
Appl Intell (2011) 35:323–344
DOI 10.1007/s10489-010-0224-5

KnowWE: a Semantic Wiki for knowledge engineering

Joachim Baumeister · Jochen Reutelshoefer ·
Frank Puppe

Published online: 25 March 2010
© Springer Science+Business Media, LLC 2010

Abstract Recently, Semantic Wikis showed reasonable
success as collaboration platforms in the context of social
semantic applications. In this paper, we present a novel ap-
proach, that interprets the concept of Semantic Wikis as a
knowledge engineering environment, that effectively help to
build decision-support systems. We introduce the Semantic
Wiki KnowWE, that provides the possibility to define and
maintain ontologies together with strong problem-solving
knowledge. Thus, the wiki can be used to collaboratively
build decision-support systems. These enhancements re-
quire extensions of the standard Semantic Wiki architecture
by a task ontology for problem-solving and an adapted rea-
soning process. We discuss these extensions in detail, and
we describe a case study in the field of medical emergency
systems.

Keywords Knowledge acquisition · Knowledge
engineering tools · Decision-support systems

1 Introduction

In the last decades, the application of intelligent decision-
support systems showed their advantages in many domains—
examples of successful uses are described in the litera-
ture [13, 26, 28, 33, 35]. When building such systems,

J. Baumeister (�) · J. Reutelshoefer · F. Puppe
Institute of Computer Science, University of Würzburg,
97074 Würzburg, Germany
e-mail: joba@informatik.uni-wuerzburg.de

J. Reutelshoefer
e-mail: reutelshoefer@informatik.uni-wuerzburg.de

F. Puppe
e-mail: puppe@informatik.uni-wuerzburg.de

the most critical challenge is the development and main-
tenance of the knowledge bases. In the past, this challenge
has been primarily tackled by the introduction of compre-
hensive methodologies describing the structured construc-
tion and application of the knowledge; examples are Com-
monKADS [50], the On-To-Knowledge Methodology [54],
DILIGENT [55], and the Agile Methodology [12]. Corre-
sponding tools are often tailored to the specific method-
ologies, and they usually limit the developer to a specific
knowledge representation to be applied when building the
system, for example Protégé [22, 38], OntoEdit [53], and
KnowME [2, 10].

Today’s knowledge engineering projects, however, often
face the challenge that knowledge is present at different lev-
els of formalization. Knowledge appears in different repre-
sentations ranging from technical documents, construction
plans, sheets, and experiences of human experts, but also in
the explicit form of rules and models. Moreover, we see that
the problem of knowledge formalization to one specific rep-
resentation has not been solved sufficiently, i.e., the knowl-
edge acquisition bottleneck still exists today.

1.1 Dilemmas of knowledge engineering

In our opinion and experience over the last years many
projects failed because of conflicting options, that we call
knowledge engineering dilemmas:

1. The Single/Multiple Experts Dilemma. The motivation
and sophistication of single domain specialists is often
the driving force of successful knowledge acquisition and
evolution. Although high-quality experts can guarantee
the construction of a high-quality knowledge base, these
persons are often short in time and endurance. The dis-
tribution of the workload over a number of specialists
would decrease this problem, but would also increase

mailto:joba@informatik.uni-wuerzburg.de
mailto:reutelshoefer@informatik.uni-wuerzburg.de
mailto:puppe@informatik.uni-wuerzburg.de


324 J. Baumeister et al.

the risk of reducing the overall quality of the formalized
knowledge.

Furthermore, the collaboration among a group of spe-
cialists is not supported sufficiently in many (industrial)
systems concerning the distributed development of a
knowledge base. Here, the dilemma exists of favoring
a distributed over a monolithic development process—
involving multiple experts instead of a single expert.

2. The Flexibility/Productivity Dilemma. Current state-of-
the-art tools are often tailored to a specific knowledge
representation and acquisition interface for developing
the knowledge base. In consequence, these tools are not
sufficiently flexible to map the mental model of the do-
main specialists, that are responsible for formalizing the
knowledge in the project. Additionally, knowledge ap-
pears in diverse representations, such as textual and tab-
ular data, but also, for example, as explicit rules.

On the one hand, the mapping of the particular mental
model of the specialists to the provided knowledge rep-
resentation and interfaces, respectively, often turned out
to be difficult and time-consuming. On the other hand,
a tool having the maximal flexibility, regarding the user
interfaces and provided knowledge representations, typi-
cally would increase the complexity of its use and there-
fore decreases the productivity of the developers; this
principle was also described in general as the Flexibility-
Usability Tradeoff [32, p. 86]. In consequence, we face
the dilemma of demanding a tool with maximal flexibil-
ity vs. a tool with maximal productivity.

Certainly, these dilemmas cannot be easily solved, but
lightened by the introduction of agile and extensible tools,
that adapt to the present situation. We motivate, that an ex-
tensible Semantic Wiki is an appropriate basis for building
a new generation of knowledge engineering environments.
It allows for the integration of knowledge at different lev-
els of formality, and therefore tries to weaken the flexibil-
ity/productivity dilemma described above. The use of a Se-
mantic Wiki additionally helps to target the first dilemma—
the single/multiple experts dilemma. Due to its open and
web-based implementation, a Semantic Wiki naturally al-
lows for the distribution of the development process over
a group of domain specialists. Collaboration is supported
by many standard features of wikis, for instance distrib-
uted editing, versioning, rights management, and discussion
pages. However, the dilemmas can only be lightened by pro-
viding a technical platform for a collaborative engineering
process. Thus, a Semantic Wiki can be easily used within
one of the methodologies mentioned above by serving as the
primary development tool. For instance, in CommonKADS
the documentation of the collected models can be naturally
integrated into the system. In collaborative methodologies,
such as DILIGENT, the Semantic Wiki can be used to sup-
port the agreements and discussions about the development
process.

In this paper, we propose the Semantic Wiki KnowWE as
a knowledge engineering environment for decision-support
systems. The wiki is extended by the possibility to capture
and share strong problem-solving methods for the classifi-
cation task. Thus, it not only provides interfaces for the en-
gineering of ontologies, but also interfaces for more expres-
sive knowledge such as rules and fault models.

The rest of the paper is organized as follows: In Sect. 2,
we introduce the wiki KnowWE in more detail: We show
its functional organization, and we motivate how strong
problem-solving knowledge is integrated into the ontolog-
ical layer of a Semantic Wiki. We also briefly describe
the reasoning architecture of KnowWE. One distinguishing
component of KnowWE (in comparison to other Semantic
Wikis ) is that it provides textual markups to describe strong
problem-solving knowledge for the classification task. Sec-
tion 3 shows useful markups of KnowWE for the definition
of rules, decision trees, and set-covering knowledge in more
detail. The system is already used in industrial and scientific
projects. We demonstrate the possible use of KnowWE in
Sect. 5 by showing the development of a commercial med-
ical decision-support system. The work is concluded with a
discussion in Sect. 6.

2 Wikis for knowledge engineering

In the last years, wiki systems have shown their benefits as
simple and versatile web-based content-management sys-
tems; users can add and modify tacit knowledge in form
of text and multimedia in a flexible manner. As the most
prominent example, Wikipedia attracts a large number of
users, that are willing to create and maintain informal “world
knowledge” through the wiki system. While wikis demon-
strated their benefits for creating and sharing knowledge in
open web environments, they are also successfully used in
companies and universities as general knowledge manage-
ment tools. The key feature of a wiki is its ability to change
and refine content in a fairly simple way: Every wiki arti-
cle is presented in a web browser in the corresponding view
mode. The user can easily modify/extend the content of the
article by changing into the edit mode of the article, which
is usually possible due to a mandatory Edit button placed
on the page. After saving the modifications, the changes are
directly updated in the view mode.

Due to their simplicity, standard wiki systems show lim-
itations when actually using the included knowledge. For
knowledge retrieval, only a simple full-text search is avail-
able, and knowledge connected across different articles can-
not be aggregated in a unified manner. This motivated the
development of Semantic Wikis [49], that provide the pos-
sibility to enrich the wiki content by semantic annotations,
thus formulating explicit knowledge. The annotations cor-
respond to ontological concepts, and knowledge reuse is



KnowWE: a Semantic Wiki for knowledge engineering 325

improved by semantic search and semantic navigation. At
the same time, Semantic Wikis successfully serve as on-
tology development tools, that offer a simple and web-
based interface to build semantic applications. Current ex-
amples of Semantic Wiki implementations are, for instance,
IkeWiki [47], KnowWE [8], MoKi [20], Semantic Medi-
aWiki [30], and SweetWiki [14].

