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1. Abstract 

This study is a try to map an evolutionary algorithm, Genetic Algorithm (GA), to the Abstarct Machine 
model. In this study, we explain the GA methodology and propose an abstract machine model for this 
algorithm. As deed1, we propose a GA based design for the TDR system. We simulate data for an 
optimization problem, design and implement GA for the problem and plot the results. As deed2, I compare 
TDR system implemented with GA to Chi system implemented by Ant Colony algorithm.  
 

2. Combining GA with Abstract Machine Model 
Abstract machine model is a general model for designing the learning cycles in slow intelligence systems. 
Evolutionary algorithms, such as Genetic Algorithm (GA), Particle swarm optimization (PSO), and Ant 
colony, inherently follow an iterative and slow process learning process. In this study, we want to show 
that how we can map the GA algorithm to abstract machine model and give the formal cycle definition for 
GA, called GAcycle. In this section, first we explain the GA algorithm, then we propose the GAcycle.  
 
Genetic Algorithm 
GA is a probabilistic optimization algorithm, inspired by the biological evolution process. It uses the 
concepts of “Natural Selection” and “Genetic Inheritance” proposed by Darwin. This algorithm is 
particularly well suited for hard problems where little is known about the underlying search space. The data 
presentation, evaluation function, and the iterative steps in this algorithm is inspired from the evolutionary 
process exists in nature. The process in which each generation of species tries to adapt itself to the 
environment and the individuals with stronger personalities and characteristics survive and dominant the 
population. Here is the scenario we follow in the GA algorithm: We have an initial population of 
individuals. These individuals are the problem’s solutions, selected randomly at the beginning of the 
algorithm. Then, in an iterative process individuals are selected as the parents and bear children. These 
children are new solutions who inherit their parents’ characteristics. By selecting a new generation from 
the combination of parents and children, we try to select the stronger new generation which can be 
considered as better set of solutions. 
 
Genetic Algorithm Design 
The GA design is dependent on the problem we have. However, the principal for designing the GA is still 
the same for any problem. For designing a GA algorithm, we should design three main components: 
 
Representation: 
Each individual is considered as a set of genotype or chromosomes that can transfer these characteristics to 
its children. We can consider each of these chromosomes as a feature and represent each individual as a 
vector of features. We have different kinds of representations, such as binary string, string of integer or 
double values. The type of representation depends on the problem we are solving. 
 
Fitness function: 



The design of this function also depends on the problem and it is used for evaluating the sample domain. 
The fitness of every individual in the population is evaluated, the fitness is usually the value of the objective 
function in the optimization problem being solved. 
 
Stochastic operators: 
We define four different kinds of stochastic operators. These operators construct the GAcycle.  
Selection: 
Selection allocates more copies of the solutions with higher fitness values. Thus, we can impose the 
survival-of-the-fittest mechanism for the solutions. By this operator want to create the next generation from 
the parents with higher fitness function. In this way, we hope to have a new generation with higher fitness 
values. The main idea of selection is to prefer better solutions to worse ones, and many selection procedures 
have been proposed to accomplish this idea, including roulette-wheel selection, stochastic universal 
selection, ranking selection and tournament selection, and random selection. 
 
Recombination: 
Recombination combines parts of two or more parental solutions to create new, possibly better solutions 
(i.e. offspring or children). The offspring under recombination will not be identical to any particular parent 
and will instead combine parental traits in a novel manner. There are many recombination methods, such 
as k-point Crossover and Uniform Crossover.  
 

k-point Crossover:  One-point, and two-point crossovers are the simplest and most widely 
applied crossover methods. In one-point crossover, illustrated in Figure 4.1, a crossover site is 
selected at random over the string length, and the alleles on one side of the site are exchanged 
between the individuals. In two-point crossover, two crossover sites are randomly selected. The 
alleles between the two sites are exchanged between the two randomly paired individuals. 
 
Uniform crossover: In uniform crossover, illustrated in Figure 1, every allele is exchanged 
between a pair of randomly selected chromosomes with a certain probability, pe, known as the 
swapping probability. Usually the swapping probability value is taken to be 0.5. 
 

 
Figure 1. different methods of crossover. 



 
 
 
Mutation: 
While recombination operates on two or more parental chromosomes, mutation locally but randomly 
modifies a solution. Again, there are many variations of mutation, but it usually involves one or more 
changes being made to an individual’s characteristics. In other words, mutation performs a random walk 
in the vicinity of a candidate solution. 
 
