*Manuscript

Click here to view linked References

Time Automaton: a visual mechanism for temporal
querying

Luis Certo®*, Teresa Galvao?®, José Borges®

@School of Engineering of the University of Porto,
Department of Industrial Engineering and Management,
Rua Dr. Roberto Frias, s/n 4200-465, Porto

Abstract

Available visual temporal querying tools do not provide the means for for-
mulating complex temporal queries. For these queries users have to adopt
text-based querying languages, such as SQL. The problem, however, is that
using text-based languages is less comfortable than using visual tools and,
most important, in some cases temporal queries can be extremely difficult to
formulate for users that do not possess programming competences. In this
paper we propose the Time Automaton, a highly flexible visual mechanism
that enables the formulation of a large set of different types of temporal
queries, ranging from the simple to the most complex ones. In order to test
the Time Automaton we used a representative sample of temporal queries
extracted from the matured OWL Time Ontology. Also, to test the Time Au-
tomaton in a real word scenario we created a visual interface that implements
the mechanism and we used it to analyze a real dataset.

Keywords: visual mechanism, temporal querying, finite state automata

1. Introduction

Several research topics, like urban mobility analysis or social network
mining are related with temporal data analysis and consequently with tem-
poral querying. For example, in urban mobility analysis, transport planners
usually query a set of relevant temporal moments and use GIS tools to visu-
alize people’s mobility in those moments [1]. Also, in social network mining

*Principal corresponding author
Email address: certo@fe.up.pt (Luis Certo)

Preprint submitted to Journal of Visual Languages and Computing January 4, 2012

http://ees.elsevier.com/jvlc/viewRCResults.aspx?pdf=1&docID=498&rev=0&fileID=19804&msid={BB7B2349-51BF-475C-A20F-A77FC7A15201}

researchers frequently use temporal querying tools to select representative
temporal moments that are used as input in trend detection algorithms [2].
Since temporal querying plays a major role in temporal data analysis, the
effectiveness of querying tools is crucial. To be effective, a querying tool must
empower the user to formulate a significant set of different types of temporal
queries, and should do it through a comfortable and accessible environment.
In general, temporal querying can be conducted by using either text-based
languages or visual tools. Text-based querying languages, such as SQL [3],
are normally very flexible and they are the only option when visual tools
are unable to express more complex queries. Such flexibility, however, comes
with a cost, as writing queries with text-based languages is a demanding and
time-consuming process, even for experienced users. Most important, text-
based languages usually involve a steep learning curve for users that do not
possess programming skills, who may be experts on the field under analysis.
In contrast to text-based querying languages, visual querying tools [4] [5] [6]
are normally easier to use although they are limited in terms of querying
complexity.

The limitations in visual temporal querying tools are related to the difficulty
in creating a visual logic that is both user-friendly and flexible enough to
cover a large spectrum of temporal query types. Also, current visual so-
lutions translate their visual queries directly into commands of traditional
text-based querying languages which were not designed to be visually han-
dled.

In this paper, we propose the Time Automaton, a visual temporal querying
mechanism that is capable of formulating a large set of different types of
temporal queries, including the most complex ones.

Time Automaton does not use any text-based querying language to execute
its queries. Instead, it uses a mechanical logic in which a query is a graph
defining the workflow of a simple and compact algorithm that processes a
specific temporal data structure. This data structure is simple and an easily
implementable algorithm can automate its creation.

On one hand, the flexibility of Time Automaton’s logic makes it a very power-
ful visual tool, but on the other hand it makes it less accessible than standard
available visual tools. In comparison with available text-based querying lan-
guages, we think Time Automaton is much more accessible and comfortable.
The remainder of this paper is structured as follows: in Section 2 we briefly
describe some related work regarding visual temporal querying tools. In Sec-
tion 3 we describe the characteristics and implementations details of the Time

Automaton mechanism. Section 4 provides a practical application in which
Time Automaton is particularly useful. In Section 5, a sample of temporal
queries used for testing the mechanism is presented. Finally, in Section 6, we
provide the main conclusions of this work.

2. Related Work

From all text-based querying languages, SQL [7] is, arguably, the most
popular. Even though it is very flexible, in terms of temporal querying ca-
pabilities, this language has some limitations. In particular, since ordering
is secondary in SQL, ordinal temporal queries like ’the second Saturday of
every month’ are not directly formulable. By directly formulable we mean
using a simple syntax and without requiring an intricate combination of mul-
tiple queries.