The knowledge in a Semantic Wiki is typically organized
as follows: Every wiki article represents a concept of the on-
tology, and the content of the article informally describes the
concept. Properties of the concept are defined by explicit se-
mantic annotations within the article, where the annotations
often link to other articles and concepts, respectively. In
general, most Semantic Wiki systems are capable of devel-
oping and maintaining ontologies with the expressiveness
of a subset of OWL [1]. Whereas this level of expressive-
ness is sufficient in many domains, some applications need
the integration of knowledge beyond the power of OWL. In
our case, the development of (diagnostic) knowledge sys-
tems requires the representation of strong problem-solving
knowledge, such as (production) rules, decision trees, or
fault models. In this section, we introduce the Semantic Wiki
KnowWE, that is extended by markups and interfaces to de-
velop and share strong problem-solving knowledge. In con-
sequence, KnowWE can be used as a web-based knowledge
engineering tool for building (diagnostic) decision-support
systems.

With the extension of a Semantic Wiki by strong problem-
solving methods a number of implications arise:

– Concerning the internal layers of the system
– Representation of the problem-solving knowledge in

the semantic layer.
– Processing the problem-solving knowledge by ex-

tended inference methods.
– Concerning the user interface

– Interfaces for the acquisition and evolution of problem-
solving knowledge.

– Appropriate interfaces for using the knowledge.

In the following, we discuss these implications in more
detail, and we show how these issues are mapped to the im-
plementation of the system KnowWE. To the knowledge of
the authors, KnowWE is the first implementation of a Se-
mantic Wiki that integrates strong problem-solving knowl-
edge into the wiki context.

We first motivate the use of the wiki by a small example,
and then we discuss the underlying architecture in more de-
tail. Throughout the rest of the paper, we use a simplified
diagnosis system for car faults as the running example.

2.1 KnowWE by example

In this section, we introduce the basic features of KnowWE
by using a simple example application for diagnosing car

faults. The basic idea is, that possible causes of a car fault—
the solutions of the problem—are represented by corre-
sponding wiki articles. The wiki contains, for instance, ar-
ticles about flat battery, clogged air filter, and bad ignition
timing.

In Fig. 1, a page of the wiki is shown, describing the so-
lution bad ignition timing. Besides standard text describing
the problem in more detail, also explicit problem-solving
knowledge is included on the page. At Fig. 1-(1), two heuris-
tic rules [42] of the rule base are displayed, that describe
derivation knowledge of the solution. The first rule states,
that the solution Bad ignition timing will receive a negative
score, if the user enters for the symptom engine start that it
neither does not start nor barely starts. A negative score de-
creases the evaluation score of the solution in the given case.
The second rule states the derivation of the solution with re-
spect to observations regarding the engine noises: The so-
lution will receive a positive score, if the engine noise was
observed by the user as ringing or knocking. In total, the
example rule base for the solution Bad ignition timing com-
prises 11 rules. Besides the representation of rules, we also
allow for the inclusion of model-based knowledge and deci-
sion trees; cf. Sect. 3 for more details.

We see that the derivation knowledge of a solution is lo-
cally defined and maintained together with the correspond-
ing article of the solution; see Fig. 9 for an example, where a
rule base is edited in the article. This allows for a simplified
update of informal (e.g., text) and explicit knowledge (e.g.,
rules) about one entity.

Although the wiki is mainly used as a tool for knowl-
edge engineering, it also provides interfaces for interac-
tive problem-solving. We give an example of the problem-
solving process in the following: Some parts of the text are
related to concepts of the knowledge base, and thus have a
meaning for the problem-solving process. Specific semantic
annotations relate these text parts with the concepts. In the
view mode of the wiki the user is able to click on the anno-
tated text and can enter findings based on the corresponding
concept. We call this approach inline answers for problem-
solving in wikis. In Fig. 1-(2) the text phrase “engine noises”
was annotated by the corresponding concept Engine noises
available in the knowledge base. In the given example, the
value knocking for the concept Engine noises was entered
by the user. As we explain in the following sections, the
distributed reasoning process of KnowWE enables, that all
registered knowledge bases contained in the wiki are noti-
fied about this new finding, and suitable states of the so-
lutions are derived. In the solutions pane of the wiki—see
Fig. 1-(3)—we see that the solution Bad ignition timing is
derived with a high certainty, whereas the alternative solu-
tion Clogged air filter was also derived and is considered as
a possible solution. Both solutions were derived on the ba-
sis of this finding and previously entered findings. By click-



326 J. Baumeister et al.

Fig. 1 A wiki article describing the solution bad ignition timing in the context of a car diagnosis application

ing on the solution Clogged air filter in the solutions pane,
we quickly can navigate to the wiki article describing the
corresponding article. In this example, we see that not only
the knowledge of the current article is used for problem-
solving, but all knowledge bases in the wiki contribute to
this process.

Alternatively, the user is able to download an executable
version of the knowledge base by clicking the download but-
ton, see Fig. 1-(4). Then, the knowledge base of the article
is provided as download in the d3web format. The system
d3web is a freely available runtime engine written as open-
source toolkit; see SourceForge [10] for more details. This
way, the knowledge bases can be developed using the wiki
and can be exported later to an external application if re-
quired.

In the following sections, we describe the underlying
processes of creating and using knowledge bases within the
Semantic Wiki KnowWE. First, we show how parts of the
wiki article are compiled into executable knowledge bases.
Second, we discuss the representation of the knowledge in
the ontology layer of the wiki, and we finally sketch the dis-
tributed reasoning process, that enables the derivation of so-
lutions over the entire wiki.

2.2 Transformation of wiki articles to knowledge bases

Usually, Semantic Wikis formalize one ontology that is dis-
tributed over the wiki: Every concept is represented by one
distinct wiki article and properties between the concepts are
usually defined by semantic annotations within the wiki ar-
ticles.



KnowWE: a Semantic Wiki for knowledge engineering 327

Fig. 2 After saving a wiki
article, the knowledge is
transformed and compiled into
an executable format. The wiki
repository holds the compiled
knowledge bases together with
the application ontology, the
original wiki articles, and the
general task ontology

For the development of problem-solving knowledge we
extend this approach by a slightly more distributed architec-
ture. When saving the currently edited article, the content
is saved as a standard wiki page. Semantic annotations—
included in the text—are identified and the domain ontol-
ogy is updated accordingly. Additionally, dedicated parsers
process the problem-solving knowledge found in the text
into an executable knowledge base. We discuss specific
markups in more detail in Sect. 3.

With this workflow, every concept of the ontology is rep-
resented by a distinct wiki article. However, the problem-
solving knowledge related to this concept is externalized to
a compiled knowledge base. In Fig. 2, the described work-
flow is depicted, showing that an article is stored in the
wiki repository in multiple ways: First, the repository saves
the raw article in the Wiki Articles section of the reposi-
tory (Fig. 2-1). Second, ontological concepts and proper-
ties, included in the article by semantic annotations, are
stored/updated in the Application Ontology (Fig. 2-2). The
compilation of the problem-solving knowledge contained in
the article is filed to the Knowledge Bases section of the
repository (Fig. 2-3). The foundational layer of all repre-
sented knowledge is the Task Ontology, that is used to con-
nect the described concepts and the problem-solving knowl-
edge elements. The functioning of the task ontology is de-
scribed in the next section.

We see, that the knowledge is redundantly stored as orig-
inal text in the article repository, as ontological concepts in
the application ontology repository, and as compiled knowl-
edge base in the knowledge base repository. That way, we
provide the knowledge in all formats that are required by
the particular reasoners. For example, we use OWLIM [29]
for OWL reasoning and the d3web engine [10] for process-
ing the problem-solving knowledge. This redundant storage
of the data and knowledge, respectively, helps to effectively
use it for the later tasks.

2.3 A task ontology for problem-solving knowledge

The foundation of all wiki articles is the task ontology:
Here, the fundamental concepts of a Semantic Wiki inte-
grating problem-solving knowledge are represented; exam-
ples are the relations between ontological concepts and text
paragraphs in articles, but also principle concepts of the
problem-solving task, such as user input, solution, and the
connecting property derives.

2.3.1 Fundamental concepts of the task ontology

The task ontology of KnowWE is the foundation of the sys-
tem, since it represents the general entities of all applications
built with the system. For example, it includes the defini-
tions of findings and solutions, that are the basic elements
of a problem-solving task, i.e., findings are used to derive
particular solutions.