Replacement:  
In replacement, we want to select the next better generation. It means that we select the new generation 
from both parent and offspring populations. Many replacement techniques such as elitist replacement, 
generation-wise replacement and steady-state replacement methods are used in GAs. 
 
GAcycle: 
Based on our GA explanation, we can map GA to Abstract Machine model. Here is our formal definition:  
 

Cycle1 [guard1,1]: P10 –enum1< = P11 –enum2< =  P12>conc1= P13 
 

enum1: Selection and Recombination in GA. 
enum2: Mutation in GA. 
conc1: Replacement in GA.  
 

3. Implementation 
We decided to apply the GAcycle to the TDR system. TDR is an experimental multi-level slow intelligence 
system for personal health care. The TDR system can be used by a single user or a group of users who will 
interact to understand, maintain and improve each other’s state of health. The TDR system mainly consists 
of three super-components: Tian, Di and Ren. According to the Chinese philosophy these three super-
components are the essential ingredients of a human-centric psycho-physical system. They can be thought 
of as human beings (Ren) interacting with the environment consisting of heaven (Tian) and earth (Di). For 
personal health care, there is a fourth higher level super-component called Chi (or Qi), which in this context 
represents the state of health of a person (or persons).  
 
Our idea in here is to simulate the Chi high-level super-component by applying GAcycle to three lower-
level super-components, Tian, Di, and Ren. In this regard, we simulated data for an optimization problem, 
design a GA algorithm for our optimization problem, implement the GA algorithm, and apply it to the TDR 
system. As you can see in Figure2, each GAcycle for the Chi component consists of three GAcycle for the 
lower-level super-components. In this way, we decrease the dimension of the data we are working on during 
applying our optimization algorithm, GA.  
  
Simulated problem 
As the simulated problem, we define an optimization problem: We want to find those individuals who has 
the best health level (Chi value). As the health level evaluation method, we selected a sphere function, 
Figure 2 and Equation (1).  What we want to reach is the minimum value for this function which is the best 
level of health for individuals.  
 

𝑓 𝑋 = 𝑥%&
%'( 					                      Equation (1) 



 
Figure 2. Sphere function. 

 
GA design: 

´ Recombination: Integer string of features. 
´ Fitness function: Patient health level which simulated by sphere function. 

                                  The goal is reaching value zero. 
                                  Sphere function. 

´ Initialization: 50 individual of length 30.  
´ Parent selection: Randomly assign parents. 
´ Recombination: One-point crossover. 
´ Mutation: Replace worst individual with a new individual. 
´ Survivor selection: Best individuals from Parents and offspring. 

 
Experiment 
The following two figures, Figure 3 and Figure 4, show how the population evolves during running the GA 
algorithm. Figure 5 shows the applying of Ant colony to the same population used for GA algorithm. Ant 
colony is another evolutionary algorithm designed based on the trend ants uses to find their food. While the 
GA algorithm is used for the TDR system, the Ant colony is used directly for the Chi system. In other word, 
no feature splitting has been done for the Ant colony algorithm. In Figure 6, you can see that GA 
outperforms Ant colony algorithm for the same optimization problem. 



 
Figure 3. GA on simulated data for 800 iterations. 

 
Figure 4. GA on simulated data for iterations [300-800] 
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Figure 5. Ant colony on simulated data for Chi 
 

 
Figure 6. Comparison of GA for TDR (in red) to Ant colony for Chi (in blue). 
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5. Appendix 
In this section, we added the code for TDR system. 
 

#!/usr/bin/python3.4 
# (c) Mohammad H. Mofrad, 2016  
# (e) hasanzadeh@cs.pitt.edu 
 
import numpy as np 
from math import * 
import os 
import time 
import xml.etree.ElementTree as et 
import random 
from random import randint 
 
# Parabola benchmark function (y = x^2) 
def parabola(x): 
   size, dim = x.shape 
   y = np.array([np.sum([np.power(a,2) for a in x[i,:]]) for i in range(size)]).reshape(size,1) 
   return(y) 
 
# Context vector  
def context_vector(best, swarm, x): 
   best[:,swarm] = x 
   return(best) 
 
# Action selection 
def actionselection(action, probability, numactions, numdims): 
   for i in range(numdims): 
      a = np.random.choice(np.arange(0, numactions), p = probability[:,i]) 
      mask = np.zeros(numactions,dtype=bool) 
      mask[a] = True 
      action[mask,i] = 1 
      action[~mask,i] = 0 
   return(action) 
 