To answer SQL’s temporal querying limitations, some authors have proposed
SQL temporal extensions. Among these, TSQL2 [8, pp. 127-146] is the most
noteworthy. However, even though this extension is thoroughly defined in
theory, to the best of our knowledge, it is not implemented in any publicly
available data management system. TQuel [9] is another temporal extension,
but for the querying language Quel [10]. It can be seen as the predecessor
of TSQL2, and similarly to it, is not implemented in any publicly available
data management system.

When compared to text-based languages, like SQL, visual querying tools
have advantages in terms of learning effort, prevention of errors, comfort
and accessibility. Such tools are commonly found in websites and informa-
tion management systems, and in the most well-known cases, they follow the
same logic of two popular solutions, the Dynamic Query [4, pp. 336-351]| [5]
[11] and TimeWheel [6].

DynamicQuery (see Figure 1 extracted from [4]) is a visual tool for temporal
interval querying. It represents the timeline as a segment in which the user
selects a temporal portion.

Since DynamicQuery is designed for interval querying only, expressions in-
volving recurrence, such as ’every Saturday’, are not formulable. Another
limitation comes from the fact that the interface requires the complete rep-
resentation of the timeline, which limits the ability to display very large
intervals. Such limitation is more evident when working with fine temporal
granularities, such as hours or minutes. In addition, since the properties of
temporal moments are not shown, interval queries such as 'from the first

Saturday of January to the first Wednesday of February 2009’ are also not
directly formulable.

01.01.1975| |30.12.1909

01.01.19490 1000 26.09.19492

days

Figure 1: Dynamic Query representing the interval query 'from 1,/1,/19990 to 26/09,/1992’
- extracted from [4].

The TimeWheel (see Figure 2, extracted from [4]) is another visual tem-
poral querying tool, aimed for cyclic temporal querying. It responds to the
need of selecting recurring temporal events like ’every Saturday’.

De Ja

1996 1997 1998 1999

Figure 2: TimeWheel selecting ’the hours 7,8 and 9 of the days 1 of January and 1 of
March of 1996,1997 and 1998 - extracted from [4]

One limitation of the TimeWheel is that it does not provide the means
to formulate cyclic expressions involving temporal ordering, like for example,

4

‘the second Saturday of every month of 1997 or ’every other Saturday in
1997°. In most websites or information systems that deal with temporal data
it is common to find the TimeWheel’s logic implemented as a series of check
boxes in which users specify the properties of the required temporal moments
(see Figure 3).

Years: 1996 1997 1998 &
Months: Jan ™ Feb () Mar® Apr[May [Jun[] Jul(J] Aug () Sep) Oct[] Nov [Dec]

Daysofthe Month: 1@ 20 30405060 7080 %90 100 110 120 130 140 150
160 170 1800 190 200 210 220 230 240 250 260 270 280 290 300 310

Figure 3: Standard checkbox based temporal querying interface, in which ’days 1 of Jan-
uary and 1 of March of 1996,1997 and 1998’ are selected.

In the literature, most visual temporal querying solutions do not provide
details on how queries are implemented and executed. From the few litera-
ture addressing this issue, a relevant work can be found in [12]. In that paper
the author presents eight generic SQL [3] skeleton functions that are used to
implement a predefined set of visual temporal queries. The set of queries just
covers some basic temporal queries and it is not possible to combine them.
An inspirational work that influenced the creation of the Time Automaton
is presented by Niemi et al. [13]. In that paper the authors propose a
semi-formalized term representation to model temporal expressions as regu-
lar expressions. Regular expressions are intimately related with finite-state
automata [14], which are models that are visually represented as graphs and
define how a string including temporal data is processed. Despite the fact
that their work is not focused on temporal querying, the idea of using a string
to encode temporal data and employ regular expressions to interact with it,
has strongly influenced our work.

3. Time Automaton

Time Automaton is a two tier mechanism formed by the temporal the
temporal string and the query model.
The logic of the Time Automaton model is based on finite-state automata
[14]. Finite-state automata are models, visually represented as graphs, that
define how an input string is processed, in particular, which portion of the

string is read and which actions are performed when some symbols are read.
Similarly, a Time Automaton query is a model, represented as a graph defin-
ing how an input string, built from temporal data, is processed.
These two main components of Time Automaton, the temporal string and
the query model are described in detail in the following sections.