Figure 3 shows the most important concepts of the task
ontology: As the key concept Finding holds a Value,
that is assigned to an Input. Different inputs are structured
into meaningful groups by the concept Questionnaire.
Besides text and date inputs, the two main subclasses of
Input are Choice Input and Numeric Input; they
define attributes with discrete (named) values and numeri-
cal value ranges, respectively. An appropriate class of val-
ues for every input is defined by subclassing the concept
Value, accordingly. The concept Solution denotes a
special type of Choice Input in the hierarchy of in-
puts. The state of a solution is represented by a discrete fi-
nite value domain (Solution Value ); its current value
is not entered by the user but derived by problem-solving
knowledge. The value range of a solution is restricted to
one of the individuals Established, Suggested, Un-
defined, and Excluded. Further, the appropriate sub-
classes of Value are restricted to the corresponding Input
subclasses; for instance, a Solution Value is restricted
to be assigned only to instances of Solution concepts.
Similarly, Numeric Values are assigned to Numeric



328 J. Baumeister et al.

Fig. 3 Task ontology:
Integrating problem-solving
knowledge into a Semantic
Wiki. Concepts of the task
ontology are depicted in
rounded rectangles, whereas
instances are given by
non-rounded rectangles (green)

Inputs. These and further property restrictions were omit-
ted in Fig. 3 in order to obtain a better overview of the basic
concepts. We discuss these restrictions in more detail in the
following.

2.3.2 Interweaving the task ontology and the application
ontology

For a new knowledge engineering project the domain spe-
cialist defines the basic concepts (findings and solutions),
that are relevant for the application domain. Ontological
knowledge can be defined by semantic annotations included
in the wiki article. When saving an article, the included
concepts (together with corresponding properties) are stored
in the application ontology or—when already existing—are
updated accordingly. For instance, input concepts of the ap-
plication ontology are automatically aligned as subclasses of
Input and Value, respectively. Analogously, solutions of
the domain are described as subclasses of Solution. Fig-
ure 4 shows the task ontology (in orange rounded rectangles)
extended by parts of an application ontology for the car diag-
nosis domain (in blue rectangles). We see that the concepts
Clogged air filter and Flat battery are added
as children to the concept Technical problem, which
itself is a subclass of Solution. Also, the concept Ex-
haust fumes is defined as a choice input together with
a corresponding concept Exhaust fumes values, that
represent its possible value domain.

As we describe in Sect. 3, we provide explicit markups
to define concepts of the application ontology. Thus, we are
able to automatically align application concepts, specified in
an article, as subclasses of an concept of the task ontology.

For example, the concept Exhaust fumes is automati-
cally aligned as a subclass of Choice Input. The inter-
weaving of the task ontology with the application ontology
is shown in Fig. 5 in more detail. As described before, the
property assignedTo between Value and Input is re-
stricted in subclasses of both concepts. Thus, for instances of
Choice Value only instances of Choice Input can
be connected by the property assignedTo. During the
construction of the application ontology, these restrictions
are driven even further: For example, an instance of the con-
cept Exhaust fumes values is limited to be assigned
only to instances of the concept Exhaust fumes. In this
manner, the particular values can be only assigned to the
appropriate inputs. Further, we limit the alternatives of pos-
sible values for Choice Inputs by using a closed class
for the corresponding Value concept: Only black, blue,
and invisible are allowed as instances of the concept
Exhaust fumes values. The use of universal quan-
tification and closed classes guarantees only reasonable in-
stances of a Finding concept during a problem-solving
session.1 It is important to notice, that the described ontolog-
ical assertions between the task ontology and the application
ontology are created/updated by the parsers when process-
ing a modified wiki article.

2.3.3 Problem-solving sessions

The wiki allows for concurrent problem-solving by many
users. Then, a distinct instance of PSSession is assigned

1There exist the corresponding axioms in OWL for closed classes and
universal quantification ObjectOneOf and ObjectAllValues-
From, respectively.



KnowWE: a Semantic Wiki for knowledge engineering 329

Fig. 4 (Color online)
Connecting the application
ontology with the task ontology
by subclassing. Concepts of the
task ontology are depicted in
rounded rectangles (orange),
whereas concepts of the
application ontology are
represented by non-rounded
rectangles (blue)

Fig. 5 (Color online) Example:
Subclassing the concept Exhaust
fumes in the application
ontology. Concepts of the task
ontology are depicted in
rounded rectangles (orange),
concepts of the application
ontology are given in
non-rounded rectangles (blue),
and instances are represented by
green rectangles

to each user. The structure of the problem-solving process
is depicted in Fig. 6 by an example: A concrete problem-
solving session (here with the name user1 ) is represented
by an instance of the concept PSSession. Facts, entered
by the user, are mapped to created instances of Find-
ing (Value instances assigned to Input instances); de-
rived solutions are represented as instances of solution val-
ues assigned to a specific instance of Solution. Cur-
rently, the system mostly utilizes external reasoners (rule
engines, model-based systems, etc.) to derive solutions;
due to a broker the state of externally derived solutions is
synchronized with the Solution instances of the corre-

sponding PSSession instance (see Sect. 2.4 for more de-
tails). The reasoning processes of different users are inde-
pendent from each other, since every user is represented
by a distinct instance of PSSession. In Fig. 6 an exam-
ple is given for the session instance user1: The problem-
solving session instantiated two findings entered by the
user (Exhaust fumes=black and Fuel=unleaded).
Also, one solution was derived, that is represented by the
instance Clogged air filter = Established. It
is worth noticing, that for each fact a new instance only for
the concept Finding is created; the actual input and value
concepts are statically used as singletons.



330 J. Baumeister et al.

Fig. 6 Example: A
problem-solving session
instantiating two findings
entered by the user (Exhaust
fumes = black and
Fuel = unleaded) and instance
representing a derived solution
(Clogged air filter)

Related approaches The use of different layers for task-
specific and domain-specific knowledge is commonly sug-
gested in the knowledge engineering research. Studer et al.
[52] give an overview of principles and methods, that follow
this distinction, for instance the Expertise Model of Com-
monKADS [50] or the ontology layers of Protégé-II [16].
More recently, Crubezy and Musen [15] propose a similar
approach: Here a method ontology specifies the required in-
puts/outputs of the problem-solving method and a domain
ontology holds the application-specific knowledge. When
compared to our approach, their use of the method ontol-
ogy and domain ontology can be mapped to the task on-
tology and application ontology, respectively. Their frame-
work, however, provides more flexibility due to the use of
a separate mapping ontology. Whereas our approach auto-
matically connects the concepts of the task ontology with
the application ontology, these links are defined explicitly
by a mapping ontology in their approach. In consequence,
our approach requires less efforts due to the automatic align-
ment of the concepts, but limits the knowledge acquisition
to diagnostic reasoning.

In the following section, we describe how new facts
are derived by problem-solving knowledge, and how new
derivations are mapped to new instances of Finding.

2.4 Distributed inference

The distributed inference system of the wiki processes facts
between the user and the available knowledge bases. New
facts are added to the application ontology either in the form
of findings entered by the user or due to solutions that are
derived by knowledge bases. Every time, a new finding is
entered by the user, the entry is mapped to a newly created
instance of Finding. The new finding instance is stored
in the application ontology, and a propagation of this new
fact is started through the alignment service of the wiki. The
alignment service maps the facts to corresponding entities,
that are included in the knowledge bases. For example, the
instance Exhaust fumes = black is mapped to the

corresponding knowledge base object Exhaust fumes,
that has the possible value black.

Based on this alignment the new fact is propagated to all
registered knowledge bases. Some knowledge bases are able
to use this fact to derive new facts, that are again propagated
to the broker for further distribution. In Fig. 7 this distributed
reasoning process is depicted.

That way, entered findings are not only processed by the
knowledge base of the currently open wiki article, but also
by all existing knowledge bases of the wiki. Therefore, all
solutions—that are represented in the wiki—can be derived
anytime as it was motivated in Sect. 2.1.

Although this reasoning process is simple, its effective-
ness depends on the quality of the alignment service. Cur-
rently, we implement a simple alignment of ontology con-
cepts based on their naming and structure, i.e., concepts of
the knowledge bases with the same name and the same value
range are mapped to each other as equivalent classes. In
the literature, however, more powerful approaches are de-
scribed [17]. These can be added easily to the KnowWE sys-
tem when required. Distributed reasoning offers a number of
benefits when compared to a traditional monolithic problem-
solving process: Due to the use of a collection of individual
knowledge bases, the addition, modification, and exchange
of single knowledge bases becomes easier. In principle, this
architecture also allows for a spatially distributed reasoning
process, i.e., the knowledge bases are situated on different,
locally distributed servers.

