Data Mining in Social Network

Presenter: Keren Ye

References

Kwak, Haewoon, et al. "What is Twitter, a social network or a news media?." Proceedings of the 19th international conference on World wide web. ACM, 2010.

Pak, Alexander, and Patrick Paroubek. "Twitter as a Corpus for Sentiment Analysis and Opinion Mining." LREc. Vol. 10. 2010.

Data Mining in Social Network

What is Twitter, a social network or a news media?

Twitter

Basic Features

Tweet about any topic within 140-character limit

Follow others to receive their tweets

Twitter Space Crawl

Twitter Space Crawl

Application Programming Interface (API)

Data collection

Profiles of all users: June 6th - June 31st, 2009

Profiles of users who mentioned trending topics: June 6th - September 24th, 2009

Twitter Space Crawl

User Profile

41.7 million (4,170,000) user profiles.

1.47 billion (1,470,000,000) directed relations of following and being followed

Trending Topics + Associated Tweets

4,262 unique trending topics and their tweets

Query API every five minutes for trending topic title (Top-10)

Grab all the tweets that mention the trending topic

Twitter Space Crawl

Removing Spam Tweets

Why

Undermine the accuracy of PageRank

Spam keywords hinder relevant web page extraction

Add noise and bias in analysis

How

Filters tweets from users who have been on Twitter for less than a day

Removes tweets that contain three or more trending topics

Followings and Followers (CCDF)

Complementary cumulative distribution function

$$\bar{F}(x) = \mathrm{P}(X > x) = 1 - F(x).$$

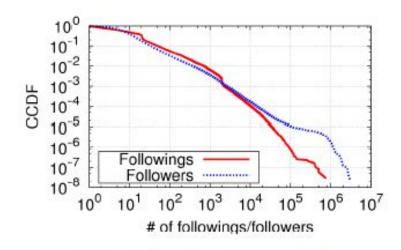


Figure 1: Number of followings and followers

Followers vs. Tweets

y: number of followers a user has

y: number of tweets the user tweets

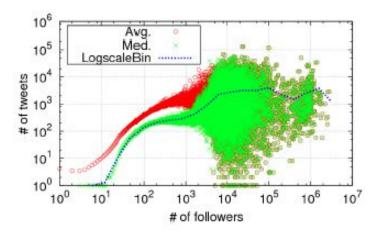


Figure 2: The number of followers and that of tweets per user

Followings vs. Tweets

y: number of followings a user has

y: number of tweets the user tweets

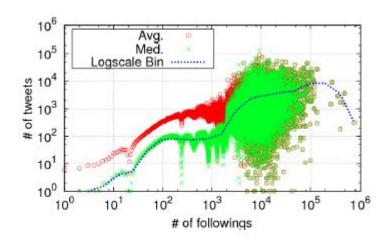


Figure 3: The number of followings and that of tweets per user

Reciprocity

Top users by the number of followers in Twitter are mostly celebrities and mass media

77:9% of user pairs with any link between them are connected one-way

only 22:1% have reciprocal relationship between them - r-friends

67:6% of users are not followed by any of their followings in Twitter

A source of information? A social networking site?

Degree of seperation

Small world phenomenon - Stanley Milgram's

"Any two people could be connected on average within six hops from each other"

Main difference

The directed nature of Twitter relationship - only 22:1% of user pairs are reciprocal

Can we expect that two users in Twitter to be longer than other known networks

MSN - 180 million users, 6.0, 7.8 for medium and 90% degree of separation respectively

Degree of separation

Choose a seed randomly

Compute the shortest paths between the seed and the rest of the network - 4.12

Social network? Source of information?

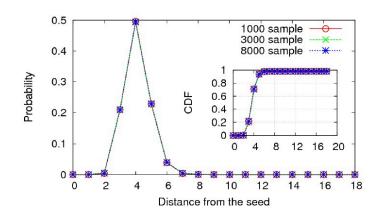


Figure 4: Degree of separation

Homophily

A contact between similar people occurs at a higher rate than among dissimilar people

Investigate homophily in two context

Geographic location

Popularity

Homophily

Geographic Location

Popularity

Social network? Source of information?

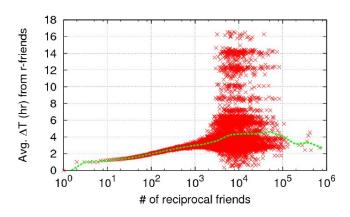


Figure 5: The average time differences between a user and r-friends

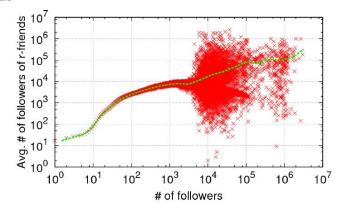


Figure 6: The average number of followers of r-friends per user

Motivation

Interpret the act of following as subscribing to tweets

How trending topics rise in popularity, spread through the followers' network, and eventually die

Review

4,266 unique trending topics from June 3rd to September 25th, 2009

Apple's Worldwide Developers Conference, the E3 Expo, NBA Finals, and the Miss Universe Pageant

Compare to Google Trend

Similarity

Only 126 (3.6%) out of 3,479 unique trending topics from Twitter exist in 4,597 unique hot keywords from Google

Freshness

On average 95% of topics each day are new in Google while only 72% of topics are new in Twitter

Interactions might be a factor to keep trending topics persist

Social Network?

Compare to CNN Headline News

Preliminary Results

More than half the time CNN was ahead in reporting

However, some news broke out on Twitter before CNN

Source of information?

