Activity Recognition Through Active and Semi-Supervised Learning in Mobile Devices

By Matt Barren

Activity Recognition

- Utilizing sensors to determine user's current state
 - o Accelerometers, heart rate, etc.
- Perform appropriate actions based on the current activity state

Typical Activity Application Development

- Training based upon an initial dataset of users
 - Calibration
- Classify activities with a static classifier

Limitations

- Not unique to user
- No dynamism
- Potentially requires a large set of labeled data

What can be gained?

Ideally - Classification is unique and responsive to user data

- Classification unique to user
- Increase accuracy of classifier through updating
- New classifiers based on user
- Increased efficacy in metadata

Opportunities due to..

- Variety of sensors in mobile devices
- Computational power in mobile devices

Overview of Discussion

Active and Semi-Supervised Learning

- Overview of Semi-Supervised Learning and General Learning Model
- Semi-Supervised Learning Models
- Experimentation and Evaluation
- Results
- Conclusions of Work
- Briefly Examine Nonparametric Discovery of Human Routines
- Conclusion

Semi-Supervised Learning Models

- What is meant by "semi"-supervised?
 - Train with small quantities of labeled and large quantities of unlabeled
- How to select unlabeled data to use?
 - "Confidence!"

Labeled Data with two classes

- Why use semi-supervised learning?
 - Infeasibility of labeling
 - Iterative learning

Unlabeled Data with two classes

General Learning Model

Initial training set to build a classifier(s)

General Learning Model

- Classify observed motion
 - If confidently predicted, add to the training set

Continuous Improvement of Activity Classification

- Update the model based on the new training set
 - New iteration

Self-Learning

- Single classifier
- Start with a "seed" set of labeled training data
- Use "seed" set to build initial classifier
- Classify unlabeled data
 - Confidently classified samples are added to "seed" set

Benefits: Simple, continues to expand/tailor training pool

Limitations: Negatively impacted by "confidently" mislabeled data, requires larger quantities of labeled data compared to other semi-supervised learners

Co-Learning

- Use two classifiers
 - Different views (or feature sets)
 - Must not be perfectly correlated
- Train with same data
- Predict unlabeled data
 - Confident predictions added to the training set
 - Retrain with additional data

 X_1 view

Benefits: Confidence is disaggregated to two classifiers

Limitations: Requires views to be splittable such that they are independent and can classify

En-Co-Training

- Ensemble learning
 - Same data view, three different classifiers
- Prediction based on majority voting
 - Eases prediction and confidence to classification label

En-Co-Training

- Update training set
 - Consensus classifications
- Update classifiers
 - Occurs periodically

Benefits: Ease of prediction determination, democratic classification

Limitations: Redundant training on common data set

Democratic Co-Learning

- Ensemble Learning
 - Same views, three different classifiers
- Initial training on same data set
- Prediction based on majority voting

Democratic Co-Learning

- Update training set of minority voter
 - Priority selection of points

$$Priority[obs_i] = \sum Majority \ Classifiers - \sum Dissenting \ Classifiers$$

- Update classifiers
 - Occurs periodically

Benefits: Separate training pools, priority training

Limitations: Without priority will have a quickly growing training set

Active Learning

- Train a classifier on labeled data
- Balance user interruption with classifier accuracy
 - Choose samples of interest for user to label manually
 - Uncertainty Sampling, Dissenting Committee, Expected Model Change, Expected Error Reduction
 - Update training set with user input

Benefits: Exact labeling of priority data points

Limitations: Requires user input and feedback

Experiment

- Classification of idle, walking, and running
- Build Base Classifier
 - 17 participants, 30 minutes per activity
- 15 participants for unlabeled data

Classifiers

- Self-learning C4.5 Decision tree
- Active learning C4.5 Decision tree
- Co-learning C4.5 Decision tree, naive Bayes, and Support Vector Machine(SVM)
 - SVM used sequential minimal optimization algorithm

