
CS 2310
Final Project Report
Haoran Zhang

Brainwave Sensor for the TDR System

Introduction
In this project, I worked on adding new sensor in to the TDR system. What I have done are connect
OpenBCI brainwave sensor into the system. In addition, I also developed a general program to
predict the status of brainwave in real time.

OpenBCI
OpenBCI is an open source brain computer interface platform. OpenBCI boards support EEG,
EMG, and EKG recording and measurement. It supports standard EEG electrodes, so it is easy to
buy accessory for the board and let it start working. In addition, the OpenBCI community provides
an open source OpenBCI GUI to work with OpenBCI boards, so I don’t have to pay a lot of
attention on how to record data from the board, but I can focus on how to send data to TDR system,
and let the system monitor the incoming data. It provides us a change to focus on higher level data
manipulation and computation. In addition, OpenBCI GUI has a Java implementation, so I can
easily to integrate the GUI into the TDR system as a sensor component. The following picture
shows a working OpenBCI GUI screenshot.

The version of our OpenBCI boards support 16 channels data recording. That is, the system can
monitor EEG signal from different 16 position on the head at the same time. It provides us more
data for further analysis, especially in machine learning process, more data always represent a
better prediction model. The following picture shows the 16 channels and corresponding position
on the head, respectively.

Software Design
In this project, the OpenBCI board will connect to OpenBCI GUI. The OpenBCI GUI is a sensor
component, and it sends data to OpenBCI Monitor component. The OpenBCI Monitor component
makes prediction based on pre-trained prediction model, and decides if it is necessary to upload
data into the database. If so, it sends a message to OpenBCI Uploader component. Once the
OpenBCI Uploader component receives the message, it uploads the record into the database.

Out of a running TDR system, there is another program for cleaning plain data, training prediction
model, and save the model as a file so that the OpenBCI Monitor can load this model and make
prediction easily.

The following picture shows the working flow of this project.

TDR System Components
In this section, I will talk about all components in this project that related to the TDR system, and
this is the original task of this project. I followed the standard of the TDR system to implement
each component, so that they can be integrate into the TDR system easily.

OpenBCI Board
This is the physical sensor provided by the OpenBCI community. It supports 16 channels EEG
signals monitor. We assembled a headset, so that user can wear it can don’t need to worry about
corresponding monitor position by themselves. Furthermore, to make it easy to use, an additional
Bluetooth transmission board used to support wireless communication between OpenBCI board
and OpenBCI GUI, so that user not limited by the cable connection between the OpenBCI headset
and the computer.

OpenBCI GUI
This GUI is also provided by the OpenBCI community. It visualizes the data from OpenBCI board.
From the screenshot from the lase section, we can see that, this interface shows data from 16
channels separately, a frequency plot, and a head plot. User can interpret their status even only
from these graphs. In addition, user can also manipulate coming data directly using this interface.
Also, it saves data into a file directly, so that the machine learning module can use these data for
prediction model training in the future.

This interface was written in Processing language, it is an alternative Java language, so I can
modify it to support TDR system. In this project, this interface is a sensor component of the TDR
system. It not only saves data into a file, but also sends a message contains all data from each
channel to the TDR system. Thus, the OpenBCI Monitor can capture this message and make
prediction or decide whether to let uploader to upload this record or not.

OpenBCI Monitor
############ Extra Deeds in Details Start ############
Once the user start the OpenBCI Monitor, it loads the pre-trained model file for making prediction
of coming data. The benefit of this is that, the system doesn’t have train a new model every time,
and it makes the whole process asynchronies. It not necessary to train a new model every time if
we don’t have high quality annotated data. Thus, before the machine learning module gets new
annotated data, the OpenBCI Monitor just simply uses a pre-trained model for make prediction of
meditation status in real time. The result is in percentage format, and it is a fuzzy representation
other than just simple 1 or 0. I think this is better because sometime it is hard to simply to describe
the meditation status of a user even manually.
############ Extra Deeds in Details End ############

Because the sample rate of the interface is 250 Hz, and it may be too much for the TDR system
database, so the OpenBCI Monitor only lets the OpenBCI Uploader to upload records every second.
User can adjust this interval easily by modifying the parameter.

OpenBCI Uploader

The OpenBCI Uploader is a standard uploader in the TDR system. Like other uploader in the
system, it receives message from other components, and inserts one or more records into the
database on demand.