However, in the context of knowledge engineering for
decision-support systems it is often reasonable to control the
problem-solving behavior of the edited knowledge bases.
Thus, KnowWE provides the possibility to define a spe-
cific article as the master of the wiki: Here, a large coher-
ent knowledge base is defined on the basis of imports of
knowledge bases contained in other wiki articles. This mas-
ter can be separately tested and exported as a single knowl-
edge base. Further, we are able to define variants of knowl-
edge bases by defining different masters importing varying
collections of wiki articles. In Fig. 8, an example of two



KnowWE: a Semantic Wiki for knowledge engineering 331

Fig. 7 Blackboard architecture
of the distributed
problem-solving within
KnowWE

masters of the wiki is depicted. In total, the wiki contains
four wiki articles with knowledge bases, i.e., Article 1 to Ar-
ticle 4. Additionally, the wiki page Article 5 defines the mas-
ter knowledge base Master 1 by including the knowledge
bases from the articles 1, 2, and 3. The alternative master
Master 2 defined in page Article 6 only includes the knowl-
edge bases from articles 3 and 4, and thus represents a dif-
ferent view of the entire knowledge base.

3 Knowledge acquisition with textual markups

The knowledge acquisition interface always strongly de-
pends on the problem-solving engine and knowledge repre-
sentation used. KnowWE provides multiple markups to de-
fine problem-solving knowledge inline with the text, a map-
ping of the entered knowledge to the application ontology,
and an integration of the reasoning results into the ontol-
ogy and wiki interface (e.g., for showing derived solutions
to the user). We integrated the open-source reasoning en-
gine d3web [10] into the wiki, since it implements multiple
reasoners for diagnostic inference and allows for a flexible
adaptation of the knowledge engineering process with re-
spect to the project requirements. As described in Sect. 2.3,
the reasoning engine takes Finding instances from the ap-
plication ontology and writes derived solutions/findings into
the ontology again.

Due to the extensible architecture of KnowWE, it is pos-
sible to add further engines besides d3web, such as Prolog
or JESS [19]; the architecture of the wiki was described in
more detail in Reutelshoefer et al. [46].

In the following, we introduce markups to define termi-
nological concepts, rules, decision trees, and set-covering
models. The syntax of the particular markups should be as
simple as possible in order to allow for an intuitive creation
and evolution of the knowledge together with the standard
wiki text. In the best case, motivated wiki users are capa-
ble of understanding and using the markup with only little
training. With this ability, we enable an ad-hoc knowledge
engineering process [45].

For an effective use, we propose to seamlessly integrate
the acquisition of problem-solving knowledge into the stan-
dard authoring process of the wiki. For this reason, we em-
bed the knowledge formalization into the edit pane of the
wiki article, i.e., specialized textual markup is used to enter
explicit knowledge inline with the wiki text. Figure 9 shows
an example, where a rule base is included in the wiki arti-
cle: Besides standard wiki markup for defining the content
of text and images (see Fig. 9-(1)), also a rule base for deriv-
ing the solution Clogged air filter is included, see
Fig. 9-(2).

It is possible to structure the wiki by solutions, i.e., each
solution or group of related solutions defines a distinct wiki
article. Besides standard wiki text and multimedia concern-
ing the solutions, we also recommend including the corre-
sponding problem-solving knowledge in the articles. The
definition of the terminology is an exceptional case; here, we
propose to define the possible inputs and their structure on a
page, that is different from the pages describing its solution’s
derivation knowledge. That way, every article of a new solu-
tion can reuse the terminology for describing the problem-
solving knowledge. Additional inputs—proprietary for a
specific solution—can be either added ad-hoc on the solu-
tion’s page or (after consulting the wiki admin) added to
the distinct terminology page. Analogously, the taxonomy
of solutions can be defined on a special page. Otherwise,
every solution—not connected into a taxonomy—is added
as direct subclass of the concept Solution, as shown in
Fig. 4.

3.1 Terminology definition

In the previous section, we introduced the concept of the
application ontology, that describes the basic entities of the
considered domain. As for all other types of knowledge, the
application ontology is defined within the edit pane of the
wiki. We provide two hierarchies to define the elementary
facts of the diagnostic task: (User) inputs and solutions. Both
hierarchies are defined by so-called dash-trees. A dash-tree
is a textual notation of a tree, where the successors of a node



332 J. Baumeister et al.

Fig. 8 Definition of knowledge
variants by the specification of
masters of the wiki

are represented by indenting dashes. This representation is
quite common to textually visualize a tree-like structure.

Observations Technical problem
- Fuel [oc] - Clogged air filter
-- unleaded - Battery problem
-- diesel -- Flat battery
- Exhaust fumes [oc] -- Defect battery cell
-- black
-- blue
-- invisible
- Current fuel consumption [num]
- Average fuel consumption [num]

Above, two hierarchies are depicted as dash trees. In
fact, we see that the dash-trees give an excerpt of the ap-
plication ontology already shown in Fig. 4. The left side
shows an input-tree, where inputs along with their values
are defined. As required in the task ontology, inputs are
grouped into questionnaires, and thus the root of every in-
put tree denotes the name of the questionnaire the inputs are
referring to. In the example, Observations is defined
as a questionnaire containing the inputs Fuel, Exhaust
fumes, Current fuel consumption, and Aver-
age fuel consumption. The first input Fuel is de-
fined with the values unleaded and diesel. The marker
[oc] denotes, that this input is defined as a Choice
Input, i.e., an input with a discrete value range, where
only one value can hold at a time. Analogously, the inputs
Current fuel consumption and Average fuel
consumption are defined as Numerical Input by
the marker [num].

The right side of the markup example shows the defini-
tion of the solution taxonomy. With Technical prob-
lem as the root solution, we define is-a relations to other

solutions by dashes. For instance, the solutions Clogged
air filter and Battery problem are subclasses
of Technical problem, whereas Battery prob-
lem has the two subclasses Flat battery and Defect
battery cell. Since Technical problem is not
connected as the child of another solution, it is automat-
ically sub-classed by the concept Solution by default,
see Fig. 4. We see, that the dashes have different seman-
tics for the input trees and the solutions trees; they represent
the most common organization property for each hierarchy
(contains vs. subClassOf).

The terminology of inputs and solutions can be defined
anywhere in the wiki article, but both trees have to be
wrapped by the tag %% Questions ...% and %%So-
lutions ...%, respectively, so that the system can iden-
tify the explicit terminology definitions. In the following
sections, we introduce markups to define problem-solving
knowledge, that is used to derive solutions based on given
values of inputs.

3.2 Semantic annotations

In KnowWE, semantic annotations are defined inline with
the wiki text. The markup for those annotations was inspired
by the syntax of Semantic MediaWiki [30], and ontological
concepts can be simply linked by the definition of ontologi-
cal properties. The general syntax of the markup connects a
text phrase of the wiki text with a concept using an ontolog-
ical property.

[Bad ignition timing is a technical
problem

<=> subClassOf:: TechnicalProblem]
that can be solved...



KnowWE: a Semantic Wiki for knowledge engineering 333

Fig. 9 Inline knowledge markup in KnowWE: (1) Inclusion of multimedia and (2) definition of derivation rules for the solution Clogged air
filter

In the example shown above, the text phrase “Bad
ignition. . . problem” is annotated, stating, that the con-
cept represented by this article is a subClassOf the con-
cept TechnicalProblem—the relation is also shown in
Fig. 4. The annotation itself states, that the annotated text
phrase documents/justifies the given relation.

By this type of annotation many useful ontological rela-
tions can be defined inline the wiki text. All annotations are
represented in the application ontology and can be queried

using a SPARQL [56] endpoint. SPARQL queries are em-
bedded into the wiki text, and the results of the queries are
shown in the view mode of the article.

Moreover, inline annotations also are used to define user
inputs facilities. When using the asks annotation, the wiki
renders access points to enter facts at the defined place. For
example, the following annotation shows an excerpt of the
edit pane corresponding to the wiki article shown in Fig. 1.

!! Typical Symptoms

Bad ignition timing can have multiple symptoms: For example,
...

or weak acceleration. Furthermore, bad ignition timing
frequently causes [engine noises <=> asks:: Engine noises],
such as ringing or knocking.



334 J. Baumeister et al.

In the second-last line, we see that the text phrase “engine
noises” is annotated by the property asks with the concept
Engine noises as value. This annotation yields the pop-
up menu shown in Fig. 1, where the user can enter a new
finding instance related to the concept Engine noises.

3.3 Rules

KnowWE provides a specialized markup for the definition
of rule-based knowledge. Rules are certainly the most popu-
lar knowledge representation for building knowledge bases.
A rule

r = r.c ⇒ r.a

derives facts as defined in its consequent (rule action) r.a, if
the specified rule condition r.c is satisfied. Facts derived by
the rule can be interpreted as solutions, or as further inputs,
that are used in conditions of other rules. The rule condi-
tion r.c typically consists of a combination of conjunctions
and/or disjunctions constraining the values of inputs. For the
sake of simplicity, we distinguish two basic types of rules,
that can be used in the wiki:

1. abstraction rules for deriving new instances of findings,
and

2. scoring rules for deriving a new state of a solution in-
stance.

