Find API Usage Pattern

Visualization Based APl Usage Patterns Refining

Yubo Feng

Introduction

» What is APl usage pattern?

» Pattern: context, problem, solution

» Given a lib, how to identify what problem it could solve?

» Given a problem and a lib, how do we know if there exists some APl in this lib that
helps?

» Why it is necessary?
» Read lib code and demo program is time consuming and tedious
» Some amazing API in lib will never have chance to be used
» dependency within single API is unknown

» Question: identify a groups of APIs in a given lib that solves bunch of problems

One possible solution and weakness

» Client program based analysis
Basic assumption: APl methods are interactive, interlocking

Basic idea: a group of APIs will be used again and again to solve similar
problems

» Analysis of the frequency and consistency of co-usage relations between the
APIs methods within a variety of client programs of the API of interest

» Weakness: how about semantic relations?

What this paper tells us

» Capture contextual information is important
» Asemi-automated approach to identify APl pattern

» idea:

» using client-program based approach and semantic analysis to find groups that may
be consist some pattern

» using some visualization methods to present these pattern and APl method that is
easy to read and interpret by human

» using human knowledge and experience to refine results that already got

Extracting API
methods references
and terms

|}

Encoding method
information

|

Clustering
(Classification)

|

Visualization

Refining

P

~—

P

Client-Program analysis, Semantic analysis

Raw client program data analysis

output two vectors: one for related methods;
another for term. Prepare attributes/data set for
classifier

Machine learning method involved, do clustering
(classification)

Paint everything we get in a “nice” form
easy for human to recognized

Human work involved: try to enrich pattern by other
methods

Extracting APl methods references and
terms

» Client-Program analysis: statically analyze the code, extracting references
within each other

» Semantic analysis: APl method name, terms, parameters, local variables

» Multi-level APl Usage Pattern (MLUP)

» After the extraction, we got tables including references and term info
inside

Encoding method information

» Assumption: for one particular domain purpose, the domain knowledge is
encapsulated in the methods vocabulary

» Vusage : Vector for each APl method, iy, element (0/1) indicates if this method
is used in client program. (| Viysage | = # of client programs)

» Vierm : vVector for each APl method, i;, element (0/1) indicates if this term is
used in this APl method vocabulary. (| Vierm | = # of all lemmatized collected
terms in public APIs)

» we get two space by these two vectors _
Uk SVD term matrix

: Singular Value
Latent Sematic Decg:)m osition N |
Indexing Process | tem P —— - %, Singular values matrix

document (SVD)

Matrix T
Vk

SVD Document Matrix

Cluster (classification)

» Distance metrics definition [r Sim(mi mj) —
b)

» DBSCAN cluster algorithm:

>
>

>

|ICl_mtd(m;) N Cl_mtd(m;)|
|Cl_mtd(m;) U Cl_mtd(m;)|

Vi x ¥,

SemanticSim(m;, m;) =
1Vill > 1]

Two parameters control # of methods within one group

clusters according to Ve We could get groups of APIs that close to each other
(reference together always)

clusters according to V; we could get groups of APIs that close to each other (semantic
close to each other)

by recursively apply this algorithm in one big group, we can get more smaller child
groups

Pattern Visualization

» From previous result, we get results actually is a hierarchic structure

» big groups contains a lot of smaller group
» Multi-level API Usage Pattern (MLUP)

createParallelGroup (Alignment) (/]

GroupLayout (Container host)

setHorizontalGroup (GroupLayout .G

setVerticalGroup (GrouplLavyout .Grc

L2

createSequentialGroup (Alignment)

Figure 1. The cluster L2 which represents the MLUP of class
GroupLayout: L0 represents the GroupLayout’s core usage pattern, then
the cluster LI/L2 includes partially/totally the GroupLayout’s peripheral
usage pattern.

Pattern Visualization
(Naive approach)

» tree-map visualization (according to Vage)

1}

L1

3

E3E3 3 |

i |

3

£3 £33 3

Figure 2. Treemap layout for GroupLayout pattern,

ml is the Grouplay-

out(Container) constructor, m2, m3, m4 and mS are respectively the methods
setHorizontalGroup(...) , setVerticalGroup (...) , createParallelGroup(...)

and createSequentialGroup(...).

Figure 3. Standard treemap layout for the multi-level usage patterns of the
Swing APL

AW

A 3

Seems feasible, however, it is not space efficiency

Pattern Visualization
(Advanced approach)

» Using bottom-up Bin-packing algorithm to pack similar APIs into one single
group (according to Vsage)

» Bin-Packing algorithm and 2-Dim Bin-packing
» expand board of bin, first fit always good

» (Next page show the idea)

Greedy: Largest children
go first

il
p b 'é'/ !ﬂ 7y | ik
| |)) i
: : o
il F:‘ Em’[}-
:rv m
v

MEOEEERDES |
Efl@ 4 [[OO0BEOEmmE (TrTe
AP ODNEOID000EN0ERRARAREEE |ERHETES

177 PR P 0 0) 0 5 5 B D 5 NS
%EEMEEMEE@EBMEQBREMEMIMM
000000

Figure 4. Combination of Bin Packing and Treemap Layout for the multi-level
usage patterns of the Swing APL

Refining

» Color maps different info to this
graph

» region color indicates semantic
coherence extent

» height of box indicates population

» box color indicates same semantic
group

» Check if semantic group is the same “W“f [[/f Wj!{////////

with usage group
» Add outliers to usage pattern by \m\\\\k\—v,, g

check document to enrich pattern

» After these refine, we could get a j
usage pattern within a lib by usage e
consistency and semantic consistency ©

Figure 5. Usage Scenario for refining of the GroupLayout’s pattern of the
Swing API

m

Thanks for watching!