############### Extra Deeds in Details Start ###############
Machine Learning Module
In this section, I will talk about the machine learning module I implemented for this project. I used
an external package named “Weka” for training prediction model. Weka is a powerful tool that
provides a lot of flexible well-programmed machine learning algorithms. With its help, the module
can train a prediction model easily using different machine learning algorithms. In addition, Weka
is a package implemented by Java, so there is a chance to integrate the package into the TDR
system directly as a component, but not just an external module.

Data Cleaning
Before feed plain data to the Weka classifier, it is necessary to clean data, and generates a valid
data set for Weka classifier. In original plain data, there are few lines of meta data before the actual
records, it is necessary to delete those meta data. In addition, there is an index number before each
record, it also needs to be eliminated.

Since my job is training prediction model using statistical machine learning algorithm, thus I need
to extract features for training by myself. It is too easy to just use data from 16 channels as a
training data, because they are brainwave records, and move up and down. Thus, these simple
features cannot split data with different meditation status. I decided to add more features in it, to
achieve this target, I combined 4 consecutive records together. The benefit I can get is that, other
than 16 * 4 data from 16 channels, I can calculate mean, variance, and standard deviation for each
channel. Now, we have 16 * 4 + 3 * 16 features. Since the sample rate is 250 Hz, we still can
generate 62 records for training in only 1 second. I think this is enough for our task so fat, if not,
it is easy to be adjusted by modified one parameter in the module.

After construct all records, the model saves all records into an “arff” file, so that the system can
feed this file into the Weka classifier directly for prediction model training.

Model Training
Weka provides a lot of machine learning algorithms, from KNN or linear regression, to other high
level machine learning algorithms, such as SVM. With the help of the package, the system can
train any model by different classifiers. I implemented the program that, user can easily to change
the classifier they need.

To select a proper algorithm, I did few experiments using different classifiers, such as Linear
Regression, Logistic Regression, Bagging, Ada Boost, Naïve Bayes, J48, Random Forest, and
SMV. I used 10-folds cross validate to select a better model. Unfortunately, the data I had are too
far away from each other. Every classifier from simple to complicated, the accuracy is 100%. I
cannot compare which model is better, so I just use SMV as the model.

Another task I want to do is to select as few as possible of data to train a model, so that users do
not need to get a device to monitor 16 channels. A smaller and cheaper device that only monitor

few channels may be enough for meditation status prediction task. To select few channels, I used
information gain for feature selection. Since my records are mostly plain data from each channel,
thus, by using feature selection technique, it can select channels that can split data efficiently.
Another solution is Principal Component Analysis (PCA). With help of PCA, the system can find
out which feature (channel) contributes more to the data. Then we may use one or more most
contributes channels to be our final channels. I also did few experiments on this task, with the same
reason I got in classification part, the algorithm told me I can only use one channel for prediction,
because the value of that channel will be positive if the record is positive, and the value will be
negative if the record is negative. It still has 100% accuracy, but I need more data to verify this
result.

Model File
After train a model, the module simple save the classifier model in to a file so that the OpenBCI
Monitor can load this model and make prediction.
############### Extra Deeds in Details End ###############

Screenshots Demo
First, let a user wear the device, and plug in the Bluetooth communication device into the computer.

Then start SIS server, initialize it.

Run BCI Monitor, and BCI Uploader

Open OpenBCI GUI, and select “LIVE (from OpenBCI)”, and proper parameters. Then click
“Start System”

Click “Start Data Stream” to read data from OpenBCI board.

From the BCI Uploader, we can see that, data were uploaded to the database and send an email to
the database.

############ Extra Deeds in Details Start ############
From the BCI Monitor, we can see that, the system give a probability of user are in a meditation
status.

Above are live demo screenshots. In this project, we also can train, test a model, and save the
model into a file, so that the BCI Monitor can load the model easily and make prediction in the
live demo.

If user want to try another model, just simply modify the code, to select any classifiers they want
to try.

After select the classifier, you can run the program to do a 10-folds cross validation on selected
classifier, and output the result.

From the result, we can see that the accuracy is 100%. The program generates a model file at the
same time. We can copy this file to BCI Monitor folder, so that the BCI Monitor can load this
model easily.

############ Extra Deeds in Details Start ############

Conclusion
In this project, I implemented flexible components to connect an open source EEG signal monitor
into the TDR system, so that the TDR can manipulate the data from the sensor for future operation
or prediction. The OpenBCI Monitor can give a percentage prediction of meditation status of user

in real time. I also implemented a flexible machine learning module for OpenBCI Monitor. Due to
this is the first step of this research, user can modify parameters or select classifiers easily by only
modify few parameters…

Extra Deeds
Flexible components in OpenBCI Monitor, user can modify parameters easily to change the
behave of the system.
Clean data and Feature Extraction from original plain data.
Feature selection to select channels for training model as few as possible.
Trained multiple classification model for experiments.
Provide a flexible machine learning module so that user can change classifier easily for future
prediction.