Abstraction rules simply define an input in their rule ac-
tion, that is assigned by either a pre-defined value (for choice
inputs) or is assigned by a numeric value. The numeric value
can be either a static real value or can be computed by a for-
mula given in the rule action.

In scoring rules we use scores to qualitatively derive so-
lutions with a symbolic confirmation weight. These weights
state the degree of confirmation or disconfirmation of a
particular solution. Thus, a symbolic weight expresses the
strength, for which the satisfied rule condition will con-
firm/disconfirm the solution. The definition and seman-
tics of scoring rules goes back to the INTERNIST/QMR
project [34] and the D3 system [41]. Analogous to the repre-
sentation of the d3web rule system [2] we distinguish seven
positive weights (P1, . . . , P7) and seven negative weights
(N1, . . . , N7). Here, the weight P7 stands for the categoric
derivation of a solution, the counter–weight N7 yields the
categoric exclusion of a solution. The remaining weights
are defined in a way, so that the aggregation of two equal
weights results in the weight of the next higher weight, e.g.,
N3 + N3 = N4; two equal weights with opposite sign nul-
lify, e.g., N3 + P3 = 0.

Due to the textual acquisition within wikis, the readabil-
ity and intuitiveness of the markup is crucial for the effec-
tivity of its application. Therefore, we decided to not use an
already existing standardized markup for (horn clause) rules

like RIF [27, 57] or the languages SWRL/RuleML [25],
but to promote a more compact and human–readable no-
tation. In the following example two rules in the proposed
markup are given: The abstraction rule r1 derives the fuel
consumption with respect to the usual fuel consumption
in percent. Here, the value is computed by a formula in-
cluding the values for Average fuel consumption
and Current fuel consumption. The scoring rule
r2 adds the weight P4 to the score of the solution Clogged
air filter, if the user instance of Fuel Evaluation
exceeds the value 140.

// Abstraction rule r1:
// Fuel consumption in percent to usual consumption
IF Average fuel consumption > 0 AND

Current fuel consumption > 0
THEN Fuel Evaluation = (Current fuel consumption /

Average fuel consumption) * 100.0

// Scoring rule r2
// For an increased fuel consumption we increase the
// possibility of a clogged air filter.
IF Fuel Evaluation > 140
THEN Clogged air filter = P4

Rules can be defined anywhere in the wiki article,
but every coherent group of rules has to be wrapped by
%%Rules ...%, so that the system scans this section for
rules.

3.4 Decision trees

The representation of classification knowledge using deci-
sion trees is very popular in machine learning research [43],



KnowWE: a Semantic Wiki for knowledge engineering 335

but is also widely used for the manual definition of decision-
support knowledge. The markup for the decision tree is very
similar to the markup of the input terminology, as introduced
in Sect. 3.1. The paths of the decision tree are represented by
dashes indenting the particular inputs and values. Moreover,
a decision tree also defines successors of input values to ex-
press, that the specified inputs are asked in case the input
value was entered into the system.

The following example shows a simplistic decision tree
for the derivation of a clogged air filter. Internally, decision
trees are represented by questionnaires, so Check air
filter is the questionnaire corresponding to the decision
tree. The first question of the decision tree is related to
the input Fuel, where the next input Exhaust fumes is
asked when the instance Fuel = unleaded is present.
If the follow-up input Exhaust pipe color then is an-
swered with the value black, the solution Clogged air
filter is derived with the value established; the cat-
egorical derivation is specified by the (!) annotation. Al-
ternatively, scores—like introduced for scoring rules—can
also be used (Sect. 3.3). If these scoring weights are used
instead of the categoric derivation, then we call the tree a
heuristic decision tree [42].

It is important to notice, that one decision tree can
call other decision trees in its leafs instead of—or in ad-
dition to—deriving a solution. For example, the decision
tree Check diesel problems is called, if the instance
Fuel = diesel is present. The activation of other deci-
sion trees allows for the modularization of larger knowledge
bases.

Also, decision trees do not only define knowledge for the
derivation of knowledge, but also specify an interview strat-
egy for a dialog with the user: Possible values of an input are
denoted in an extra line of the markup. If such a value is fol-
lowed by a user input with an indent increased by one, then
this input is interpreted as a follow-up input to be presented,
when the previous input was answered with the given value.

Check air filter
- Fuel [oc]
-- unleaded
--- Exhaust fumes [oc]
---- black
----- Exhaust pipe color [oc]
------ black
------- Clogged air filter (!)
------ grey
---- blue
---- invisible
-- diesel
--- Check diesel problems

Check diesel problems
- Age of your car (in years) [num]
-- > 10
---...
-- <= 10
---...

Decision trees with the shown size are very easy to un-
derstand and to maintain. For larger decision trees, however,
it is recommended to partition the tree logic into a set of
sub-trees and refer to these sub-trees from a main tree. For
example, the two decision trees from above—Check air
filter and Check diesel problems—are refining
trees, that are called from a main tree. The main tree itself is
responsible for locating the coarse problem field and calling
appropriate sub-trees.

Decision tree knowledge can be defined on arbitrary
places in the wiki article, but they have to be wrapped by
the terminology markup %%Questions ...%.

Since trees can be easily formulated using XML, it would
have been an obvious approach to also represent the deci-
sion tree by an XML structure. Although this would yield
a reduced compilation effort due to the existence of well-
established XML parsers, the resulting markup appears to
be too verbose and complex for standard wiki users. In con-
trast, the proposed markup is by far more compact and less
vulnerable to syntax errors made by the user when formu-
lating the decision tree.

3.5 Set-covering models

Decision trees and rule-based knowledge—as introduced
above—consider the deductive derivation of solutions, which
is common for the definition of classification knowledge. In
some domains, however, it is preferable to use an abduc-
tive approach to formalize the derivation knowledge. Set-
covering models [44] are a prominent example of an ab-
ductive knowledge representation. Albeit their basic repre-
sentation is fairly simple, such models can be incrementally
refined in order to improve the expressiveness of the knowl-
edge [6].

The definition of the knowledge is very compact: Solu-
tions are described by a group of findings, that are typically
observed when the solution is present. We call these find-
ings the expected findings of a solution. During the problem-
solving process the best-matching solution is derived, i.e.,
the solution that computes the largest intersection between
its expected findings and the currently present findings.

For the use of set-covering models in wikis we pro-
pose the application of set-covering lists. For each solu-
tion a collection of findings is defined, that are typically ob-
served/entered when the solution is appropriate; the findings
are enclosed in braces. The following example shows a set-
covering list for the solution Clogged air filter:



336 J. Baumeister et al.

Clogged air filter {
Exhaust pipe color = black
Exhaust fumes = black AND Fuel
= unleaded

Driving = IN (unsteady idle speed,
weak acceleration)

Fuel Evaluation > 140
NOT (Exhaust fumes = black) [--]

}

Typical user inputs are listed, that are expected to be ob-
served for the solution Clogged air filter, e.g., for
unleaded gasoline we expect a black exhaust fume and pipe.
A special markup is used with [--] in the last line of the
list: This annotation states, that the solution is excluded from
the derivation, if the given finding is observed, i.e., the color
of exhaust fumes is not black.

The lists can be defined anywhere in the wiki article, but
they have to be wrapped by the tag %%SetCoveringList
...%.

3.6 Design and evolution of textual markups

In the previous sections, we briefly introduced the possi-
bility to define the terminology, rules, decision trees, and
set-covering knowledge. KnowWE provides extended syn-
tax to refine these types of knowledge, but also offers fur-
ther markups, e.g., for the definition of decision tables. We
refer the interested reader to the literature [9, 45] for a
more detailed discussion of available markups. In general,
new markups and corresponding problem-solving knowl-
edge can be easily added due to the plug-in architecture of
KnowWE.

The markups—as presented in this article—underwent
a continuous evolution in the past, where the system was
used in case studies with students building toy systems. We
observed typical errors and misunderstandings of the (lit-
tle trained) users when applying the markup for building
their knowledge bases. According to the identified issues we
gradually refined and simplified the markups to their current
state.

4 Management and evaluation of knowledge bases

Up to that point, we described the concept of wiki-based
knowledge engineering and we introduced suitable markups
to define strong problem-solving knowledge. For the appli-
cation of realistic knowledge engineering projects the man-
agement and evaluation of knowledge are critical issues.

4.1 Management

In the experienced development projects the size of the team
was usually very small, ranging from 2 to 8 persons. Thus, a
strict management approach was not necessary. In general,
many projects developing strong problem-solving knowl-
edge do not grow to a size that is greater than 5 people, and
dedicated process models may complicate the overall task.
With a growing team size, however, the implementation of
project management rules becomes important, as they are
known in ontology engineering, e.g., DILIGENT [55], in
open-source software engineering [36], and in general de-
sign [18].

