a framework which involves a 

model based activity page. It is implemented through open 

source frameworks such as Robotium and Monkey runner 

[21]. A crawling algorithm navigates through components of 

activity page. It also generates scripts to run with Robotium 

for emulator and Monkey runner for device. 

III. ARCHITECTURE OF PROPOSED FRAMEWORK  

In this section, architecture and design constraints of 
proposed test automation framework are discussed. 

A. Overview of the proposed framework 

The proposed framework is based on UML Sequence 

diagram based testing. The major steps involved in this 

approach are illustrated through a block diagram as shown in 

Figure 1. In this approach, Sequence diagrams are created to 

capture input scenarios. XMI file obtained from this Sequence 

diagram is parsed to extract model information such as 

messages and their precedence relations [3]. Using this 

information, edges connecting nodes along with labels are 

found. A Control Flow Graph is derived from edges by 

applying a set of rules as explained in [3]. A recursive 

algorithm is developed to obtain basis path test cases from 

CFG.  

A XML file is generated to represent these basis path test 

cases. An APK is generated, which can parse this XML file 

and fire commands in Android mobile device. These 

commands generate events in Android mobile such as click 

menu item, read UI text etc.  

 

Parse XMI
Identify Edges and 

Labels
Identify Precedence 

Relations
XMI from Sequence 

diagram

Generate XML 
(Marshalling)

Derive Control Flow 
Graph

Find Basis Path Test 
cases

Generate APK
Parse XML 

(Unmarshalling)

Install APK/XML/ 
Menutree DB in 

Mobile

Generate Test 
report

Read Menutree 
Database

Fire commands

 

Fig. 1. Block diagram of proposed test automation framework 

B. Architecture of the proposed framework 

Figure 2 illustrates proposed framework to generate test 

script for Android mobile. The framework includes two major 

tools known as Virtual Test Engineer (VTE) and a menu tree 

generator. Menu tree generator [15] recursively navigates 

through menus of Android mobile and stores the path of each 

menu in a database. VTE is a Java based application, consists 

of a User Interface (UI) having controls and buttons to select 

input files. It has major modules such as XMI parser, Test case 

generator and APK generator. XMI parser is exactly same as 

mentioned in [3], generates CFG from Sequence diagram. Test 



case generator converts this CFG into basis path test cases in 

the form of XML file. APK generator takes this XML file and 

menu tree database file and then creates a new APK file, which 

can be installed in Android mobile. This APK invokes Android 

service, which in turn parses XML test cases and then 

generates events. These events are passed to an UI automator 

[13] based jar file, which is nothing but library of functions 

such as Click button, Click menu, Navigate, Wait, 

VerifyUIText etc. These functions perform Android 

button/menu clicks to simulate user actions, and then reading 

UI texts to verify expected results. Test scheduler [17] is an 

APK, which invokes generated APKs one by one sequentially. 

Each generated APK generates XL based test report 

automatically. 

UML 
diagram

XMI file

VTE

Test APK

XML 
Testcases

Navigation 
DB

Test scripts

Menutree 
APK

Menutree 
JAR

VTE Service

Libarary JAR

Test 
scheduler 

APK

XL Test 
report

Mobile device
 

Fig. 2. Architecture of proposed framework 

 

C. Class diagram of proposed framework 

Class diagram of proposed framework is shown in Figure 

3. Message class consists of method names and arguments. 

Method name is library function name such as Navigate, 

ClickButton etc. Arguments are either 0 or 1 or 2, depending 

upon the library function. Messages are inside operand or 

outside. Operands include guard conditions. Operands are 

contained in combined fragments. Nested combined fragments 

contain fragments inside a fragment. Sequence handler class 

extracts method name, arguments from Message class. Parse 

XMI class performs operations such as find edges, find CFG, 

derive basis path test cases etc. UI class provides interface to 

user to select input file, generate test cases and generate APKs 

etc.  

+FindPrecedenceRelation()

+FindEdges()

+FindCFG()

+FindBasisTestcases()

ParseSequenceXMI

+StartElement()

+EndElement()

-testcases

SequenceHandler

+GenerateTestcases()

+GenerateAPK()

+XMLMerge()

+GenerateXML()

UI

-SequenceNumber

-MethodName

-ArgumentMap

SeqMessage

-Guard

-MinValue

-MaxValue

-Type

SeqOperand

-ContainingOperandID

-OperandIDList

-Type

SeqFragment

1
1

1

1

1 1..*

1

1..*

1

1..*

1..*

1

1..*

1

 
Fig. 3. Class diagram of proposed framework 

IV. TEST DESDIGN AUTOMATION  

In this section, algorithms involved in test design 
automation are discussed. UML Sequence diagram is used to 
capture test scenarios. A parser [3] is developed to parse XMI 
file obtained from this Sequence diagram. The method 
proposed in [3] is used for this purpose. From XMI file, 
Sequence diagram components such as messages, operands, 
and combined fragments are extracted. An algorithm is 
developed to find precedence relation from this information. 
Using precedence relations, Edges are found. A set of rules [3] 
are used to make CFG from Edges. A recursive algorithm is 
developed to derive basis path test cases from CFG. UML 2.0 
supports different programming structures such as loop, alt, 
opt and break. A detailed experimentation is done to parse 
these programming structures and then generate basis path test 
cases. 

 

1) XMI parser 

An UML Sequence diagram as shown in Figure 4 is 

created using Papyrus tool [10]. This Sequence diagram is 

represented in the form of XMI notation [14] and saves as 

*.uml file. This XMI file is parsed using SAX parser and then 

different Sequence diagram components such as synchronous 

messages, asynchronous messages, reply messages, combined 

fragments, interaction operands and constraints are extracted. 

The sequence of messages determines sequence of test 

execution steps. Combined fragment includes different 

interaction operators such as alternative (alt), option (opt), 

break and loop.  



 
a.  

Fig. 4. Sequence diagram and corresponding CFG 

 

While parsing combined fragments, attributes such as Id, 

Type, ContainingOperandId and SeqOperandIDList are 

obtained. Fragment Id is unique and used for recognizing the 

fragment. Type is having values such as alt, opt, break and 

loop. ContainingOperandId contains id of operand in which 

this fragment is present. SeqOperandIDList contains ids of all 

operands present in this fragment. 

While parsing operands, attributes such as Id, Guard, 

MinValue, MaxValue and SeqMessageIDList are obtained. 

Operand Id is unique and used for recognizing the operands. 

Guard represents condition for corresponding programming 

constructs, for example if-else or loop. MinValue, MaxValue 

contains start and end values of a loop. SeqMessageIDList 

contains ids of all messages present in this operand. 

While parsing messages, attributes such as Id, MessageType, 

MethodName, ParameterArgumentMap and  SeqNumber are 

obtained. Message Id is unique and used for recognizing the 

messages. MessageType is having values such as synchCall, 

asynchCall and reply. MethodName is having name of the 

message. ParameterArgumentMap contains a map of 

argument names and their corresponding values. SeqNumber 

is having sequence number of the message. 

Using these attributes, messages outside fragments, nested 

fragments, operands inside fragments, fragments inside 

operands, messages inside operands, message sequence are 

recognized. From this information, a graph (CFG) is obtained 

with messages and fragments as nodes, edges connecting these 

nodes, guards as labels for these edges.  

 

2) Precedence Relation 

Precedence relation [3] is the relationship between two 

consecutive entities and represented as ‘<’. The entity is either 

message or fragment. If m1<m2 is true, then m1 is preceding 

m2. The following properties are exhibited by entities: 

a. Asymmetric => if m1 < m2 then m2 < m1 is not true 

b. Non-transitive => if m1 < m2 < m3 then m1<m3 is 

not true 

c. Non-reflexive => m1<m1 is not true 

Null precedence relation is the relationship between Null 

interaction and message and represented as ‘^’. For example, 

if a single message is present in a fragment, then the 

relationship is defined as ^ < m < ^. Similarly the first 

message inside fragment and last message inside fragment 

also follow Null precedence relationship. The algorithm for 

finding precedence relation between entities is as shown in 

Algorithm 1. 

