
Study Memory Behaviors using SIS Testbed
Xianwei Zhang

xianeizhang@cs.pitt.edu

Abstract
Main memory is the critical building block of computer systems, and it services the read/write requested from

CPU. The request needs the coordination of CPU, memory controller and underlying memory devices, etc. While
understanding memory behaviors is crucial for system researchers, it is ordinarily difficult for novices. This
project uses SIS testbed to bridge the gap between high-level sense and low-level details.

With the finished project, we can easily visualize the general memory behaviors. In particular, we can observe
the back propagation from memory to CPU, the detailed mapping policy and also the different memory latency
effects (hit or miss), etc. The results positively show the powerfulness and generality of SIS testbed.

Video URL: https://youtu.be/4kUM0Tn_Drk

Germs of this project:
1. explored Computer Architecture stuff in multi-media scenario, with reasonable simplifications;

2. the work proved the powerfulness and generality of SIS Testbed , and services to bridge the gap between
high-level sense and low-level details;

3. constructed FOUR new components , including one super component and three common components;

4. the positive results faithfully repeat real-life facts to large degree;

5. implemented classical algorithms , including Address Mapping , Scheduling and time-driven simulation ;

6. well-formatted video , with clear contents and brief notes;
7. video has been uploaded to Youtube with URL provided in this report;
8. report is well written with LaTex ;

9. codes were formally written with clear comments, partial snippets are pasted in later sections.

1. Introduction
Requests, filtered through all cache hierarchy, will finally be serviced by underlying memory. As illustrated by
Figure 1, the requests leaving from CPU are first buffered in the queue of memory controller (MC), which is a
on-chip logic unit to schedule memory accesses to off-chip physical memory devices. Memory controller follows
predefined policy, like First-come-first-serve (FCFS), to issue the buffered requests to memory devices.

MC

MC

Rank Rank
Bank Bank Bank Bank Bank

Rank Rank
Bank Bank Bank Bank Bank

c/a

data

c/a

data

CPU

Channel 1

Channel 2

Figure 1: Memory logical hierarchy.

Generally, main memory is composed of multiple channels, which are working independently with each other.
Each channel has a on-chip MC to send requests to and receive data from off-chip devices via command/address
bus and data bus. In terms of memory, each channel contains one or more ranks, and each rank typically consists
of eight banks. Further, each bank is made up of 2D arrays, with data being uniquely located with row and
column.

1

https://youtu.be/4kUM0Tn_Drk

cs2310 project Study Memory Behaviors using SIS Testbed Xianwei Zhang

When MC receives requests, it first inserts them into the queue, and then follows certain scheduling policy to
pick up one to issue. Next, MC chops the numeric address into the tuple of (channel, rank, bank, row, column),
and then forwards the request to the target bank when the bank is available. As a performance optimization, each
bank provides a row buffer to cache the last opened row, and thus if the target row matches that of last opened,
then the access is a row buffer hit which has a much shorter latency than normal miss case.

Table 1: System Configuration

4 Ghz, IPC=1.0, MPKI=100 (i.e., one memory request per 2.5ns)
CPU reads:writes=2:1, address is randomly generated

stalled when MC queue is full, resume when half full
Queue capacity: 48 entries

Memory Low watermark: 24 entries
Controller Scheduling: FCFS

Address mapping: rw:rk:bk:ch:cl:offset
capacity: 128MB (i.e., #address bits = 17)

Memory 1channel, 1rank/channel, 2banks/rank,
16K rows/bank, 4KB/row, 64B cache line
Latency: hit=10ns, miss=50ns

Given the superior complexity in real-system, this project makes the following reasonable simplifications and
assumptions:

1. main memory is composed of one single rank, and the rank contains two banks only;
2. memory controller has a single queue to hold both reads and writes to the two banks;
3. the queue has 48 entries, full queue stalled CPU, otherwise CPU periodically generate requests;
4. the scheduling policy is FCFS.

The detailed configurations are as shown in Table 1.

2. Design and Implementation

2.1. Design

To use SIS testbed to study memory behaviors, I adopt the design as shown in Figure 2. Generally, four components
are involved, including CPU, Memory Controller, Bank 0 and Bank 1. Among them, Memory Controller

is the super components. Communications between components are achieved via messages, whose type can be
alert, emergency, etc.

Memory
Controller

Queue

CPU

Bank0

Bank1

Memory
req; issue

q_full; stall

q_low; resume

bank ok?

req; sched

ack; send back

ack; send back

wait

Figure 2: Overall design. Four components are constructed. Memory Controller is the super com-
ponent, and the others are common components.

Normally, CPU periodically generate requests, which are then issued to MC. Upon receiving the requests,
MC puts them into the queue, and then check whether the queue is fully occupied. If queue is full, then MC

2

cs2310 project Study Memory Behaviors using SIS Testbed Xianwei Zhang

immediately sends an alert back to CPU to make it stall, and thereafter MC drains the existing requests staying in
the queue; when the queue occupancy reaches the low watermark (i.e. half full), MC alerts the CPU to resume.

