
Find API Usage Patterns
Visualization Based API Usage Patterns Refining

Yubo Feng

Introduction

u What is API usage pattern?

u Pattern: context, problem, solution

u Given a lib, how to identify what problem it could solve?

u Given a problem and a lib, how do we know if there exists some API in this lib that
helps?

u Why it is necessary?

u Read lib code and demo program is time consuming and tedious

u Some amazing API in lib will never have chance to be used

u dependency within single API is unknown

u Question: identify a groups of APIs in a given lib that solves bunch of problems

One possible solution and weakness

u Client program based analysis

u Basic assumption: API methods are interactive, interlocking

u Basic idea: a group of APIs will be used again and again to solve similar
problems

u Analysis of the frequency and consistency of co-usage relations between the
APIs methods within a variety of client programs of the API of interest

u Weakness: how about semantic relations?

What this paper tells us

u Capture contextual information is important

u A semi-automated approach to identify API pattern

u idea:

u using client-program based approach and semantic analysis to find groups that may
be consist some pattern

u using some visualization methods to present these pattern and API method that is
easy to read and interpret by human

u using human knowledge and experience to refine results that already got

Extracting API
methods references

and terms

Encoding method
information

Clustering
(Classification)

Visualization

Refining

Client-Program analysis, Semantic analysis

output two vectors: one for related methods;
another for term. Prepare attributes/data set for
classifier

Machine learning method involved, do clustering
(classification)

Paint everything we get in a “nice” form
easy for human to recognized

Human work involved: try to enrich pattern by other
methods

Raw client program data analysis

Extracting API methods references and
terms

u Client-Program analysis: statically analyze the code, extracting references
within each other

u Semantic analysis: API method name, terms, parameters, local variables

u Multi-level API Usage Pattern (MLUP)

u After the extraction, we got tables including references and term info
inside

Encoding method information

u Assumption: for one particular domain purpose, the domain knowledge is
encapsulated in the methods vocabulary

u Vusage : vector for each API method, ith element (0/1) indicates if this method
is used in client program. (| Vusage | = # of client programs)

u Vterm : vector for each API method, ith element (0/1) indicates if this term is
used in this API method vocabulary. (| Vterm | = # of all lemmatized collected
terms in public APIs)

u we get two space by these two vectors

Latent Sematic
Indexing Process

Singular Value
Decomposition

(SVD)

Vterm

Term
document
Matrix

𝑈"

Σ"

𝑉"%

SVD term matrix

Singular values matrix

SVD Document Matrix

Cluster (classification)

u Distance metrics definition

u DBSCAN cluster algorithm:

u Two parameters control # of methods within one group

u clusters according to Vusage we could get groups of APIs that close to each other
(reference together always)

u clusters according to 𝑉"% we could get groups of APIs that close to each other (semantic
close to each other)

u by recursively apply this algorithm in one big group, we can get more smaller child
groups

Pattern Visualization

u From previous result, we get results actually is a hierarchic structure

u big groups contains a lot of smaller group

u Multi-level API Usage Pattern (MLUP)

Pattern Visualization
(Naïve approach)

u tree-map visualization (according to Vusage)

Seems feasible, however, it is not space efficiency

Pattern Visualization
(Advanced approach)

u Using bottom-up Bin-packing algorithm to pack similar APIs into one single
group (according to Vusage)

u Bin-Packing algorithm and 2-Dim Bin-packing

u expand board of bin, first fit always good

u (Next page show the idea)

Greedy: Largest children
go first

Refining

u Color maps different info to this
graph
u region color indicates semantic

coherence extent

u height of box indicates population

u box color indicates same semantic
group

u Check if semantic group is the same
with usage group

u Add outliers to usage pattern by
check document to enrich pattern

u After these refine, we could get a
usage pattern within a lib by usage
consistency and semantic consistency

Thanks for watching!