3.1. Temporal String

The temporal string (TS) is a sequence of words with temporal meaning,

in which some of the words are temporal markers (named Anchors) while the
others are temporal data (named Facts).
Anchors define the temporal structure of the temporal string and Facts are
positioned according to the moment they occurred. The position of Anchors
and Facts in TS follows a prefix notation. In our notation an Anchor defines
the beginning of a temporal moment. A temporal moment may also serve as
container to the Anchors of finer granularities. The Anchors that precede a
Fact define moments in time in which the fact occurred. For a practical ex-
ample, consider the artificial dataset and the corresponding TS, with month
granularity (see [15] for more details), depicted in Figure 4.

TEMPORAL STRING!

year,2009 month,Jan fact,a,b month,Feb
fact month,Mar fact,c,d,e,f month,Apr
fact month,May fact month,Jun fact
month,Jul fact month,Aug fact,g,h
month,Sep fact month,Oct fact
month,Nov fact,k,l,)n,n month,Dec
fact

year,2010 month,Jan fact,p,q month,Feb
fact month,Mar fact,s

TiME DATa
Jan, 2009 a,b
Mar, 2009 c,d,e,f
Aug, 2009 g,h
Nov, 2009 k,l,m,n
Jan, 2010 P.q
Mar, 2010 s

Figure 4: Artificial dataset containing temporal information and the corresponding tem-
poral string with a month granularity.

The terminology used to distinguish Anchors and Facts in the TS can
vary according to the user’s specification. In the example given in Figure 4,
a Fact is described with the preceding word "fact” followed by the data itself,
while the Anchors are described using a natural language terminology that
makes its meaning explicit to the reader.

As can be seen in in the example above, the TS has a simple structure and,

therefore, an easily implementable algorithm [16] can automate its creation.
For example, a possible approach could consist on using a Depth First Search
algorithm on a tree in which Anchors are represented as nodes and Facts are
represented as leafs. In this case Anchors with greater granularity are the
ancestors of those with finer granularity and Facts are the tree leafs (see

Figure 5 for an example).

O

year,2009 year2010

o O O

month,Jan month,Feb month, Mar

o O O

fact,a,b fact fact,c,de,f

Figure 5: Tree structure that can be used for generating a Temporal String.

3.2. Query Model

In Time Automaton, a query is defined as a Connected Digraph [17] in
which the vertices are words or expressions of the TS and the arcs define
which word is the next to be read. This graph can be viewed as query
in the sense that it defines where is the data (the portion of TS to read)
and which data is retrieved (the Facts) to the user. Exploring the T'S with a
graph traversal procedure, the Time Automaton mechanism acts like a query
execution algorithm.

In order to systematize and limit the number of possible configurations for
the Time Automaton queries (graphs) we devised the following rules:

1. There is one root vertex, which only has outgoing arcs.

2. Every vertex other than the root is labeled with an expression, which
corresponds to the definition of the syntax of a word in TS.

3. Every arc (v,u) may have a weight value that defines the maximum
number of traversals from v to u.

For each particular query (graph), every time a word in the TS matches
the expression of one of the direct successors of the current vertex, the graph
is traversed to that vertex. Time Automaton keeps reading words until the
last vertex of the graph is visited or TS is entirely scanned.

In order to describe and specify the syntax of the words to be matched, reg-
ular expressions [14] are used in the vertices’ expressions.

Regular expressions are a highly flexible and compact instrument for match-
ing strings of text, such as particular characters, digits, or punctuation. A
regular expression is written in a formal language interpreted by a regular
expression engine, which analyzes a text and identifies which parts match
the provided specification.

One of the advantages of using regular expressions in Time Automaton is
that all the burden of word matching is passed to the regular expression
engine, which simplifies the implementation of a query execution algorithm.
Additionally, the process of saving Facts into memory can be easily done with
regular expressions. Finally, the flexibility that results from the combination
between graphs and regular expressions allows Time Automaton to express
some complex temporal queries.