# Update probabilities 
def probabilityupdate(action, probability, numactions, numdims, signal, alpha, beta): 
   for i in range(numdims): 
      a = np.where(action[:,i] == 1) 
      mask = np.zeros(numactions,dtype=bool) 
      mask[a] = True 
      if not signal: 
         probability[mask,i] = probability[mask,i] + alpha * (1 - probability[mask,i]) 
         probability[~mask,i] = (1 - alpha) * probability[~mask,i] 
      else: 
         probability[mask,i] = (1 - beta) * probability[mask,i] 
         probability[~mask,i] = (beta/(numactions-1)) + (1-beta) * probability[~mask,i] 
   return(probability) 
 
XML = 'init.xml' 
actionset = [] 
if os.path.isfile(XML): 
   print ('********************************************************************') 



 
else: 
   print ('********************************************************************') 
   print('Initializing using local configs') 
   # Maximum iterations 
   imax = 1000 
   # Acceleration coefficients 
   c1   = 1.49445 
   c2   = 1.49445 
   # Weight 
   wmax = 0.9 
   wmin = 0.4 
 
   # Number of dimensions 
   dim  = 30 
 
   # Population size 
   size = 50 
 
   # Enumeration size  
   efactor = 2/3 
 
   # TDR constraints 
   tdrfactor = 3 
   # Action set 
 
   # MutationRate 
   MutationRate = 15 
   CrossoverMethod = "OnePointCrossOver" 
   MutationMethod = "FlipAllCells" 
   SelectionMethod = "SelectMaxFitness" 
   Algo = 'GA' 
    
   actionset.append('pso') 
 
   actionset.append('ga') 
 
# Elite size 
esize = size - round(size * efactor) 
 
# Max and min position bounds 
xmax =  100 
xmin = -xmax 
 
# Max and min velocity bounds 
vmax = 0.2 * (xmax - xmin) 
vmin = -vmax 
 
# TDR constraints 
k1 = dim % tdrfactor 
k1len = ceil(dim/tdrfactor) 
k2 = tdrfactor - k1 
k2len = floor(dim/tdrfactor) 
tdrtable = np.zeros((1, dim)) 
index = np.zeros((1, dim)) 
if(k1): 



   for i in range(k1): 
      for j in range(k1len): 
         tdrtable[0,(i*k1len)+j] = i  
 
   for i in range(k2): 
      for j in range(k2len): 
         tdrtable[0,(k1*k1len)+(i*k2len)+j] = k1+i 
else:  
   for i in range(k2): 
      for j in range(k2len): 
         tdrtable[0,(i*k2len)+j] = i 
 
# Position 
x    = np.zeros((size, dim)) 
x    = xmin + ((xmax - xmin) * np.random.rand(size, dim)) 
 
# Fitness 
fx   = np.zeros((size,1)) 
fx   = parabola(x) 
 
# Personal best position 
pb   = np.zeros((size, dim)) 
fpb  = np.zeros((size, 1)) 
pb   = np.copy(x) 
fpb  = np.copy(fx) 
 
# Global best position 
gb   = np.zeros((1, dim)) 
fgb  = 0 
gb   = np.copy(x[np.argmin(fx), :].reshape(1,dim)) 
fgb  = np.copy(fx[np.argmin(fx)]).reshape(1,1) 
 
print ('********************************************************************') 
print ('Initial Health Level: ', fgb[0,0]) 
 
alpha = 0.1 
beta = 0.1 
numactions = len(actionset) 
action = np.zeros((numactions,tdrfactor)) 
probability = np.tile(1/numactions, (numactions,tdrfactor)) 
 
numactions_d = tdrfactor 
action_d = np.zeros((numactions_d, dim)) 
probability_d = np.tile(1/numactions_d, (numactions_d,dim)) 
 
 
FinalPopulation = np.zeros((size, dim)) #added from GA 
# Main loop for updating particles 
for i in range(imax): 
 
 
   action_d = actionselection(action_d, probability_d, numactions_d, dim) 
   action = actionselection(action, probability, numactions, tdrfactor) 
   w = wmax - (((wmax - wmin) / imax) * i) # Small step size 
 
