
Andrew	Armstrong	

SIS System Example: Heart Rate Monitor

Motivation: The motivation behind this project was to build a small example system that
emulates a heart rate monitor being a part of a larger health care system. A monitor (SIS
component not the heart rate monitor) listens to the entire system and makes decisions based on
the readings it receives. These decisions involve deciding upon the status of the patient and
determining if any actions need to be taken in order to maximize the patient’s health.

Larger Role: In a fully implemented system this would be a single part that is in charge of
recording data. In order to simulate this functionality, I have the monitor writing data to a file
labeled ‘database_fake.txt.’ This simulates performing writes to a database that would house
information for the entire system. From here another component, such as a notification system
would read this database and update another webpage that is in charge of distributing resources
(i.e. ambulances and personnel) to appropriate situations – such as a heart rate that signifies an
emergency.

Improvements: Future improvements to this would include implementing the actual database in
order to retain the data in a more structured format. As well as increasing the amount and scope
of data being recorded. By this I mean that the decisions made by the monitor right now as to
how to classify the readings is incomplete and naïve. Instead, I should store more information
such as the age of the patient and also their physical condition. These and many more factors
influence at what heart rate level certain notifications need to take place.

System Diagram

Figure	1:	System	Diagram	

	

Andrew	Armstrong	

What	Figure	1	is	showing	is	a	Super	component	(Emergency	Manager)	with	a	Basic	component	
(Heart	Rate	Monitor)	associated	with	it.	Both	are	on	the	same	scope	which	has	a	Monitor	
component	(Homecare)	associated	with	it.	This	Monitor	will	listen	for	all	readings	across	the	
scope	and	process	them.	In	this	case	that	means	listening	to	the	Heart	Rate	Monitor	and	
processing	the	readings	produced	by	it.		

Example Scenario

**Note: This scenario covers the standard setup for the system and sending of a message. It then
discusses the handling of one specific message category in general – namely Dangerous. **

The first step to take is to start up the SIS Server. This is accomplished using the script
runserver.bat.

	
Figure	2:	runserver.bat	script	

After	starting	the	SIS	Server,	the	PrjRemote	needs	to	be	started	so	messages	can	be	sent.	This	is	
achieved	via	the	command	java	–jar	PrjRemote.jar.		
	

Andrew	Armstrong	

	
Figure	3:	PrjRemote	command	

After	executing	this	command	the	following	GUI	appears.	
	

	
Figure	4:	PrjRemote	User	Interface	

Andrew	Armstrong	

Notice	that	in	Figure	4	the	‘Connected’	button	is	pressed	and	highlighted	in	green.	This	means	
that	the	Debugger	component	named	Remote	has	been	connected	to	the	SIS	Server.	This	is	
verified	by	the	message	in	the	bottom	right	corner	which	says	it	has	been	connected.	
	
From	here	we	need	to	connect	the	different	components	that	are	necessary	for	the	system	to	
run.	This	includes	the	Super	component	Emergency	Manager	and	the	Basic	component	Heart	
Rate	Monitor.		The	following	figures	show	the	SIS	Server	receiving	register	and	connect	
messages	from	these	components	and	responding	with	a	confirm	message.		
	

	
Figure	5:	SIS	Server	Output	

	
Figure	6:	Emergency	Management	Confirmation	

	
Figure	7:	Heart	Rate	Monitor	Confirmation	

Andrew	Armstrong	

Now	our	system	has	been	set	up	it	is	time	to	introduce	the	monitor	component	that	I	
implemented	–	Homecare.		The	Homecare	component,	which	I	implemented	as	a	Java	class,	
contains	code	to	send	both	a	register	and	connect	message	before	waiting	to	process	reading	
messages	from	components.	Therefore,	by	running	the	command	‘java	CreateHomecare’	the	
Monitor	component	will	register	and	connect	itself	to	the	SIS	Server.	This	can	be	seen	in	the	
following	two	figures.		
	

	
Figure	8:	Homecare	Monitor	Command	

	
Figure	9:	SIS	Homecare	Confirmation	

So	a	quick	recap.	Everything	up	to	this	moment	has	been	setting	up	the	system	for	a	scenario	
involving	the	Homecare	Monitor.	The	SIS	Server	was	started	along	with	PrjRemote	in	order	to	

Andrew	Armstrong	

facilitate	message	passing.	I	then	connected	a	Super	and	Basic	component	to	the	system	before	
running	the	necessary	Java	class	to	register	and	connect	my	own	component.	Now	for	the	
scenario	I	want	to	run.		
	

Dangerous	Scenario	
	

For	my	Monitor	component	I	programmed	different	categories	of	notifications	based	on	the	
Heart	Rate	Monitor’s	reading.	In	this	scenario	the	reading	from	the	Heart	Rate	Monitor	falls	in	
to	the	‘Dangerous	range.	Below	is	a	screenshot	of	numerous	messages	being	received	by	the	
Homecare	Monitor	that	have	been	sent	via	the	PrjRemote	GUI.	These	messages	cover	the	full	
range	of	categories,	although	we	are	still	only	interested	in	the	Dangerous	category.	
	

	
Figure	10:	Homecare	Monitor	Output	

Perform	describing	the	functionality	further	here	is	a	screenshot	of	the	contents	of	the	
database_fake.txt	file.		
	

Andrew	Armstrong	

	
Figure	11:	Fake	Database	Contents	

What	the	system	has	done	is	take	the	heart	rate	output	by	the	Heart	Rate	Monitor	(200	beats	/	
minute)	and	classify	this	as	a	‘Dangerous’	heart	rate	before	writing	the	output	to	the	file.	What	
a	more	complicated	and	fully	integrated	system	would	od	would	be	to	take	this	output	and	
read	it	in	so	that	an	action	can	be	taken	in	response	to	the	‘Dangerous’	classification.	More	
likely	than	not	this	would	require	sending	an	ambulance	to	attend	to	the	patient.	
	

Conclusions	
Overall	this	system	provides	a	simple	overview	of	a	possible	implementation	for	a	more	
complicated	system.	In	order	to	improve	upon	this,	components	would	be	added	to	provide	
real-time	data	from	a	living	patient	as	well	as	allowing	for	more	patient	information	to	be	
available	in	order	to	make	better	decisions.	The	notification	system	would	also	be	expanded	to	
allow	for	constant	monitoring	of	patients	and	/	or	automated	response	to	particular	events.	
While	these	changes	would	improve	the	system,	the	current	configuration	still	provides	a	
informative	abstraction	as	to	the	workings	of	the	system	and	the	steps	necessary	to	process	
input.	
	

Andrew	Armstrong	

	