In Time Automaton, the most basic type of regular expression is the lit-
eral definition, which corresponds to having all letters of the word explicitly
defined. For example, the regular expression ’year,2010’ literally defines all
letters of the Anchor "year,2010”. More complex definitions require more so-
phisticated regular expressions. In order to make the reasoning and writing
processes more simple and avoid requiring users to learn how to use regular
expressions, three high level predicates were created. These are defined as
follows:

any() - Corresponds to the regular expression "\w+". It is used to match any
sequence of letters. In the temporal querying context, this predicate
is useful for creating queries that do not specify some properties of
temporal moments. For example, in the query ’every second month’,
the month’s name is not specified.

not(exp) - Stands for the regular expression ’(?!\bezp\b)\b\w+’. In the
temporal querying context, this predicate is useful for creating queries
that exclude certain temporal moments, like for example ’every month
except March’.

fact() - Corresponds to the regular expression ” fact,?(["\s]+)’. It is used
to match Facts and mark them to be saved into memory. In a regular
expression everything that is enclosed by curved parenthesis is saved
to the regular expression engine’s memory and can be easily accessed
afterwards. Specifically, the presented regular expression defines that
when a Fact is read, the list of data records that follows the term "fact"
is saved into memory.

The algorithm for executing Time Automaton queries can be straightfor-
wardly implemented. Again, we highlight that the regular expression engine
carries out all the word matching labor, which simplifies the implementa-
tion of the algorithm. Next, the query execution algorithm is presented (see
Algorithm 1).

Algorithm 1 - Query Exec(GQ, RE,TS)

*

Input: a graph query GQ, a regular expression engine RE and a temporal string
Ts.

Output: a list containing all facts that match the provided graph query GQ.
Notes: The algorithm uses an object-oriented notation; For each arc of the
graph for which the maximum number of traversals was not defined is assumed
that it was initialized with a very large number; RE.analyze(text, regex) is the
method by which the regular expression engine analyzes a given text against
a provided regular expression regex. The method returns a boolean informing
if the match was successful. The form, the inputs and output of this method
is similar to the ones in the regex analyzing methods of several programming
languages (e.g. Perl, Java or C++).

*

currNode < GQ).root

RE.savedFacts < {}

for each word w in T'S do
listAdj < currNode.adjacent N odes
for each node adjNode in listAdj do
if GQ.arc(currNode,adjNode).maxTraversals > 0 then
match_ ok <— RE.analyze(w, adjNode.label)
if match ok then
maxTrav < GQ.arc(currNode, adj N ode).mazTraversals—1
GQ.arc(currNode, adj N ode).maxTraversals < maxTrav
currNode < adj N ode
exit this loop
end if
end if
end for
end for
return RFE.savedFacts

Alternative algorithms could be used. The objective of the presented
algorithm is to provide a compact description that can be simple to under-
stand rather than being extremely efficient. A more efficient alternative, for
instance, would consist on using an index structure for fast word searching,
instead of scanning all words linearly.

Given the full description of the query model we can now provide some ex-
amples (see Figure 6) that illustrate how the model is put into practice. For
these examples we use the TS depicted in Figure 4.

O—~O—0—0

year,2010 month,Jan fact()

[eIo UG SRS)

year,2009 month,any() fact() month,not(March) fact()

Figure 6: Basic examples of Time Automaton queries in which all predicates are used.

10

Query I retrieves the facts that occurred in January 2010. The TS is read
until the word "year,2010” is found. Then, the algorithm searches for the
next word, "month,Jan”. Sequently, the predicate fact() matches and saves
the next fact that is found. The result of this query is "p,q”.

Query II provides the facts occurred in the first six months of 2009. The re-
sult is "a,b,c,d,e,f”. Notice that this example has an arc with the weight value
of 5, indicating that the corresponding traversal is performed five times.

Query III searches for the facts occurred in any month except March. In this
query the regular expression engine captures all facts that follow a month An-
chor with a name different from "March”. The result is "a,b,g,h k.1, mn,p,q".

4. Practical Application

The original motivation for this work was the creation of a visual analy-
sis framework for urban mobility data analysis, in which a Visual Temporal
Querying Module is linked to a series of Spatial Visualizations. Such frame-
work would empower urban and transport planners who, in general, do not
possess programming skills to visually formulate complex queries and analyze
how people have moved during the selected temporal moments. In a broad
perspective, this framework aims to respond to one of the recent challenges in
Geovisual Analytics, identified by Andrienko et al. [18]: give more attention
to time and to users. With this they mean that Geovisual tools should be
more "temporal" and they should be developed to be used by different types
of users, not only by those that possess advanced computer competences.
The referred framework was implemented and tested for the analysis of an
urban mobility dataset containing, for each day of 2009 and 2010, the num-
ber of bus ticket validations in 17 regions of a city (Porto, Portugal). These
regions were named: C1, C10, C11, C2, C3,C4, C5, C6, C8, C9, N1,
N10, N11, N16, S1, S2 and S8.

