
CS2310 Project Report

Mingzhi Yu

11/29/2016

1 Introduction

This project is an extension of exercise 4. It is a software designed for the health system.
It will recognize patients’ gesture and speech. the system will send alert or emergency
message to the health care system for help once the patient performs the designed gesture
and speech. The health care system will give corresponding solutions (call the patient or
visit the patient) based on the total number of times that a patient sends requests. The
project uses the SIS system as the framework and the Microsoft Kinect Sensor as the input
sensor. The gesture and speech recognition are supposed to efficiently help the health care
system track patients’ status.

2 System Overview

The system contains 5 major components including the sensor. The following figure is an
overall demonstration of the system. It contains the Kinect Sensor, the Gesture Recog-
nition, the Emergency Manager, the Homecare Staff and the Uploader. The functions of
each component are described in following sections.

1

3 Work Flow

3.1 Kinect Sensor

Kinect Sensor detects the designed gesture and speech. And then it will send an alert
message to the gesture recognition component.

Kinect Sensor is a motion sensing input device by Microsoft for Xbox360 and Window
PCs. Developers can develop their own Kinect apps by using Kinect SDK in multiple pro-
gramming languages. In this project, the GUI, the Kinect gesture and speech recognizer
parts are all written in C#. Kinect is a good sensor not only because it can detect the
gestures of the user in a wide area but also it can recognize the speech of the user. Kinect
SDK provides various libraries and well-designed API, which are easily for developers to
access.

2

Users will wave their hands and speak the key word ”HELP” at same time to activate
the gesture. ### To make the recognizer more intelligent, the recognizer will also detect
other ambiguous phrases that have the similar meaning, such as ”Help Me” and ”Please
Help”.

1. ### Gesture

Users will wave both of their hands when standing. The system choose this waving
hands motion because the pre-designed gesture has to be simple and easy for users
to perform under the emergency situation. Because, under an emergency situation,
patients might not be rational enough to perform a series of complicated movements.
Waving hands is nature and easily to perform. Here the system uses motion instead
of posing or single position or multiple position combination because either single po-
sition or positions combination is too simple to be a signal and it requires the patients
stay in a stead position. Other reason is that seperate position is too ambiguous and
it is highly possible that the patients pose some position accidentally but not asking
for help. The system might take the unwanted help signal by mistake. The accuracy
of the system will be effected.

2. ### Speech

Users will have to speak the word ”help” or other ambiguous phrases that have sim-
ilar meaning to activate their gesture.

In order to simulate more closely to a real emergency situation, the system also uses
the speech recognition. This is because under emergency situation, shouting for help
is natural reactions for human beings. Also, only using the gesture recognition will

3

not enough for distinguish a patient’s intention. For example, a patient might wave
his hands accidentally instead of looking for help on purpose. If only relying the
gesture recognition, the system will detect the help signal by mistake very easily. By
using the speech recognition as a plus, the system could clearly know that the patient
is asking for help because one patient will not often shout out “help” under normal
situation. In this case, the speech recognition mechanism improves the accuracy of
the whole system by preventing the system from sending extra unintended signals.

In addition to that, using the speech to activate the users’ gesture will help to split
different help signals. It is necessary to split each signals because my system cal-
culates the number of signal(alert) have been send and give a solution accordingly.
Clearly, waving hands is a continuing movements and therefore it is difficult to split
movements and give single help signal. Using the time interval might be one possible
solution; however, using the time interval will have disadvantages when the patient
is urgently looking for help and have no time to wait. Therefore, my system chooses
to use the speech as a splitter. Every phrase or key word is spoken separately and
very easy to control.

###Besides speaking the key word, speaking ambiguous phrases that directly con-
tains the key words is also recognizable by the system. In an emergency situation, a
patient might not be able to speak the exact key word under a rush. The system will
have to be smart enough to detect the user’s intention by saying some similar but
ambiguous phrases. For example, the patient might not say ”Help” but ”Help Me”
or ”Please Help”. This ambiguous speech recognizer makes the system more flexible
and intelligent.

3. ### GUI

The system provides a GUI for Kinect Sensor. The GUI is shown in the below feature.

