
CS 2310 Final Project Report
Shijia Liu (shl125@pitt.edu)

Dec 05 2016

Introduction

In this final project, I extended our previous work exercise 4 to implement
the components. I used a gesture recognize sensor(Kinect) to recognize the
patient’s gesture as our system input. I also implemented the components
“Emergency Manager” “Homecare staff” and the “uploader” by using the
SIS system to accomplish the information exchange in order to help the
patient have a faster response when they have a severe condition.

Background

∎SIS (Slow Intelligence System)

Our Slow Intelligence System is a system that solves problems by trying
different solutions, it is context-aware to adapt to different situations and to
propagate knowledge, and also it may not perform well in the short run but
continuously learns to improve its performance over time.

∎ Kinect (Input Sensor)

Kinect for Xbox 360, or simply Kinect, is a motion sensing input device by
Microsoft for the Xbox 360 video game console. Based upon a webcam-
style add-on peripheral for the Xbox 360 console, it enables users to control
and interact with the Xbox 360 without the need to touch a game controller,
through a natural user interface using gestures and spoken commands.

Components

First, let me introduce the whole architecture in our system:

∎	
 Gesture Recognition
In our exercise 4, we used the PrjRemote to imitate sending the input
message to the Emergency Manager. In this final project, I used a gesture

recognition sensor(Kinect) which I introduced above to replace the
PrjRemote. Kinect will recognize a specific kind of gesture and transfer it
into an emergency message then send it to next component. The Gesture
Recognition component is a basic component in our system.

Since the gesture the patient perform should be a gesture which shouldn’t be
the gesture he or she usually perform during his or her daily time. I design
the gesture just to cross the arms, which act as followed:

∎	
 Emergency Manager
This component is the only super component in our system. It acts as a
console in the whole progress. First, it listened to the Gesture Recognition
component, when the Gesture Recognition receive an emergency gesture,
then it sends an emergency message to this component. At this time,
Emergency Manager should have a judgement mechanism to decide which
message should send to the Homecare Staff: if this is the first time
emergency message it received, then Emergency Manager should send an
alert message “call the patient” to the Homecare Stuff; if this is the second
or more than second time received the emergency message, then it directly
tell the Homecare Stuff “visit the patient”.

In this project, I implemented a timer and a counter to count during a set

amount of time, the number of time the emergency message has been
received from the Gesture Recognition component.

∎	
 Homecare Staff
The Homecare Staff is a basic component in this system. What this
component do is to receive the message from the Emergency Manager, then
generate a GUI to show that should either to call or visit the patient.
Furthermore, the Homecare Staff could also actively have an option to
choose either call or visit the patient based on the patient answer the phone
or not. If the patient answered the call, then the system ends; if the patient
didn’t answer the call, then this component will generate a GUI shows that
“should visit the patient”.
Another task of this component is to send an alert message to the uploader.
I will introduce the uploader in the next.

∎	
 𝑈𝑝𝑙𝑜𝑎𝑑𝑒𝑟
The Uploader is also a basic component in our system. It simply receives the
alert message from the Homecare Staff, and upload the alert message to the
database clarify by the data type, in my design, there only exits two data
type: “call” and “visit”. This progress could record that every time when the
patient has sent an emergency message in order to make it easier for the
future use or diagnosis.

Scenario

Run the server

Initialize the server

Connect the Emergency Manager

When the Emergency Manager received multiple times of the
emergency messages:

Create and connect the Gesture Recognition

Create and connect the Homecare Staff, after received the emergency
message, it looks like:

The GUI which generated by the Homecare Staff:

If the patient sends another emergency gesture or didn’t answer the
phone call, the GUI will be showed as below:

When the uploader works and upload the alert information to the
database:

Possible GEMs:

1. Gesture Recognition: I used Kinect but not the original PrjRemote to be

my input sensor to recognize the patient’s gesture.

2. I implemented some GUI to visualize that what should do to the patient,

either call or visit the patient.
3. Use the uploader to upload the emergency information to the database.