Independently from the team size, the specification of
user roles during the project is helpful. In recent projects,
a typical four-fold classification of roles was natural: Do-
main specialists, knowledge engineers, wiki champions, and
users. Of course, for some persons some of the roles over-
lap. Here, domain specialists create and maintain the knowl-
edge base together with the knowledge engineers, that pro-
vide support regarding its formalization and structure. The
overall structure and evolution of the system is monitored by
a wiki champion. The champion bears responsibility for the
definition of the master articles and their quality, the deletion
of pages, and the management of wiki contributors (creation
and exclusion of wiki users). The definition of access rights
for the particular user roles is supported by the built-in rights
management of standard wiki software. In KnowWE rights
are granted for read and write on page level.

4.2 Evaluation

Suitable evaluation methods heavily depend on the applied
knowledge representation and the degree of formalization.
In general, the characteristics of knowledge—as presented
here—are special as to the following aspects:

1. Knowledge is distributed as fragments over the wiki arti-
cles. Different fragments may be owned by different per-
sons.

2. The formalization degree of knowledge can vary between
the particular fragments.

3. Different variants of the knowledge base are assembled
by the definition of different master articles (see Fig. 8).

In such a setting, it is not reasonable to jointly evaluate the
knowledge of the entire wiki, but to run separate evaluations
on the respective masters defined in the wiki. For each mas-
ter, we commonly expect the knowledge to be at a uniform
formalization level—an assumption that we cannot make for
other variants of the knowledge.

For the validation of the knowledge, we provide a plu-
gin for empirical test runs, i.e., the execution of (sequential)
test cases [3]. Figure 10 shows a screenshot of the empiri-
cal testing plugin of KnowWE, where 100 test cases of the



KnowWE: a Semantic Wiki for knowledge engineering 337

Fig. 10 Empirical testing with test cases in KnowWE; the results of the executed test cases can be visualized by DDTrees

car diagnosis domain have successfully passed with a pre-
cision/recall of 1. A generated visualization of the test re-
sults can be also downloaded and used for manual inspec-
tion (as show on the right top of Fig. 10). Test cases can be
defined within the wiki and are executed together with a pre-
defined master knowledge base. The verification of knowl-
edge checks for inconsistency and other types of anomalies.
Currently, KnowWE does not offer a built-in verification of
the specified masters, but masters can be exported as knowl-
edge bases. These knowledge bases are then verified using
the workbench KnowME [2], that offers a variety of anom-
aly testing tools and uses the same file format for knowledge
bases. Certainly, the tight integration of verification methods
into the wiki is planned for future work, where also distrib-
uted methods are implemented [4].

5 Case study: the Digitalys CareMate system

The system is currently used in a number of (partly indus-
trial, partly academic) projects, ranging from simple recom-
mender systems to complex decision-support systems for
technical and medical devices.

For example, KnowWE provides a technical platform to
support a biological community within the BIOLOG Wis-
sen2 project (formerly LaDy). BIOLOG Wissen [11, 37]
serves as a web-based application for the collaborative con-
struction and use of a decision-support system for landscape
diversity. It aims to integrate knowledge on causal depen-
dencies of stakeholders, relevant statistical data, and multi-

2BIOLOG is funded by the German Federal Ministry of Education and
Research from 2007–2009 (final funding phase).



338 J. Baumeister et al.

media content. In another recent project, KnowWE is ex-
tended by diagnostic workflow knowledge in the context
of the CliWE project.3 By this extension, the wiki is used
to collaboratively develop clinical guidelines, that are in-
tegrated as compiled knowledge bases into next-generation
medical devices. A first prototype of this extension is re-
ported in Hatko et al. [24].

In this paper, we describe the medical decision-support
system Digitalys CareMate, that is currently maintained us-
ing the Semantic Wiki KnowWE.

5.1 Medical decision support with CareMate

The decision support system Digitalys CareMate is com-
mercially sold by the company Digitalys4 as part of an
equipment kit for medical rescue trucks. It is used as a con-
sultation system during medical rescue missions, when the
problem definition of a particular rescue service is complex
and a second opinion becomes important.

The major goals of the project were the rated derivation
of suitable solutions and the implementation of an efficient
interview technique for busy rescue service staff in the emer-
gency car. Thus, the user can be guided through an interview
focussing on relevant questions of the current problem. With
more questions answered the current ranking of possible so-
lutions improves in relevance, and the interview strategy
targets the presentation of reasonable follow-up questions.
The interview strategy follows official school guidelines for
emergency medical technicians in Germany.

5.2 Structure and engineering of the knowledge base

In the context of the CateMate project one of the most
prominent assets of a (Semantic) Wiki was its freedom to
structure the knowledge base. Thus, a wiki does not impose
any restrictions on how to organize the knowledge base over
the wiki articles. In this spirit, KnowWE also does not limit
the developers with respect to the knowledge structure. For
this reason, it became necessary to decide about the struc-
turing of the CareMate knowledge at the beginning of the
project. In the past, we experienced it to be natural at first to
identify the core entities of the application domain; in a sec-
ond step we try to structure the knowledge base according
to instances of the identified entities.

For the CareMate project, the core entities are the car-
dinal symptoms, i.e., coarse findings describing vaguely the
problem of the currently examined patient. The organization
according to the cardinal symptoms is motivated by the ob-
servation, that in practice the emergency staff also tries to

3CliWE (Clinical Wiki Environment) is funded by Drägerwerk, Ger-
many and runs from 2009–2012.
4http://www.digitalys.de.

divide the problem by first identifying the cardinal symp-
tom. Subsequently, the applicable domain knowledge can
be easily partitioned with respect to the cardinal symptoms.
The domain specialist provided the domain knowledge (in-
terview strategy and solution derivation/rating) for each car-
dinal symptom in form of MS-Visio diagrams.

Each cardinal symptom is represented by a distinct wiki
article, where—in the first step—the MS-Visio diagrams are
uploaded as attachments and documentation/explanation is
added as free text in the corresponding wiki articles. In
the second step, the knowledge is formalized stepwise us-
ing the knowledge formalization pattern heuristic decision
tree [42]; the markup for decision trees was introduced in
Sect. 3.4. The use of heuristic decision trees was appropri-
ate, since the dialog logic and the derivation behavior—as
described in the MS-Visio diagrams—could be easily tran-
scribed into a decision tree logic. An intermediate rating of
solutions during the interview was possible, since heuristic
decision trees allow for a scoring of solutions not only at the
end of a dialog, but also in between the tree paths.

Figure 11 shows a screenshot of the main screen of the
CareMate development environment. We see entry points
for the 10 cardinal symptoms (“Leitsymptome”), for in-
stance neurological problems (“Neurologie”), chest pain
(“Schmerzen im Brustkorb”), and disturbed consciousness
(“Bewusstseinstrübung und Bewusstlosigkeit”). Each cardi-
nal symptom defines a decision tree that can be branched
into subsequent decision trees. In their leafs, some trees link
to other cardinal symptoms, when the interview progression
shows, that another cardinal symptom is more relevant for
the diagnostic process. A sophisticated interview strategy is
implemented within the tree, so that an effective diagnosis
can be made.

Thus, the wiki article of every cardinal symptom contains
free text with documentation and explanations, the original
knowledge source in form of MS-Visio diagrams, and the
formalized knowledge fragment. For larger cardinal symp-
toms, there are further pages linked from the original article,
where modular parts of the decision tree are formalized. In
Fig. 12 the wiki article of the cardinal symptom stomach
pain (“Bauchschmerzen”) is shown. Here, the wiki text de-
scribes that the decision tree logic was divided into two deci-
sion trees handling the diagnosis of stomach pain for women
and for men, separately. For both decision trees an image is
shown (can be enlarged on click), that gives an overview of
the general structure of the questionnaire and the inference.
The lower part of the browser window also shows an ex-
cerpt of the formalized knowledge base, where first the sex
(“Geschlecht”) of the patient is asked.

Whereas the semi-formalized specification of the work-
flows as MS-Visio diagrams took several weeks, the step-
wise formalization as heuristic decision trees was done
within some days. The developed knowledge base was

http://www.digitalys.de


KnowWE: a Semantic Wiki for knowledge engineering 339

Fig. 11 Main screen of the Digitalys CareMate development environment—a KnowWE implementation (original screenshot is depicted in Ger-
man language)

validated and verified using the DDTree visualization ap-
proach [3]. The wiki-based validation using test cases and
its corresponding verification using the DDTree visualiza-
tion is depicted in Fig. 10.

At the current state of development, the knowledge base
contains about 260 findings distributed over 33 question-
naires. There are about 145 distinct solutions represented by
the system, where their derivation is logically organized by
10 cardinal symptoms. The compiled knowledge base re-
sulted in a (merged) decision tree having 2051 possible di-
agnostic paths.