4

The logo bar is shown on the top of the window. On the rightmost of the logo bar,
it is the “Help” label. After the Kinect Sensor receives the speech from the user and
recognizes it, the label color will change into blue. An instruction textbox is shown
below. It will give the user some basic instruction to use the system. Below that, it
is a status box. The status box will show what the current status of the system. For
example, it may show “the homecare staff is trying to call you”. In the middle of
the windows, it is a video screen that will capture the images of current environment
and show them as a video stream. The following is an example:

The Help label is grey tag after system initialization. When the system recognizes
that a user speaks ”HELP”, the tag will change into blue. And then the gesture
recognition is activated, which means the user could perform the gesture at this mo-
ment. Once the system recognizes the gesture , it will send an alert message to the

5

Gesture Recognition Component. After the message is sent, the tag will change back
into grey again, which means the system is ready for next motion.

Once the Kinect recognizes the pre-designed gesture and speech, it will send an alert
in XML format through the socket to the SIS Server (The Server and Kinect both are run
on locally).

3.2 Gesture Recognition

The Gesture Recognition is written in JAVA. It will receive the alert sent from the Kinect
component. And it will send an alert to the super component Emergency Manager to alert
the system that the patient needs help. A statement will be printed on the console once
the gesture recognition component received the signal from the Kinect and then it will send
an alert to the Emergency Manager.

The following figure shows the console when an alert is received.

3.3 Emergency Manager

The Emergency Manager is a super component in the system. It will receive the alert from
the Gesture Recognition component and decide if the patient needs to be called or visited
according to how many times the patient asked for help. Information will also be shown
on the Emergency Manager console. Emergency Manager will have 2 solutions according
to the number of previous alerts that have been sent.

6

1. One alert
Homecare Staff please call the patient. The following figure shows the console when
one alert is received.

2. More than one alert
Homecare Staff please visit the patient. The following figure shows the console when
more than one alert is received.

3.4 Homecare Staff

Homecare Staff is the component that take the action according the solution that the
Emergency Manager decides. The Homecare Staff will receive the alert from the Emer-
gency Manager and perform the corresponding actions. It will have 2 solutions according

7

to the alerts sent from the Emergency Manager.

1. One alert
Homecare Staff calls the patient and send a status update email to the system mail-
box.The following figure shows the console under this circumstance.

2. More than one alert
Homecare Staff please visits the patient and send a status update email to the system
mailbox.The following figure shows the console under this circumstance.

8

3.5 Uploader

Uploader will receive an alert from the Homecare Staff and send a status email to the
system, which notifies the patient that health system status. After that, the Uploader will
also update the database accordingly. For test purpose, the following is an example email
that send email from the system to a test address.

4 Scenario

To provide you a rough overview of the system, attached the screenshots from one scenario.

1. SIS Initial

9

2. Step 1 and Step 2: Kinect GUI

3. Step 1 and Step 2: SIS Console

4. Step 3 and Step 4: Kinect GUI

10

5. Step 3 and Step 4: SIS Console

5 Extra Deeds

The following is a brief summary of the extra deeds. For detailed descriptions, you may
find them in the above content.

11

5.1 Multiple Gesture Recognition

Programming with the Kinect sensor skeleton, my system could recognize a body movement
and not only one position.

5.2 Speech Recognition

Programming with the Kinect sensor speech recognition, my system could recognize the
user speech. This mechanism considers the nature reaction of users in a real emergency
situation. At the same time, it improves the accuracy of the system.

5.3 Kinect Graphic User Interface

The Kinect Graphic User interface not only provides instructions to help users to use the
system, but also potentially provides a way for the health care staff to track the users’
behaviour from the video stream.

5.4 Ambiguous Speech Recognition

In order to improve the speech recognition, the system not only recognize the pre-designed
key words, but also other phrases that includes the key words.

6 Demonstration

https://youtu.be/kVfFAh6UVNg

7 Referrence

Chang, ShiKuo.“A general framework for slow intelligence systems.” International Journal
of Software Engineering and Knowledge Engineering 20.1 (2010): 115.

Appendices

Attached parts of codes of this project. Some codes that have minor changes from the SIS
system are not attached.

