
Christopher Thomas
Software Engineering – Exercise 4

Exercise 4: The purpose of this exercise is to apply multimedia functional dependency to multimedia applications

design. Given an application (its requirements), design the multimedia database using multimedia functional
dependency theory. Then specify the patterns (IC cards) associated with the multimedia database. The application
is the personal health care system that allows the user (a senior citizen) to access related multimedia documents
using gestures. A new classification scheme based upon the gestures associated with the multimedia documents is
to be introduced. This would allow users to search for multimedia documents similar to a known audio search key
(such as the voice of a certain author). Your task is to design the multimedia database and associate patterns (IC
cards), which can in turn be transformed into IC index and finally an implementation.

Before we can embark on designing the multimedia database, we must first develop a mapping
relation (functional dependency relationship) between the elements that we will be dealing
with in the database. We will assume here that the gesture is provided by an interface such as
Kinnect, which can provide us with multiple types of data. Thus, the “gesture” is a composite,
consisting of some unique gesture identifier (perhaps a GUID), “sound data” (if any), user’s
motion data (from their movements in front of the Kinnect), facial expression (such as mouth
open / closed), and a gesture descriptor. Note that the primary key for each entry in the gesture
table is the unique gesture identifier, but this unique gesture identifier does not allow us to
map gestures between documents; it only creates a unique primary key for the relation. The
gesture descriptor provides the nexus between the components of the system (documents and
gesture relation).

Thus, the gesture descriptor of each tuple is functionally dependent upon the sound data,
motion data, and the facial expression of that tuple. Note that multiple sound data, motion
data, and facial expressions may produce the same gesture descriptor (if they are sufficiently
similar). Thus, the gesture descriptor can be seen as the homological mapping of the sound
data, motion data, and facial expression data using some function f into an n-dimensional
Hilbert space using a technique such as PCA, ICA, etc. More formally, the gesture descriptor has
a type-M functional dependency on the sound, motion, and facial expression because it is the
homological image of those attributes. Thus, we obtain the first multimedia functional
dependency relationship:

{𝑆𝑜𝑢𝑛𝑑, 𝑀𝑜𝑡𝑖𝑜𝑛, 𝐹𝑎𝑐𝑖𝑎𝑙}𝑓1(𝑡1) → {𝐺𝑒𝑠𝑡𝑢𝑟𝑒 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟}𝑓2(𝑡2)

This MFD states that for any two tuples a and b such that a(sound,motion,facial) is considered
similar within the threshold 𝑡1to b(sound,motion,facial) by the function 𝑓1 then a(gesture
descriptor) is considered similar within the threshold 𝑡2 to b(gesture descriptor) by the function
𝑓2.

Note, before the query is done evaluating, we check another relation in the database, the Map
relation. The map relation contains mappings from gesture descriptors to document GUIDs
(globally unique identifiers). The map relation has a primary key of gesture descriptor (i.e.
gesture descriptors uniquely determine the tuple). Thus, note that the gesture descriptor in the
Gesture relation is actually a foreign key of the Map relation. Thus, before the gesture can be
inserted, the gesture descriptor generated from the gesture relation is first checked against the
map relation to determine if it is already there. If not, a new tuple is inserted with the gesture
descriptor (so as not to break the foreign key constraint of the Gesture relation). The document

Christopher Thomas
Software Engineering – Exercise 4

GUID(s) associated with the newly inserted gesture descriptor now need to be determined
using the Document relation. Note that the relationship between the gesture descriptor in the
Gesture relation and the gesture descriptor in the Map relation are the full strength primary /
foreign key relationship; as we are dealing with equality, we do not need the relaxed
multimedia functional dependency relationship between them and instead require traditional
primary / foreign key equality.

The Document relation will be used to determine the documents that the gesture descriptor in
the map relation maps to. The Document relation consists of tuples with attributes of
document type, document guid, document content, and a document descriptor. Note that the
document GUID uniquely identifies each tuple in the relation, and thus the primary key of the
relation is the document GUID. Thus, for each gesture descriptor, the Map relation contains 1
or more document GUIDs (which is a foreign key from the document relation).The document
descriptor works analogously to the gesture descriptor described above, except that the
document descriptor is dependent on the document content rather than on gesture content.
Thus, we arrive at our second multimedia functional dependency:

{𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐶𝑜𝑛𝑡𝑒𝑛𝑡}𝑓3(𝑡3) → {𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟}𝑓4(𝑡4)

This MFD states that for any two tuples a and b such that a(document content) is considered
similar within the threshold 𝑡3to b(document content) by the function 𝑓3 then a(document
descriptor) is considered similar within the threshold 𝑡4 to b(document descriptor) by the
function 𝑓4.

While this may seem complete, it actually isn’t. We are still missing the mapping from the
gesture descriptor to the document descriptor, i.e. when a new gesture descriptor comes in,
how can we associate it with documents which it should match with? Thus, we have an implicit
multimedia functional dependency between these two values. We note that both the
document descriptor and the gesture descriptor are both vectors in an n-dimensional Hilbert
space. Thus, similar gesture descriptors (within some threshold) will map to the same
document(s) (based on another threshold). Note that we assume for simplicity here that a
simple vector distance function – the Euclidean Distance – exists for computing the similarity of
vectors, but that the thresholds will be different for each. Thus, we arrive at the final
multimedia functional dependency in our database:

{𝐺𝑒𝑠𝑡𝑢𝑟𝑒 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟}𝐸𝑈𝐶𝐿𝐼𝐷𝐸𝐴𝑁(𝑡5) ↔ {𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟}𝐸𝑈𝐶𝐿𝐼𝐷𝐸𝐴𝑁(𝑡6)

Note that this MFD is transitive. We can now see that when a new gesture is inserted, an entry
in the Map is created (if one didn’t already exist) using this relation between gesture descriptor
and document descriptor to determine which document guids to list in the Map. Note also that
when a new document is inserted, a lookup process can occur based on gesture descriptors and
insert that document into the list of document GUIDs associated with that gesture descriptor.

(see next page)

Christopher Thomas
Software Engineering – Exercise 4

From the above discussion, we arrive at the following database schema describing the
multimedia database:

In the illustration, green lines indicate a multimedia functional dependency based on the
previous functions given. Blue lines illustrate other typical database relationships, such as
primary key, foreign key, etc.

Given the database schema above, we can now give a system description using IC Cards. The IC
cards will examine the steps at a high level of detail, walking us through all the steps necessary
to recognize a gesture and use the system as defined here.

Christopher Thomas
Software Engineering – Exercise 4

This card represents the top of the tree of processing in the database (it represents the entire
operation). We now will get into the details of the sub-components.

Christopher Thomas
Software Engineering – Exercise 4

Note: The inserter is used only when documents are inserted into the relation.