The Visual Temporal Querying module is an implementation of the Time
Automaton. This tool and the Spatial Visualization are linked so that the
results of the temporal queries are sent to the spatial visualization. For each
region of the city a visual marker, colored and sized in proportion to the
number of ticket validations, is displayed. More precisely, the color hue and
the radius of markers are proportional to the percentage of ticket validations.
In order to use the Time Automaton, the urban mobility dataset was con-
verted into a Temporal String, with day granularity. One of the objectives of
the analysis was to study how the weather conditions affect urban mobility,

11

so a temporal property describing the weather condition was added to each
day’s Anchor. Next, we provide a small excerpt of the resulting Temporal
String (one single day):

year,2010 month,Jan day, 1, Tue, Rainy fact,C1,935,C10,1433,C11,11209,
C2,2618,083,555,C4,5628,05,15366,C6,5435,C8,7693,C9,19,N1,233,
N10,187,N11,535,N16,458,51,956,52,6924,58,1002...

We have created an interface that allows the users to configure the layout of
Time Automaton queries (see Figure 7 Top) and create the required regular
expressions using only graphical controls (see Figure 7 Bottom). These con-
trols are combo boxes that are automatically created and populated based
on the content of the Temporal String. Also, there is a checkbox beside each
combo box that, when checked, negates the selected property.

A VISUAL MECHANISM FOR TEMPORAL QUERYING A VISUAL MECHANISM FOR TEMPORAL QUERYING

ADD ADD
(X)) AncHor) ancronr
Loor 22 @D X -

" day,2,FriCloudy ™_ H

ADD year
month

NODE v day|" not @

0o~ oo s w i

Figure 7: Top) Edition of the graph’s layout. Bottom) Selection of the parts that compose
node’s 1 expression.

12

Next, in Figure 8, two queries and the corresponding visualizations are
shown. These queries were formulated with the purpose of comparing the
differences in urban mobility on clean and rainy days (see Figure 8). Based
on this visualization it seems that on rainy days urban mobility is more
concentrated at the center of the city. This can be related to the fact that
central stops normally offer the best infrastructures, which are crucial on
rainy and windy days.

Figure 8: Two spatial visualizations used to compare the bus stops’ activity on clean and
rainy days.

We could also analyze how urban mobility is affected by some economic
factors. For example, we have created the query that selects the validations
on 'the weekend immediately after the day 23 of every month’ (see Figure
9), which is the day when, in Portugal, public employees receive their salary.
In this visualization shown in Figure 9 it is interesting to notice that the
most active region corresponds to the location of one of the biggest shopping
malls in the city. This may be an indicator that when people have more
money they tend to travel more around shopping areas.

13

LY

D o b

day,Sat fact day,Sun

Figure 9: Spatial visualization of the bus stops’ activity in the weekend after the payment
of public employees’ salary.

Besides the insights we extracted from this visual data exploration it
should be noticed that the temporal questions we addressed were only possi-
ble to be visually formulated by using the Time Automaton mechanism. For
the best of our knowledge, none of the available visual temporal querying
solutions are capable to expressing such temporal queries.

5. Validation

In order to assess the Time Automaton capabilities we have created a
sample of representative temporal queries based on the temporal expression
types included in the OWL - Time Ontology [19] [20]. Such ontology is a
body of knowledge that defines a thorough catalog of temporal expression
types found in online content. Even though it is not focused on temporal
querying we believe that this matured and well-established ontology pro-
vides the essential notions required to understand which types of temporal
constructions are involved in temporal reasoning and, in our particular case,

14

in temporal querying.

For the presented sample of temporal queries we used a Temporal String with
day granularity, containing data from 2009, 2010 and 2011, and including the
following temporal properties: year’s name, month’s name, day of the month
and day of the week. Next, we present the sample of representative tempo-
ral queries and the corresponding formulation. We will provide examples of
queries that are possible to formulate using both the time automaton and
the other visual mechanisms and examples of queries that can be formulated
only with our mechanism.

5.1. Trivial queries

Query a) Select all facts occurred in every Monday.

In this basic temporal query a set of temporal instants that match a speci-
fied property is selected. Figure 10 depicts how this basic temporal query is
formulated using Time Automaton.

SRemte

day,any(),Mon fact()

Figure 10: Temporal query that returns all facts occurred in every Monday.

For this basic query type, an alternative such as TimeWheel (see Figure
2) could also be used and with SQL this basic temporal query type is simple
to formulate.