Singleton, Reply, Mention, and Retweet

Singleton: tweet with no reply or a retweet

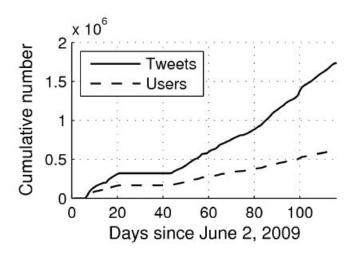
Reply

Mention: tweet addressing a specific user, both replies and mentions include "@" followed by the addressed user's Twitter id

Retweet: marked with either "RT" followed by "@user id" or "via @user id"

Among all tweets mentioning 4,266 unique trending topics, singletons are most common, followed by replies and retweets.

Out of 41 million Twitter users, a large number of users (8; 262; 545) participated in trending topics and about 15% of those users participated in more than 10 topics during four months.



(a) Topic 'apple'

Impact of retweet

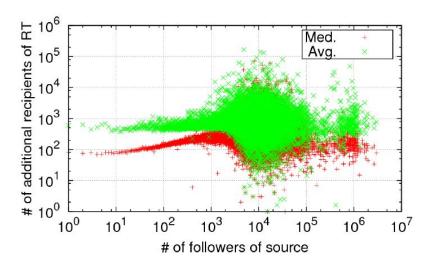


Figure 14: Average and median numbers of additional recipients of the tweet via retweeting

Data Mining in Social Network

Twitter as a Corpus for Sentiment Analysis and Opinion Mining

Motivation

Recognize positive / negative / objective sentiment

funkeybrewster: @redeyechicago I think Obama's visit might've sealed the victory for Chicago. Hopefully the games mean good things for the city.

vcurve: I like how Google celebrates little things like this: Google.co.jp honors Confucius Birthday — Japan Probe

mattfellows: Hai world. I hate faulty hardware on remote systems where politics prevents you from moving software to less faulty systems.

brroooklyn: I love the sound my iPod makes when I shake to shuffle it. Boo bee boo

MeganWilloughby: Such a Disney buff. Just found out about the new Alice in Wonderland movie. Official trailer: http://bit.ly/131Js0 I love the Cheshire Cat.

Table 1: Examples of Twitter posts with expressed users' opinions

Corpus collection

Use the Twitter API

The whole data set is huge, a subset is enough for training purpose

Using sentiment related emoji to get the positive / negative training corpus

Happy emoticons: ":-)", ":)", "=)", ":D" etc.

Sad emoticons: ":-(", ":(", "=(", ";(" etc.

For objective training corpus

Retrieve text messages from Twitter accounts of popular newspapers and magazines

Feature

Feature Extraction

Model

Model Evaluation

Feature

Presence of a n-gram as a binary feature

E.g., "I love the sound my iPodmakeswhen I shake to shuffle it. Boo bee boo"

Unigram (1-gram): presence of "I", "love", "the", ...

Bigram (2-gram): presence of "I love", "love the", "the sound", ...

Feature extraction

Filtering

Remove URL links, Twitter user names and emoticons

Tokenization

Segment text by splitting it by spaces and punctuation marks

Remove stopwords

Construct n-gram

Negation is attached to a word which precedes it or follows it. E.g., "I do+not", "do+not like".

Naive Bayes Model

s - sentiment

M - Twitter Message

$$P(s|M) = \frac{P(s) \cdot P(M|s)}{P(M)}$$

$$P(s|M) \sim P(M|s)$$

Naive Bayes Model - An example

"I love the sound my iPodmakeswhen I shake to shuffle it. Boo bee boo"

$$P(s=+|M) \sim P(+) P(|+) P(|+)$$

$$P(s=-|M) \sim P(-) P(|-) P(love|-) P(the|-) P(sound|-) ...$$

By counting the number in training set, we can get:

$$P(s|M) = \frac{P(s) \cdot P(M|s)}{P(M)}$$

$$P(s|M) \sim P(M|s)$$

Other details of the model

POS-tags as extra information

Discriminate common n-grams since they do not strongly indicate sentiment

Model Evaluation

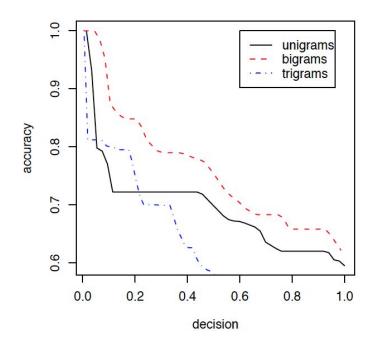
Precision: measures the proportion of correctly tagged tokens within the set of all the tokens that were non ambiguously tagged by the evaluated system. It is therefore a measure of the accuracy of the tagging effectively performed by the system.

Decision: measures the proportion of tokens non ambiguously tagged within the set of all token processed by the evaluated system. It therefore quantifies to which extent the evaluated system effectively tags the input data.

$$accuracy = \frac{N(\text{correct classifications})}{N(\text{all classifications})} \qquad \qquad decision = \frac{N(\text{retrieved documents})}{N(\text{all documents})}$$

$$accuracy = \frac{N(\text{correct classifications})}{N(\text{all classifications})}$$

$$decision = \frac{N(\text{retrieved documents})}{N(\text{all documents})}$$



Conclusion

Essence of data mining

Find interesting patterns

General idea of the two papers

Subjective way - propose problem, explain the reason.

Objective way - propose problem, solve it.

Domain knowledge of the two

Statistics and data visualization

Machine learning technology

Thanks