12

https://youtu.be/kVfFAh6UVNg

A Kinect Sensor

namespace Microso f t . Samples . Kinect . I n f r a r edBa s i c s
{

us ing System ;
us ing System . G loba l i z a t i on ;
us ing System . ComponentModel ;
us ing System .Windows . Documents ;
us ing System . IO ;
us ing System .Windows ;
us ing System .Windows . Media ;
us ing System .Windows . Media . Imaging ;
us ing Microso f t . Kinect ;
us ing System . Net ;
us ing System . Net . Sockets ;
us ing System . Text ;
us ing System . Co l l e c t i o n s . Generic ;
us ing Microso f t . Speech . AudioFormat ;
us ing Microso f t . Speech . Recognit ion ;

/// <summary>
/// I n t e r a c t i o n l o g i c f o r MainWindow . xaml
/// </summary>
pub l i c p a r t i a l c l a s s MainWindow : Window
{

/// <summary>
/// Active Kinect s enso r
/// </summary>
pr i va t e KinectSensor sensor ;

/// <summary>
/// Speech r e c ogn i t i on engine us ing audio data from Kinect .
/// </summary>
pr i va t e SpeechRecognit ionEngine speechEngine ;

/// <summary>
/// L i s t o f a l l UI span elements used to s e l e c t r ecogn i zed text .
/// </summary>
pr i va t e List r ecogn i t i onSpans ;

/// <summary>
/// Bitmap that w i l l hold c o l o r in format ion
/// </summary>
pr i va t e WriteableBitmap colorBitmap ;

/// <summary>
/// Intermediate s to rage f o r the c o l o r data r e c e i v ed from the camera
/// </summary>
pr i va t e byte [] c o l o rP i x e l s ;

/// <summary>
/// speech and ge s tu re f l a g
/// </summary>
pr i va t e i n t count = 0 ;

/// <summary>
/// I n i t i a l i z e s a new in s tance o f the MainWindow c l a s s .
/// </summary>
pub l i c MainWindow ()
{

In i t i a l i z eComponent () ;
}

/// <summary>
/// Gets the metadata f o r the speech r e c ogn i z e r (a cou s t i c model) most s u i t a b l e to
/// proce s s audio from Kinect dev i ce .
/// </summary>
/// <returns>
/// Recogn i ze r In fo i f found , <code>nul l </code> otherwi se .
/// </returns>
pr i va t e s t a t i c Recogn i ze r In fo GetKinectRecognizer ()
{

f o r each (Recogn i ze r In fo r e c ogn i z e r in SpeechRecognit ionEngine . I n s t a l l e dRe cogn i z e r s ())

13

{
s t r i n g value ;
r e c ogn i z e r . Add i t i ona l In f o . TryGetValue (” Kinect ” , out value) ;
i f (”True ” . Equals (value , StringComparison . Ordinal IgnoreCase) && ”en−US” . Equals (r e c ogn i z e r . Culture .Name, StringComparison . Ordinal IgnoreCase))
{

re turn r e c ogn i z e r ;
}

}

re turn nu l l ;
}

/// <summary>
/// Execute s tar tup tasks
/// </summary>
/// <param name=”sender”>ob j e c t sending the event</param>
/// <param name=”e”>event arguments</param>
pr i va t e void WindowLoaded(ob j e c t sender , RoutedEventArgs e)
{

// Look through a l l s en so r s and s t a r t the f i r s t connected one .
// This r e qu i r e s that a Kinect i s connected at the time o f app star tup .
// To make your app robust aga in s t plug /unplug ,
// i t i s recommended to use KinectSensorChooser provided in Microso f t . Kinect . Too lk i t (See components in Too lk i t Browser) .
f o r each (var po t en t i a l S en so r in KinectSensor . KinectSensors)
{

i f (po t en t i a l S en so r . Status == KinectStatus . Connected)
{

t h i s . s ensor = po t en t i a l S en so r ;
break ;

}
}

i f (nu l l != t h i s . s enso r)
{

// Video Part

// Turn on the c o l o r stream to r e c e i v e c o l o r frames
t h i s . s ensor . ColorStream . Enable (ColorImageFormat . RgbResolution640x480Fps30) ;

// A l l o ca t e space to put the p i x e l s we ’ l l r e c e i v e
t h i s . c o l o rP i x e l s = new byte [t h i s . s enso r . ColorStream . FramePixelDataLength] ;

// This i s the bitmap we ’ l l d i sp l ay on−s c r een
t h i s . colorBitmap = new WriteableBitmap (t h i s . s ensor . ColorStream . FrameWidth , t h i s . s enso r . ColorStream . FrameHeight , 96 . 0 , 96 . 0 , PixelFormats . Bgr32 , nu l l) ;

// Set the image we d i sp l ay to point to the bitmap where we ’ l l put the image data
t h i s . Image . Source = th i s . colorBitmap ;

// Add an event handler to be c a l l e d whenever there i s new co l o r frame data
t h i s . s ensor . ColorFrameReady += th i s . SensorColorFrameReady ;