Query b) Select all facts in any day that is a Monday, a Wednesday
or a Friday.

In this temporal query a set of temporal instants that match one of a se-
ries of temporal properties is selected (see Figure 11).

15

day,any(),Mon

day,any(),W fact()

day,any(),Fri

Figure 11: Temporal query that select all facts occurred in any day that is a Monday or
a Wednesday or a Friday.

As seen be seen in the Figure above, for a query of this type a solution
like the TimeWheel (see Figure 2) may be more usable than the Time Au-
tomaton. With SQL such a query is also simple to formulate.

Query c) Select all facts that occurred in the days between Febru-
ary 24, 2010 and September 2, 2011 (inclusive).

This query is a basic temporal query in which an interval is selected. Figure
12 depicts how Time Automaton can be used to formulate it.

%%%%8—*

year,2010 month,Feb day,24,any() fact() year,2011

O—=0O—0

fact() month,Sep fact() day,3,any()

Figure 12: Temporal query that provides all facts that occurred in the days between
February 24, 2010 and September 2, 2011 (inclusive).

This type of query can also be easily formulated with the DynamicQuery
(see Figure 1) tool. In SQL this query type is also simple to implement.

16

Query d) Select all the facts that occurred between February 24,
2010 and the fifteen days afterwards.

This query, which is represented in Figure 13, also covers the basic operation
of selecting an interval, but in this case it uses an instant and a duration.
Since we are using a temporal string with a day granularity each fact has a
direct correspondence to one day, therefore, selecting the fifteen facts after
February 24, 2010 corresponds to selecting the facts occurred in the fifteen
days after.

O*O—{)—{)*@

year,2010 month,Feb day,24,any() fact()

Figure 13: Temporal query that provides all facts that occurred between February 24,
2010 and the fifteen days afterwards.

For this basic query type the DynamicQuery (see Figure 1) may be sim-
pler to use. In SQL this query type is also simple to formulate.

5.2. Complex queries

Query e) Select all the facts that occurred in each Monday, Wednes-
day and Friday.

In this query (see Figure Figure 14) Monday, Wednesday and Friday is treated
as a single sequential pattern. Since Time Automaton’s logic is based on the
sequential reading of a temporal data structure, queries involving sequential
patterns, even more intricate ones, are usually simple to formulate.

17

day,any(),Mon fact() day,any(),Wed fact() day,any(),Fri fact()

Figure 14: Temporal query that provides all facts occurred in each sequence Monday,
Wednesday and Friday.

In other available visual solutions this type of queries is not possible to ex-
press. Moreover, with SQL this query is also difficult to formulate and it
normally produces large blocks of code.

Query f) - Select all facts occurred in every second Monday.

This same query is another example involving a sequential pattern. As con-
sequence Time Automaton works fine for this query too (see Figure 15).

O—0O—0O—

day,any(),Mon day,any(),Mon fact()

Figure 15: Temporal query that provides all facts that occurred occurred in every second
Monday

This type of temporal query cannot be formulated using other available vi-
sual solutions. Also, using the basic syntax of SQL this query is impossible
to formulate.

Query g) Select all the facts that occurred in the last two Mondays
of every month.
This query, which the selects last nth instants inside a recurrent tempo-

ral period, is not possible to formulate using the Time Automaton. Still, it
should be noticed that with the other available solutions (visual tools and

18

SQL) this query is also impossible to formulate.

The mentioned limitation in the Time Automaton is due to the fact that it’s
query model uses a prefix logic by which every temporal moment is entered
after the Anchor that marks its beginning is read. As a general rule, Time
Automaton cannot formulate queries that involve distances to temporal mo-
ments that are marked by an Anchor that has not been read yet.

A possible solution for this limitation could be to build an inverted temporal
string in which the positioning of Anchors follows an inverted temporal or-
der, or in other words, using a future to past direction. For example, in this
inverted temporal string, the Anchor marking December would be positioned
before the Anchor marking November.

By using an inverted temporal string, the mentioned temporal query would
be possible to formulate with Time Automaton. However, for queries that
use both past to future and future to past directions, like for example ’the
two last Mondays of the first six months of 2010°, the suggested solution
would not work.

In a more radical approach we could incorporate new elements to the Time
Automaton, but this would make the mechanism and the querying execution
algorithm more complex and it could make it difficult to support them using
exclusively the language of graphs.

