
International Journal of Software Engineering and Knowledge Engineering

 World Scientific Publishing Company

1

DESIGN PATTERN SUPPORT BASED ON PRINCIPLES OF MODEL DRIVEN

DEVELOPMENT

 PETER KAJSA and PAVOL NÁVRAT

Faculty of Informatics and Information Technologies, Slovak University of Technology, Ilkovičova 3,

Bratislava, 842 16, Slovakia

kajsa@fiit.stuba.sk, navrat@fiit.stuba.sk
http://www.fiit.stuba.sk/~kajsa, http://www.fiit.stuba.sk/~navrat

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

The main goal of the paper is to present the method of design pattern support based on principles of

model driven development: the abstraction, semantics and model transformations. More specifically,

the method is based on the principle of suggestion of design pattern instances via the semantic

marking of model elements or source code fragments and on the subsequent transformations of this

way marked models or source code. The transformations generate the missing structure of the

suggested design pattern instances in a requested form. The method provides the continual support

of design patterns at three levels of abstraction and in this way it enables earlier application of the

design patterns into the models and it provides more abstract view on the pattern instances. The

emphasis is put also on the support of specialization, concretization and variability of design

patterns. The method defines transformations between the supported model levels and the source

code. Within the transformations the emphasis is put on the preserving of visibility of pattern

instances and on the preserving of the pattern support also at the lower abstraction levels till the

source code. Moreover, the transformations are driven by models of patterns and they are designed

in the way which provides the great adaptability of the transformations results and the easy extension

of the support about new patterns or custom model structures. Thanks to the continual support of the

design patterns at more levels of abstraction and thanks to the transformations between particular

model levels and source code, the method tries to achieve the applicability in the area of the

iterative, incremental and model driven development.

Keywords: Design Patterns; Semantics; Transformations; Concretization; Specialization; Variability;

Models of Design Patterns; Model Driven Development.

1. Introduction

The concept of patterns was first introduced in the work of Alexander [1] dealing with

urban solutions, but soon the patterns were defined and used in software engineering also.

The idea of applying verified pattern solutions to common recurring problems in the

software design attracted considerable attention very quickly, since the quality of

software systems depends greatly on the design solutions chosen by developers.

Patterns have been applied in various phases of the software development lifecycle.

Patterns were discovered and defined in software analysis, design, integration, testing and

other areas. Currently, design patterns represent an important tool for developers in the

process of software design construction, and provide especially effective ways to improve

Manuscript
Click here to download Manuscript: Kajsa_ijseke_v20.pdf

http://www.editorialmanager.com/ijseke/download.aspx?id=10994&guid=0829ab86-c5a2-450e-baf2-73c7d79863bd&scheme=1

2 Peter Kajsa and Pavol Návrat

the quality of software systems. Software development teams are capable to produce

better software effectively thank to patterns application. Consequently, the suitable tool

based support of design patterns has great significance.

Moreover, the functionality of software systems requested by the users becomes

continually more and more complicated. As a result of this fact, the software systems

become progressively larger and more complex. Developers are forced to investigate

more and more lines of source code in order to ensure the correct functionality of the

software systems after requested system change or evolution. Large amount of plain

source code itself is very difficult to its analysis and understating by developers.

Therefore the clear visibility and support of the design patterns in the source code has

significant importance as well.

The section 2 introduces several related approaches to the design pattern support and

the section 3 concludes with the open problems in the problem area. The section 4

explains the presented approach of design pattern support also with its realization and

implementation. The next section 5 contains the evaluation of the method in form of case

studies. The paper is completed by summarization and proposals to the future work.

2. Related Works

There exist several related approaches which introduce their own tool-based support of

design patterns.

Mapelsden et. al. [2] introduce an approach to design pattern application based on the

Design Pattern Modelling Language. The authors describe this language, which is a

notation for the specification of solutions of design patterns and their instantiation into

UML models. Design pattern instances are regarded as part of the object model,

providing another construct that can be used in the description of a program. Once all

design pattern instance elements are linked to one or more UML design elements,

consistency checks are made. A deficiency of this approach is that the developer needs to

model all pattern participants manually and then link these parts to the pattern model.

El Boussaidi et. al. [3] present model transformations based on the Eclipse EMF and

JRule frameworks. Wang et. al. [4] provide similar functionality by XSLT-based

transformations of models stored in XMI-Light format. Both approaches can be

considered as driven by a single template and they focus mostly on the transformation

process and do not set a space for pattern customization.

Another method was introduced by Ó Cinnéide et. al. [5]. They present a method for

the creation of behavior-preserving design pattern transformations and apply this method

to GoF design patterns. The method involves a refactoring process which provides

descriptions of transformations to modify the spots for pattern instance placement (so

called precursors). Placement is achieved by the application of so called „micropatterns‟

to the final pattern instances. While Ó Cinnéide's approach is supposed to guide the

developers pattern placement in the phase of refactoring (based on source code analysis),

Briand et. al. [6] try to identify the spots for pattern instances in the design phase (based

on UML model analysis). They provide a semi-automatic suggestion mechanism based

Design Pattern Support Based on Principles of Model Driven Development 3

on a decision tree combining an evaluation of the automatic detection rules with user

queries.

All the former approaches focus on the creation of pattern instances. The ones

presented by Dong et. al. [7, 8] presume the presence of pattern instances in the model.

They provide support for evolution of the existing pattern instances resulting from

application changes. In the former [7], the implementation employs QVT based model

transformations, and in the latter [8] the same is achieved by XSLT transformations over

the model stored as XMI. However, both work with a single configuration pattern

template allowing only changes in the presence of hot spots participants. Other possible

variations are omitted.

Debnath et. al. [9] propose a level architecture of UML profiles for design patterns.

Authors introduce a profile for patterns and analyze the advantages of using profiles to

define, document, and visualize the design. Authors provide a guide to the creation of

UML Profiles, but they give no concrete way of providing support in any tool. Dong et.

al. [10] discuss some of the relevant aspects of the UML profile. The paper presents an

approach to the creation of UML profiles for design patterns. The approach allows an

explicit representation of design patterns in software designs and introduces a notation for

names of stereotypes and tagged values: Type<name:String [instance:integer],

role:String>; for example: PatternClass<Observer[1], ConcreteObserver>. The

introduced notation is useful because it visualizes individual instances of design patterns,

but the Type part of the notation is redundant because the stereotype definition itself

already carries this information.

