
Design and implementation of the temperature component in

Personal Healthcare Slow Intelligence System

Zichuan “Jerry” Ye

Department of Computer Science, University of Pittsburgh

Introduction:

 Technical challenges in our current healthcare system are increasing rapidly due to

the heavily accumulating amount of data in forms of text, image, video and numeric data

streams. Conventionally, fast-intelligence systems that handles large incoming data to

make medical decisions are widely used in domains of medical studies. However, the lack

of initial attempts and biased assumptions give rise to potential inaccuracy in predictions

and judgment of these system. As an answer to such problem, Slow-Intelligence System

(SIS) in healthcare is considered as one competitive candidate in precisely handling a

variety of medical scenarios that are not timely-urgent and is actively changing. Such

advantages come from the feature of a slow intelligence system that (i) solves problems by

trying different solutions, (ii) is context-aware to adapt to different situations and to

propagate knowledge, and (iii) may not perform well in the short run but continuously

learns to improve its performance over time.

 The Personal Healthcare Slow Intelligence System of our project is a system that

collects, processes healthcare data and delivers messages among multiple functional

components. This system is built upon a component-based architecture, in which each

component is responsible for a certain source of healthcare data or other functions such as

uploading and graphic user interface. The components are distributed in a network that

follows the typical centralized client-and-server architecture in which a central center

serves as the critical node in terms of managing, connecting and integrating the peripheral

components. In the design principle, the components that are connected to the SIS-server

do not know the presence of each other; they only communicated with the central server

“SIS-server” by sending SIS-messages. Each type of message among components is

numbered and well-defined. By having access to the number of the messages that are

carried by SIS-server, the components recognize the ones that are needed and fetch them

from the server. This message-oriented communication supports the flexibility and

scalability of the system. It also helps keeping the integrity of the system and expedites

the creation, management and termination of the components.

Development of Temperature Component in SIS:

 A healthcare system often includes multiple sensors that are designed to handle

different types of data that need to be measured and processed separately. According to

the concept of “component-based architecture”, sensors must be applied in a fashion that

each individual sensor does not know the existence of the others and operations of this

individual sensor does not rely on other components help. Such component must also be

flexible, meaning that once being taken out, other components in the healthcare system

need to function properly. In this case, any component designed for SIS-Healthcare system

must be able to run independently and be woken up/terminated only by the messages sent

out from SIS-server.

 The SIS-Healthcare System is a multi-threaded component-based system in which a

central server is built to deliver messages sent from components. This centralized server

does not involve into the tasks that are needed to receive, parse, process and store

healthcare data. Instead, it only plays as a message delivery server that handles incoming

messages and either passes the messages to other components or operate system functions

such as creating/killing designated components upon receiving default messages. Previous

implementation of this system includes a list of component such as “InputProcesser”,

“SPO2”, “BloodPressure”, “EKG” and so on. These components are used to handle the

types of healthcare data according to their names.

 In this project report, implementation of a component that is aimed to handle the

temperature data is proposed. This component is names as “Temperature Component” in

this report, and labeled as “Temp” in SIS Healthcare System. Since it is a part of the entire

SIS healthcare system, several other components are involved in handling scenarios that

require functionalities from Temperature Component. Detailed illustration will be

presented in the following paragraphs. Please be noted that there is an additional software

that Temperature Component needs to run above. The “TEMPerV21.ext” executable files

on Windows X86/64 machines is required to have Temperature Component function

properly, as we do not have resources to purchase a generic temperature sensor associated

with un-complied OEM driver.

Technical Diagram of Temperature Component

Figure 1. A brief flow diagram describes how temperature component works and

communicated with other components.

 In this section, implementation details of the component “Temperature” is illustrated

in details. The basic design diagram of this component is shown in Figure 1. In this report,

Temperature Component is developed and works together with two other SIS-components

“UpLoader” and “GUI”. The “UpLoader” is used to send emails to designated users as well

as upload data to cloud databases. “GUI” is the component that a user directly interacts

to. It contains a panel of elements such as text field, buttons and view windows for

displaying, setting and other functions. It is noted that communications among all

components are message-based and can only be carried by SIS Server.

 A common scenario that involves the Temperature Component is as follows: A user

sets up all parameters associated with temperature sensor in GUI at the beginning.

Temperature readings are collected by the physical sensor and data is stored as a local file

in the PC by using “TEMPerV21.ext” before starting the Temperature Component.

Temperature Component accesses to the local file (.csv) and parse readings from the files

according to the date each entry associates in this file. It finds out the current temperature

reading and sends the reading to SIS-server in the form of an SIS-message. If some certain

values of temperature threshold are reached according to the parameters set by the user,

an internal trigger in Temperature Component starts and sends out alerts. As a result,

“UpLoader” collects the messages and sends out alarm emails accordingly.

Stepwise description can be seen below. All communications among components are

accomplished by sending SIS-messages to SIS-server. Diagram that enumerate the steps of

this scenario is depicted in Figure 1.

1. The temperature component is coded and created from as an individual component

(CreateTemp.java). It starts an executable program (TEMPerV21.exe) when

begins to run. It needs to be mentioned that “TEMPerV21.exe” is compiled

runnable that handles I/O of the temperature sensor and writes temperature data

to a local file. By default, the data files is located at “D:\Temp”. Due to the limit

of software/hardware resources, we must use this executable to receive data from

a temperature sensor and store them on local disk.

2. A user set up parameters of the temperature component, including sample refresh

rate, sensor start time, sensor end time, temperatures to trigger high/low

temperature alerts.

3. After GUI completed reading the user input, the parameters are packed into an

SIS-message (#1019) and sent to SIS-server, which later delivers the message to

Temperature Component.