Query h) - Select all facts occurred in every day between February
24, 2010 and the second Monday afterwards (inclusive)

In this case the temporal query selects an interval from a specific instant
until the end of a temporal pattern (see Figure 16).

O—>O—>O—>O—>O—>8—>O—>O

year,2010 month,Feb day,24,any() fact() day,any(),Mon fact() day,any(),Mon fact()

Figure 16: Temporal query that selects all facts that occurred every day between February
24, 2010 and the second Monday afterwards (inclusive)

Such a query is not formulable using the available visual solutions. With

19

SQL this query is possible to formulate but is not straightforward.

In this particular case, the temporal query involves a small temporal se-
quence. If the objective was to select ’all facts occurred in every day between
February 24, 2010 and the 100th Monday afterwards (inclusive)’ the Time
Automaton query would be much more complicated (see Figure 17).

O—0O—0O—

year,2010 month,Feb day,24,any

day,any(),Mon fact()

Figure 17: Temporal query that selects all facts occurred between February 24, 2010 and
the 100th Monday afterwards (inclusive)

Query i) - Select all the facts that occurred every other Monday in
every 4th month in every year.

In this query (see Figure 18) one recursion is contained in another. This
temporal query illustrates how intricate temporal queries can be and how
Time Automaton can be useful for such complex temporal constructions.

O—O—

day,any(),Mqn day,any(),Mon fact()

O=>O—0O—0O—

month,any() month,any() month,any() month,any()

Figure 18: Temporal query that selects all facts that occurred every other Monday in
every 4th month in every year.

20

Such a complex temporal query cannot be expressed using the available visual
solutions and, for the best of our knowledge, it is also impossible to formulate
using SQL.

5.8. Discussion

Trivial queries can be formulated with the Time Automaton, however, for
these types of queries the other available visual solutions may be easier to
use. Time Automaton is specially convenient for complex temporal queries,
in particular, those involving sequential patterns like for example ’every sec-
ond Monday’ or ’ every other Monday in every 4th month in every year’. For
these type of queries available visual tools and SQL are of no use.
Temporal queries involving sequential patterns can be frequently found in
studies regarding cause-effect relations like for example in the query ’select all
facts occurred in the weekend immediately after the day 23 of every month’,
depicted in Figure 9, in Section 4.

In addition to it’s versatility, Time Automaton is also advantageous in terms
of query implementation. Since queries are naturally configured as a graph
layout, designing an SQL backend for the translation and execution of tempo-
ral queries is not necessary. This is very convenient because some temporal
queries are not simple to formulate using SQL operators. As an example,
we now show how the Query h, presented in Figure 16, is formulated us-
ing SQL. For this SQL implementation it is assumed that there is a table
with a column named ’time’ that includes the date of data records and a
column named 'data’ including the data itself. It is also assumed that every
day is represented in this table, i.e., there is at least one data record for
each day. The provided SQL implementation is written in MySQL, which
is one of the many different available SQL DBMSs, and like others, it in-
cludes generic SQL operators and specific MySQL operators. The presented
temporal query uses two of those specific operators: DAYNAME and LIMIT.

SELECT data FROM times

WHERE time > ’2010-24-10" AND

time < (SELECT DISTINCT(time) FROM times
WHERE time > '2010-24-10° AND
DAYNAME(time) = "Monday’

ORDER BY time LIMIT 1,1)

21

As can be seen in Figure 16, a temporal query that can straightforwardly
expressed by the Time Automaton can be much more difficult to formulate
using SQL. Moreover, if one thinks about the endless number of combina-
tions between different types of temporal queries it becomes evident how
challenging the SQL implementation of some temporal queries would be.
Most important, we should keep in mind that SQL implementations are not
accessible to users that do not possess advanced programming skills, who
may be experts in the field under analysis.

6. Conclusions

In this paper we present the Time Automaton, a highly flexible visual mech-
anism that is capable of formulating a vast set of temporal queries.

Time Automaton is inspired in finite-state automata [14], which are models
that are visually represented as graphs defining how an input string is pro-
cessed. Similarly, a Time Automaton query is a model, visually represented
as a graph, that defines which portion of an input string containing temporal
data is processed.

The structure of the string used in Time Automaton has a plain-text for-
mat and an easily implementable algorithm automates its creation. Using
a plain-text data format makes temporal datasets highly portable, which is
advantageous in scenarios where data sharing is required, like for example,
in team working. Data enrichment is also facilitated by the format’s simplic-
ity. Hence, if analysts need to formulate temporal queries based on temporal
properties such as the weather conditions, or the seasons of the year, their
inclusion in the temporal string is quite easy.