Meffert [11] introduces an approach assisting developers in selection of the correct

design pattern for a given context. The approach introduces the annotations to the source

code in order to express an intention of the given source code fragment. Meffert also

proposes the description of the intention for some design patterns. The suitable pattern is

recommended to a developer on the basis of comparison of the annotated source code

intention with the intention defined for the design pattern‟s parts.

Sabo et al. [12] present a method of preserving the correct form of applied design

patterns during the process of software system evolution. The method aims to explicit

indication of the pattern participants in the source code by annotations. The authors also

propose a mechanism determining whether the applied pattern instances are still valid or

have been broken due meantime code modifications.

Kirasić et al. [13] present an ontology-based architecture for pattern recognition. The

authors integrate the knowledge representation ground and static code analysis for pattern

recognition.

Another method of the patterns recovery based on code annotations and regular

expressions has been introduced by Rasool et al. [14]. The authors extend the list of

annotations defined in [11] in order to detect the similarity of different annotations used

in multiple patterns. Authors‟ intention is to use the annotations for the static analysis of

the source code and subsequent recognition of structural design patterns.

4 Peter Kajsa and Pavol Návrat

Fülleborn et al. [15] present an approach of the documentation of the particular source

code or UML models that have design deficiencies, in order to document the problems in

their context that the chosen design pattern solves. Documenting is done by adding non-

functional requirements in form of annotations. Next, the authors formally document also

the solved problems so that they can be compared to the situation before the chosen

design pattern was applied. By the way of comparison, the transformation between the

situation before and after the application of the design pattern is made explicitly in order

to derive the reusable cross-domain representation of the situation.

3. Open Problems

Most of the current approaches are focused on the pattern support only at one level of

abstraction and they don't provide any mechanism for preserving of pattern support also

on other abstraction levels. For an example, many of the approaches focus mainly at the

design level (i.e. model), but by the transition to the source code level the pattern

instances become almost invisible in the huge amount of source code lines without any

further support. As consequence, the evolution of the pattern instances is very difficult

without any tool-based support, because a developer does not have a good view of all the

participants of pattern instances in the source code. Moreover, due to the inability to

identify the individual participants of pattern instances in the source code, they may be

modified in an incorrect way during the system evolution and maintenance, and this may

result in the breakdown of the pattern and the loss of the benefits gained by its application

in the software system.

Since the patterns provide abstracted and generalized solutions to recurring problems,

its application to solve a specific problem requires to concretize and to specialize the

solution described by the pattern [16] (see Fig. 1).

Fig. 1. Concretization and specialization of the solution described by the pattern, when the pattern is applied to

solve a concrete and specific problem [16].

Specialization process of a design pattern lies typically in its integrating into the

specific context of the problem. This knowledge is mainly available to developers and

domain experts involved in the design process, because it requires very specialized and

Design Pattern Support Based on Principles of Model Driven Development 5

detailed understanding of the domain context and the specific application itself. This is

why this process is difficult to automate. Despite this, it is possible to make specialization

of a pattern much easier by providing an appropriate mechanism for application of design

patterns.

Goal of the concretization of a design pattern is to recast its abstract form into

concrete realization with all its parts, methods, attributes and associations, but only

within the scope of the pattern instance and its participants, but not the rest of application

model. The more parts the structure of the pattern instance contains, the more concrete it

becomes. The most concrete level of a design pattern instance is source code, because at

this level of abstraction the pattern instance contains all parts from its structure. Majority

of activities in the concretization process depends on stable and fixed definition of the

design pattern structure so that these activities are fairly routine. This is a good starting

point for automating of this process.

CASE or other modeling tools and approaches provide today some kind of support

for design pattern instantiation, but it is often based on simple copying of pattern

template into the model with minimal possibilities for modification and with minimal

support for instance integration into the context – application model (see Fig. 2).

Fig. 2. Lack of support of specialization and concretization processes during pattern instantiation.

Similarly the approaches that focus on creation of pattern instances are typically

based on strict forward participant generation - participants in all roles are created

according to a single template. Likewise as the support of design patterns available in

traditional CASE or other modeling tools is usually based on UML templates of each

design pattern. So they are simply copied into the model with a minimal possibility for

modification and integration in the rest of model when pattern instance is created.

However, patterns describe not only the main solution, but also many alternative

solutions and variations. But a developer is not allowed to choose an appropriate variant

or concrete structure of the design pattern. Only one generic form is offered to the

developer for use. Any other adjustments need to be performed manually without any

tool based support. Moreover, the instances of a patterns created by a tool is typically

6 Peter Kajsa and Pavol Návrat

without any connection to the rest of the application model. So the instance of a pattern is

not integrated into the application model, i.e. the context. It lacks associations and the

names of pattern participants are general, and so on. All these activities of instance

specialization have to be done by the developer manually. Even in the approach presented

in [2], the developer needs to model all pattern participants manually, and then link these

parts to the pattern model.

Our intention is to automate these activities. Our vision is that the developer simply

suggests and specifies a pattern instance occurrence directly in the context via semantic

marking of context elements, and the rest of the pattern structure is then automatically

generated by subsequent transformations of models into the appropriate form.

4. Design Pattern Support Based on Principles of Model Driven Development

The main ideas of the approach are presented in the subsection 4.1. The solution of

design pattern semantics definition and expression in the model and source code is

described in the subsection 4.2. The subsection 4.3 presents the main support of design

patterns and the subsection 4.4 explains the continual support of design patterns in the

source code.

4.1. Main Ideas

The abstraction, semantics and model transformations represent the key principles of

Model Driven Development and Model Driven Architecture. Thanks to these principles,

the automation of many aspects of the system development can be achieved. The

semantics applied in the models enable the possibility to understand the model and its

elements, and also to recognize which elements play which roles in the model.

Consequently, on the basis of the understanding of the models and its elements, it is

possible to construct the transformations which transform the models to a lower levels of

abstraction. These principles represent the basis of the elaborated method of design

pattern support.

Patterns are often being described as a collection of cooperating roles. Our approach

is based also on the idea that the pattern roles can be divided into roles dealing with the

domain of the created software system and roles performing the pattern‟s infrastructure.

The domain roles can be considered as the “hot spots” while they can be modified, added

or deleted according to the requirements of the particular software environment. The

roles performing the pattern infrastructure are not changing too much between the pattern

instances. Their purpose is to glue the domain roles together to be able to perform desired

common functionality. The examples of domain dependent roles are presented in the

Table 1.