Appendix
ApplyModel.java

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.ObjectInputStream;
import java.util.ArrayList;

import weka.classifiers.Classifier;
import weka.core.Instance;
import weka.core.Instances;

public class ApplyModel {
 Classifier c = null;
 Instances data = null;
 public ApplyModel(String dataName, String modelFile)
{
 try {
 data = new Instances(new
BufferedReader(new FileReader(dataName + ".arff")));

 data.setClassIndex(data.numAttributes() - 1);
 c = loadModel(modelFile);
 } catch (Exception e) {
 // TODO Auto-generated catch
block
 e.printStackTrace();
 }
 }

 public int numAttributes() {
 return data.numAttributes();
 }

 public Instance createInstance(ArrayList<double[]>
alData) {
 int step = alData.size();
 int channel = alData.get(0).length;
 Instance instance = new
Instance(numAttributes());
 double[][] data = new double[channel][step];

 for (int i = 0; i < step; i++) {
 double[] datas = alData.get(i);
 for (int j = 0; j < channel; j++) {

 instance.setValue(i*channel+j, datas[j]);
 data[j][i] = datas[j];

 }
 }

 for(int m = 0; m < channel; m++) {
 Statistics s = new
Statistics(data[m]);

 instance.setValue(step*channel+m*3+0, s.getMean());

 instance.setValue(step*channel+m*3+1,
s.getVariance());

 instance.setValue(step*channel+m*3+2, s.getStdDev());
 }
 instance.setValue(numAttributes()-1,0);
 return instance;
 }

 public double apply(Instance instance) throws Exception
{
 double[] result =
c.distributionForInstance(instance);
 return result[1];
 }

 private Classifier loadModel(String modelFile) throws
Exception {

 Classifier classifier;

 FileInputStream fis = new
FileInputStream(modelFile);
 ObjectInputStream ois = new ObjectInputStream(fis);

 classifier = (Classifier) ois.readObject();
 ois.close();

 return classifier;
 }
}

CreateFeatureFile.java

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;

public class CreateFeatureFile {
 String[] files = {

 //"/Users/colin/Documents/Study/SE/test.txt",

 "/Users/colin/Documents/Study/SE/NEG.txt",

 "/Users/colin/Documents/Study/SE/POS.txt",
 };

 public CreateFeatureFile(String dataFile) {
 ArrayList<ArrayList<String>> features =
new ArrayList<ArrayList<String>>();
 int step = 4;
 int channel = 16;
 for (int i = 0; i < files.length; i++) {
 // This will reference one line at a
time
 String fileName = files[i];
 String line = null;
 int count = 0;
 double[][] data = new
double[channel][step];
 ArrayList<String> feature = new
ArrayList<String>();
 try {
 // FileReader reads
text files in the default encoding.
 FileReader fileReader
= new FileReader(fileName);

 // Always wrap
FileReader in BufferedReader.
 BufferedReader
bufferedReader = new BufferedReader(fileReader);

 while ((line =
bufferedReader.readLine()) != null) {

 if(!line.startsWith("%")&&!line.equals("")){

 //System.out.println(line);

 String[] datas = line.split(", ");

 for (int j = 1; j < channel+1; j++) {

 feature.add(datas[j]);

 data[j-1][count] = Double.parseDouble(datas[j]);
 }

 count++;

 if (count == step) {

 for(int m = 0; m < channel; m++) {

 Statistics s = new Statistics(data[m]);

 feature.add(s.getMean()+"");

 feature.add(s.getVariance()+"");

 feature.add(s.getStdDev()+"");

 }

 feature.add(i+"");

 features.add(feature);

 count = 0;

 data = new double[channel][step];

 feature = new ArrayList<String>();
 }
 }
 }
 // Always close files.

 bufferedReader.close();
 } catch (FileNotFoundException
ex) {

 System.out.println("Unable to open file '" + fileName +
"'");
 } catch (IOException ex) {

 System.out.println("Error reading file '" + fileName +
"'");
 // Or we could just do
this:
 // ex.printStackTrace();
 }
 System.out.println(count);
 }