 
Algorithm 1. Find Precedence Relation 

ALGORITHM :: FindPrecedenceRelation(msglist){ 
Precedence list ← {}
For(i=0; i<Size of msglist; i++)
{

first ← msglist[i];
second ← msglist[i+1];
if(second==end)
{

RETURN(Precedence list);
}
IF (first is not fragment && second is not fragment) THEN
{

Precedence list ← AddPrecendenceInList(First, Second);
}
ELSEIF ( first is not fragment && second is fragment) THEN
{

Precedence list ← AddPrecendenceInList(First, Second);   
newmsglist ← Get_Message_list(Second);
Precedence list ← FindPrecedenceRelation(newmsglist);

}
ELSE IF( first is fragment && second is not fragment) THEN
{

newmsglist ← Get_Message_list(first);
Precedence list ← FindPrecedenceRelation(newmsglist);
Precedence list ← AddPrecendenceInList(First, Second);

}
ELSE IF( first is fragment && second is fragment) THEN
{

newmsglist ← Get_Message_list(first);
Precedence list ← FindPrecedenceRelation(newmsglist);
Precedence list ← AddPrecendenceInList(First, Second);
newmsglist ← Get_Message_list(second);
Precedence list ← FindPrecedenceRelation(newmsglist);

}
ENDIF

}
RETURN(Precedence list);
}

AddPrecendenceInList(First, Second)
{

Precedence list ← {};
IF (Both first and second are inside same operand||

Any one is not inside operand) THEN
{

Precedence list ← First < second;
}
ELSE IF (first and second are inside different operands) THEN
{

Precedence list ← First < ^;
Precedence list ← ^ < second;

}
ENDIF

RETURN(Precedence list);
}

 
 

The precedence relation between two entities (first, second) is 

found using this algorithm. Each entity is either message or 

fragment. Hence four different combinations such as 

(message, message), (message, fragment), (fragment, 

message) and (fragment, fragment) are dealt. If any one of the 

entity is fragment, then recursive call is made to find relation 

for messages inside the fragment. After executing this 

algorithm, Precedence relation (<) and Null precedence (^) are 

added to messages appropriately. 



 

3) Finding Edges 

Using precedence relations, edges are identified to connect 

‘from’ node and ‘to’ node (first, second). The nodes are either 

message or fragment. Hence four different combinations such 

as (message, message), (message, fragment), (fragment, 

message) and (fragment, fragment) are considered to find 

edges. The presence of Null precedence (^) represents 

fragment with start or end node. The algorithm for finding 

edges is as shown in Algorithm 2. 

 
Algorithm 2. Find Edges 

ALGORITHM :: FindEdges(Precedence list){ 
Edge list ← {}
For each Precedence in Precedence list
{

first ← Get first from Precedence
second ← Get Second from Precedence
IF (first is not fragment && second is not fragment) THEN
{

IF (first == “^”) THEN
fromNode = node of (containing fragment of second + “S”);
toNode = node of second;

ELSE IF (second == “^”) THEN
fromNode = node of first;

toNode = node of (containing fragment of first + “E”);
ELSE

fromNode = node of first;
toNode = node of second;

ENDIF
Edge list ← New edge joining fromNode and toNode;

}
ELSEIF ( first is not fragment && second is fragment) THEN
{

IF (first == “^”) THEN
fromNode = node of (containing fragment of second + “S”);
toNode = node of (second + “S”);

ELSE
fromNode = node of first;

toNode = node of (second + “S”);
ENDIF
Edge list ← New edge joining fromNode and toNode;

}
ELSE IF( first is fragment && second is not fragment) THEN
{

IF (second == “^”) THEN
fromNode = node of (first + “E”);

toNode = node of (containing fragment of first + “E”);
ELSE

fromNode = node of (first + “E”);
toNode = node of second;

ENDIF
Edge list ← New edge joining fromNode and toNode;

}
ELSE IF( first is fragment && second is fragment) THEN
{

fromNode = node of (first + “E”);
toNode = node of (second + “S”);

Edge list ← New edge joining fromNode and toNode;
}
ENDIF

}
RETURN(Edge list);
}

 

 

After executing this algorithm, all edges connecting each node 

are found. 

 

 

4) Control Flow Graph  

A Control Flow Graph (CFG) is derived from Edges, by 

assigning guard conditions associated with operands of each 

fragment to Edges. In a relation (first, second), if ‘first’ is Null 

precedence, then label the edge same as guard condition 

associated with the operand of the fragment containing ‘first’. 

A set of control flow rules [3] are applied to edges to construct 

CFG for programming constructs such as loop, alt, opt, break 

etc. The algorithm for finding CFG is as shown in Algorithm 

3. 

 
Algorithm 3. Find CFG 

ALGORITHM :: FindCFG(Edge list){ 
FOR EACH outerEdge in Edge list
{

firstouter ← Get fromNode from outerEdge;
secondouter ← Get toNode from outerEdge;
IF (firstouter contains “loop” and “S”) THEN
{

FOR EACH innerEdge in Edge list
{

firstinner ← Get fromNode from innerEdge;
secondinner ← Get toNode from innerEdge;
IF (firstinner contains “loop” and “E” &&

outer and inner belongs to same loop)
{

Delete Edge from firstinner to secondinner;
Add Edge from firstinner to firstouter;
Add Edge from firstouter to secondinner with label = !guard;

}
ENDIF

}
}
ELSEIF (firstouter contains “break” and “S”) THEN
{

FOR EACH innerEdge in Edge list
{

firstinner ← Get fromNode from innerEdge;
secondinner ← Get toNode from innerEdge;
IF (firstinner contains “break” and “E” &&

outer and inner belongs to same break)
{

Delete Edge from firstinner to secondinner;
Add Edge from firstouter to secondinner with label = !guard;

}
ENDIF

}
}
ELSE IF(firstouter contains “opt” and “S”) THEN
{

FOR EACH innerEdge in Edge list
{

firstinner ← Get fromNode from innerEdge;
secondinner ← Get toNode from innerEdge;
IF (firstinner contains “opt” and “E” &&

outer and inner belongs to same opt)
{

Add Edge from firstouter to secondinner with label = !guard;
}
ENDIF

}
}
ENDIF

}
RETURN(Edge list);
}

 

After executing this algorithm, CFG for all edges is obtained 

as shown in Figure 5. The Sequence diagram for Alarm 

scenario consists of an ‘Alt’ fragment. Two alternatives such 

as Dismiss and Snooze are represented by this diagram. The 

corresponding CFG is shown is Figure 5. GraphViz ‘Dot’ tool 

[12] is used to generate a visualization image for CFG. All 

nodes, edges and labels are represented in Dot language 

format. Using this information, Dot tool generated visual 

CFG.   



 

Fig. 5. CFG for Alarm Sequence diagram 

5) Basis Path Test cases  

A Basis Path (sometimes called independent path) through 

the program is any path from starting node to a terminal node 

that introduces at least one new set of processing statements 

or a new condition [2]. From CFG, Basis Path test cases are 

derived by identifying an independent path that includes an 

edge, which has not been traversed before path is defined. Test 

cases are designed such that all independent paths are 

executed at least once. The algorithm for finding Basis Path 

test cases is as shown in Algorithm 4. 

 
Algorithm 4. Find Basis Path test cases 

ALGORITHM :: FindBasisPaths (BasisPath list, firstEdge, lastEdge){ 
//Use global list variable ‘Edge list’
fromNode of firstEdge ← Get fromNode from firstEdge;
toNode of firstEdge ← Get toNode from firstEdge;
BasisPath list ← Add firstEdge;
VisitedNodes ← Add fromNode of firstEdge and toNode of firstEdge;
edgePosition ← Position of firstEdge in Edge list;
size ← Size of Edge list;
FOR (i= edgePosition+1; i<size; i++)
{

edge ← Get Edge list[i];
fromNode ← Get fromNode from edge;
toNode ← Get toNode from edge;
IF (VisitedNodes not contains fromNode) THEN
{

VisitedNodes ← Add fromNode and toNode;
BasisPath list ← Add edge;
IF (edge == lastEdge) THEN

RETURN(BasisPath list);
ENDIF

}
ELSEIF (VisitedNodes contains fromNode) THEN
{

//branch required
branchPosition ← Get position of fromNode in BasisPath list;
new BasisPath list ← Get BasisPath list till branchPosition;
FindBasisPaths (new BasisPath list, edge, lastEdge);

}
ENDIF

}
RETURN(BasisPath list);
}

 

 

After executing this algorithm, Basis Path test cases are 

obtained as shown in Figure 6. The CFG for Alarm scenario 

consists of two alternative flows for Dismiss and Snooze as 

shown in Figure 5. The corresponding Basis Path test cases for 

Snooze and Dismiss scenarios are shown in Figure 6. 