// Gesture Part

// Turn on the ske l e t on stream to r e c e i v e sk e l e t on frames
t h i s . s ensor . SkeletonStream . Enable () ;

// Add an event handler to be c a l l e d whenever there i s new co l o r frame data
t h i s . s ensor . SkeletonFrameReady += th i s . SensorSkeletonFrameReady ;

// Star t the sensor !
t ry
{

t h i s . s ensor . S tar t () ;
}
catch (IOException)
{

t h i s . s ensor = nu l l ;
}

}

i f (nu l l == th i s . s ensor)

14

{
t h i s . statusBarText . Text = Prope r t i e s . Resources . NoKinectReady ;

}

Recogn i ze r In fo r i = GetKinectRecognizer () ;

i f (nu l l != r i)
{

// recogn i t i onSpans = new List { forwardSpan , backSpan , rightSpan , l e f tSpan } ;

t h i s . speechEngine = new SpeechRecognit ionEngine (r i . Id) ;

/∗∗
∗
∗ Use t h i s code to c r ea t e grammar programmatical ly ra the r than from
∗ a grammar f i l e .
∗
∗ var d i r e c t i o n s = new Choices () ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” forward ” , ”FORWARD”)) ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” forwards ” , ”FORWARD”)) ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” s t r a i g h t ” , ”FORWARD”)) ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” backward ” , ”BACKWARD”)) ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” backwards ” , ”BACKWARD”)) ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” back ” , ”BACKWARD”)) ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” turn l e f t ” , ”LEFT”)) ;
∗ d i r e c t i o n s .Add(new SemanticResultValue (” turn r i gh t ” , ”RIGHT”)) ;
∗
∗ var gb = new GrammarBuilder { Culture = r i . Culture } ;
∗ gb . Append(d i r e c t i o n s) ;
∗
∗ var g = new Grammar(gb) ;
∗
∗∗/

// Create a grammar from grammar d e f i n i t i o n XML f i l e .
// us ing (var memoryStream = new MemoryStream(Encoding . ASCII . GetBytes (Prope r t i e s . Resources . SpeechGrammar)))
//{
// var g = new Grammar(memoryStream) ;
// speechEngine . LoadGrammar(g) ;
//}

//Build a grammar
var words = new Choices () ;
words .Add(new SemanticResultValue (” help ” , ”HELP”)) ;
words .Add(new SemanticResultValue (” help me” , ”HELP”)) ;
words .Add(new SemanticResultValue (” p l ea s e help ” , ”HELP”)) ;

var gb = new GrammarBuilder { Culture = r i . Culture } ;
gb . Append(words) ;
var g = new Grammar(gb) ;

speechEngine . LoadGrammar(g) ;
speechEngine . SpeechRecognized += SpeechRecognized ;
speechEngine . SpeechRecognit ionRejected += SpeechRejected ;

// For long r e c ogn i t i on s e s s i o n s (a few hours or more) , i t may be b e n e f i c i a l to turn o f f adaptat ion o f the a cou s t i c model .
// This w i l l prevent r e c ogn i t i on accuracy from degrading over time .
//// speechEngine . UpdateRecognizerSett ing (”AdaptationOn ” , 0) ;

speechEngine . SetInputToAudioStream (
sensor . AudioSource . Star t () , new SpeechAudioFormatInfo (EncodingFormat .Pcm, 16000 , 16 , 1 , 32000 , 2 , nu l l)) ;

speechEngine . RecognizeAsync (RecognizeMode . Mult ip le) ;
}
e l s e
{

System . Console . WriteLine (”You don ’ t have any speech r e c ogn i z e r ”) ;
}

}

/// <summary>
/// Execute shutdown tasks
/// </summary>
/// <param name=”sender”>ob j e c t sending the event</param>
/// <param name=”e”>event arguments</param>
pr i va t e void WindowClosing (ob j e c t sender , System . ComponentModel . CancelEventArgs e)
{

i f (nu l l != t h i s . s enso r)

15

{
t h i s . s ensor . Stop () ;

}
}

/// <summary>
/// Handler f o r r ecogn i zed speech events .
/// </summary>
/// <param name=”sender”>ob j e c t sending the event .</param>
/// <param name=”e”>event arguments .</param>
pr i va t e void SpeechRecognized (ob j e c t sender , SpeechRecognizedEventArgs e)
{