4. Designed an easy and an uncommon gesture in order to make it more

clear and feasible to recognize the gesture.

5. Implement a selection mechanism, make it more real to act has a real

homecare staff, for them to actively choose the button based on either the
patient answered the phone call or not.

The implementation code for creating the Homecare Staff
component and connect it with the system is the core part in
my project, here is my codes:

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.Socket;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Date;
import java.util.List;
import java.util.Timer;
import java.util.TimerTask;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class CreateHomecareStaff
{

 // socket for connection to SISServer
 static Socket universal;
 private static int port = 53217;
 // message writer

 static MsgEncoder encoder;
 // message reader
 static MsgDecoder decoder;
 // scope of this component
 private static final String SCOPE = "SIS.Scope1";
 // name of this component
 private static final String NAME = "HomecareStaff";
 // messages types that can be handled by this component
 private static final List<String> TYPES = new

ArrayList<String>(
 Arrays.asList(new String[] { "Emergency", "Confirm" }));

 private static final String incomingMessages =

"IN\tConfirm|Emergency:CallPatient|Emergency:VisitPatient\n";
 private static final String outgoingMessages =

"OUT\tConnect";

 private static Timer timer = new Timer();

 // shared by all kinds of records that can be generated by this

component
 private static KeyValueList record = new KeyValueList();
 // shared by all kinds of alerts that can be generated by this

component
 private static KeyValueList alert = new KeyValueList();

 public static void main(String[] args)
 {
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {

 showCall();
 }
 });
 while (true)
 {
 try
 {

 // try to establish a connection to SISServer
 universal = connect();

 // bind the message reader to inputstream of the

socket
 decoder = new

MsgDecoder(universal.getInputStream());
 // bind the message writer to outputstream of the

socket
 encoder = new

MsgEncoder(universal.getOutputStream());

 /*
 * construct a Connect message to establish the

connection
 */
 KeyValueList conn = new KeyValueList();
 conn.putPair("Scope", SCOPE);
 conn.putPair("MessageType", "Connect");
 conn.putPair("IncomingMessages",

incomingMessages);
 conn.putPair("OutgoingMessages",

outgoingMessages);
 conn.putPair("Role", "Basic");
 conn.putPair("Name", NAME);
 encoder.sendMsg(conn);

 // KeyValueList for inward messages, see

KeyValueList for
 // details
 KeyValueList kvList;

 while (true)
 {
 // attempt to read and decode a message,

see MsgDecoder for
 // details
 kvList = decoder.getMsg();

 // process that message
 ProcessMsg(kvList);
 }

 }
 catch (Exception e)
 {
 // if anything goes wrong, try to re-establish the

connection
 e.printStackTrace();
 try
 {
 // wait for 1 second to retry

 Thread.sleep(1000);
 }
 catch (InterruptedException e2)
 {
 }
 System.out.println("Try to reconnect");
 try
 {
 universal = connect();
 }
 catch (IOException e1)
 {
 }
 }
 }
 }

 /*
 * used for connect(reconnect) to SISServer
 */
 static Socket connect() throws IOException
 {
 Socket socket = new Socket("127.0.0.1", port);
 return socket;
 }
 private static void ProcessMsg(KeyValueList kvList) throws

Exception
 {

 String scope = kvList.getValue("Scope");

 if (!SCOPE.startsWith(scope))
 {
 return;
 }

 String messageType = kvList.getValue("MessageType");
 if (!TYPES.contains(messageType))
 {
 return;
 }

 String sender = kvList.getValue("Sender");

 String receiver = kvList.getValue("Receiver");

 String purpose = kvList.getValue("Purpose");
 switch (messageType)
 {
 case "Confirm":
 System.out.println("Connect to SISServer

successful.");
 break;
 case "Emergency":
 if (receiver.equals(NAME))
 {
 System.out.println("Message from " + sender);
 System.out.println("Message type: " +

messageType);
 System.out.println("Message Purpose: " +

purpose);

 switch (purpose)
 {
 case "CallPatient":
 System.out.println("CalledPatient");

javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 showCall();
 }
 });