5.3 Export for a runtime version

Since, the knowledge base is running in a touch-screen ap-
plication on a rough-sized notepad, releases of the knowl-

edge base need to be exported from the wiki into the
runtime. Therefore, we provide a deployment feature in
KnowWE, where—on a separate wiki page—a number of
paragraphs of other wiki articles can be defined, that should
be integrated into a compile process. More technically, we
define paragraphs of wiki articles, that should be included
into this new wiki article. By including the relevant parts of
the knowledge definitions spread over the wiki, we are able
to define a view of the entire knowledge base on this one
wiki page. This join of knowledge bases was introduced as
masters of the wiki previously in Sect. 2.4. The compiled
knowledge base of this master article is exported for exter-
nal use.

Figure 13 shows a screenshot of the runtime application
running the CareMate knowledge base. The center pane of



340 J. Baumeister et al.

Fig. 12 Article of the cardinal symptom stomach pain (“Bauch-
schmerzen”) showing some text explaining the general structure of
the corresponding decision tree and overview images describing the

knowledge in a graphical way. The images can be enlarged on click
(original screenshot is depicted in German language)

the screen shows the currently active input to be answered
by the user; previously answered inputs are automatically
scrolled on top. In the bottom pane of the system, an ordered
list of possible solutions is displayed. The list is updated in-
crementally when new findings are entered into the system.
Since the application is installed on touchscreen tablet com-
puters, the size of the buttons is increased appropriately.

5.4 Reflections on the benefits of using a Semantic Wiki

Semantic Wikis became prominent because of their sup-
port of community-driven knowledge engineering [31, 48].
In a community-driven knowledge engineering approach,
many people contribute to the distributed knowledge base.

Whereas this approach fits especially for general domains,
for instance travel [23], this may not always work in more
specialized domains such as medical or biological science.
Consequently, the presented project was traditionally devel-
oped by a single domain specialist as the principal knowl-
edge contributor and another specialist for reviewing the
knowledge base. The more specialized a knowledge base is,
the more advantages of a principal contributor exist. Often,
the development of medical knowledge bases follows this
approach, where a dedicated domain specialist or a small
group of experts formalize their expertise in a particular do-
main.

Nevertheless, even for traditional development processes
the use of Semantic Wikis supporting problem-solving



KnowWE: a Semantic Wiki for knowledge engineering 341

Fig. 13 Screenshot of the runtime application running the CareMate
knowledge base. The center shows an auto-scrolling sequence of suit-
able inputs to be answered by the user. Current inputs are “Pain in a
leg?” (“Schmerzen in einem Bein?”) and “Bilateral respiratory sound?”
(“Atemgeräusch seitengleich auskultierbar?”). The bottom pane shows

an incrementally updated list of possible solutions, here with sponta-
neous pneumothorax (“Spontanpneumothorax”) as the currently most
probable solution. Due to the intended use of a touchscreen tablet the
size of the buttons is enlarged (original screenshot depicted in German
language)

knowledge is superior when compared to classic develop-
ment environments. We sketch some of the advantages in
the following:

1. Flexible organization of the knowledge: A Semantic
Wiki provides articles as logical organization units. In a
particular project the wiki makes no restrictions on how
to fill this logical units and allows for any possible struc-
ture as long as it fits a partitioning into articles. In the
presented project, we used the cardinal symptoms of the
domain (neurological problems, chest pain, etc.) as the
logical structure. This partitioning was reasonable with
respect to the applied knowledge representation; we de-
fined one or more heuristic decision trees for each cardi-
nal symptom. In another project, the partitioning with re-
spect to solutions can be more appropriate, i.e., defining
an article for each solution, where the problem-solving
knowledge for this solution is also embedded.

2. Interweaving explicit and tacit knowledge: In compari-
son to standard development tools for knowledge sys-
tems, a Semantic Wiki offers a simple combination of
explicit knowledge, such as rules or decision trees, with
tacit knowledge, for example text and images. Additional
information represented in the wiki article can serve in
many ways: (1) as startup document at the beginning of
a project to informally collect knowledge about the do-
main, (2) as documentation of the knowledge engineer-
ing decisions taken, (3) as underlying tacit knowledge
expressing the informal counter-part, and (4) as pursu-
ing information for concepts represented by the article.
In our project, the knowledge base was originally defined
using MS-Visio documents. After the formalization, the
documents were attached as underlying tacit knowledge

explaining the decision tree representation in an alterna-
tive way. The files can be easily attached, and new ver-
sions of the documents do not overwrite older ones, but
nicely integrate due to the automatic version control of
the wiki. Thus, older versions can be reviewed and com-
pared to the current state at any time. Moreover, the ar-
ticles incorporated an informal documentation of the de-
velopment process.

3. Simple administration and rights management: Many de-
velopment tools require the installation of proprietary
software on the client-side. With the use of a Seman-
tic Wiki only a standard web-browser and an inter-
net/intranet connection is necessary to start with the de-
velopment process. Furthermore, this ability frees the
knowledge engineers from the dependency of a particular
computer; the development can be stopped and contin-
ued on any computer with a web-browser and an internet
connection.

Also, wikis provide a build-in rights management by
default, that allows to restrict the read/write access of
specific articles to a user or user group. Thus, parts of the
wiki can be closed for the public, for example, because
the knowledge engineering work is not finished there.
Also, any content—knowledge or data—is held under
version control, and thus changes and revisions can be
safely performed.

6 Conclusions

Intelligent systems demonstrated their successful applica-
tion in many domains. The costs of building and maintaining



342 J. Baumeister et al.

such systems, however, are still a critical problem. In this
paper, we identified two dilemmas, that often prevent suc-
cessful knowledge engineering projects: The single/multiple
domain specialists dilemma and the flexibility/productivity
dilemma.

We claim that a flexible Semantic Wiki tailored to knowl-
edge engineering tasks can help to relax these dilemmas.
The paper introduced the Semantic Wiki KnowWE, which
is an extended interpretation of standard Semantic Wikis by
also providing the possibility to represent and use strong
problem-solving knowledge for classification tasks. We
showed, how classification knowledge is integrated into
the semantic layer of the wiki, and we described the com-
bined reasoning process of the ontology with the problem-
solving knowledge. Integral components of KnowWE are
the markups to represent variants of classification knowl-
edge such as rules, decision trees, and set-covering mod-
els. The textual markups are embedded into the standard
wiki text to formalize the problem-solving knowledge. We
provided alternative formats and knowledge representations,
respectively, to be able to flexibly adapt to possible project
requirements. Technically, KnowWE was built on top of the
wiki clone JSPWiki (http://www.jspwiki.org).

Besides classification problems, further classes of knowl-
edge systems exist addressing, for instance, configuration
and scheduling. When adapting the presented approach to
tasks other than classification, we need to consider cus-
tomizing the task ontology (Sect. 2.3) and the markups for
the particular problem-solving knowledge (Sect. 3.3ff) to-
gether with an appropriate reasoning engine.

The system is used in some industrial and scientific
projects; we demonstrated the application of the wiki by the
engineering process of the Digitalys CareMate system—a
medical decision-support system for emergency units. We
discussed the use of a Semantic Wiki with respect to tradi-
tional development processes and we identified a number of
advantages in comparison to classic development environ-
ments.

In the future, the evaluation and the evolution of knowl-
edge in Semantic Wikis need to be considered more thor-
oughly. The evaluation task is not well-understood in the
context of combining distributed problem-solving knowl-
edge and ontologies. Both parts—expressive knowledge
bases and ontologies—have been investigated in the past,
but little research is available for a combined approach. Re-
cently, the verification of ontologies with rules was inves-
tigated in Baumeister & Seipel [5], but no framework for
the combination of general problem-solving knowledge with
ontologies is known at the moment. Besides the verification
of distributed knowledge, e.g., see Baumeister & Nalepa [4],
also the validation of the knowledge needs to be consid-
ered in more detail. In addition, the evaluation of the ex-
plicit parts of the knowledge base in combination with the

informal parts (text, multimedia) is also an open issue, that
has not been solved sufficiently. Besides formal evaluation
methods, the integration of socially-inspired evaluation ap-
proaches is an interesting issue, for example the application
and the analysis of (advanced) user ratings [39].

Furthermore, experiences show that the maintainability
of a knowledge base is critical for the longterm success
of a system. In consequence, the evolution of distributed
knowledge is an important research issue for the future, es-
pecially its evolution at different levels of formality. The
current state-of-the-art provides separate works for ontol-
ogy evolution [40, 51], and for the evolution of more ex-
pressive knowledge bases [7, 21]. Little work, however, has
been done in the field of the combined evolution of knowl-
edge at different levels of formality. Semantic Wikis pro-
vide the possibility to synchronously represent knowledge
at different levels, for example in textual form and as a rule
base. For the evolution of knowledge it appears natural, that
also a combined approach for the modification of all existing
knowledge elements can be provided.