Design Pattern Support Based on Principles of Model Driven Development 7

Table 1. Examples of domain dependent roles of patterns.

Pattern Domain

dependent roles

Description

Composite Leaf and its

Operations

Leafs and their operations provide all domain dependent

functionality. Everything else is just infrastructure allowing

the hierarchical access to the leaf instances.

Flyweight Concrete

Flyweight

Concrete Flyweight provides all domain dependent

functionality. The rest is infrastructure for storing instances

in memory providing access to them.

Proxy Real Subject,

Proxy

The domain dependent is the Real Subject (which often

exists before Proxy pattern application) and functionality of

Proxy participants that provide access to the Real Subject.

Employment of the patterns into the project allows the developer to think on higher

level of abstraction. When he decides to employ the pattern, the first thing he needs to

take care is how it will be connected to his project, how the solution will be integrated to

rest of his model or code. At this moment he does not focus on entire pattern‟s inner

structure, at this moment it is irrelevant to him. The way how he integrates the pattern to

the project lies in specification of the domain roles. Their participants can be existing

parts of project or the new ones created for this situation. Once the domain roles are

specified, the specification of the infrastructure roles takes place. This is quite a routine,

when the developer subsequently adds participants of the infrastructure roles according

the sample instance from the pattern catalogue.

When we look closer on such instantiation process from the perspective of its division

into two more or less independent processes specialization and concretization (described

in the section 3 "Open Problems", see Fig. 1) [16], we can see that the user does the

specialization process when he is specifying the domain roles. When he is supplementing

pattern instance with the infrastructure roles he only finishes the concretization process.

In our approach we do not want to replace the developer in the specialization process,

but we want to relieve him of the necessity to instantiate the infrastructure roles

meanwhile the concretization process. We want the developer to make a suggestion by

the application of semantics as to where and which design pattern he wishes to be applied

in the model and to specify the domain dependent roles. Then he can also specify which

variant of the pattern to employ, and in what way he wants it to generate. Subsequently

the rest of the pattern instance structure will be automatically generated by model

transformations to lower levels of abstraction according to the instance suggestion and

specification.

In case the transformations are driven by an appropriate model of design pattern, and

both the model of an application and the model of the pattern contain information on

8 Peter Kajsa and Pavol Návrat

semantics, the transformation is capable of comparing these models and to create

mappings between them. So in this way the transformation can recognize participants of

design patterns that are present in the application model already, and which are not. As a

consequence, the transformation is able to generate missing participants in desired form

obtained from the pattern model.

Moreover, we try to support the design patterns at more levels of abstraction in

accord with ideas of the MDA development process. The elaborated approach provides

the support of design patterns at three levels of abstraction:

(i) suggested and specified platform independent instances of design patterns in the

model (PIM)

(ii) more concrete and platform specific instances of design patterns in the model (PSM)

(iii) concrete and application specific instances of design patterns in the source code

4.2. Semantics of Design Patterns

In order to achieve the specified goals, it is necessary to provide an appropriate

mechanism of pattern semantics in the application model and source code. It is important

to support insertion of semantics directly onto the elements of the model or source code,

because such approach supports the specialization of pattern instances, and makes the

creation of the instances specification effortless. Thanks to the semantics, the model

transformations are able to understand the model of the application and recognize its

parts.

4.2.1. Semantics of Design Patterns at Model Level

We choose the semantic extension of UML in a form of UML profile as a standard

extension of UML, since one of our goals is to remain compliant with the majority of

other UML tools. UML profiles provide a standard way to extend the UML semantics in

the form of definitions of stereotypes, tagged values - meta-attributes of stereotypes,

enumeration and constraints. All these elements can be applied directly onto specific

model elements such as Classes, Attributes, and Operations [18]. In this way it is possible

to specify participants of design patterns and relations between them directly in the

context - on the elements of the application model. The snippet of UML profile for

Observer pattern is shown in Fig. 3. Authored UML profile for design patterns provides

semantics to various pattern instances adjustments, suggestions and specifications.

However, it is not mandatory to apply all the semantic elements (stereotypes). The

developer applies and specifies only what he needs to express. Because of the default

values of meta-attributes of stereotypes, the transformation always has enough

information for default behavior. Inconsistent specifications of pattern instances can be

handled by OCL constraints which are part of UML profile as well.

Design Pattern Support Based on Principles of Model Driven Development 9

Fig. 3. The snippet of UML profile with some elements for Observer pattern.

4.2.2. Semantics of Design Patterns at Source Code Level

Source code annotations work as metadata information for different artifacts and

fragments of the source code. This information can be processed by various tools

(compilers, etc.). Thanks to the source code annotations, the semantics and visibility of

patterns can by preserved and propagated from model also into the source code. We

propose the following definition of annotation for design patterns (see Fig. 4).

Fig. 4. Definition of the source code annotation for design patterns.

The attribute patternName of the annotation expresses the name of the pattern e.g.

Observer, Mediator, Command, etc. Because one pattern (for example Observer) may

have more different instances applied, the pattern instance “alias” is necessary for the

recognition among these instances. The attribute roleName expresses the name of the

pattern participant e.g. Subject, ConcreteSubject, attach, etc. Some participants of the

pattern instances may have more possible variants and therefore the attribute variant

is also necessary.

The presented proposal is intended for Java platform, but it can be simply adjusted

also for other platforms, even if they do not support source code annotations. In such case

the annotations may be enclosed in comments. However, because Java does not support

10 Peter Kajsa and Pavol Návrat

the annotation of one code unit (i.e. method, class, etc.) by more than one annotation with

the identical name, this approach is limited in case that one fragment - unit of the code

represents more roles in more patterns (for example, in case of pattern composition). This

problem can be resolved by enclosing the next DesignPattern annotations in

comments as well.

4.3. Design Pattern Support

In the first step the developer suggests pattern instance occurrence by the insertion of

semantics, i.e. application of stereotypes into the model. In the second optional step, the

developer specifies a desired variant or configuration of instance by setting tagged values

of inserted stereotypes. Then he runs the transformation to a lower level of abstraction.

The transformation generates the rest of the pattern, and also marks the participants of the

pattern. From the second step the process can be repeated at lower level of the

abstraction. The only difference is that at the lower level of abstraction (PSM) in the

second step, more implementation dependent choices (e.g. data types) are offered which

the developer was not asked previously at the higher level (PIM). The overall illustration

of design patterns support process is illustrated on the following figure 5.