Classifier vs. Static Classifier

TABLE I

PERCENTAGE CHANGE FROM BASE CLASSIFIER WITH 480 NEW DATAPOINTS OVER EIGHT ITERATIONS AND A CONFIDENCE INTERVAL OF 95%

	Self-Learning	Active Learning	En-Co-Training		Democratic Co-learning	
Unlabeled	DT only	DT only	DT only	Democratic	DT only	Democratic
50%	$-1.27\% \pm 2.07\%$	$2.15\% \pm 2.85\%$	$-0.91\% \pm 2.15\%$	$-0.34\% \pm 2.67\%$	$-2.06\% \pm 3.08\%$	$-0.63\% \pm 2.85\%$
55%	$-5.35\% \pm 5.66\%$	$3.17\% \pm 4.87\%$	$-6.64\% \pm 6.46\%$	$0.67\% \pm 0.66\%$	$-1.46\% \pm 3.14\%$	$0.38\% \pm 0.87\%$
60%	$3.31\% \pm 4.41\%$	$17.13\% \pm 7.95\%$	$5.53\% \pm 5.29\%$	$13.05\% \pm 7.20\%$	$14.38\% \pm 8.31\%$	$15.07\% \pm 8.00\%$
65%	$0.05\% \pm 0.28\%$	$12.38\% \pm 7.28\%$	$0.88\% \pm 1.66\%$	$6.34\% \pm 3.43\%$	$8.59\% \pm 8.08\%$	$10.48\% \pm 6.34\%$
70%	$0.17\% \pm 0.54\%$	$9.35\% \pm 6.41\%$	$0.04\% \pm 0.58\%$	$5.04\% \pm 3.14\%$	$7.99\% \pm 5.76\%$	$8.41\% \pm 5.82\%$
75%	$3.31\% \pm 4.41\%$	$9.79\% \pm 6.44\%$	$1.65\% \pm 6.51\%$	$6.69\% \pm 4.61\%$	$9.03\% \pm 6.31\%$	$9.12\% \pm 6.31\%$
80%	$-0.02\% \pm 0.03\%$	$1.48\% \pm 2.31\%$	$-0.01\% \pm 0.03\%$	$1.14\% \pm 0.80\%$	$0.54\% \pm 1.40\%$	$1.03\% \pm 1.11\%$
85%	$1.38\% \pm 1.87\%$	$8.77\% \pm 6.57\%$	$0.23\% \pm 0.55\%$	$5.45\% \pm 3.51\%$	$7.80\% \pm 6.40\%$	$8.84\% \pm 6.12\%$
90%	$-0.63\% \pm 0.89\%$	$3.13\% \pm 4.50\%$	$0.10\% \pm 1.54\%$	$1.41\% \pm 1.56\%$	$0.51\% \pm 2.15\%$	$1.02\% \pm 1.95\%$
95%	$-1.74\% \pm 1.33\%$	$8.90\% \pm 5.03\%$	$1.82\% \pm 2.79\%$	$6.27\% \pm 4.08\%$	$8.72\% \pm 6.48\%$	$8.97\% \pm 6.56\%$

"Unlabeled" refers to the quantity of unlabeled data used $\mu = (\mu_{classifier} - \mu_{base \ classifier})$, 95% confidence interval

Correlation Between Initial Classifier

- Each data point is the average percent difference from the base classifier for the quantity of unlabeled data
- Unlabeled data used increases from 50%-95% in increments of 5%

Updating the Model

Iterations - number of instances the model was updated based on new training data

Conclusions About Learning Model Study

- Democratic Co-Learning(DCL) and Active Learning have comparable results
 - DCL avoids patient interaction
- Limitations on responsiveness to new trends and new classifications
 - Change in user behavior
- Study is limited to recognizing 3 activities

- Extract low level features of sensor data
 - I.e. accelerometer or GPS
- Build higher level features, "artificial words", from composite of low-level feature set
 - Dirichlet Process Gaussian Mixture Model (DPGMM)
- Examine set of "artificial words" in a time window to build a routine
 - Hierarchical Dirichlet Process (HDP)

- Extract low level features of sensor data
 - I.e. accelerometer or GPS

 (a) Density distributions of mean of accelerometer data (y-axis pocket) from the daily routine dataset

- Build higher level features, "artificial words", from composite of low-level feature set
 - Dirichlet Process Gaussian Mixture Model (DPGMM)

- Examine set of "artificial words" in a time window to build a routine
 - Hierarchical Dirichlet Process (HDP)

References

- 1. Longstaff, B., Reddy, S., & Estrin, D. (2010). Improving activity classification for health applications on mobile devices using active and semi-supervised learning. *Proceedings of the 4th International ICST Conference on Pervasive Computing Technologies for Healthcare*. doi:10.4108/icst.pervasivehealth2010.8851
- 2. Sun, F., Yeh, Y., Cheng, H., Kuo, C., & Griss, M. (2014). Nonparametric discovery of human routines from sensor data. *2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)*. doi:10.1109/percom.2014.6813938
- 3. Divvala, S. K. (n.d.). Co-Training & Its Applications in Vision. Lecture.
- 4. Semi-supervised learning Wikipedia, the free encyclopedia. (n.d.). Retrieved October 19, 2016, from https://en.wikipedia.org/wiki/Semi-supervised_learning