  

Fig. 6. Basis Path test cases 

6) Experimentation1  

A detailed experimentation is done to ensure Sequence 

diagram with different programming constructs such as loop, 

alt, opt and break are parsed properly and then converted to 

CFG, Basis Path test cases without error. The experimentation 

results are shown in Figure 7, 8 and 9. Simple If, If-Else, Loop 

and Break based Sequence diagrams are created and then 

corresponding CFG and test cases are generated as shown in 

Figure 7. Then two Ifs, If-Elses, Loops and Breaks are created 

and their corresponding CFG, test cases are generated as 

shown in Figure 8. A complex data structure containing all 

programming structures such as Alt, Opt, Loop and Break is 

created. Then their corresponding CFG and test cases are 

generated. The cyclomatic complexity of this complex 

structure is calculated as 9. Hence 9 basic path test cases are 

generated as shown in Figure 9. 

 

 



 

Simple IF SD Simple IF CFG Simple IF Test cases

Simple IF-ELSE SD Simple IF-ELSE CFG Simple IF-ELSE Test cases

Simple LOOP SD Simple LOOP CFG Simple LOOP Test cases

Simple BREAK SD Simple BREAK CFG Simple BREAK Test cases

Experimentation1: Simple structures

Fig. 7. Experimentation 1: Simple structures 

  



Two IFs SD Two IFs CFG Two IFs Test cases

Two IF-ELSE SD Two IF-ELSE CFG Two IF-ELSE Test cases

Two LOOP SD Two LOOP CFG Two LOOP Test cases

Two BREAK SD Two BREAK CFG Two BREAK Test cases

Experimentation1: Dual structures

Fig. 8. Experimentation 1: Dual structures 

  



Complex structure SD Complex structure CFG

Complex structure Test cases

Experimentation1: Complex structures

 

 

Fig. 9. Experimentation 1: Complex structures



V. TEST GENERATION AUTOMATION  

In this section, algorithms involved in test generation 
automation are discussed. Basis Path test cases are converted 
to ‘executable’ test cases by representing these test cases in 
XML format. Simple tool [11] is used to generate XML file 
from Basis Path test cases. Algorithm for generating XML file 
is explained. A menu tree generator tool [15] is developed to 
obtain menu tree of mobile device. This tool stores menu tree 
in Menu tree database, which is nothing but a Sqlite based 
database. Algorithm for generating Menu tree database is 
explained. An Android APK is generated in order to handle 
this XML file and Menu tree database to fire commands in 
Android device. Steps are explained to generate APK. A 
detailed experimentation is done to generate XML file for 
different programming constructs such as Alt and Loop, which 
is explained under Experimentation 2. Similarly, a detailed 
study is done for generating Menu tree database for different 
Android applications, which is explained under 
Experimentation 3. 

 

1) XML Marshalling 

Simple tool is used to generate XML file from TestSuite 

object. Simple tool provides APIs such as Serializer and 

Persister to manipulate XML file. The Serializer interface is 

used to represent objects that can serialize and deserialize 

objects to and from XML. This exposes read and write 

methods that can read from and write to various sources. The 

Persister object is used to provide an implementation of a 

Serializer. This implements the Serializer interface and 

enables objects to be persisted and loaded from various 

sources. Serialization is performed by passing TestSuite object 

and an XML stream into one of the write methods. The 

serialization process uses the class of the TestSuite object as 

the schema class. The object is traversed and all fields are 

marshalled to the result stream. The following line of code 

converts TestSuite schema class into XML file: 

persister.write(testsuite, xmlfile); 

 

The class diagram of TestSuite consists of three classes 

namely TestStep, TestCase and TestSuite as shown in Figure 

10. TestSuite object is a list of one to many TestCase objects. 

Similarly TestCase object is a list of one to many TestStep 

objects. TestStep class consists of attributes such as CF, 

Counter, Type, ID, MethodName and Argument. ID is used to 

identify combined fragment and it is unique. CF represents 

combined fragment and is true, if the current message 

contained in a combined fragment. Counter value represents 

loop count, if the combined fragment type is loop. Type 

represents combined fragment type and contains value such as 

loop, alt, opt and break. MethodName is obtained from Node 

and represents the command to be fired. Argument is also 

obtained from Node and it is a map between argument name 

and its value. 

 

+getTeststeps()

+setTeststeps()

-teststeps

TestCase

+getTestcases()

+setTestcases()

-testcases

TestSuite

1
1..*

+setMethodName()

+getMethodName()

+setArgument()

+getArgument()

-CF

-Counter

-Type

-ID

-MethodName

-Argument

TestStep

1

1..*

 
b.  

Fig. 10. Class diagram of TestSuite 

 

2) XML Generation Logic 

Basis Path test case includes edges, nodes and labels. From 

each edge, from and to nodes are obtained. Each node contains 

method name and corresponding arguments. A TestStep object 

is created with these method name and arguments. Each test 

step is added to a list called test case. Each test case is added 

to a list called test suite. Persister API is used to convert this 

test suite to XML file. The algorithm for generating XML is as 

shown in Algorithm 5. 

 
Algorithm 5. XML Generation 

ALGORITHM :: XMLGeneration (BasisPath list){ 
CF ← false;
ID ← 0;
counter ← 0;
type ← NotApplicable;
testsuite ← {};
FOR EACH BasisPath in BasisPath list
{

testcase ← {};
VisitedNodes ← {};
teststeps list ← {};
FOR EACH BasisEdge in BasisPath
{

fromNode ← Get from node from BasisEdge;
toNode ← Get to node from BasisEdge;
label ← Get label from BasisEdge;
IF (fromNode contains “loop” and “S”) THEN
{

         CF ← true;
ID ← loop number;
counter ←  loop count;
type ← “loop”;

}
ELSE IF (fromNode contains “loop” and “E”) THEN
{

CF ← false;
}
ENDIF
IF (VisitedNodes not contains fromNode) THEN
{

VisitedNodes ← Add fromNode and toNode;
methodname ← Get method name from ‘fromNode’;
argument ← Get argument from ‘fromNode’;
teststep1 ← Add methodname, argument, CF, ID, type, counter;
methodname ← Get method name from ‘toNode’;
argument ← Get argument from ‘toNode’;
teststep2 ← Add methodname, argument, CF, ID, type, counter;
teststeps list ← Add teststep1 and teststep2

}
ENDIF

}
testcase ← Add teststeps list
testsuite ← Add testcase

}
Convert testsuite into XML file using Persister;
}

 
 



Fragment start and end are checked to set CF flag. If type is 

‘loop’, then loop count is considered. After executing this 

algorithm, XML file is generated for Alarm scenarios as 

shown in Figure 11. 

 

 

Fig. 11. Generated XML file 

3) Menu tree Generator  

The major part of a test script is usually navigation through 

menu items. To automate test script generation, it is essential 

to automate navigation. To achieve this, a menu tree 

generation tool is developed to obtain hierarchical menu items 

from mobile device. This tool recursively navigates through 

menu items and stores the menu items encountered during 

navigation in a database called Menu tree database. Along 

with menu name, menu type and navigation path are also 

stored in Menu tree database. Menu type can be text view, 

button, hot menu etc. Navigation path is the path traced during 

navigation. 

Figure 12 illustrates architecture of Android Menu tree 

Generator tool. It consists of an UI to select AUT (Application 

Under Test). This tool is nothing but an APK which is built 

upon basic Android building blocks such as Activity, Service 

etc. It also incorporates UI automator jar file. This jar file 

implements a recursive learning algorithm to extract UI 

properties such as text, image buttons, radio buttons, 

checkview etc. XL (Microsoft Excel file) based report is 

generated for menu tree representation. Sqlite database 

interface is used to store the path traced by this tool. 

Activity Service

Menu tree APKUI

XL report

Sqlite DB

Menutree Jar

  

Fig. 12. Architecture of Menu tree Generator 

4) Menu tree Generator Logic 

Menu tree APK identifies layouts such as linear layout, 

relative layout, frame layout extra. From these layouts it 

extracts UI objects such as text, buttons. When it clicks one 

text item, it checks whether new page or popup is opened. If it 

is new page, it recursively calls itself to do the learning. If the 

UI object is a popup or a button, it is handled in different 

manner. In this way all UI objects are learned and then each 

item is clicked based on the type of widget. The type of widget 

can be text, radio button, button with text, button with 

description, system event such as back key press, home key 

press. The algorithm for generating menu tree is as shown in 

Algorithm 6. 

Algorithm 6. Menu tree Generation 

ALGORITHM :: Menu TreeGeneration (){ 
I. Extract widgets in current screen and add in stack
II. Take one widget from stack
III. Check stack is empty
IV. IF empty, RETURN
V. IF widget type = text, click and wait for new window
VI. Store widget name, widget type, path from root into Sqlite DB
VII. IF new window = new page, CALL ‘MenuTreeGeneration’
VIII. ELSE IF new window = popup, handle popup
IX. GOTO II
}

 

5) Menu tree Database 

Menu tree APK stores all UI menu items along with its 

path from root and type of widget in a Sqlite database, as 

shown in Figure 13.  