System . Console . WriteLine (” Speech r e cogn i t z ed ! ! ”) ;
System . Console . WriteLine (e . Result . Conf idence) ;
System . Console . WriteLine (e . Result . Text) ;

// Speech utte rance con f idence below which we t r e a t speech as i f i t hadn ’ t been heard
const double Conf idenceThreshold = 0 . 9 ;

i f (e . Result . Conf idence >= ConfidenceThreshold)
{

System . Console . WriteLine (e . Result . Conf idence) ;
System . Console . WriteLine (h e l p f l a g . Foreground) ;

switch (e . Result . Semantics . Value . ToString ())
{

case ”HELP” :

i f (h e l p f l a g . Foreground != Brushes . DeepSkyBlue)
{

count = count + 1 ;
h e l p f l a g . Foreground = Brushes . DeepSkyBlue ;
h e l p f l a g . FontWeight = FontWeights . Bold ;
i n s t r u c t i o n . Text = ”Gesture Activated . Please perform the ge s tu re . ” ;

System . Console . WriteLine (”We have heard your vo i c e ! ”) ;
}

break ;

}

}
}

/// <summary>
/// Handler f o r r e j e c t e d speech events .
/// </summary>
/// <param name=”sender”>ob j e c t sending the event .</param>
/// <param name=”e”>event arguments .</param>
pr i va t e void SpeechRejected (ob j e c t sender , SpeechRecognit ionRejectedEventArgs e)
{

h e l p f l a g . Foreground = new Sol idColorBrush (Colors . Gray) ;
}

/// <summary>
/// Event handler f o r Kinect sensor ’ s ColorFrameReady event
/// </summary>
/// <param name=”sender”>ob j e c t sending the event</param>
/// <param name=”e”>event arguments</param>
pr i va t e void SensorColorFrameReady (ob j e c t sender , ColorImageFrameReadyEventArgs e)
{

us ing (ColorImageFrame colorFrame = e . OpenColorImageFrame ())
{

i f (colorFrame != nu l l)
{

// Copy the p i x e l data from the image to a temporary array
colorFrame . CopyPixelDataTo (t h i s . c o l o rP i x e l s) ;

// Write the p i x e l data in to our bitmap

16

t h i s . colorBitmap . WritePixe l s (
new Int32Rect (0 , 0 , t h i s . colorBitmap . PixelWidth , t h i s . colorBitmap . Pixe lHe ight) ,
t h i s . c o l o rP i x e l s ,
t h i s . colorBitmap . PixelWidth ∗ s i z e o f (i n t) ,
0) ;

}
}

}

/// <summary>
/// Event handler f o r Kinect sensor ’ s SkeletonFrameReady event
/// </summary>
/// <param name=”sender”>ob j e c t sending the event</param>
/// <param name=”e”>event arguments</param>
pr i va t e void SensorSkeletonFrameReady (ob j e c t sender , SkeletonFrameReadyEventArgs e)
{

Ske leton [] s k e l e t on s = new Ske leton [0] ;

us ing (SkeletonFrame skeletonFrame = e . OpenSkeletonFrame ())
{

i f (skeletonFrame != nu l l)
{

s k e l e t on s = new Ske leton [skeletonFrame . SkeletonArrayLength] ;
skeletonFrame . CopySkeletonDataTo (s k e l e t on s) ;

i f (h e l p f l a g . Foreground == Brushes . DeepSkyBlue)
{

System . Console . WriteLine (” Received ”) ;
// h e l p f l a g . Foreground = new Sol idColorBrush (Colors . Gray) ;
processGesture (s k e l e t on s) ;

}
}

}
}

//Gesture Proces s ing Function
pr i va t e void processGesture (Ske leton [] s k e l e t on s)
{

f o r each (Ske leton sd in s k e l e t on s)
{

i f (sd . TrackingState != Ske letonTrack ingState . Tracked)
{

cont inue ;
}

// Hand above elbow
i f ((sd . Jo in t s [JointType . HandRight] . Pos i t i on .Y > sd . Jo in t s [JointType . ElbowRight] . Pos i t i on .Y)&&
(sd . Jo in t s [JointType . HandLeft] . Pos i t i on .Y > sd . Jo in t s [JointType . ElbowLeft] . Pos i t i on .Y))

{
// Hand r i gh t o f elbow
i f ((sd . Jo in t s [JointType . HandRight] . Pos i t i on .X > sd . Jo in t s [JointType . ElbowRight] . Pos i t i on .X)&&

