
CS2310 Software Engineering Final Report 

Junhui Chen 

Background 

This whole project is based on SIS (Slow Intelligent System). SIS is about taking things 

slow and taking more factors into consideration before trying to make any decisions. 

There is nothing wrong pursing performance but it takes time to figure out the best 

solution based on mutable factors. And that’s the reason why it’s important to be 

adapt to the circumstances. 

 

SIS system dedicates to provide comprehensive services for patient, especially elders, 

on the top of their physical conditions. Since a person in poor health can’t take care of 

himself as normal, it’s necessary to aid him in each way possible. But hospitals don’t 

have enough human resources to achieve high standard health care for each individual, 

so at least some part of the work should be done by machines if possible. Then again, 

we need to make sure that machines understand how to do the job. For monitoring 

the condition of a patient, a system needs various sensors, and each sensor may have 

different features, structure and also limitations. How to efficiently utilize the 

information from sensors and send out alerts only when necessary is difficult, since an 

experienced medical worker could make wrong decisions. 

 

But we can keep collecting sensor data from daily use, and recognize patterns for 

emergency, so accuracy of future predictions can be improved. But for a medical 

worker to make a decision, he should refer to multiple factors to get the grasp of the 

whole picture, one-sided view is almost doomed to cause problems, and that’s how 

machines should do. Instead of processing data from each source separately, it is way 

better to consider them as a whole when we try to find a certain pattern, since aspects 

of a patient’s condition are correlated to each other. 

Kinect sensor & Kinect component 

As a part of this system, Kinect sensor and Kinect monitor are crucial since they are by 

far the only way to detect motions of the patient. But the detection of a fall is not 

predefined with Kinect, so we have to implement our own algorithm. 

  



Fall detection 

To achieve fall detection, we should at least know the rough real-time position of the 

patient, and this is covered by Kinect sensor, Kinect sensor can track a patient’s 

skeleton, and a skeleton consists of more than 20 joints. Once we get a series of 

skeletons, we can easily extract the coordinates of joints. A frame is generated for each 

time interval, so we can calculate the difference between 2 frames, even the speed of 

movement, since we know the time of each frame get generated. 

 

But how to achieve high accuracy? Since Kinect is not specially designed for medical 

purposes, it has certain limitation such as 

 

 Before a head is detected, Kinect sensor can’t detect a person 

 Complex environment can generate noise for detection, even non-human objects 

can be recognized as human beings 

 Sufficient indoor lighting is crucial to even be able to detect anything 

 If multiple people present in front of Kinect sensor, we need to treat each 

separately 

 A fall should happen during a very short period of time, so we have to differentiate 

that from a person trying to lay down or squat in a relatively slower speed 

 

I’ve tried several simple approaches, each has its own deficiency. 

 

I tried to track multiple joints at the same time, and calculate the average difference 

with respect to time elapsed. But first I need to make sure a person is not running 

towards the sensor, that will give the sensor the impression that person is falling since 

technically the skeleton is tumbling down in a fast speed. Then we need to deal with 

depth information. If a person is running towards the sensor, then the depth will lessen 

rapidly, so this case should be ignored. But this approach has a major problem, if the 

head is by chance out of the frame, no matter how hard a person is falling down, the 

sensor won’t be able to detect that. 

 

And then I tried to use an existing algorithm developed by an undergraduate student. 

He simply solely utilized the position of the head, and it did minimize the possibility of 

false positive, but also the possibility of true positive too, since he only focused on one 

joint of the whole skeleton and ignored others completely. 

 

So, I tried to combine these two approaches together, the detection will begin at the 

moment when a head is tracked, but instead of using only the position of the head, 

we utilize positions of other joints together to detect the motion of a patient. The 

position of the head will have the highest priority, but when that is not available, or 

doesn’t give a high credibility, we can still make assumptions based on other 

information. We currently don’t deal with multiple people. 



Extract skeletons & communication with monitor 

To be able to extract skeletons, we need to utilize Kinect SDK provided by Microsoft. 

