
Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

NOTE: Dr. Chang suggested that the best way to start this process was to have a mixed state IC
card at the top, which represents the overall task of organization of the picnic, which is then
decomposed into numerous sub-tasks below. As such, I will follow the paradigm that he
suggested here. Thus, the first IC card will be the mixed state card, which represents the overall
action of organizing the picnic. As there are many sub-actions in its children, it is a complex
action, and is therefore a mixed state.

Since numerous people will be coming to the picnic, we assume that certain people invited to
the picnic (invitees) will help organize it. Thus, invitees will be delegated certain tasks to do.
One person will be responsible for one task, another person is responsible for another, then
another person is responsible for telling everybody once the date / time of picnic is decided,
etc. So, the basic hierarchy is shown below.

We begin by determining which of our friends will actually be coming to the picnic (we call the
people that are actually coming Invitees). Once we know who is coming, we will be able to
coordinate a location for the picnic (which is close enough to everybody).

(see next page)

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

We now know who is actually coming to the picnic (we have the list of invitees). The
assumption here is that we know where all the invitees live. Because of that, this IC will be able
to determine the picnic location autonomously simply knowing the locations of all the invitees
(we assume all the invitees are a reasonable distance apart).

Once, we have decided on a venue, we must determine the availability of a pavilion in this
facility to reserve (i.e. in case it rains we will have a pavilion to go to)

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

We now know a list of available times for which the venue can be reserved. We must now
contact our invitees (which we know are coming) and determine which date & time works best
for everybody.

We now know which date and time works for everybody.

Contact the park manager and reserve the pavilion for that time.

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

Here, we contact the venue manager and request him to reserve the venue in the venue’s
computer system. Note, we cannot do this ourselves, so the park manager must do this action
himself in the computer system.

Venue Manager now receives request to reserve venue. He now reserves it.

The venue date and time is now reserved in the venue manager’s system. We now have a
venue (which we assume is a covered pavilion or similar covered structure in case of bad
weather).

We must now tell everyone about which date and time has been decided for our picnic and the
venue.

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

All invitees now know the date, time, and venue of the picnic.

Dr. Zhang suggested we also make IC cards covering the organization of games and who will
bring the foods. We will now delegate certain tasks to certain Invitees. We will say Invitee #1,
Invitee#2, etc. to refer to the people coming and the tasks they need to do.

We now will delegate the bringing of food to certain invitees.

Invitee #1 is bringing the utensils, cups, plates, cooler, and ice.

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

Invitee # 2 has been delegated the task of bringing all the snacks and drinks

Everybody except the organizer is asked to bring a main course item (potluck) to the picnic.

We will also need the radio for the picnic, so invitee #3 is asked to bring it.

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

Since the organizer isn’t bringing any food, he will also bring some games to the picnic.

Dr. Chang suggested we also need to drive certain friends to the picnic if they don’t have a car.

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

We know who needs a ride. The organizer will pick them up and take them to the picnic

Finally, everyone relaxes at the picnic after all the work of planning it.

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU

PART B.

In the past, I have taken the distributed operating systems course in this department. Thinking
about how the picnic was organized makes me think about a particularly important pattern:
centralized command and control. In the case of the picnic, the organizer was responsible for
polling invitees, deciding who brought what, telling people the decision, etc. So, this is the
structure of a centralized architecture, whereby a central coordinator decides on what will
happen. This is a well-studied development pattern in operating systems and software
architecture (centralized vs decentralized systems). I have illustrated this below:

Thus, we see as the number of attendees grows, the number of messages also grows for the
coordinator. For a small number of friends, this strategy works, but for a larger system, we
need to divide the tasks up into sub-jobs, and appoint sub-coordinators, i.e. one person is in
charge of arranging the date and time, one person is in charge of organizing food, etc. So in that
case, we would have multiple mixed cards, and multiple sub-coordinators. For a huge system, it

Christopher Thomas
Software Engineering – CS 2310

CLT29@PITT.EDU
may need to be done in a decentralized manner. Thus, one of the core patterns of this exercise
is organizational architecture.

Another pattern I see here is the pattern of coming to a decision which suites everybody’s
needs and schedules. In computer science, these kinds of problems are called optimization
problems, i.e. trying to determine the decision which fits everybody’s needs. In this simple
example, what would happen if no date and time fit everybody’s schedule? In that case, the
coordinator would either have to try to get more dates and times or simply decide some people
cannot come to the picnic. In this pattern, a list of “constraints” for each invitee can be devised,
the goal of the problem is to find a time which minimizes the number of conflicts. For a few
friends, the problem is trivial, but when more complicated conditions occur (somebody needs
to leave early, arrive late, etc.) and these conditions want to be considered, robust techniques
exist, such as integer linear programming to solve these problems. This pattern of optimizing
over a number of constraints is common in computer science and in many other domains.

One final pattern which I see is the concept of tasks and subtasks which must be completed
before we move on to other tasks. A task can be considered completed when all it’s subtasks
are finished. In this way, we can view the problem in a tree structure, where tasks such as the
following are represented in a tree structure (note this illustration is NOT exhaustive, just an
illustration). We can see that the “food” subtask is only considered complete when BOTH
invitee #1’s task and invitee #2’s tasks are done. Note each of those tasks may also have
subtasks which are not shown. If failure occurs in any one of those subtasks, our task will fail.
However, using a tree pattern such as this can allow a system to quickly respond to task failures
and model the overall process the system is taking in a way a system designer can quickly use to
identify patterns and weak points. Thus, tree-like dependencies are an important pattern. Note,
these kinds of graphs can also be used to detect CYCLES where certain objects or people are
waiting for each other and in a state of deadlock. Thus, this pattern crops up in many areas of
computer science and life.

Organize
Picnic

Food

Invitee #1's
task

Invitee #2's
task

Venue

Reserve
Venue with
Manager

Manager
reserves
venue