   #added from GA 



   for h in range(size): 
      FinalPopulation[h, :] = np.copy (x[0, :]) 
   print ('Chi supercomponent Iteration: (',i , ')') 
   # The indices that would sort the x, v, fv, pb 
   # 5 Concentration on the elite population 
   # TDR split swarm 
   for j in range(tdrfactor): 
      signal = 1 
 
      a_d = np.arange(dim) 
      swarm = a_d[action_d[j,:] == 1] 
      swarmsize = len(swarm) 
      if swarmsize: 
         swarm = swarm.reshape(1,swarmsize) 
         a = np.arange(numactions) 
         c = a[action[:,j] == 1] 
          
         if  Algo == 'GA': 
             
             
        #New copies of population 
            modifiedPopulation = np.zeros((size, dim))#added from GA 
            for h in range(size):#added from GA 
               modifiedPopulation[h, :] = np.copy (gb[0, :]) 
            for k in range(size): 
               modifiedPopulation[k, swarm[0, :]] = np.copy (x[k, swarm[0, :]]) 
 
        #-----------apply crossover to population---------------- 
        #SelectParentsForFirstGeneration() 
            data = [[i] for i in range(size)]#added from GA 
            random.shuffle(data)#added from GA 
            h = 0 
            children = np.zeros((size, dim))#added from GA 
 
            while (h < size): 
             
            #find the split point 
               SplitIndexInSwarm = randint(0, swarmsize - 1) 
               SplitPoint = swarm [0, SplitIndexInSwarm]; 
             
 
            #Split both parents 
               SplittedParent1 = np.split(modifiedPopulation[data[h][0], :], [SplitPoint]) 
               SplittedParent2 = np.split(modifiedPopulation[data[h+1][0], :], [SplitPoint]) 
            
            #Bear child1 
               child1 = np.concatenate((SplittedParent1[0], SplittedParent2[1])) 
            #Bear child2 
               child2 = np.concatenate((SplittedParent2[0], SplittedParent1[1])) 
             
            #Add them to new generation 
               children[h,:] = child1 
               children[h + 1, :] = child2 
               h = h + 2 
        #----------------------- Compute Fitness and select best individual------------------- 
            Fitness = parabola(children) 



            minFitness = Fitness.min() 
            MinIndex = np.where(Fitness == minFitness) 
            SelectedMinVAlue = children[MinIndex[0][0], :] 
 
        #-------------------------------- Add mutation------------------------------ 
        # First Mutation   
            MutationRate = randint(1, 100) 
            if (MutationRate < 15): 
               maxFitness = Fitness.max() 
               MaxIndex = np.where(Fitness == maxFitness) 
        
          # Rebuild the sample 
               newSample = np.copy( np.reciprocal(children[MaxIndex[0][0], :])) 
               children[MaxIndex[0][0]] = newSample 
               Fitness[MaxIndex[0][0], :] = np.sum((newSample)**2) 
             
        #--------- Select next population: children are always next generation. (constructed from gbest) 
            FinalPopulation[:, swarm] = np.copy (children[:, swarm]) 
            if (minFitness < fgb): 
           #Update gb and fgb 
               gb = np.copy([SelectedMinVAlue]) 
               fgb = np.copy(minFitness).reshape(1,1) 
               signal = 0 
                
         CycleStep =''; 
          
         if (j==0): 
            CycleStep = 'Tian' 
         elif (j==1): 
            CycleStep = 'Den ' 
         else: 
            CycleStep = 'Ren ' 
 
         changingstatus = 'Failure' 
         if (signal == 0): 
            changingstatus = 'success' 
         if (c): 
            print ('    ',CycleStep , 'Component: ', 'Selected cycle is ', Algo, ' Health level is: ', fgb[0,0] , '(', 
changingstatus, ')') 
         else : 
            # a = fgb 
             print ('    ',CycleStep , 'Component: ', 'Selected cycle is ', Algo, 'Health level is: ', fgb[0,0], 
'(',changingstatus , ')') 
   x = np. copy (FinalPopulation) 
   print () 
   time.sleep(.1) 
   probability_d = probabilityupdate(action_d, probability_d, numactions_d, dim, signal, alpha, beta) 
   probability = probabilityupdate(action, probability, numactions, tdrfactor, signal, alpha, beta) 
   #print('Iteration', i, 'Global best', fgb) 
print (probability_d) 
 
 

 
 

 
	