We can hook a listener to Kinect sensor and get notified whenever a skeleton frame is 

ready, then we can process it. But just for implementation details, since we implement 

the SIS using Java, but official Kinect SDK doesn’t provide Java as an option, we have 

no choice but to set up a Socket connection between Kinect monitor and Kinect sensor. 

And the messages being passed between should follow the standard of SIS too. 

(Message standard and system mechanism will be explained later.) 

Kinect monitor communicates with other components 

A Kinect monitor is a component that accept a series of messages from Kinect sensor 

and sending out alerts to certain components when an emergency happens, and this 

is where the fall detection algorithm lies. 

 

But fall detection is meaningless if it can’t be propagated and acknowledged by other 

components. We can send this to Uploader which is the component that is responsible 

for collecting information from all other components and informing the medical 

worker in charge, and possibly building a knowledge base along the way. We can send 

this to other monitors that each is responsible for the monitoring of a type of sensor 

(possibly a group of sensors), so that they can make more accurate decisions. We can 

also receive information from other monitors and work in the similar way as well. 

 

Why do monitors need to communicate with each other? Let’s say, if a patient falls 

onto the ground, chances that he is in dangerous condition, but we can’t be totally 

sure just based on that, but if Kinect monitor also receives alerts from EKG monitor, 

which means this patient fell onto the ground meanwhile suffering from irregular 

heartbeats. Now our predication can be way more confident. 

Message standard & system mechanism 

To make the whole system work, a proper mechanism is crucial. To achieve flexibility, 

each component should be able to leave and join the system at runtime, and this 

should be totally controllable by users. Also to achieve security, we need to make sure 

each message is passed to only target components, and each component can only 

sends out messages agreed by the system. 

 

Then we will need to set up component step by step by the book, and only in this way 

that a component can work normally in this environment. 

 



Registration of a component 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before any component starting to work, it must inform its existence to the SIS system 

by telling all its specification: 

 

 Name of the component 

 Input messages (messages that are accepted by this component) 

 Output messages (messages that are sent out by this component) 

 ... 

 

In our case, we need to create 2 components, Kinect Processor (conceptually a part of 

Input Processor) and Kinect Monitor. 

 

Kinect Processor will take in raw data input from Kinect sensor and generate Kinect 

Reading message (message 43) as the output. 

 

Kinect Monitor will take in Kinect Reading message (message 43) as the input and 

generate Kinect Alert (message 44) as the output. 

  

Kinect 

Monitor 
SIS Server 

Kinect 

Sensor 
Some 

Monitor 

Some 

Monitor 

. . . . . .  

Uploader 

GUI 

Universal 

Interface 
Health 

Sensors 

Input 

Processor 

20-> 

2
0

->
 



Acknowledgement from SIS 

Once there is an agreement, the SIS system will send back acknowledgement (message 

23), when a component receive this message, then it will start to function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kinect Reading / Kinect Alert 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Kinect 

Monitor 
SIS Server 

Kinect 

Sensor 
Some 

Monitor 

Some 

Monitor 

. . . . . .  

Uploader 

GUI 

Universal 

Interface 
Health 

Sensors 

Input 

Processor 

<-23 

 

<
-2

3 

 

Kinect 

Monitor 
SIS Server 

Kinect 

Sensor 
Some 

Monitor 

Some 

Monitor 

. . . . . .  

Uploader 

GUI 

Universal 

Interface 
Health 

Sensors 

Input 

Processor 

<-43 

 

<
-4

4
 

 

44-> 

When a certain threshold 

is exceeded, an alert 44 is 

sent to Uploader via SIS 



Complex communication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When Kinect Monitor detect alerts from other components, it will send out higher level emergency 

alerts. 

 

Kinect 

Monitor 
SIS Server 

Kinect 

Sensor 
EKG 

Monitor 

Some 

Monitor 

. . . . . .  

Uploader 

GUI 

Universal 

Interface 
Health 

Sensors 

Input 

Processor 

<-36 & 43 

 
<

-3
8
 

 
38-> 