Fig. 5. The overall illustration of design pattern support process.

Design Pattern Support Based on Principles of Model Driven Development 11

The suggestion and the specification of pattern instance are realized by applying

information on the semantics into the models provided by semantical extension of UML.

For example, Figure 6 shows a suggestion of the Observer pattern instance via applying

one stereotype <<Observes>> to a desired element, in this case, an association. From

this information the transformation can recognize that the source element of the

association represents a Concrete Observer and the destination element is a Concrete

Subject. Consequently, on the basis of this information and the available pattern model

and semantics, the transformation can recognize the other missing pattern participants

which is necessary to add into the model.

The transformation also needs information about how to generate the rest of pattern

instance, e.g. variant of pattern, desired adjustments of pattern instance and so on. The

next step is the specification of pattern instance. This goal is achieved by setting up

values of meta-attributes of stereotype (see Fig. 6). In our approach this step is not

mandatory because default values of meta-attributes of the stereotype are set and are

available. Consequently, the application of a desired pattern can consist only of applying

one suggestion mark – the stereotype onto the specified model element, when the

developer wants the default variant of pattern. Any other activities will be completed by a

tool via model transformations. In this phase, developers do not have to concern

themselves with the concrete details of the pattern structure, and they can comfortably

work with pattern instances at a higher level of abstraction. Application of the desired

pattern is realized on elements of the system model or context, and thus the specialization

process is supported.

Fig. 6. An example of the suggestion and specification of the Observer pattern instance into the model.

The concretization process is realized and automated by model transformations to lower

levels of abstraction until the source code level is reached. One of the possible results of

the transformation of the model from Fig. 6 is shown in Fig. 7. As can be seen the

transformation generates the rest of pattern structure in a desired form in accord with

pattern suggestion and specification from Fig. 6. The pattern instance becomes more

concrete, so the form of the instance now represents its lower abstraction level. Thanks to

12 Peter Kajsa and Pavol Návrat

the realization of the pattern instance by placing the suggestion and specification directly

into the context of elements in the application model, the transformation is also able to

integrate the generated participants with participants already present in the model. As a

result, the pattern instance is in the application specific form.

Fig. 7. The result of transformation to Java target platform of the model from Figure 6 in accord with the

instance suggestion and specification.

It is important that the transformation is realized and launched with a choice of target

platform, because at this point the first differences may occur in the structure of pattern

instances depending on target platform. The choice of target platform also determines the

set of possible choices of data types before subsequent transformation to source code

level.

As one can see in Fig. 7, the transformation also adds explicit marks (stereotypes) to

all identified and generated pattern participants. The addition of marks and also the whole

transformation is performed on the basis of the pattern model. As a consequence, the

instances are clearly visible in the models, and the developer can repeat the instantiation

process at lower level (PSM) directly from the optional second step, i.e. specifying the

instance and choosing a more detailed adjustments of pattern instance (e.g. concrete data

types). Again, the default values of the stereotype meta-attributes are set, so the developer

can run the transformation to source code directly.

So the models with concretized instances of patterns are transformed into the source

code in the next step. In order to propagate the visibility of the applied patterns from the

model into the source code we have used proposed annotations (see Figure 4). In the

Figure 8 the source code snippet of Subject generated from the model in the Figure 7 is

illustrated. Each generated pattern participant is annotated with the proposed definition of

annotation. The transformation of the model into the source code is realized in form of

source code templates which generate the pattern participants with correct annotations as

well. For classes marked with a stereotype, the template with the same name as the

stereotype name is used. For example, for the model classes marked with the stereotype

<<Subject>>, the template with the name subject.javajet is used, etc.

Design Pattern Support Based on Principles of Model Driven Development 13

Fig. 8. The source code snippet of Subject generated from the model in the Figure 7.

Consequently, in this approach we propagate and expand the two applied stereotypes

from higher level of abstraction (i.e. <<Observes>> from Figure 6) onto lots of

annotations in the source code (e.g. Figure 8 – however, it is only a little snippet from

one class). So this way, the huge manual annotation of pattern participants in a large

source code is not required and it is reduced to a little manual suggestion via stereotypes

at the highest level of abstraction (e.g. Figure 6).

Moreover, two separate groups of classes are generated by the initial transformation

to source code. The first is the base group which is always overwritten by subsequent

source code generation (see Figure 8 SubjectBase class). The second is the

development group which is generated only by initial transformation. The developer can

write and add a specific implementation here without the threat of it being overwritten.

4.3.1. Realization of Transformations

The model transformations are driven by properly specified and marked models of design

patterns. These prepared models cover all supported pattern variants and possible

modifications. Each element of these models is marked. There are two types of marks in

pattern models. The first type of marks expresses the role of the element in the scope of

the pattern. On the basis of this type of marks the tool is capable of creating mappings

14 Peter Kajsa and Pavol Návrat

between models. The second type of marks expresses an association of the element with a

variant of the pattern. On the basis of this type of marks the tool is capable of deciding

which element should be generated into the model, which way and in what form. For the

second type of marks the following notation is defined:

[~]StereotypeName::Meta-attributeName::value;

An element from the pattern model is generated into the model only if the specified meta-

attribute of the specified stereotype has the specified value. These marks can be joined

via “;”, while the symbol “~” expresses negation. If an element has no mark, it is always

generated into the model. A sample section of the pattern model of the Observer pattern

is exposed in the Fig. 9.

Fig. 9. Sample section of Observer pattern model by which the model transformations are driven.

The first action performed by the tool after the start of the transformation is the

comparison of the first type marks in pattern model to the marks in the application model.

Based on the first type marks comparison the tool is capable of making a mapping

between the marked models, and consequently to recognize which parts of the structure

of the design pattern instance are in the model of the developing application and which

are not. For example, in Figure 6 we have shown the application of the Observer pattern

by applying of two stereotypes <<Observes>> on the directed association. From this

way marked association the tool can recognize that the pattern roles Concrete Observer

and Concrete Subject of this two Observer pattern instances are present in the model

already, and also which elements (in this case classes) in the application model represent

these pattern roles.