 

Fig. 13. Menu tree database 

Row number and column number are useful to represent 

menu items in a tree format in XL. Caption is page title 

extracted from particular screen. The type of menu item is 

stored under column ‘widtype’. This can be TextView, 

CheckedText, Button, CheckBox etc. The menu item is stored 

under ‘widname’ column. The path traced by the Menu tree 

generator for each menu item is stored under ‘rootpath’ 

column. To navigate to a particular menu item, this root path 

is obtained from database by searching menu item in the 

database. Using this path, navigation to menu item is 

achieved.  

 



6) APK Generation 

Android APK is generated in order to handle test case 

XML and Sqlite database. A template APK is used as input for 

generating APK. From this template APK, files such as 

activity.java, manifest.xml, string.xml are copied to new APK. 

These files are renamed and necessary modifications are done 

programmatically. After that, code is compiled and then build 

procedure is followed to make unsigned APK. Finally signing 

is done, so that APK can be installed in release binary. The 

steps to generate APK are shown in Figure 14. 

 

Steps to generate APK

1. Create Android project using ‘android create project’ command
2. Copy Java files APKTemplate.java and MyProvider.java from 
APKTemplate project to new project
3. Copy main.xml, strings.xml, AndroidManifest.xml from 
APKTemplate to new project.
4. Build using ‘ant release’ command. This will create unsigned APK.
5. Sign this unsigned APK using ‘jarsigner’ command.
6. Generate signed APK using ‘zipalign’ command.

 
Fig. 14. Steps to generate APK 

 

7) Experimentation2  

A detailed experimentation is done to ensure XML file is 

generated from Sequence diagram with programming 

constructs such as linear, If-Else and Loop. The 

experimentation results are shown in Figure 15. Linear 

construct is simple to handle and generate XML. If-Else 

construct is slightly complex while generating Basis Path test 

cases, but generating XML is straight forward. Loop is most 

complex as both Basis Path test case generation and XML 

generation involve more complex logic. XML is not 

programming language. So implementing loop construct in 

XML is challenging. Getting loop count from Sequence 

diagram to XML is achieved through Simple tool. For every 

TestStep node, parameters such as CF, ID, Type and Count are 

added in order to distinguish loop and other constructs. If 

Type is found loop, then Count provides the loop count for 

which the TestSteps need to be repeated. If TestSteps are 

having attributes as CF is true and Type is loop, then they are 

considered us TestSteps within loop and repeated for loop 

count. 



LOOP SD LOOP CFG LOOP XML

Experimentation2: XML generated for different programming constructs

Linear SD Linear CFG Linear XML

If-Else SD If-Else CFG If-Else XML

 

Fig. 15. Experimentation 2: XML generated for different programming constructs 



 

8) Experimentation3  

A detailed experimentation is done to ensure the algorithm 

is working for different applications such as Alarm, 

Messaging, Settings, Contacts, Gallery and Calculator. In the 

case of Messaging 791 menu items are extracted. In the case 

of settings 1133 menu items are extracted. This has to be 

elaborated to cover all applications. Table I shows execution 

time taken by menu tree generator for extracting menu items 

from different Android applications. 

TABLE I.  EXECUTION RESULT OF MENU TREE GENERATOR 

Application 

name 

Execution parameters 

Learning 

time in 

minutes 

Number of 

menu items 

extracted 

Alarm 21 265 

Messaging 76 791 

Calculator 12 55 

Settings 93 1133 

Contacts 16 90 

Gallery 18 126 

 

VI. TEST EXECUTION AUTOMATION  

In this section, algorithms involved in test execution 
automation are discussed. The generated APK invokes an 
Android service called ‘VTE service’. Generated APK passes 
XML file name to VTE service. After parsing XML file, VTE 
service generates commands and sends to UI automator based 
‘Library.jar’ file. Based on this command, a method is 
invoked by the jar file. This method is called as library 
function. A test scheduler is developed to handle multiple 
generated APKs. Test scheduler is nothing but an APK, 
invokes generated APKs one by one for executing test cases. 
A XL based test report is generated to store test results of each 
APK. A detailed experimentation is done to ensure generated 
test scripts are reusable across Android OS, form factors, UI 
versions, which is explained under Experimentation 4. 

 

1) Mobile side architecture 

Generated APK is installed in Android mobile along with 

VTE service, XML file, menu tree database file and Library 

jar file. After installation, the UI layout of generated APK 

appears in Android mobile as shown in Figure 16.  

 

Fig. 16. UI layout of generated APK 

Mobile side architecture is as shown in Figure 17. The 

generated APK passes file names of generated XML file and 

menu tree Sqlite db file to VTE service. The name and path 

information of XML test case and menu tree database are 

passed to service through Android bundle. VTE service parses 

XML file and extracts method name, arguments and other 

parameters using ‘Unmarshalling’ process. VTE Service 

generates commands such as Navigate, ClickButton, 

VerifyUIText etc. These commands are sent to UI automator 

based jar. This jar includes library functions such as 

Navigate(), ClickButton(), VerifyUIText() etc. For example, 

ClickButton library function contains UI automator based 

commands to simulate button click as given below: 
UiObject Button = new UiObject(new 

UiSelector().text(ButtonName)); 

  if(Button.exists() && Button.isEnabled())   

  { 

  

 Button.clickAndWaitForNewWindow(10000); 

   sleep(1000);   

   

   clickwidgetstatus=true; 

  } 

 

Generated APK VTE Service XL test report

Library jar

XML 
Testcase

Menutree 
DB

Test scheduler

 
Fig. 17. Mobile side architecture 

Result of test execution is saved in XL format automatically.  

 

 

 



2) XML Unmarshalling 

Simple tool is used to convert XML file to TestSuite 

object. Serializer is the API exposed by Simple tool to get 

Testsuite object from XML file. The XML file is read and it is 

unmarshalled to get TestSuite object. The following line of 

code converts XML file into TestSuite schema class: 

TestSuite testsuiteinput = serializer.read(TestSuite.class, 

xmlinput); 

 

From TestSuite object, TestCase object is obtained. From 

TestCase object, TestStep object is obtained. TestStep consists 

of method name and arguments. Using this information, a 

command is framed and then passed to library jar file. The 

algorithm for generating commands from XML file is as 

shown in Algorithm 7. 

 
Algorithm 7. XML to Command generation 

ALGORITHM :: XMLtoCommands (){ 
Convert XML into testsuite using Serializer;
testcases ← Get testcases from testsuite;
FOR EACH testcase in testcases
{

command list ← {};
teststeps ← get teststeps from testcase;
FOR EACH teststep in teststeps
{

CF ← Get CF from teststep;
IF (CF == true) THEN
{

type ← Get type from teststep;
ID ← Get ID from teststep;
counter ←  Get counter from teststep;
IF (type == “loop”) THEN
{

command ←  Extract method name, arguments from teststep;
command list ← Add command;

}
ENDIF

}
ELSE IF (command list is not empty) THEN
{

Execute command list;
Clear command list;

}
ELSE
{

command ←  Extract method name, arguments from teststep;
Execute command;

}
ENDIF

}
}
}

 

 

After executing this algorithm, a command is sent to library 

jar file for each TestStep. The following line of code shows 

the command: 

proc = java.lang.Runtime.getRuntime().exec("uiautomator 

runtest Library.jar -c com.uia.example.my.Library" + 

" -e command " + commandstr + 

" -e argument1name " + argument1name + 

" -e argument2name " + argument2name + 

" -e argument1value " + argument1value + 

" -e argument2value " + argument2value + 

" -e database " + databasestr + 

" -e logstatus " + logstatusstr 

      ); 

In case of loop, a list of commands are added together for 

TestSteps inside loop and then fired. 

  

3) Library functions 

Library functions are UI automator based wrapper 

functions to generate Android device events. When a 

command reaches from VTE service to library jar file, based 

on the command, any one of the library function is invoked. 

Navigate is one of the library function consists of two 

arguments such as package name and menu item. When this 

library function is invoked, the menu item is searched in the 

database corresponding to the package, and then the 

navigation path is retrieved.  Using this path, navigation to this 

menu item is achieved, by generating repeated Android events 

such as click menu, click button etc. A set of library functions 

used in our approach are shown in Figure 18. 



