
Dilatational Particle Swarm Optimization

Mohammad Hasanzadeh Mofrad
hasanzadeh@cs.pitt.edu

November 4, 2016

Abstract

Particle Swarm Optimization (PSO) is an Evolutionary Computation
(EC) technique that utilizes a swarm of particles to solve an optimization
problem. Also, Slow Intelligence System (SIS) is a learning framework
which slowly learns the solution to a problem performing a series of op-
erations. In this project, we propose the Dilatational Particle Swarm
Optimization (SPSO) which tries to model the swarm’s learning episodes
of the PSO algorithm within the slow/fast context of SIS. Also, We will
show how the mapping from PSO to SIS may improve the overall perfor-
mance of PSO.

1 Introduction

The SIS [1] is a slow learner with multiple decision cycles. In each decision cycle
a set of operations are applied to the existing solutions of the target problem.
In a SIS Abstract Machine, these operations could be any combination of Enu-
meration, Propagation, Adaptation, Elimination, and Concentration operators.
In each decision cycle of SIS, a predicate that is constructed from these opera-
tors is shielded by a guard operator which controls the flow of operation from
computationally inexpensive decision cycles to expensive ones.

The PSO [2] is an evolutionary algorithm utilizes a swarm of particles that
iteratively calculates the optimal solution to a problem using particle’s personal
best position and swarm’s global best position. In PSO, the position of parti-
cles are updated using the velocity formula which contains the current position,
personal best position of a particle and global best position of the swarm. Cal-
culating the distance of each particle from its personal best position and global
best position of the swarm, in each iteration of PSO algorithm, the particles
move toward the latest optimal position of the swarm. This individual and so-
cial moves of each particle will eventually lead to finding the optimal result of
the candidate problem.

Both SIS and PSO are learning frameworks that iteratively approximate the
best solution to a problem. In this project, we are going to combine these two
approaches and exploit their advantages. Such a hybrid framework will contain
the followings:

1



1. A PSO that has the ability to control its convergence speed using the slow
and fast decision cycles of the SIS.

2. A set of new updating equations for particle’s position and velocity which
are written based on the SIS operators.

3. The proposed framework will be tested using the available evolutionary
computation benchmarks which are written in Python e.g. benchmarks for
the Real Optimization session on IEEE Congress on Evolutionary Com-
putation CEC’2005 [3] or other publicly available benchmarks.

4. If time allows, in case of handling continues attributes for health care
data, first we may use linear regression or gradient descent to construct the
objective function for the PSO and then apply our evolutionary framework
to the input data in order to find the optimal set of features for a dataset.

2 Framework

The Dilatational PSO (DPSO) is a combination of PSO and SIS. We map the
current framework of SIS into DPSO as follows:

1. Enumeration consists of calculating the fitness of all available particles
in the problem space. The fitness information will be passed to the next
phases for future use.

2. Propagation in DPSO defines as the personal best position for each par-
ticle (pbest) and global best position for the entire swarm (gbest). This
information is calculated in each decision cycle and SIS can utilize this
information in order to propagate the current experience to other sub-
components.

3. Adaptation utilizes the current solutions to produce an elitist next gen-
eration of particles. In DPSO, the adaptation behaviour can be seen when
the particles move toward the pbest and gbest.

4. Elimination rules out a set of infeasible solutions and keep the feasible
solutions for the next decision cycle. The elimination operator is imple-
mented in the context of DPSO by extracting the the k best generated
solutions for the current decisions cycle where k is the enumeration factor
and lets SIS to extract an elite subset of DPSO’s solution.

5. Concentration tries to concentrate on the elite population of particles.
In DPSO, the concentration step consists of updating the velocity and
position of elite particles along with other non-elite particles. But the
difference between these two groups of particles will be the fact that the
non-elite particles will have a random mutation to see whether their fitness
can be improved or not.

2



Moreover, we borrow the notion of guard from SIS and add the slow and
fast decision cycles to the DPSO as follows:

1. Fast decision cycle with large step size:

w = wmax − (
3

2
((wmax − wmin)/imax) ∗ i)

2. Slow decision cycle with small step size:

w = wmax − (((wmax − wmin)/imax) ∗ i)

where w, wmax, and wmin are weight, maximum allowed weight and minimum
allowed weight and i and imax are current decision cycle and maximum number
of decision cycles.

In addition to the above contributions, we will change the standard PSO
formulation to convey the groundtruth of SIS and follow the SIS’s modular
architecture.

3 Implementation

Currently, the project is under active development and we are writing the project
in Python programming language. Also, The PSO implementation is quite done
and we are trying to integre PSO and SIS. Moreover, there is a repository for the
project in GitHub. To see the code and implementation details of this project
you can browse this url: https://github.com/hmofrad/pso [4].

References

[1] Shi-Kuo Chang. A general framework for slow intelligence systems. International
Journal of Software Engineering and Knowledge Engineering, 20(1):1–15, 2010.

[2] James Kennedy. Particle swarm optimization. In Encyclopedia of machine learning,
pages 760–766. Springer, 2011.

[3] Ponnuthurai N Suganthan, Nikolaus Hansen, Jing J Liang, Kalyanmoy Deb, Ying-
Ping Chen, Anne Auger, and Santosh Tiwari. Problem definitions and evaluation
criteria for the cec 2005 special session on real-parameter optimization. KanGAL
report, 2005005:2005, 2005.

[4] Particle swarm optimization (pso) implementation in python, Date accessed: 2016-
11-03. https://github.com/hmofrad/pso.

3

https://github.com/hmofrad/pso

	Introduction
	Framework
	Implementation