Decisions about which variant of pattern and which elements from the pattern model

need to be generated into the application model are based on the comparison of the

second type marks in the pattern model with the values of the meta-attributes of

stereotypes. These values are set up by the developer in the second step - specification of

the pattern instance (for example see Figure 6). After decision-making and selection of

the desired pattern form, the final transformation is performed from the pattern

Design Pattern Support Based on Principles of Model Driven Development 15

suggestion level to the lower level of abstraction. The results of the transformation are

correctly specialized and concrete instances of the patterns in the desired form (for

example see Figure 7).

Driving the model transformations by pattern models allows us to adjust results of

transformations by modifying of the pattern models which drive the transformations.

Marks in the models ensure that the tool is always capable of creating correct mappings

between the model of application and the model which drives the transformation, and

consequently decide which element should be generated into the model and in what form.

This way it is possible to model any custom structure and achieve support for its

application into the model.

The transformation to source code is realized on the basis of the source code

templates. Each pattern participant has own source code template. The transformation

takes source code template with name identical to the stereotype name of the participant

and it generates template‟s content into specified destination. For model elements without

any stereotype the common code template is used which generates only signatures of the

class, fields and methods with empty body.

Implementation

The presented support and transformations was implemented and verified in the form of

the IBM Rational Software Modeler transformation plug-in. The first type of

transformation of the model of the highest level of abstraction to the model of the lower

level of abstraction was implemented by M2M, UML2 and EMF frameworks. These

frameworks are subprojects of the top-level Eclipse Modeling Project and they provide

ideal infrastructure for model-to-model transformations.

The second type of transformation of model of lower level of abstraction (PSM) to

source code was implemented by frameworks JET, UML2 and EMF. The JET is also part

of Eclipse Modeling Project in M2T (Model to Text) area. It provides infrastructure for

source code generation based on code templates.

4.4. Continual Support of Design Patterns at Source Code Level

The annotations of patterns generated into the source code by designed transformation to

the source code (see Figure 8 in the section 4.3.) highlight the visibility of pattern

instances and therefore makes identification of pattern participants in the source code

quite easy. In consequence, the support of the pattern detection, instantiation and

evolution in the source code can be achieved in a very suitable form of a source code

context assistant. Thanks to annotations, the support mechanism will be able to identify

the pattern participants already implemented, and subsequently it will be able to offer an

option to generate any missing pattern participant or to perform possible pattern evolution

in the given context, etc. This idea brings significant improvement of the pattern support

at source code level.

16 Peter Kajsa and Pavol Návrat

4.4.1. Support of Design Pattern Instantiation and Evolution

The support of the pattern instantiation and evolution is realized in form of the source

code context assistant with the consequent source code generation. The result of the

source code generation depends on the expression of by developer typed annotation and

its location in the source code. The method is described in the following steps.

(1) In the first step, the developer begins with the writing of the proposed pattern

annotation (see Figure 4 in the section 4.2.2) in the desired location in the code.

When the developer writes @DesignPattern(patternName = , the context

assistant offers the set of names of supported patterns. The developer, for example,

chooses PatternNames.Observer.

(2) Next the developer continues with the writing of the annotation and writes

instanceAlias. So the annotation looks as follows: @DesignPattern(

patternName = PatternNames.Observer, instanceAlias = .

Now the context assistant searches all the existing instances of the pattern with the

given name i.e. PatternNames.Observer and it offers the developer the set of

aliases of all existing instances of Observer pattern in the project. Because of the

suitable annotation structure this search is very straightforward.

Consequently, the developer chooses an instanceAlias from the offered set or

writes a new, unique alias. When the developer writes a new, unique instance alias, the

support mechanism deduces that the developer desires a creation of a new pattern

instance. Otherwise, when the developer chooses one of the offered existing instance

aliases, the support mechanism deduces that the developer desires evolution of the pattern

instance identified by the chosen instance alias and the pattern name. According to the

developer's choice pattern instantiation or evolution follows.

Design Pattern Instantiation

When in the second step the developer wrote a new, unique instance alias, the

instantiation of the pattern with the typed name is performed (in our case instantiation of

Observer). The method continues with the following steps.

(3) The support mechanism loads feature model of the pattern. It selects all mandatory

features at the first level (i.e. classes) and generates them into the source code.

(4) If one of the mandatory features has more possible variants, the developer is asked

for selection of its variant via dialogue during the instance generation.

Illustration of the feature model of Observer pattern is shown in following Figure 10.

Design Pattern Support Based on Principles of Model Driven Development 17

Fig. 10. Illustration of feature model of Observer. Mandatory features are filled with gray color.

The first mandatory class is generated at the position of the entered annotation in the

current file, therefore in case of the pattern instantiation the developer should write the

annotation in a new empty file. Other mandatory classes are generated into new

automatically created empty files in the current package of the project. Of course, an

element is always generated with all its mandatory sub-elements.

Design Pattern Evolution

When in the second step the developer selects alias from offered set of all existing

instance aliases of the pattern with the typed name (see step 2), the support mechanism

deduces that the developer wants to perform the evolution of the pattern instance with the

selected instance alias. The support continues with following steps.

(3) The support mechanism creates a feature model configuration of the pattern instance

identified by the selected alias. Thanks to the annotations, the recognition of the

pattern instance participants present in the source code is quite easy.

(4) The support mechanism loads the feature model of the pattern.

(5) The created feature model configuration of the pattern instance is compared with the

loaded feature model of the pattern. In consequence, the options of possible

evolution of the pattern instance are detected (see Figure 11).

(6) The support mechanism offers the detected set of possible options of instance

evolution in form of the context assistant (see Figure 12). So the developer may

choose the desired pattern instance evolution.

18 Peter Kajsa and Pavol Návrat

Fig. 11. A comparison of the feature model configuration of an existing Observer instance with the feature

model of Observer pattern (existing participants - features are filled with gray color). The possible options of

pattern instance evolution are illustrated by the arrows.

Fig. 12. Example of detected set of possible options of instance evolution offered to the developer in form of the

context assistant.

It is important to remark that only the roots of possible instance evolution sub-trees are

offered to the developer, because generation of child elements (e.g. methods) has no

sense as long as the parent element (e.g. class) does not exist in the source code.

The selected element with all its mandatory sub-elements is generated at the position

of the entered annotation in the current file. So the method supposes at least basic

knowledge of patterns. If an element has more possible variants within the scope of the

given instance, the developer is asked to select one of the variants via the dialogue during

the element generation.

Within the scope of the pattern evolution also the detection of missing mandatory

features is supported (for example see Figure 11, the update method of Observer instance

is missing). This way the basic check of the pattern instance validity is achieved.