Library functions reference

Library Function 1: Navigate
Description: Navigate to particular menu item given by ‘MenuItem’.
Method name: Navigate
Argument1 name: PackageName
Argument1 value: User defined (Ex: com.android.clock)
Argument2 name: MenuItem
Argument2 value: User defined (Ex: New alarm)

Library Function 2: LibSetSpinner
Description: Set alarm value in spinner. New alarm value = current 
time + TimeInMinutes
Method name: LibSetSpinner
Argument1 name: TimeInMinutes
Argument1 value: User defined (Ex: 2)

Library Function 3: LibClickButton
Description: Click button in current screen with UI name = 

ButtonName.

Method name: LibClickButton

Argument1 name: ButtonName

Argument1 value: User defined (Ex: Save)

Library Function 4: LibWaitAndClickButton
Description: Wait for button with UI name given by ‘ButtonName’ to 

appear for a period given by ‘TimeInMinutes’. Click button in current 

screen with UI name given by ‘ButtonName’.

Method name: LibWaitAndClickButton

Argument1 name: TextToCheck

Argument1 value: User defined (Ex: Dismiss)

Argument2 name: TimeInMinutes

Argument2 value: User defined (Ex: 2)Library Function 5: LibDeleteAll
Description: Delete one or more list items in the current 

screen.

Method name: LibDeleteAll Library Function 6: LibWait
Description: Wait(Sleep) for time given by ‘TimeInMinutes’.

Method name: LibWait

Argument1 name: TimeInMinutes

Argument1 value: User defined (Ex: 2)
Library Function 7: LibUIText
Description: Verify text given by ‘TextToCheck’ is present in 

current screen, if present return true.

Method name: LibUIText

Argument1 name: TextToCheck

Argument1 value: User defined (Ex: Dismiss)

Library Function 8: LibUITextNot
Description: Verify text given by ‘TextToCheck’ is not present 

in current screen, if not present return true

Method name: LibUITextNot

Argument1 name: TextToCheck

Argument1 value: User defined (Ex: Dismiss)
Library Function 9: LibWaitAndVerifyUIText
Description: Wait for time given by ‘TimeInMinutes‘ and Verify text 

given by ‘TextToCheck’ is present in current screen, if present return 

true.

Method name: LibWaitAndVerifyUIText

Argument1 name: TextToCheck

Argument1 value: User defined (Ex: Dismiss)

Argument2 name: TimeInMinutes

Argument2 value: User defined (Ex: 2)

Library Function 10: LibWaitAndVerifyUITextNot
Description: Wait for time given by ‘TimeInMinutes‘ and Verify text 

given by ‘TextToCheck’ is not present in current screen, if not 

present return true.

Method name: LibWaitAndVerifyUITextNot

Argument1 name: TextToCheck

Argument1 value: User defined (Ex: Dismiss)

Argument2 name: TimeInMinutes

Argument2 value: User defined (Ex: 2)

Library Function 11: LibSelectCheckbox
Description: Select check box with check box name given by 

argument ‘CheckboxName’.

Method name: LibSelectCheckbox

Argument1 name: CheckboxName

Argument1 value: User defined (Ex: Puzzle lock)

Library Function 12: LibUnSelectCheckbox
Description: Un Select check box with check box name given 

by argument ‘CheckboxName’.

Method name: LibUnSelectCheckbox

Argument1 name: CheckboxName

Argument1 value: User defined (Ex: Puzzle lock)

Library Function 13: LibPuzzleUnlock
Description: Unlock Puzzle lock by clicking the numbers in 

ascending order.

Method name: LibPuzzleUnlock
Library Function 14: LibClickRadioButton
Description: Click radio button in current screen with UI name 

= RadioButtonName.

Method name: LibClickRadioButton

Argument1 name: RadioButtonName

Argument1 value: User defined (Ex: Calendar)

Library Function 15: LibClickImageButton
Description: Click image button in current screen with UI name 

is given by the argument ‘ButtonDescription’.

Method name: LibClickImageButton

Argument1 name: ButtonDescription

Argument1 value: User defined (Ex: Addition) Library Function 16: LibSetEditText
Description: Set text value in the edit box, which is recognized by 

the background text displayed in the edit box.

Method name: LibSetEditText

Argument1 name: TextFieldString

Argument1 value: User defined (Ex: Search city or Enter 

message)

Argument2 name: TextToSet

Argument2 value: User defined (Ex: Bangalore)

Library Function 17: LibClickMenuItem
Description: Click menu item in current screen with name given 

by MenuItem.

Method name: LibClickMenuItem

Argument1 name: MenuItem

Argument1 value: User defined (Ex: Bangalore or 

android.view.View)

Argument2 name: Index

Argument2 value: User defined (Ex: 0, 1)
Library Function 18: LibVerifyLog
Description: Verify the text given by TextToVerify, is present in 

any one of Android log such as MAIN log, KERENL log, RADIO 

log, SYSTEM log and EVENT log.

Method name: LibVerifyLog

Argument1 name: LogType

Argument1 value: User defined (Ex: MAIN, KERNEL, RADIO, 

SYSTEM, EVENT)

Argument2 name: TextToVerify

Argument2 value: User defined (Ex: INVITE sip)

Library Function 19: StartLog
Description: Start capturing main log from Android mobile and 

save in a file called “mainlog.txt”. Similarly other logs(Ex: 

RADIO) are also captured.

Method name: StartLog

Library Function 20: StopLog
Description: Stop capturing log.

Method name: StopLog

 

Fig. 18. Library function reference



User actions such as clicking button, clicking menu item, 

select checkbox are simulated using library functions 

LibClickButton, LibClickMenuItem, LibSelectCheckbox 

respectively. Different verification methods like UI text 

verification, UI object verification, log verification are 

achieved using library functions LibUIText, 

LibVerifyUIObjectClass, LibVerifyLog respectively. The log 

capturing is enabled using StartLog and disabled using 

StopLog functions. Android supports five different logs such 

as MAIN log, KERNEL log, RADIO log, SYSTEM log and 

EVENT log. 

4) Test scheduler  

Test scheduler is required to invoke generated APKs one 

by one. It allows user to select all APKs or one or more APKs 

to execute by selecting corresponding check boxes. 

Figure 19 illustrates architecture of test scheduler [17]. The 

test scheduler is nothing but an APK which is built upon basic 

Android building blocks such as Activity, Service, Content 

provider and Broadcast receiver. The States of a Testcase is 

monitored continuously by a Service, started from Activity of 

Scheduler. As some test cases are running for long time (more 

than 30minutes), the Service has to be declared as foreground 

Service. Also this Service has to be invoked periodically using 

an alarm manager timer, so that it listens to notifications 

coming from Content provider updates. 

As per the Android life cycle definition, when Activity 

goes to back ground, its state will be changed to Pause and 

then Stop State. When the Activity goes to Resume State, the 

data related to Activity has to be retrieved, so that Activity can 

continue its functionality. State persistence within Activity is 

maintained using Shared preference. This is achieved through 

Shared preference. For example, user selects 2 complex test 

cases and then rotates screen from portrait to landscape, even 

after the same 2 test cases are selected. 

Content observers are used by Scheduler to get 

notifications, whenever Content provider is updated by test 

cases. Content observer sets a flag, when one update in 

Content provider is notified. Scheduler after reading the 

update, resets this flag. 

Broadcast receiver is the mechanism used to establish 

communication between Activity and Service of Scheduler. 

When user selects or de-selects one Testcase (APK) in UI, 

message is sent from Scheduler to Service using registered 

receivers. Critical information such as package names, 

checkbox status is sent as ‘extras’. In Service, these extras are 

extracted from Intent to update Shared preference and Content 

provider. 

Scheduler launches each Testcase using Intent. It updates 

Content provider, so that Service gets message through 

receiver. 

 

 

 

 

 

 

 

 

 

Fig. 19. Architecture of test scheduler 

The test cases also APKs which can be invoked from 

scheduler in a predefined sequence. The scheduler monitors 

the execution of current test case. Once execution of current 

test case is completed, next test case is selected for running 

automatically. It provides checkbox options to choose test 

cases and then execute test cases using a button labeled as 

‘Execute’. Reset button resets the State of test cases to 

facilitate re-running the test cases. The UI layout of test 

scheduler is shown in Figure 20. 

 

 
 

Fig. 20. UI layout of test scheduler 

5) Test Scheduler Logic 

There are 4 different States defined for each test case 

namely NotExecuted, Started, Running and Executed as shown 

in Figure 21. These States need to be shared between 

Scheduler and all test cases to ensure proper start of each test 

case one after other. This is achieved through content provider 

of Android framework, which is nothing but Sqlite database. 

Different operations such as Insert, Update, and Query are 

performed with this database. The initial State of Test case is 

‘Notexecuted’. When user clicks ‘Execute’ button, the State is 

updated to ‘Started’ and then Test case is invoked by 

Scheduler. The State is changed to ‘Running’ by Test case at 

the beginning of execution and then to ‘Executed’ at the end 

of the execution by Test case. The State is changed to 

‘NotExecuted’ again, when user clicks ‘Reset’ button.  