4. The temperature component receives the message and decode it. It then starts

processing the data according to the parameters that are carried in the message.

During its execution, outgoing messages are created and sent out in two scenarios:

(a) the temperature component reports to the GUI via messages (#1018)

periodically to for current temperature readings, and (b) when the temperature

triggers some threshold (high or low temperature), it sends a messages (#38) to

the UpLoader.

SIS message:

 SIS-messages are the key element in SIS-Healthcare System. Components function

independently and communication among them can only be accomplished by SIS-messages

that are centralized and distributed by the SIS-server. Numbering the message and

assigning them to proper usage is therefore critical in the entire SIS ecosystem. In this

study, there are multiple SIS-message that are used to implement a temperature

component. The scenarios of how they are used that what they stand for will be discussed

in the following paragraphs. For the simplicity reasons, default message are not discussed

in the section below.

 To handle this scenario, we design a system that works accordingly. The GUI

component first takes a user’s input parameters of the Temperature Component. It packs

the parameters into an SIS-message (#20) to initiate the Temperature Component. Before

running the Temperature Component, “TEMPerV21.ext” is triggered so that it starts

execution and writing current temperature onto the local disk of PC. SIS-server receives

Message #20, which is a system default message, and initiate a standalone Temperature

Component using the parameters packed in this message. Once started, Temperature

Component reads the local files and sends Message (#39) to GUI for displaying purposes

and Message (#38 and #40) to the UpLoader in case a certain temperature threshold is

reached. UpLoader then update current temperature reading to the database at cloud

and/or sends the temperature reading to the input email address.

Figure 2. SIS-messages that are used in a component-based architecture that consists a

Temperature Component. Multiple functional components communicate via SIS-messages

that are delivered by SIS Server. For simplicity reason, the other components such as

Blood-Pressure, SPO2 and ECG in SIS Healthcare are now shown here.

Programming perspectives:

 In the programming point of view, the codes for Temperature Component, GUI and

UpLoader are located in three different directories and have NO internal connection/call

to each other. As parts of previous development, GUI (CreateGUI.java) and uploader

(CreateUpLoader.java) components were written already. SIS-messages are taken care of

in the “switch-case” statement in the infinite loop (“while(true)”). To expedite setting

parameters of the temperature component, a class “TempSettings.java” is implemented to

create a pop-out window for the main GUI panel and to record user inputs regarding to

temperature settings. Parameters are stored as static variables in this class and can be

access in GUI by directly calling its static fields.

 The standalone temperature component is codes in CreateTemp.java. This program

contains its own main method and can read SIS-message and adjust its settings according

to the key/value pairs transferred from the message. It uses a buffered reader to read the

local “.csv” file that “TEMPerV21.exe” uses to write current temperature on. Please be

noted that due to some unknown I/O exception, it is better unplug and then re-plug the

temperature sensor from the USB drive every time a new measurement is started.

 More details of programming and implementation of Temperature Component in the

SIS-Healthcare System is illustrated in the “readme” file.

Conclusion:

 In this study, the Temperature Component is designed, implemented in SIS-

healthcare system, following a component-based architecture concepts. Temperature

readings can be obtained accurately and processed according to the user’s input parameters

with an easy-to-use GUI. The communications among different components are strictly

isolated and can only be completed through the centralized SIS-server. Scenarios that

mimic potential threats in temperature change was accomplished when temperature hit

certain threshold. Alert messages can be sent to the input email address promptly.

Appendix:

Message #38: general alert message

<?xml version="1.0" standalone="yes"?>

<!--Generated by SISProjectCreator Version 1.0-->

<Msg>

 <Head>

 <MsgID>38</MsgID>

 <Description>Alert Message</Description>

 </Head>

 <Body>

 <Item>

 <Key>DataStream</Key>

 <Value>date_stream_content</Value>

 </Item>

 <Item>

 <Key>GeneralAlertType</Key>

 <Value>context_of_some_alert_message</Value>

 </Item>

 <Item>

 <Key>Protocol</Key>

 <Value>protocol_of_alert</Value>

 </Item>

 <Item>

 <Key>Receiver</Key>

 <Value>some_doctor@upmc.edu</Value>

 </Item>

 <Item>

 <Key>DateTime</Key>

 <Value>"2014/11/18, 18:28.30"</Value>

 </Item>

 </Body>

</Msg>

Message #39: temperature reading for GUI display
<?xml version="1.0" standalone="yes"?>

<!--Generated by SISProjectCreator Version 1.0-->

<Msg>

 <Head>

 <MsgID>39</MsgID>

 <Description>Temperature Reading</Description>

 </Head>

 <Body>

 <Item>

 <Key>TempEnable</Key>

 <Value>True/False</Value>

 </Item>

 <Item>

 <Key>Temperature</Key>

 <Value>sample_temperature</Value>

 </Item>

 <Item>

 <Key>DateTime</Key>

 <Value>sample_date</Value>

 </Item>

 </Body>

</Msg>

Message #40: temperature alert message

<?xml version="1.0" standalone="yes"?>

<!--Generated by SISProjectCreator Version 1.0-->

<Msg>

 <Head>

 <MsgID>40</MsgID>

 <Description>Temperature Alert</Description>

 </Head>

 <Body>

 <Item>

 <Key>Alert Type</Key>

 <Value>high temperature alert</Value>

 </Item>

 <Item>

 <Key>AlertMessage</Key>

 <Value>sample_temperature</Value>

 </Item>

 <Item>

 <Key>DateTime</Key>

 <Value>"2014/11/18, 18:29.15"</Value>

 </Item>

 </Body>

</Msg>