 String dataName = dataFile + ".arff";
 try {
 BufferedWriter dataOut = new
BufferedWriter(new FileWriter(dataName));

 dataOut.write("@relation BCI");
 dataOut.newLine();
 dataOut.newLine();

 for (int i = 0; i < step; i++) {
 for (int j = 0; j <
channel; j++) {

 dataOut.write("@attribute Channel_" + j + "_" + i + "
NUMERIC");

 dataOut.newLine();
 }
 }

 for (int i = 0; i < channel; i++) {
 for (int j = 0; j < 3; j++)
{
 switch (j) {
 case 0:

 dataOut.write("@attribute Mean_" + i + "_" + j + "
NUMERIC");

 break;
 case 1:

 dataOut.write("@attribute Variance_" + i + "_" + j + "
NUMERIC");

 break;
 case 2:

 dataOut.write("@attribute StdDev_" + i + "_" + j + "
NUMERIC");

 break;
 }

 dataOut.newLine();
 }
 }

 dataOut.write("@attribute
@class@ { '0', '1' }");
 //dataOut.write("@attribute
@class@ NUMERIC");
 dataOut.newLine();
 dataOut.newLine();

 dataOut.write("@data");
 dataOut.newLine();

 for (int i = 0; i < features.size();
i++) {
 String line = "";
 ArrayList<String> f =
features.get(i);

 for (int j = 0; j <
f.size()-1; j++) {
 line = line
+ f.get(j) + ", ";
 }

 line = line + "'" +
f.get(f.size()-1) + "'\n";

 dataOut.write(line);
 }

 dataOut.close();
 } catch (IOException e) {
 // TODO Auto-generated catch
block
 e.printStackTrace();
 }

 }

}

Statistics.java

import java.util.Arrays;

public class Statistics {
 double[] data;
 int size;

 public Statistics(double[] data) {
 this.data = data;
 size = data.length;
 }

 double getMean() {
 double sum = 0.0;
 for (double a : data)
 sum += a;
 return sum / size;
 }

 double getVariance() {
 double mean = getMean();
 double temp = 0;
 for (double a : data)
 temp += (a - mean) * (a - mean);
 return temp / size;
 }

 double getStdDev() {
 return Math.sqrt(getVariance());
 }

 public double median() {
 Arrays.sort(data);

 if (data.length % 2 == 0) {
 return (data[(data.length / 2) - 1]
+ data[data.length / 2]) / 2.0;
 }
 return data[data.length / 2];
 }
}

TrainModel.java

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.ObjectOutputStream;

import weka.classifiers.Classifier;
import weka.classifiers.functions.SMO;
import weka.core.Instances;

public class TrainModel {

 public TrainModel(String dataFile, String modelFile)
throws Exception {
 String dataName = dataFile;
 Instances data = new Instances(new
BufferedReader(new FileReader(dataName + ".arff")));
 data.setClassIndex(data.numAttributes() - 1);

 SMO c = new SMO();
 c.buildClassifier(data);

 saveClassifier(c, modelFile);

 }

 public void saveClassifier(Classifier c, String modelFile)
 throws IOException {

 // serialize model
 ObjectOutputStream oos = new
ObjectOutputStream(
 new
FileOutputStream(modelFile));
 oos.writeObject(c);
 oos.flush();
 oos.close();
 }
}

TrainTestModel.java

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.Random;

import weka.core.Instances;

public class TrainTestModel {

 public TrainTestModel(String dataFile) throws
Exception {
 int seed = 0; // the seed for randomizing the
data
 int folds = 10; // the number of folds to
generate, >=2
 int runs = 1;
 String dataName = dataFile;
 Instances data = new Instances(new
BufferedReader(new FileReader(dataName + ".arff")));
 data.setClassIndex(data.numAttributes() - 1);

 Instances randData = null;
 for (int i = 0; i < runs; i++) {
 seed = i + 1;
 Random rand = new
Random(seed); // create seeded number generator

 randData = new Instances(data);
// create copy of original data

 randData.randomize(rand); //
randomize data with number generator
 //randData.stratify(folds);

 for (int n = 0; n < folds; n++) {
 String train =
dataName + "_" + i + "" + n;
 Instances trainset =
randData.trainCV(folds, n);
 Instances testset =
randData.testCV(folds, n);

 System.out.println("train:" + train);

 System.out.println("train: " + trainset.numInstances());

 System.out.println("test: " + testset.numInstances());

 WekaWrapper
wekaWapper = new WekaWrapper();

 wekaWapper.labelfile
= train + ".label";

 wekaWapper.TrianTest(trainset, testset);
 }
 }
 }
}

CreateBCIUploader.java

System.out.println("++++++++++++++++++");
 System.out.println(purpose);