 

Test scheduler.apk

Testcase1.apk

Sqlite DB

Provider

Provider Provider

Provider

Testreport1.xls Testreport2.xls Testreport3.xls

Activity

Testcase2.apk

Activity Service

Testcase3.apk

Activity
Async

Task

Activity ServiceBroadcast Receiver

Shared preference

Observer



Not Executed Started

RunningExecuted

On invoking testcase()OnClick Reset Button()

OnClick Execute Button()

On Completing Execution()

 
 

Fig. 21. States of a TestCase 

The algorithm for test scheduler is as shown in Algorithm 

8. 

 
Algorithm 8. Test Scheduler 

Algorithm for Test Scheduler

1. Check selected test case

2. Check State of the testcase

3. Wait till Execution button is pressed

4. If (Execution button = pressed && 

        Testcase=selected &&   

        State=NotExecuted) Then

Invoke test case

State=Started

5. Otherwise goto next test case and repeat from step4

6. If(State=Started || State=Running)Then

Wait for testcase execution to complete

7. If (State=Completed)Then

Goto next test case and repeat from step4

8. If all test cases are executed, wait for user action. 

9. If Reset button is pressed, 

    set State of each test case to  ‘NotExecuted’

 

 

6) XL based test report 

After test execution, for each test case APK, XL based test 

report is automatically generated, as shown in Figure 22.  

 

Fig. 22. XL based test report 

The report contains Testcase number, Command, 

Argument1, 2 and Test Result columns.  Library function name 

is added under Command column. Argument name and the 

corresponding values are added under Argument 1 and 2 

columns. The Pass/Fail result of each test step is stored under 

Test Result column.  

7) Experimentation4  

A detailed experimentation is done to ensure XML the 

generated APKs are seamlessly running under following 

different environmental conditions.  

a. Different Android applications 

b. Different Android OS versions (for example, Kitkat 

and Lollypop) 

c. Devices with different form factors (for example, 

QVGA(240x320) and WVGA(480x800)) 

d. Different UI versions 

e. Program structures coverage (for example, loop, 

alternative, option and break) 

f. Structural coverage (for example, path coverage, node 

coverage, edge coverage, guard coverage) 

g. Different verification methods (for example, UIText 

verification, log verification) 

h. Test case type (for example, normal flow and 

alternative flow) 

 

In this experiment, different applications such as Alarm, 

Messaging, Settings and Calculator are considered. Different 

coverage criteria as listed above are considered. Total 34 test 

cases are automated using this method. This has to be 

elaborated to cover all applications in future. Table II shows 

deployment data captured for different Android applications. 

The coverage achieved is showed using a √ symbol. The 

experimentation results are shown in Table II. 

TABLE II.  EXECUTION RESULT OF GENERATED TESTCASES 

 

 

Testcase numberCommand Argument1 Argument2 Test Result

1 Navigate MenuItem = New alarm PackageName = com.lge.clock Pass

1 LibSetSpinner TimeInMinutes = 2 NotApplicable = NotApplicable Pass

1 LibClickButton ButtonName = Save NotApplicable = NotApplicable Pass

1 LibWaitAndVerifyUIText TimeInMinutes = 2 TextToCheck = Dismiss Pass

1 LibClickButton ButtonName = Dismiss NotApplicable = NotApplicable Pass

1 LibWaitAndVerifyUITextNot TimeInMinutes = 5 TextToCheck = Dismiss Pass

1 Navigate MenuItem = Delete PackageName = com.lge.clock Pass

1 LibDeleteAll NotApplicable = NotApplicable NotApplicable = NotApplicable Pass

2 Navigate MenuItem = New alarm PackageName = com.lge.clock Pass

2 LibSetSpinner TimeInMinutes = 2 NotApplicable = NotApplicable Pass

2 LibClickButton ButtonName = Save NotApplicable = NotApplicable Pass

2 LibWaitAndVerifyUIText TimeInMinutes = 2 TextToCheck = Dismiss Pass

2 LibClickButton ButtonName = Snooze NotApplicable = NotApplicable Pass

2 LibWaitAndVerifyUIText TimeInMinutes = 5 TextToCheck = Dismiss Pass

2 Navigate MenuItem = Delete PackageName = com.lge.clock Pass

2 LibDeleteAll NotApplicable = NotApplicable NotApplicable = NotApplicable Pass

Kitkat Lollipop QVGA WVGA 4 4.1 Loop Alt Opt Break Path Node Edge guard

Alarm 5 √ √ √ √ √ √ √ √ √ X √ √ √ √

Stop watch 5 √ √ √ √ √ √ X X X X X √ √ X

Timer 4 √ √ √ √ √ √ X X X X X √ √ X

world clock 3 √ √ √ √ √ √ X X X X X √ √ X

Settings 6 √ √ √ √ √ √ X X X X X √ √ X

Calculator 4 √ √ √ √ √ √ X X X X X √ √ X

Message 7 √ √ √ √ √ √ √ √ √ X √ √ √ √

Android OS Form factor UI version Program structure Test coverage

Application name No of testcases



VII. CASE STUDY 

A detailed case study is done to apply all concepts 

practically to design, generate and execute test automatically. 

Initial study was done for generating menu tree from Android 

applications. Applications such as Alarm, Calculator, 

Messaging and Settings are taken for generating menu tree 

databases. Once databases are ready, UML based test design is 

done using Papyrus tool. Tests are generated in the form of 

XML and APKs. Library functions are incorporated in 

Library.jar file and then integrated with these APKs in order to 

simulate device level user events. Finally these APKs are 

installed in Android device and then tests are executed using a 

test scheduler. Test reports in the form XL are generated 

automatically. In this section, the application of this approach 

is explained with a couple of case studies over alarm and 

messaging test cases.  

 

1) Loop test case 

The first case study involves creating 5 alarms in a loop 

and then deletes all. A sequence diagram is drawn with 

following messages, as shown in Figure 23: 

Start loop 

1. Navigate to new alarm widget 

2. Save alarm 

End loop 

3. Navigate to delete alarm widget 

4. Delete All alarms 

5. Verify ‘Add alarm’ widget is appearing 

 

 
Fig. 23. Five alarms Sequence diagram 

A combined fragment construct ‘loop’ is added to include 

messages 1 and 2 to create a new alarm. The loop range with 

minimum and maximum values is set as 1 and 5 respectively, 

so that 5 new alarms can be created. VTE parses this diagram 

and generates two basis path test cases, one to cover messages 

inside loop and other one to cover messages outside the loop. 

VTE displays these test cases in graphical representation as 

shown in Figure 24.  

 

 

 
Fig. 24. Five alarms Basis Path test cases 

On pressing ‘Generate Testcases’ button, a XML file is 

generated from Basis Path test cases as shown in Figure 25. 

 

 

Fig. 25. XML generated for Five alarms scenario 

XML file has a top level tag called Testsuite, which 

includes two test cases. The first test case includes two test 

steps with method names such as ‘Navigate’ and 

‘LibClickButton’. Navigate method includes two arguments 

such as PackageName and MenuItem. LibClcikButton method 

includes one argument ButtonName. The attribute CF in first 

test case is true. It indicates this is a combined fragment. The 

Counter value greater than 0, indicates it is a loop. The second 

test case is scenario when loop condition is not met. In this 

case, it deletes all five alarms added earlier. 

Menu tree DB for Alarm application has to be included 

using ‘Select MT DB’ button in VTE. In this case, 

‘AlarmClock.db’ is included before APK is generated. When 

‘Generate APK’ button is pressed in VTE, an APK known as 

‘Alarm.apk’, is generated to handle this XML file. This APK 

sends XML name, Menu tree DB name to VTE service. VTE 

service parses XML test case and triggers the following 

command to invoke library function in ‘Library.jar’ file: 

 

 



proc = java.lang.Runtime.getRuntime().exec("uiautomator 

runtest Library.jar -c com.uia.example.my.Library" + " -e command 

" + commandstr + " -e argument1name " + argument1name + " -e 

argument2name " + argument2name + " -e argument1value " + 

argument1value + " -e argument2value " + argument2value + " -e 

database " + databasestr ); 

 

Library function in Library.jar file generates events in 

android mobile to simulate user actions such as clicking menu 

items, buttons etc in order to execute these test cases. When 

Alarm.apk is executed, test cases are executed sequentially 

and an Excel based test report is generated automatically as 

shown in Figure 26. 