To schedule requests downward to memory, MC picks up one request from the queue, and extracts the address
IDs in terms of bank and row, etc. Now, MC is aware of the target bank and row, and it can decide the proper
time to send out the request, and also the duration to service the request. Note that request cannot be issued until
the target bank is idle, and the access latency varies depending on row hit or miss. When receiving requests from
MC, banks start to work on data fetch or store. Upon finish, the banks broadcast an alert.

2.2. Implementation details

2.2.1. primary data structures Memory controller queue is implemented using LinkedList to enable FCFS
scheduling. Besides, an separate variable current_q_size is used to denote the queue occupancy. Queue capacity,
low watermark and full flag are also provided to decide when to communicate with CPU. MC decides everything
for the request scheduling and service, and memory is completely dumb. Array variables NEXT_TIMES and
OPENED_ROWS are used to update bank available time, and denote the last opened row of each bank. With these
two arrays, MC can safely schedule the requests and also decide the access latency of each request. In addition, a
private class is utilized to hold the address IDs.

Figure 3: Data structures.

2.2.2. Scheduling Algorithm With the aforementioned data structures, we then move on to scheduling algorithm.
For simplicity, FCFS is used and thus the queue head is always serviced. Each time, the algorithm gets the first
entry of the queue, and then chops the address into a series of IDs. MC then checks the target bank ID to decide
whether issue is allowed. If the target bank is still busy, then just wait. If the bank is ready, then compare the target
row against last opened row to determine a row hit or miss. Finally, OPENED_ROWS and NEXT_TIMES are
updated for future scheduling.

3

cs2310 project Study Memory Behaviors using SIS Testbed Xianwei Zhang

Figure 4: Scheduling algorithm.

2.2.3. Address Mapping Algorithm Original address from CPU is a numeric value in the range of [0,128M).
Memory controller needs to translate the value into address IDs in terms of rank, bank and row, etc. Multiple
candidate mapping policies can be used to chop the address, and this project adopts the row-hit-friendly one
row:rank:bank:channel:column:offset. To extract the corresponding bits for each part, bit manipulation is
used, with detailed algorithm shown in Figure 5.

Figure 5: Address mapping.

4

cs2310 project Study Memory Behaviors using SIS Testbed Xianwei Zhang

3. Results
Normally, CPU periodically generate request to access memory. Following real system, reads are generate roughly
two times of writes, and I assume IPC = 1 and MPKI = 100, meaning that CPU executes one instruction per
clock cycle and one hundred out of 1000 instructions access memory. Thus, one request will be generated every
10 cycles (CPU frequency is 4G Hz), translating into 2.5ns. For ease of observation in experiments, treat 250ms as
2.5ns, and the same amplification applies to memory latency values.

3.1. CPU behaviors

As Figure 6 illustrates, CPU experiences two states, active and stall. The state transition is driven by the queue
occupancy of MC queue. When queue becomes full, an alert is sent to CPU to stall; and then MC drains the
requests to decrease queue occupancy; when queue is half full, another alert will be sent to CPU to resume.

(a) CPU is active

(b) CPU is stalled

Figure 6: Periodical behaviors of CPU.

3.2. Memory controller behaviors

Memory controller has a queue of 48 entries to store requests from CPU. And it follows FCFS scheduling policy
to forward the requests to underlying memory banks. MC is the master of all banks, and it maintains the bank
states, including last opened row and the bank next available time. When queue becomes fully occupied, MC
alerts the CPU to temporally stall request generation. While CPU is being stalled, MC drains the queue to free
space. Later, when queue reaches the predefined low watermark (half full), another alert is sent to CPU to let it
resume.

5

cs2310 project Study Memory Behaviors using SIS Testbed Xianwei Zhang

(a) Process requests following FCFS scheduling policy. (b) Queue periodically full and low.

Figure 7: Memory controller behaviors.

3.3. Bank behaviors

Memory banks are dumb components. They just receive the requests from memory controller, and returns data or
acknowledges within the timing goals set by MC. Upon finish the request, banks broadcast the information as an
alert message.

(a) Request has a row miss. (b) Request has a row hit.

Figure 8: Banks service request as a hit or miss.

4. Summary
This project visualizes the memory behaviors using SIS testbed. With the finished project, we can observe
the complete travel of a memory request, from leaving CPU to being buffered into MC queue, and next being
scheduled by MC and finally serviced in underlying memory banks. Given the fact that CPU quickly feeds request
to MC, and the queue is very limited (48 entries) and memory is generally much slower, the queue can be quickly
fully occupied. Further, a back pressure is set on CPU, which stalls as a response. Afterwards, MC drains the
queue to free some space and let the CPU resume. Consequently, we can observe periodical behaviors of both
CPU and memory.

The demo video can be found at https://youtu.be/4kUM0Tn_Drk.

6

https://youtu.be/4kUM0Tn_Drk

	Introduction
	Design and Implementation
	Design
	Implementation details
	primary data structures
	Scheduling Algorithm
	Address Mapping Algorithm

	Results
	CPU behaviors
	Memory controller behaviors
	Bank behaviors

	Summary