4.4.2. Realization

Each element of the pattern feature model (except the elements marked as #pattern or

#variant, see Figure 10 or 11) has its own code template attached. Each code template of

an element includes subsequent templates of all related mandatory sub-elements of the

element in accord with the feature model of the pattern. Therefore an element is always

generated with all its mandatory sub-elements. For example, Subject template includes

observers, attach, detach and notifyObservers templates. Example of

Subject template is illustrated in the following Figure 13.

Design Pattern Support Based on Principles of Model Driven Development 19

Figure 13. Example of Subject template. The template includes subsequent templates of sub-elements of

Subject in accord to the feature model of Observer pattern.

If an element has more possible variants, the template of such element contains the

source code for all variants distinguished by annotations (for example, see Figure 14).

Fig. 14. Example of notifyObservers template which contains two different variants distinguished by

annotations (notice difference of variant attributes of annotations).

The following notation has been introduced for the variant attribute of proposed

annotations from the section 4.2.2, Figure 4:

[~]Attribute_name = value[;]

If the attribute value selected by the developer in GUI dialogue corresponds with the

introduced notation, the variant of an element is generated from the template.

20 Peter Kajsa and Pavol Návrat

Dependency on more than one value or attribute can be attached via “;”, while the symbol

“~” expresses negation (it is based on the analogical principles as presented notation for

marks by model transformations in the section 4.3.1.). So when the element - feature has

more than one possible variant, the developer‟s selection is compared with annotations in

the template and in consequence, the desired variant of element – feature is generated.

As it can be noticed, in the Figure 13, the names of new generated classes, methods

and fields are created as roleName+InstanceAlias. The developer may rename the

elements later, of course. However, when a body of a method is generated in the scope of

an instance evolution, the introduced name convention is not sufficient enough. The

bodies of generated methods should be tied to an existing implementation of the instance

and therefore the particular names of existing elements should be found out (for example,

see observerClassName retrieving in the Figure 14). Because of the annotations of

existing pattern participants this task is straightforward.

Moreover, the whole method is based on the following defined name conventions.

The names of feature models are identical to the PatternNames used in the source

code annotations and the feature names are identical to the RoleNames used in the

source code annotations as well. The templates are named as follows: PatternName-

RoleNameTemplate. As a consequence, the support mechanism is able to

automatically deduce from the annotations typed by the developer in the source code

which feature model and which templates it should load and generate. This way the

flexibility of the method is improved and achieved, since the addition of a new feature

model and new templates is sufficient enough to extend the support for a new pattern.

An extension of PatternNames and RoleNames about the new pattern name and

roles is also necessary, of course.

Implementation

Implementation of the method is based on the Eclipse platform. The templates are

implemented in JET framework. The JET framework is part of Eclipse Modeling Project

in M2T (Model to Text) area and it provides very good infrastructure for the source code

generation based on code templates.

The feature models of patterns are implemented as UML class diagrams analogically

as has been introduced in [17] (see the section Feature Modeling Profile for UML), but

for the method purposes we rather use the class diagram instead of the component

diagram.

As was mentioned earlier, Java does not support the annotation of one code unit (i.e.

method, class, etc.) by more than one annotation with the identical name and so the

current implementation is limited in case that one fragment - unit of the code represents

more roles in more patterns (for example, in case of pattern composition). This problem

can be resolved by enclosing the next DesignPattern annotations in comments.

Similarly, the implementation can be simply adjusted also for other platforms, even if

they do not support source code annotations, because the annotations may be enclosed in

comments as well.

Design Pattern Support Based on Principles of Model Driven Development 21

5. Evaluation

The following subsections contain the evaluation of the presented method in form of case

studies.

5.1. Detailed Case Study of Observer Pattern Application

This section provides detailed illustration of the method and the tool usage and

functionality in example based way on case study of observer pattern application. The

following Figure 15 shows example of initial form of UML model before application of

patterns.

Fig. 15. Example of starting UML model before the application of patterns.

The model represents an example of starting point of model and we want to apply, for

example, Observer pattern into this model now. In order to apply the desired pattern (in

our case e.g. Observer) we suggest the instance occurrences via particular semantics

marks – stereotypes (in our case e.g. stereotype <<Observes>>). Suggestion of pattern

instance occurrence via stereotype application is illustrated in the following Figure 16.

Fig. 16. Application of stereotype <<Observer>> on the selected association.

22 Peter Kajsa and Pavol Návrat

Notice that we perform the suggestion of pattern instance occurrence on existing

model elements directly in the context and so in the consequence, the pattern instance

will be integrated in the application model and context and thus there won't be necessary

any manual specialization of pattern instance. The resulting model after pattern instances

suggestion is shown in the following Figure 17.

Fig. 17. The resulting model after pattern instances suggestion.

Now the tool knows what design pattern and where we want to apply. On the basis of

comparison of this model with pattern model by which the transformations are driven the

tool recognizes also that the association between classes TextualDisplay and

AccountData correspond with association between ConcreteObserver and

ConcreteSubject from pattern model. The recognition is realized on the basis of

first type of marks – stereotypes comparison in these models (see Figure 18) and in this

way the tool creates mapping between these models.

Fig. 18. Creation of mapping between model of developing application and pattern model by which the

transformation is driven.

Design Pattern Support Based on Principles of Model Driven Development 23

Because the match of marks occurs on the association, the transformation recognizes

that also source and destination elements of associations (in our case

ConcreteObserver and ConcreteSubject) must be in the model of developing

application already. In consequence, the transformation recognizes which elements of

pattern model are in the model of application and which are not. Because the pattern

model cover all pattern variants and possible modifications, the tool needs to know which

variant or modifications of pattern we want to generate. In other words, the tool needs to

know which from all identified missing pattern elements from pattern model and in what

way it should generate into the model of application. So we choose the variant and

modifications of pattern instances via setting up of values of particular stereotype meta-

attributes in the next step of pattern instantiation (see Figure 19). It is important to remark

that the meta-attributes of stereotypes have set their default values. Therefore this step is

realized only if the developer wants to generate other than default variant of pattern. The

possible variants and adjustments of pattern are defined in UML profile via enumerations

or elements‟ primitive type specification such as boolean, integer and so on.

Fig. 19. Specification of pattern instances via setting up of values of stereotype meta-attributes.