 System.out.println("++++++++++++++++++");
 String sUid = kvList.getValue("uid");
 String[] sChannels = new
String[Integer.parseInt(kvList.getValue("channels"))];
 for (int i = 0; i < sChannels.length; i++) {
 sChannels[i] =
kvList.getValue("channels"+i);
 }

 String sDate = kvList.getValue("datetime");
 String sOriginator = kvList.getValue("originator");

 if (sUid != null && !sUid.equals("")) {
 // TODO for testing, I don't need to change the uid
here.
 reading.uid = sUid;
 }
 reading.channels = new
double[Integer.parseInt(kvList.getValue("channels"))];
 for (int i = 0; i < reading.channels.length; i++) {
 if (sChannels[i] != null
&& !sChannels[i].equals("")) {
 reading.channels[i] =
Double.parseDouble(sChannels[i]);
 }
 }

 if (sDate != null && !sDate.equals(""))
 {
 reading.dateBCISensor = Long.parseLong(sDate);
 }
 if (sOriginator != null && !sOriginator.equals("")){
 reading.originator = sOriginator;
 }

 System.out.println(sUid);
 for (int i = 0; i < sChannels.length; i++) {
 System.out.println(sChannels[i]);
 }
 System.out.println(sDate);
 System.out.println(sOriginator);

 }
case "BCIMonitor":

//execute(formQuery(reading.dateVotes,"SocialNetwork","votes",r
eading.votes));
 if (reading.purpose.equals("upload")) {
 for (int i = 0; i < reading.channels.length; i++) {

 execute(formQuery(reading.dateBCISensor,reading.up,
"channel"+i,reading.channels[i], reading.originator));
 }

 }

 break;

CreateBCIMonitor.java

try {
 am = new ApplyModel(data,
model);
 } catch (Exception e) {
 // TODO Auto-generated catch
block
 e.printStackTrace();
 }
private static void componentTask() {
 try {

 // TODO: create your component task here
 uploadBCI();
 time =
System.currentTimeMillis();
 } catch (Exception e) {
 e.printStackTrace();
 }

}
long currentTime = System.currentTimeMillis();
 long diffTime =

currentTime - time;

 //System.out.println(diffTime);

 String[] sChannels =

new String[Integer.parseInt(kvList.getValue("channels"))];
 for (int i = 0; i < sChannels.length; i++) {
 sChannels[i] =

kvList.getValue("channels"+i);
 }
 reading.channels = new

double[Integer.parseInt(kvList.getValue("channels"))];
 for (int i = 0; i < reading.channels.length; i++) {
 if (sChannels[i] != null

&& !sChannels[i].equals("")) {
 reading.channels[i] =

Double.parseDouble(sChannels[i]);
 }
 }
 if (alData.size() < 4) {

 alData.add(reading.channels);
 }

 if (alData.size() ==

4){
 analysis();
 alData =

new ArrayList<double[]>();
 }

 if (diffTime > 15000)

{

 componentTask();
 }

break;
 private static void analysis () {
 try{
 Instance instance =
am.createInstance(alData);

 System.out.println(am.apply(instance));
 } catch (Exception e) {
 System.out.println("Error in analysis");
 }

}

BCIReading.pde

class BCIReading {
 double[] channels;
 String up = "";
 String purpose = "";
 String originator = "";
 long date;

 String uid = "376896";
 public BCIReading() {
 }
}

CreateBCISensor.pde

collect(data.values, scale_to_uV, nchan);
 reading.date = System.currentTimeMillis();
 //reading
 record.putPair("uid", reading.uid + "");
 record.putPair("channels", reading.channels.length+"");
 for (int i = 0; i < reading.channels.length; i++) {
 record.putPair("channels"+i, reading.channels[i]+"");
 }
 record.putPair("datetime", reading.date + "");
 //send reading message to GUI, uploader
 //encoder.sendMsg(record);
 //send reading message to controller
 // record.putPair("Receiver", "BCIController");
 // send to BCIMonitor
 record.putPair("Receiver", "BCIMonitor");
 record.putPair("originator","machine");
 record.putPair("Purpose","Reading");
 encoder.sendMsg(record);
 record.removePair("Receiver");

encoder.sendMsg(record);
void collect(int[] values, float scale_fac, int nchan) {
 reading.channels = new double[nchan];
 int nVal = values.length;
 for (int Ival = 0; Ival < nVal; Ival++) {
 reading.channels[Ival] = scale_fac * (float)(values[Ival]);
 //System.out.println(reading.channels[0]);
 }
 }