 KeyValueList new_alert = new

KeyValueList();
 new_alert.putPair("Scope", SCOPE);
 new_alert.putPair("MessageType",

"Alert");
 new_alert.putPair("Sender", "EM");
 new_alert.putPair("Purpose", "Call");
 encoder.sendMsg(new_alert);

 break;
 case "VisitPatient":
 System.out.println("VisitPatient");

javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 showVisit();
 }
 });

 KeyValueList new_alert_2 = new
KeyValueList();

 new_alert_2.putPair("Scope", SCOPE);
 new_alert_2.putPair("MessageType",

"Alert");
 new_alert_2.putPair("Sender", "EM");
 new_alert_2.putPair("Purpose", "Visit");
 encoder.sendMsg(new_alert_2);

 break;
 }
 }
 break;

 }
 }
 private static void showVisit() {
 //Create and set up the window.
 JFrame frame = new JFrame("Homecare Staff");

//frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 // make the frame half the height and width
 Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
 int height = screenSize.height;
 int width = screenSize.width;
 frame.setSize(width/2, height/2);

 // here's the part where i center the jframe on screen

 frame.setLocationRelativeTo(null);
 JLabel label = new JLabel("Please Visit the Patient",

SwingConstants.CENTER);
 label.setFont(label.getFont().deriveFont(64.0f));
 label.setForeground(Color.BLUE);
 // label.setPreferredSize(new Dimension(350, 200));
 frame.getContentPane().add(label,

BorderLayout.CENTER);
 //frame.setSize(1000, 600);
 //Display the window.
 //frame.pack();
 frame.setVisible(true);
 }
 public static void showCall() {
 //Create and set up the window.
 JFrame frame = new JFrame("Homecare Staff");
 Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
 int height = screenSize.height;
 int width = screenSize.width;
 frame.setSize(width/2, height/2);

 // here's the part where i center the jframe on screen
 frame.setLocationRelativeTo(null);

//frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new BorderLayout());
 frame.add(new CallPane(frame),

BorderLayout.CENTER);
 //frame.setSize(1000, 600);

 //Display the window.
 //frame.pack();
 frame.setVisible(true);
 }
 public static class CallPane extends JPanel {

 public CallPane(JFrame myprogram) {
 setLayout(new GridBagLayout());
 GridBagConstraints constraint = new

GridBagConstraints();
 constraint.gridx = 0;
 constraint.gridy = 0;
 constraint.insets = new Insets(2, 2, 2, 2);
 JLabel label = new JLabel("Call the Patient");
 label.setFont(label.getFont().deriveFont(64.0f));
 label.setForeground(Color.RED);
 constraint.gridx=0;
 constraint.gridy++;
 constraint.fill = GridBagConstraints.NONE;
 // constraint.gridwidth = 2;
 JButton answeredButton = new JButton("Call

Answered");

answeredButton.setFont(answeredButton.getFont().deriveFont(32.0f));
 answeredButton.setPreferredSize(new

Dimension(350, 200));
 answeredButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent e)

 {
 //Execute when notAnsweredButton is

pressed
 myprogram.dispose();
 }
 });
 JButton notAnsweredButton = new JButton("Call

Not Answered");

notAnsweredButton.setFont(notAnsweredButton.getFont().deriveFont(32
.0f));

 notAnsweredButton.setPreferredSize(new
Dimension(350, 200));

 //Add action listener to notAnsweredButton
 notAnsweredButton.addActionListener(new

ActionListener() {

 public void actionPerformed(ActionEvent e)
 {
 //Execute when notAnsweredButton is

pressed
 showVisit();
 myprogram.dispose();
 }
 });
 add(answeredButton, constraint);
 constraint.gridx++;
 add(notAnsweredButton, constraint);
 constraint.gridx = 0;
 constraint.gridy = 0;

 constraint.gridwidth = 2;
 add(label, constraint);

 }

 }

}