We specify which variant or modification of pattern we desire and so we create

specifications of suggested pattern instances via setting stereotypes meta-attributes

values. In consequence, the pattern instances are suggested and specified now. When the

transformation is executing, the tool processes all identified missing pattern participants

from pattern model and it checks the second type of marks – keywords on these missing

elements. How it has been introduce in the section 4.3.1, for the second type of mark the

following notation is defined (remind that these marks can be joined via “;”, while the

symbol “~” expresses negation):

[~]?StereotypeName::Meta-attributeName::value;

24 Peter Kajsa and Pavol Návrat

A missing element from the pattern model is generated into the model, only if the

specified meta-attribute of the specified stereotype has the specified value. Elements from

pattern model of which at least one second type mark do not match with pattern instance

specification are ignored by the tool and so only elements with all positive matches of

marks or without any mark are generated into the model. For example, when the

ConcreteSubject element is identified as missing element, it is always generated

into the application model, because it does not have any second type mark. On the other

hand the methods getState and setState are generated, only if the developer set

value of meta-attribute encapsulateSubjectState of stereotype Observes to

true, because these methods are marked with following second type mark (see Figure

20, ConcreteSubject class of Observer pattern model): <<Observes::

encapsulateSubjectState::true>>.

Fig. 20. ConcreteSubject element from Observer pattern model.

When suggestions and specifications of pattern instances are completed, the

transformation can be launched simply from context menu of application model. The

resulting model of transformation is shown in the Figure 21.

Fig. 21. The resulting model of transformation of model from Figure 19.

The following sample specification of pattern instances has been set in the second step of

pattern instantiation (see Figure 19).

(1) <<Observes>> AccountData – TextualDispaly:

 modelOfNotifikation = sending - the interface of Observers which

takes reference to the SubjectState class as notification parameter has been

generated.

Design Pattern Support Based on Principles of Model Driven Development 25

 managerType = noManager – no manager has been generated

 encapsulateSubjectState = true - the state of class

ConcreteSubject has been encapsulated

(2) <<Observes>> AccountData – GraphicsDisplay:

 the same as previous instance AccountData – TextualDispaly.

(3) <<Observes>> AccountData – TableView:

 modelOfNotifikation = callBack - the interface of Observers which

takes reference to Subject class as notification parameter has been generated.

 managerType = noManager - no manager has been generated

 encapsulateSubjectState = false – this instance of Observer pattern does

not use any encapsulated SubjectState, but the Subject reference instead.

The transformation marks explicitly also all identified and generated participants of

pattern instances and in the consequence, it makes the participants clearly visible.

Moreover in the next step of instantiation the developer can repeat the previous

instantiation process from second step and can specify implementation details of pattern

instances directly without necessity of further stereotype application (see Figure 22). This

step is optional again, because the default implementations details are set and so the

developer can launch the transformation to source code immediately. The snippet of

resulting source code of transformation of model from Figure 22 to Java source code is

shown in the Figure 23.

Fig. 22. Specification of implementation details of pattern instances.

The transformation to the source code generates two separate packages (generated

and developed). The first is the base package which is always overwritten by

subsequent source code generation. The second is the development package which is

generated only by initial transformation. The developer can write and add a specific

26 Peter Kajsa and Pavol Návrat

implementation here without the threat of it being overwritten. Further, the two different

methods of observers notification have been generated for each group of Observers in

accord to their specification (in our case TextualDispaly and GraphicsDisplay

as first group with SSObserver interface and TableView as second group with

SObserver interface, see Figure 23). The transformation uses also the chosen data

types (see Figure 22) in the source code generation and each participant of pattern

instances is annotated with presented annotation for design patterns from section 4.2.2.

Fig. 23. The snippet of resulting source code of transformation of model from Fig. 22 to Java source code.

After all, suggested and specified pattern instances from the highest level of

abstraction have been transformed to the lowest level of abstraction – source code. The

developer can utilize the created models and perform next iteration of development.

5.2. Further Case Studies

Illustrations of further case studies analogical to the previous detailed case study of

Observer pattern application are shown in the following Figures 24, 25 and 26.

Design Pattern Support Based on Principles of Model Driven Development 27

Fig. 24. Case study of Observer and Decorator pattern composition. Classes DigitalClock, AnalogClock and AnotherObserver have the same group_id and

therefore they are considered as one Decorator instance.

28 Peter Kajsa and Pavol Návrat

Fig. 25. Case study of Observer and Decorator pattern composition. In this case, all subjects and observers have the super types (classes and interfaces) with identical definition.

However, the tool does not duplicate them, but it substitutes them successively as instance by instance are generated. On the other hand, Decorator‟s participants

(DigitalClock, AnalogClock and AnotherObserver) have different value of group_id attribute and therefore they are considered as two different Decorator

instances.

Design Pattern Support Based on Principles of Model Driven Development 29

Fig. 26. Case study of DAO pattern application. Customer and ContactInfo classes are marked as BusinessEntity and therefore the DAOs for both classes are

generated. The Factory Method Pattern is chosen for creation of DAOs objects and so the DAO Factory is generated as instance of Factory Method Pattern. The transfer object is

chosen as DAO return type and so the CustomerTO and ContactInfoTO classes are generated.

30 Peter Kajsa and Pavol Návrat

6. Conclusion and Future work

In this paper we presented the approach to the design patterns instantiation support based

on principles of model driven development.

Semantics of patterns, which is introduced into the models via UML profile and into

the source code via annotations, support specialization process of patterns, because it is

allowed to suggest and to specify the pattern instances participants directly on the context

elements via application of specific semantic marks on them.

Subsequent model transformations support and automate the concretization process of

design patterns, because they generate the rest of missing structure of suggested and

specified pattern instances in desired form and directly in the context.

Consequently, both of the processes (i.e. concretization and specialization process,

see Figure 1) of pattern instantiation are supported by the presented approach.

 The transformations are driven by pattern instances suggestion and specification and

by the pattern models as well. This way designed transformations have several

capabilities. First, they provide a possibility to choose an appropriate variant of the

pattern by instance specification by setting up the tagged values of the stereotypes.

Second, they enable the modeling of a custom pattern or structure by modification of

pattern model by which the transformation is driven, and in this way to achieve its

generation into the model. The developer is enabled to model any custom structure, or

even to create a new one. As a result, the method is not oriented to the GoF design pattern

support only, but it can also support other custom model structures which are often

created in models mechanically.