 

 
Fig. 26. Test report for Five alarm test case 

The test steps inside loop are executed repeatedly for count 

equal to loop count. In this case test steps such as Navigate 

and LibClickButton are executed for five times. 

 

1) IF-ELSE test case 

The second case study involves forwarding and replying a 

message designed as If-Else condition. A sequence diagram is 

drawn with following messages, as shown in Figure 27: 

1. Navigate to new message 

2. Type receiver mobile number (Self mobile number) 

3. Type message ‘Hi’ 

4. Click ‘Send’ button 

5. Wait for 1 minute 

6. Verify message is received 

If (condition=Forward) 

7. Click Hot menu 

8. Click menu item ‘Forward’ 

9. Select message to be forwarded (Hi) 

10. Type receiver mobile number (Self mobile number) 

11. Type message ‘Hi’ 

12. Click ‘Send’ button 

13. Wait for 1 minute 

14. Verify message is received 

Else If (condition=Reply) 

15. Type message ‘Hello’ 

16. Click ‘Send’ button 

17. Wait for 1 minute 

18. Verify message is received 

End If 

19. Click Hot menu 

20. Delete All messages 

21. Verify ‘New’ widget is appearing 

 
 

Fig. 27. Forward-Reply Sequence diagram 

A combined fragment construct ‘alt’ is added to include 

messages 7 to 14 under ‘If’ construct. Messages 15 to 18 are 

under ‘Else’ construct. The messages under ‘If’ part, are 

meant for ‘Forwarding’ a SMS. The messages under ‘Else’ 

part, are meant for ‘Replying’ a SMS. The messages outside 

combined fragment are added for both forward and reply test 

cases. VTE parses this diagram and generates two basis path 

test cases, one for forwarding and another for replying a SMS. 

VTE displays these test cases in graphical representation as 

shown in Figure 28. 

 



 

Fig. 28. Forward-Reply Basis Path test cases 

On pressing ‘Generate Testcases’ button, a XML file is 

generated from Basis Path test cases as shown in Figure 29. 

 

<TestSuite>

   <TestCase>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>Navigate</methodname>

         <argument key="PackageName">com.android.mms</argument>

         <argument key="MenuItem">New</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibSetMultiAutoCompleteTextView</methodname>

         <argument key="TextToSet">DUT1</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibSetEditText</methodname>

         <argument key="TextToSet">Hi</argument>

         <argument key="TextFieldString">Enter message</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickButton</methodname>

         <argument key="ButtonName">Send</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibWait</methodname>

         <argument key="TimeInMinutes">1</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibVerifyUIObjectInstance</methodname>

         <argument key="Instance">1</argument>

         <argument key="ObjectIdentifier">Hi</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickButton</methodname>

         <argument key="ButtonName">HOTMENU</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickMenuItem</methodname>

         <argument key="MenuItem">Forward</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickMenuItem</methodname>

         <argument key="MenuItem">Hi</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibSetMultiAutoCompleteTextView</methodname>

         <argument key="TextToSet">DUT1</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickButton</methodname>

         <argument key="ButtonName">Send</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibWait</methodname>

         <argument key="TimeInMinutes">1</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibVerifyUIObjectInstance</methodname>

         <argument key="Instance">3</argument>

         <argument key="ObjectIdentifier">Hi</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickButton</methodname>

         <argument key="ButtonName">HOTMENU</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibDeleteAll</methodname>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibUIText</methodname>

         <argument key="TextToCheck">New</argument>

      </TestStep>

   </TestCase>

   

<TestCase>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>Navigate</methodname>

         <argument key="PackageName">com.android.mms</argument>

         <argument key="MenuItem">New</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibSetMultiAutoCompleteTextView</methodname>

         <argument key="TextToSet">DUT1</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibSetEditText</methodname>

         <argument key="TextToSet">Hi</argument>

         <argument key="TextFieldString">Enter message</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickButton</methodname>

         <argument key="ButtonName">Send</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibWait</methodname>

         <argument key="TimeInMinutes">1</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibVerifyUIObjectInstance</methodname>

         <argument key="Instance">1</argument>

         <argument key="ObjectIdentifier">Hi</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibSetEditText</methodname>

         <argument key="TextToSet">Hello</argument>

         <argument key="TextFieldString">Enter message</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickButton</methodname>

         <argument key="ButtonName">Send</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibWait</methodname>

         <argument key="TimeInMinutes">1</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibVerifyUIObjectInstance</methodname>

         <argument key="Instance">1</argument>

         <argument key="ObjectIdentifier">Hello</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibClickButton</methodname>

         <argument key="ButtonName">HOTMENU</argument>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibDeleteAll</methodname>

      </TestStep>

      <TestStep CF="false" Type="NA" ID="0">

         <methodname>LibUIText</methodname>

         <argument key="TextToCheck">New</argument>

      </TestStep>

   </TestCase>

</TestSuite>

 
Fig. 29. XML generated for Forward-Reply test cases 

XML file has a top level tag called Testsuite, which 

includes two test cases. The first test case includes test steps 

with method names such as ‘LibClickButton’, 

‘LibClickMenuItem’ and 

‘LibSetMultiAutoCompleteTextView’. LibClcikButton is 

used to click buttons such as Hot menu button, Send button.  

LibClickMenuItem is used to click menu items such as 

Forward and Hi. LibSetMultiAutoCompleteTextView is used 

to type receiver mobile number under ‘To’ field. This method 

reads mobile number of DUT from ‘Preconditions.db’ file. 

User has to set DUT mobile number in ‘Preconditions.db’ 

before starting test execution, by using an APK known as 

‘Precondition.apk’. The second test case is reply scenario. At 

the end of each case, all messages are deleted. 

Menu tree DB for Messaging application has to be 

included using ‘Select MT DB’ button in VTE. In this case, 

‘Message.db’ is included before APK is generated. When 

‘Generate APK’ button is pressed in VTE, an APK, in this 

case ‘Messaging.apk’, is generated to handle this XML file. 

This APK sends XML name, Menu tree DB name to VTE 

service. VTE service parses XML test case and triggers the 

commands to invoke library functions in ‘Library.jar’ file. 

Library function in Library.jar file generates events in 

android mobile to simulate user actions such as clicking menu 

items, buttons etc in order to execute these test cases. When 

Messaging.apk is executed, test cases are executed 

sequentially and an Excel based test report is generated 

automatically as shown in Figure 30. 

 

 

Fig. 30. Test report for Forward-Reply test cases 

The test steps for ‘Forward’ test case, inside IF part, are 

executed one time and listed under test case number1. The test 

steps for ‘Reply’ test case, inside ELSE part, are executed one 

time and listed under test case number2. The test steps outside 

‘alt’ combined fragments are executed in both test cases. 

VIII. COMPARISON WITH OTHER METHODS 

In [3], a method to parse XMI exported from Sequence 

diagram is illustrated. A Control Flow Graph (CFG) is 

constructed from nodes, edges and guards. This method is not 

extended to generate test cases and test scripts. In our 

approach, XML based basis path test cases are generated from 

CFG. Also APK based test scripts are generated to simulate 

user actions in Android phones. 

In [4], XML based test cases are created manually and then 

Java based test scripts are generated automatically. As XML is 

not supporting programming constructs such as loop, option, 

alternative and break, generating reusable test cases is 

challenging. In our approach, XML based test cases are 

generated automatically from Sequence diagram. As UML2 

based Sequence diagram supports programming constructs, 

reusable test cases can be created. 

In [5], State diagram based model is created to represent 

test scenario, and then low level events are generated using 

Robot framework. State diagram can be either action machine 



or refinement machine. Action machine contains high level 

keywords called action words. Refinement machine is 

implementation of the action machine, which contains low 

level keywords such as type word, press key etc. In our 

approach, Sequence diagram is used to capture user scenarios. 

XMI exported from the Sequence diagram is parsed to extract 

key words and then XML file is generated with a test case 

schema, which includes these keywords as part of test steps. 

Low level events are generated in the mobile device by 

parsing this XML file. 

In [6], Hierarchy viewer is used to capture UI layout 

information. To preserve security, Hierarchy Viewer can only 

connect to devices running a developer version of the Android 

system. This framework can be used for emulator or device 

with debug binary. In our approach, UI automator is used for 

simulating low level device events such as touch events and 

UI content verification. UI automator enables testing of 

Android mobile with both debug binary and release binary.  

In [7], Pattern Based GUI Testing (PBGT) approach relies 

on mapping UI elements with User Interface Test Patterns 

(UITP). Model is built on UITPs to represent test cases. 