(sd . Jo in t s [JointType . HandLeft] . Pos i t i on .X > sd . Jo in t s [JointType . ElbowLeft] . Pos i t i on .X))
{

System . Console . WriteLine (”You have succeed to wave your hand ! ! ! ”) ;
sendXML () ;

i f (count == 1)
{

Status . Text = ”Health system i s t ry ing to c a l l you . ” ;
}

e l s e
{

Status . Text = ”Health system i s sending s t a f f to v i s i t you . ” ;
}

h e l p f l a g . Foreground = new Sol idColorBrush (Colors . Gray) ;
i n s t r u c t i o n . Text = ”Please speak to a c t i v a t e your g e s tu r e s ” ;

}
}

17

}
}

// Send Aler t method
pr i va t e void sendXML()
{

i n t portID = 53217;
s t r i n g f i l ename = ”KinectMonitorAlert .XML” ;
Dict ionary<s t r ing , s t r i ng> kvl = new Dict ionary<s t r ing , s t r i ng >() ;

t ry
{

// Es tab l i sh the remote endpoint f o r the socket
// Here the port we are us ing here i s 53217 on the l o c a l computer .
IPHostEntry ipHost In fo = Dns . Resolve (Dns . GetHostName ()) ;
IPAddress ipAddress = ipHost In fo . AddressList [0] ;
IPEndPoint remoteEP = new IPEndPoint (ipAddress , portID) ;

// Create a TCP/IP socket .
Socket sender = new Socket (AddressFamily . InterNetwork , SocketType . Stream , ProtocolType . Tcp) ;

// Connect the socket to the remote endpoint . Catch any e r r o r s .
t ry
{

sender . Connect (remoteEP) ;

Console . WriteLine (” Socket connected to {0}” , sender . RemoteEndPoint . ToString ()) ;

// wr i t e the f i l e stream into bytes array
kvl .Add(” Scope ” , ”SIS . Scope1 ”) ;
kvl .Add(”MessageType ” , ”Aler t ”) ;
kvl .Add(” Sender ” , ”KinectMonitor ”) ;
kvl .Add(” Rece iver ” , ”GestureRecognit ion ”) ;
s t r i n g message = encodedStr ing (kvl)+”\n ” ;

byte [] msg = Encoding . ASCII . GetBytes (message) ;

// Send the data through the socket .
i n t bytesSent = sender . Send (msg) ;
System . Console . WriteLine (”You have succeed to send the a l e r t ! ! ! ”) ;

// Release the socket .
sender . Shutdown (SocketShutdown . Both) ;
sender . Close () ;
System . Console . WriteLine (”You have shutdown the socket ”) ;

}
catch (ArgumentNullException ane)
{

Console . WriteLine (” ArgumentNullException : {0}” , ane . ToString ()) ;
}
catch (SocketException se)
{

Console . WriteLine (” SocketException : {0}” , se . ToString ()) ;
}
catch (Exception e)
{

Console . WriteLine (” Unexpected except ion : {0}” , e . ToString ()) ;
}

} catch (Exception e)
{

Console . WriteLine (e . ToString ()) ;
}

}

// Encode the hashmap toSt r ing

18

/∗
∗ encode the KeyValueList in to a St r ing
∗/

pub l i c S t r ing encodedStr ing (Dict ionary<s t r ing , s t r i ng> kvl)
{

// d e l im i t e r f o r encoding the message
s t r i n g delim = ”$$$ ” ;

// regex pattern f o r decoding the message
s t r i n g pattern = ”\\$+”;

S t r ingBu i ld e r bu i l d e r = new St r ingBu i ld e r () ;
bu i l d e r . Append (” (”) ;
f o r each (KeyValuePair<Str ing , Str ing> kv in kvl)

{
bu i l d e r . Append(kv .Key + delim + kv . Value + delim) ;

}
// X$$$Y$$$, minimum
bu i l d e r . Append (”) ”) ;

re turn bu i l d e r . ToString () ;
}

}
}

19

	Introduction
	System Overview
	Work Flow
	Kinect Sensor
	Gesture Recognition
	Emergency Manager
	Homecare Staff
	Uploader

	Scenario
	Extra Deeds
	Multiple Gesture Recognition
	Speech Recognition
	Kinect Graphic User Interface
	Ambiguous Speech Recognition

	Demonstration
	Referrence
	Appendices
	Kinect Sensor