The approach splits the details of concrete design pattern instantiation into three

levels of abstraction, and thus developers do not need to take care about concrete details

of pattern structure in the model of the highest abstraction level.

Further, each generated pattern participant is annotated in accord to the described

definition of source code annotations as result of the transformation to the source code.

The semantics of patterns introduced into the source code by proposed annotations

expands the visibility of pattern instances and as the result it makes identifying of pattern

participants in the source code quite easy. The clear visibility of pattern instances in the

source code opens new opportunities to the support of various aspects of patterns as has

been presented in the section 4.4. Furthermore, the introduced source code annotations

enable also the correct reverse transformations of the source code to the model with the

pattern detection and highlighting. Moreover, the available feature models of patterns

also enable the possibility of live validation of pattern instances and detection of their

defects in the source code.

Because manual annotation of source code by developers is very lengthy and

senseless, this approach provides very useful way how to eliminate the manual annotation

of source code. The reduction of manual annotation is based on the idea of design

information propagation and expansion from models of higher abstraction level into the

source code. Although it does not deal with the problem of existing or legacy software

Design Pattern Support Based on Principles of Model Driven Development 31

systems, it provides the very useful way how to propagate and expand design information

and how to prevent the problem of pattern instances invisibility in source code toward the

future. Besides, it does not have to be used only for patterns, but it can be simply adjusted

also for others architectural or design decisions as well.

Nowadays, the approach does not give any guide on what patterns are suitable to

apply. In our opinion, this guide is relatively hard to automate by the tool, because the

knowledge of what patterns are suitable to apply requires really detailed understanding of

the problem context and therefore, this knowledge is available especially to the

developers or designers involved in the design process. But this is also a challenge to the

future.

Acknowledgments

This work was partially supported by the Scientific Grant Agency of Slovak Republic,

grant No. VG1/0971/11 and the Slovak Research and Development Agency under the

contract No. APVV-0208-10.

References

[1] Alexander, C. et al., A pattern language. Towns, buildings, construction. Oxford University

Press, New York, USA, ISBN 0-19-501919-9, 1977.

[2] Mapelsden, D., Hosking, J., and Grundy, J., Design pattern modelling and instantiation using

DPML. In Proceedings of the Fortieth international Conference on Tools Pacific: Objects For

internet, Mobile and Embedded Applications, pp 3-11, Darlinghurst, Australia, 2002 ACM

International Conference Proceeding Series, vol. 21. Australian Computer Society.

[3] Boussaidi, G., Mili, H., A model-driven framework for representing and applying design

patterns. In COMPSAC '07: Proceedings of the 31st Annual International Computer Software

and Applications Conference, pp 97-100, Washington, DC, USA, 2007. IEEE Computer

Society.

[4] Wang, X.-B., Wu, Q.-Y., Wang, H.-M., Shi, D.-X., Research and implementation of design

pattern-oriented model transformation. In ICCGI '07: Proceedings of the International Multi-

Conference on Computing in the Global Information Technology, Washington, DC, USA,

2007. IEEE Computer Society.

[5] Cinnéide, M., Nixon, P., Automated software evolution towards design patterns. In IW- PSE

'01: Proceedings of the 4th International Workshop on Principles of Software Evolution, pp

162-165, New York, NY, USA, 2001. ACM.

[6] Briand, L., Labiche, Y., Sauve, A., Guiding the application of design patterns based on uml

models. In ICSM '06: Proceedings of the 22nd IEEE International Conference on Software

Maintenance, pp 234-243, Washington, DC, USA, 2006. IEEE Computer Society.

[7] Dong, J., Yang, S., Qvt based model transformation for design pattern evolutions. In: J.-N.

Hwang (Ed.): Proceedings of the Tenth IASTED International Conference on Internet and

Multimedia Systems and Applications (IMSA 2006), Honolulu, Hawaii, USA, August 14-16,

2006. IASTED/ACTA Press 2006, 16-22.

[8] Dong, J., Yang, S., Zhang, K., A model transformation approach for design pattern

evolutions. In ECBS '06: Proceedings of the 13th Annual IEEE International Symposium and

Workshop on Engineering of Computer Based Systems, pp 80-92, Washington, DC, USA,

2006. IEEE Computer Society.

32 Peter Kajsa and Pavol Návrat

[9] Debnath, N.C., Garis, A., Riesco, D., Montejano, G., Defining Patterns Using UML Profiles.

In IEEE International Conference on Computer Systems and Applications, pp.1147-1150,

Washington, DC, USA, 2006. IEEE Computer Society.

[10] Dong, J., Yang, S., Visualizing design patterns with a UML profile. In Proceedings of the

2003 IEEE Symposium on Human Centric Computing Languages and Environments, pp 123-

125, Washington, DC, 2003. IEEE Computer Society.

[11] Meffert, K., Supporting Design Patterns with Annotations. In: Proceedings of the 13th Annual

IEEE international Symposium and Workshop on Engineering of Computer Based System.

ECBS‟06, pp. 437-445, IEEE Computer Society, Washington, DC, 2006

[12] Sabo, M., Porubän, J., Preserving Design Patterns using Source Code Annotations. In: Journal

of Computer Science and Control Systems. pp. 53-56. 2009

[13] Kirasić, D., Basch, D., Ontology-Based Design Pattern Recognition. In: Proceedings of the

12th international Conference on Knowledge-Based intelligent information and Engineering

Systems, Zagreb, Croatia, pp. 384-393. 2008

[14] Rasool, G., Philippowa, I., Mädera, P., Design pattern recovery based on annotations. In:

Advances in Engineering Software. pp. 519-526. 2010

[15] Fülleborn, A., Meffert, K., Heisel, M., Problem-Oriented Documentation of Design Patterns.

LNCS, vol. 5503, pp. 294-308. Springer, Heidelberg. 2009

[16] Návrat, P., Bieliková, M., Smolárová, M., A technique for modeling design patterns.

Knowledge-Based Software Engineering - JCKBSE'98, pp. 89-97, IOS Press, 1998

[17] Vranić, V., Šnirc, J.: Integrating Feature Modeling into UML. In: Lecture Notes in

Informatics. - Bonn : Gesellschaft fur Informatik. - ISSN 1617-5468. - Vol. P-88: NODe

2006, pp. 3-15. GSEM. 2006

[18] Object Management Group: MDA, MOF, UML Specifications [Online; accessed February,

2013]. Available at: http://www.omg.org/