Whenever UI layout is changing, corresponding model also 

needs to be changed. Test coverage is reduced as some UI 

elements are not recognized by Selendroid. In our approach, 

menu tree data base is generated for each model. This enables 

re-usability of same test suite across devices with different 

form factors.  

In [8], context event patterns are considered along with 

user event patterns to test Android application. This is white 

box approach, mainly useful for debugging Android 

application. Context events are recognized either by listeners 

through their handlers or by using notification of 

corresponding intent messages. In our approach, a service is 

running in background, parsing XML to extract events, inject 

events through UI automator based library functions. This is 

black box approach and no need to change Android 

application code. 

In [18], a GUI crawling algorithm needs instrumenting the 

source code of the application under test, in order to detect 

runtime crashes. In our approach, instrumentation is not 

required. It is fully black box approach. In [18], the algorithm 

is based on ‘Robotium’ framework. ‘Robotium’ is useful for 

only debug binaries. It needs extra permission to perform click 

from one application to another. In our approach, UI 

automator tool is used. UI automator tool is provided by 

Android, capable of extracting UI objects during run time and 

also it can generate click events. This helps to use this 

algorithm not only for debug binary, release binary too. In 

[18], the proof of concept is done with small size application. 

But in our case, the size of the application does not matter. It 

can handle complex scenarios such as tabs, popups, and 

different widgets such as radio button, checktextview etc. 

In [19], the low level Android event is generated using 

Monkey runner. To generate touch event, coordinates of 

widgets are used. Using coordinates, is not fool proof. When 

widgets are dislocated in the page, the coordinate based click 

results in wrong action. In our approach, UI object properties 

such as name of the widget, description of the button, class 

name, and resource id are used. Even though the widget is 

dislocated in the current screen, the click action happens 

without fail.  

The comparison between different test automation 

frameworks is shown in Table III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III.  COMPARISON OF TEST AUTOMATION FRAMEWORKS 

Attributes VTE Selenium TEMA PBGT Extended Ripper Autoval A²T² APBF

Reference This paper [4] [5,6] [7] [8] [16] [18] [19]

Model based testing(MBT) √ X √ √ X X X X

Programming constructs(If else, loop, etc) √ X √ X √ √ X X

Test design automation (Basis path etc) √ X √ X X X X X

Test case generation automation √ X √ √ √ X √ √

Test script generation automation √ √ √ √ √ X √ √

Handling UI changes √ X √ √ X X √ X

PC connectivity Independence √ X X X X X X X

Test Execution Automation √ √ √ √ √ √ √ √

Image comparison X X X X X √ √ √

Text comparison √ √ √ √ √ X √ X

Log verification √ X X X X X X X

UI Object based verification √ √ √ √ √ X √ X

Coordinate based automation X X X √ X √ X √

Same script for Form factors √ √ √ √ √ X √ X

Portability (maintenance for OS/Navigation changes) √ X X X X X X X

Scalability (Extension Ex: Keyword/Data driven) √ X √ X X X X X

Code instrumentation X X X X X X √ X



 

Test automation frameworks are compared with respect to 

various attributes to assess the capability and reusability of 

frameworks. The capability attributes are support of 

programming constructs, handling UI changes, test generation 

automation, text/log/UI object verification, portability and 

scalability. The reusability attributes are Model based testing 

(MBT) support, same script for different form factors, menu 

tree generation to handle navigation changes. 

IX. CONCLUSIONS 

In this paper, an automated method to generate functional 

tests from Sequence diagram is proposed for testing Android 

mobiles. Testing activities such as requirement analysis, test 

case design, test case generation, test script generation and test 

execution are automated. The scenarios are captured in the 

form of Sequence diagram. XMI file exported from Sequence 

diagram is parsed to get CFG. Basis path test cases are 

generated from CFG in the form of XML file. A menu tree 

database is generated, which helps to navigate through menu 

tree of Android mobile. An APK is generated to handle this 

XML and menu tree database to simulate user interface events 

such as click menu item, click button etc in target device. XL 

based test reports are generated. To execute multiple APKs in 

sequence, a test scheduler is developed. The objective is to 

reduce the test effort by automating test engineering activities 

throughout the test cycle.  

In this method, a Sequence diagram is created to capture 

test scenarios. In future, Activity diagram and State diagram 

based models will be involved to capture test scenarios. 

In this method, algorithms to generate CFG and basis path 

test cases are developed. In future, algorithms to consider 

other test design techniques such as data flow testing, 

orthogonal optimization, LCSAJ testing etc will be developed. 

In future, a suitable algorithm will be developed using 

genetic algorithm and AI (Artificial Intelligence) planning, to 

generate test data.  

This framework is a kind of keyword/action driven 

framework and scalable. In future, it will be extended with 

data driven and design pattern frameworks. 

 

This method will be more generalized, so that this method 

will be useful not only for Android platform, other embedded 

systems with different platforms also will get benefited. 

 

REFERENCES 

 
[1] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and 

Tools, Addison-Wesley, 1999. 

[2] Anirban Basu, Software Quality Assurance, Testing and Metrics, PHI 
Learning, 2015. 

[3] D. Kundu, D. Samanta, and R. Mall "An Approach to Convert XMI 
Representation of UML 2.x Interaction Diagram into Control Flow 
Graph", in International Scholarly Research Network(ISRN) Software 
Engineering, Volume 2012. 

[4] Ruifeng Chen and Huaikou Miao "A Selenium based Approach to 
Automatic Test Script Generation for Refactoring JavaScript Code", in 
IEEE/ACIS 12th International Conference on Computer and Information 
Science (ICIS), 2013. 

[5] Tuomas Pajumen, Tommi Takala and Mika Katara. “Model-Based 
Testing a General Purpose Keyword-Driven Test Automation 
Framework”, International Conference on Software Testing, Verification 
and Validation Workshops, 2011. 

[6] Tommi Takala, Mika Katara, and Julian Harty, “Experiences of system-
level model-based GUI testing of an Android application,” in 
Proceedings of the 4th IEEE International Conference on Software 
Testing, Verification, and Validation (ICST 2011). Los Alamitos, CA, 
USA: IEEE Computer Society, Mar. 2011, pp. 377–386.. 

[7] P.Costa, A.C.R. Paiva, and M. Nabuco, "Pattern Based GUI testing for 
Mobile Applications", In Proc. of 9th International Conference on the 
Quality of Information and Communications Technology (QUATIC), 
IEEE Computer Society, 2014. 

[8] D. Amalfitano, A. R. Fasolino, P. Tramontana, N. Amatucci, 
"Considering Context Events in Event-Based Testing of Mobile 
Applications", IEEE Sixth International Conference on Software 
Testing, Verification and Validation Workshops (ICSTW), 2013. 

[9] M. Fewster and D. Graham, Software Test Automation: Effective use of 
test execution tools. Addison–Wesley, 1999. 

[10] https://eclipse.org/papyrus/. 

[11] http://simple.sourceforge.net/. 

[12] http://www.graphviz.org/Documentation/dotguide.pdf. 

[13] Android Developers. UI automator. Available at: 
http://developer.android.com/tools/help/uiautomator/index.html. Last 
accessed Nov. 29, 2014. 

[14] OMG, “XML Metadata Interchange (XMI),v2.1”,2004. 

[15] Anbunathan R and Anirban Basu. "A Recursive Crawler Algorithm to 
Detect Crash in Android Application", IEEE International Conference 
on Computational Intelligence and Computing Research(ICCIC), 2014. 

[16] Anbunathan R and Anirban Basu. "Automation framework for testing 
Android mobiles", International Journal of Computer Applications, Vol. 
106, No. 1, 25-31, November 2014. 

[17] Anbunathan R and Anirban Basu. "An Event based Test Automation 
Framework for Android Mobiles", IEEE First International Conference 
on Contemporary Computing and Informatics(IC3I), 2014. 

[18] D. Amalfitano, A. R. Fasolino, P. Tramontana, "A GUI Crawling-based 
technique for Android Mobile Application Testing", IEEE Fourth 
International Conference on Software Testing, Verification and 
Validation Workshops (ICSTW), 2011. 

[19] Lu Lu, Yulong hong, Kai Su, Yuping Yan, "Activity Page based 
Functional Test Automation for Android Application", IEEE Third 
World Congress on Software Engineering (WCSE), 2012. 

[20] Google Code. Robotium. Available at: 
https://code.google.com/p/robotium/. Last accessed Nov. 29, 2014. 

[21] Android Developers. Monkeyrunner. Available at: 
http://developer.android.com/tools/help/monkeyrunner_concepts.html. 
Last accessed Nov. 29, 2014. 

http://developer.android.com/tools/help/uiautomator/index.html