The algorithm to execute Time Automaton is simple to implement, since it is
nothing more than a simple graph traversal algorithm, involving some basic
rules.

Time Automaton does not use any available text-based querying language to
execute queries. This independence enabled us to create an innovative logic
that is both visually coherent and capable of expressing a significant set of
different types of temporal constructions. In order to test Time Automa-
ton’s logic we created a sample of representative temporal queries including
all types of temporal expressions contained in the matured OWL-Time On-
tology [19] [20]. Almost all queries in the sample are formulable with the
Time Automaton mechanism and the majority of them are impossible to

22

formulate using the available visual temporal querying solutions.

For simple queries Time Automaton may not be as user friendly as other
available visual solutions. However, it allows a larger set of temporal query
types than the other approaches and it can be particularly useful in contexts
where analysts need to perform complex temporal queries but do not possess
programming skills.

References

[1] G. Andrienko, N. Andrienko, S. Wrobel, Visual analytics tools for anal-
ysis of movement data, ACM SIGKDD Explorations Newsletter 9 (2)
(2007) 38-46.

[2] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan,
A. Tomkins, Visualizing tags over time, in: Proceedings of the 15th
international conference on World Wide Web, WWW ’06, 2006, pp.
193-202.

[3] J. Groff, P. Weinberg, SQL The Complete Reference, 3rd Edition, 3rd
Edition, McGraw-Hill, Inc., New York, NY, USA, 2010.

[4] N. Andrienko, G. Andrienko, Exploratory analysis of spatial and tem-
poral data: a systematic approach, Springer Verlag, 2006, Ch. 4.6.1.2.

[5] C. Ahlberg, B. Shneiderman, Visual information seeking: tight coupling
of dynamic query filters with starfield displays, in: Proceedings of the
SIGCHI conference on Human factors in computing systems: celebrating
interdependence, ACM, 1994, p. 317.

[6] R. Edsall, D. Peuquet, A graphical user interface for the integration
of time into GIS, in: Proceedings of the 1997 American Congress of
Surveying and Mapping Annual Convention and Exhibition, Seattle,
WA, 1997, pp. 182-189.

[7] E. Codd, A relational model of data for large shared data banks, Com-
munications of the ACM 13 (6) (1970) 377-387.

[8] R. Snodgrass, The TSQL2 temporal query language, Kluwer Academic
Pub, 1995.

23

[9] R. Snodgrass, The temporal query language TQuel, ACM Transactions
on Database Systems (TODS) 12 (2) (1987) 247-298.

[10] D. Maier, The Theory of Relational Databases, Computer Science Press,
1983, Ch. 15.

[11] H. Hochheiser, B. Shneiderman, Dynamic query tools for time series
data sets: timebox widgets for interactive exploration, Information Vi-
sualization 3 (1) (2004) 1-18.

[12] L. Chittaro, C. Combi, Visualizing queries on databases of temporal
histories: new metaphors and their evaluation, Data & Knowledge En-
gineering 44 (2) (2003) 239-264.

[13] J. Niemi, L. Carlson, Modelling the semantics of calendar expressions
as extended regular expressions, in: FSMNLP, 2005, pp. 179-190.

[14] J. E. F. Friedl, Mastering Regular Expressions, 2nd Edition, O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2002.

[15] J. Hobbs, Granularity, in: In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Citeseer, 1985.

[16] T. H. Cormen, C. Stein, R. L. Rivest, C. E. Leiserson, Introduction
to Algorithms, 2nd Edition, McGraw-Hill Higher Education, 2001, Ch.
22.3, pp. 540-549.

[17] M. Golumbic, Algorithmic graph theory and perfect graphs, North Hol-
land, 2004.

[18] G. Andrienko, N. Andrienko, D. Keim, A. MacEachren, S. Wrobel, Chal-
lenging problems of geospatial visual analytics, Journal of Visual Lan-
guages and Computing 22 (2011) 251-256.

[19] J. Hobbs, F. Pan, An ontology of time for the semantic web, ACM
Transactions on Asian Language Information Processing (TALIP) 3 (1)
(2004) 66-85.

[20] F. Pan, J. Hobbs, Temporal aggregates in OWL-Time, in: Proceedings
of the 18th International Florida Artificial Intelligence Research Society
Conference (FLAIRS), 2005, pp. 560-565.

24