Acknowledgements The described work was partly supported by
the Digitalys GmbH in the context of the CareMate project; here, we
especially would like to thank Dr. Wolfgang Lotz, Thomas Behra, and
Timo Rumland. The authors would also like to thank—among others—
Volker Belli, Martina Freiberg, Fabian Haupt, Reinhard Hatko, and Pe-
ter Klügl for their valuable contributions to the KnowWE development.

References

1. Antoniou G, van Harmelen F (2003) Web ontology language:
OWL. In: Staab S, Studer R (eds) Handbook on ontologies in in-
formation systems. Springer, Berlin

2. Baumeister J (2004) Agile development of diagnostic knowledge
systems. IOS Press, Utrecht. AKA, DISKI 284

3. Baumeister J (2009) Advanced methods for empirical testing. In:
FLAIRS’09: Proceedings of the 22th international Florida artifi-
cial intelligence research society conference. AAAI Press, Menlo
Park, pp 378–383

4. Baumeister J, Nalepa GJ (2009) Verification of distributed knowl-
edge in semantic knowledge wikis. In: FLAIRS’09: Proceedings
of the 22th international Florida artificial intelligence research so-
ciety conference. AAAI Press, Menlo Park, pp 384–389

5. Baumeister J, Seipel D (2010) Anomalies in ontologies with rules.
Web Semant, Sci Serv Agents World Wide Web 8(1):55–66

6. Baumeister J, Seipel D, Puppe F (2003) Incremental development
of diagnostic set-covering models with therapy effects. Int J Un-
certain Fuzziness Knowl-Based Syst, 11(2):25–49

7. Baumeister J, Seipel D, Puppe F (2004) Refactoring methods for
knowledge bases. In: EKAW’04: Engineering knowledge in the
age of the semantic web: 14th international conference. LNAI,
vol 3257. Springer, Berlin, pp 157–171

8. Baumeister J, Reutelshoefer J, Puppe F (2007) KnowWE—
community-based knowledge capture with knowledge wikis. In:
K-CAP ’07: Proceedings of the 4th international conference on
knowledge capture. ACM, New York, pp 189–190

9. Baumeister J, Reutelshoefer J, Puppe F (2007) Markups for
knowledge wikis. In: SAAKM’07: Proceedings of the semantic
authoring, annotation and knowledge markup workshop, Whistler,
Canada, pp 7–14

http://www.jspwiki.org


KnowWE: a Semantic Wiki for knowledge engineering 343

10. Baumeister J et al (2008) The knowledge modeling environment
d3web.KnowME. Open-source at: http://d3web.sourceforge.net

11. Baumeister J, Reutelshoefer J, Haupt F, Nadrowski K (2008) Cap-
ture and refactoring in knowledge wikis—coping with the knowl-
edge soup. In: SCOOP’08: Proceedings of 2nd workshop on sci-
entific communities of practice, Bremen, Germany

12. Baumeister J, Seipel D, Puppe F (2009) Agile development of rule
systems. In: Giurca, Gasevic, Taveter (eds) Handbook of research
on emerging rule-based languages and technologies: Open solu-
tions and approaches. IGI Publishing, Hershey

13. Buchanan BG, Shortliffe EH (1984) Rule-based expert systems:
The MYCIN experiments of the Stanford heuristic programming
project. Addison-Wesley, Reading

14. Buffa M, Gandon F, Ereteo G, Sander P, Faron C (2008) Sweet-
Wiki: A semantic wiki. Web Semant 8(1):84–97

15. Crubézy M, Musen M (2004) Ontologies in support of prob-
lem solving. In: Handbook on ontologies in information systems.
Springer, Berlin, pp 321–342

16. Eriksson H, Shahar Y, Tu SW, Puerta AR, Musen M (1995)
Task modeling with reusable problem-solving methods. Artif In-
tell 79:293–326

17. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin
18. Fischer G (2004) Social creativity: Turning barriers into oppor-

tunities for collaborative design. In: PDC’04: Proceedings of the
8th conference on participatory design. ACM Press, New York, pp
152–161

19. Friedman-Hill E (2003) Jess in action: Java rule-based systems.
Manning, Greenwich

20. Ghidini C, Kump B, Lindstaedt SN, Mahbub N, Pammer V,
Rospocher M, Serafini L (2009) MoKi: The enterprise modelling
wiki. In: ESWC’09: The semantic web: Research and applica-
tions. LNCS, vol 5554. Springer, Berlin, pp 831–835

21. Gil Y, Tallis M (1997) A script-based approach to modifying
knowledge bases. In: AAAI/IAAI’97: Proceedings of the 14th na-
tional conference on artificial intelligence and 9th innovative ap-
plications of artificial intelligence conference, pp 377–383

22. Grosso W, Eriksson H, Fergerson RW, Gennari JH, Tu SW, Musen
M (1999) Knowledge modeling at the millennium—the design and
evolution of Protégé-2000. In: Proceedings of the 12th interna-
tional workshop on knowledge acquisition, modeling and man-
agement (KAW 1999), Banff, Canada

23. Gruber T (2008) Collective knowledge systems: Where the Social
Web meets the Semantic Web. Web Semant 6(1):4–13

24. Hatko R, Baumeister J, Puppe F (2009) Diaflux: Diagnostic flows
in wikis. In: FGWM’09: Proceedings of German workshop of
knowledge and experience management (at LWA’09)

25. Horrocks I, Patel-Schneider PF, Bechhofer S, Tsarkov D (2005)
OWL rules: A proposal and prototype implementation. Web Se-
mant 3(1):23–40

26. Hüttig M, Buscher G, Menzel T, Scheppach W, Puppe F, Buscher
H-P (2004) A diagnostic expert system for structured reports,
quality assessment, and training of residents in sonography. Med
Klin 3:117–22

27. Kifer M (2008) Rule interchange format: the framework. In:
Bassiliades N, Governatori G, Paschke A (eds) RuleML’08: Rule
representation, interchange and reasoning on the Web. LNCS, vol
5321. Springer, Berlin, pp 1–2

28. Kimura M, Sakamoto M, Adachi T, Sagara H (2005) Diagnosis
of febrile illnesses in returned travelers using the PC software
GIDEON. Travel Med Infect Dis 3(3):157–160

29. Kiryakov A (2006) OWLIM: Balancing between scalable reposi-
tory and light-weight reasoner. In: WWW’06: Proceedings of the
15th international conference on World Wide Web

30. Krötzsch M, Vrandecić D, Völkel M (2006) Semantic MediaWiki.
In: ISWC’06: Proceedings of the 5th international semantic web
conference. LNAI, vol 4273. Springer, Berlin, pp 935–942

31. Krötzsch M, Vrandecić D, Völkel M, Haller H, Studer R (2007)
Semantic wikipedia. Web Semant 5(4):251–261

32. Lidwell W, Holden K, Butler J (2003) Universal principles of de-
sign. Rockport Publishers, Gloucester

33. Mersmann S, Dojat M (2004) SmartCaretm—automated clinical
guidelines in critical care. In: ECAI’04/PAIS’04: Proceedings of
the 16th European conference on artificial intelligence, including
prestigious applications of intelligent systems, Valencia, Spain.
IOS Press, Utrecht, pp 745–749

34. Miller RA, Pople HE, Myers J (1982) INTERNIST-1, an experi-
mental computer-based diagnostic consultant for general internal
medicine. New Engl J Med 307:468–476

35. Milne R, Nicol C (2000) TIGER: Continuous diagnosis of gas tur-
bines. In: Proceedings of the 14th European conference on artifi-
cial intelligence, Berlin, Germany

36. Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of
open source software development: Apache and Mozilla. ACM
Trans Softw Eng Methodol 11(3):309–346

37. Nadrowski K, Baumeister J, Wolters V (2008) LaDy: Knowl-
edge Wiki zur kollaborativen und wissensbasierten Entscheidung-
shilfe zu Umweltveränderung und Biodiversität. Naturschutz Biol
Vielfalt 60:171–176

38. Noy NF, Grosso W, Musen M (2000) Knowledge-acquisition in-
terfaces for domain experts: An empirical evaluation of Protégé-
2000. In: Proceedings of the 12th international conference on
software engineering and knowledge engineering (SEKE 2000),
Chicago, USA

39. Noy NF, Guha R, Musen M (2005) User ratings of ontologies:
Who will rate the raters? In: Proceedings of the AAAI 2005 spring
symposium on knowledge collection from volunteer contributors,
Stanford, CA. AAAI Press, Menlo Park

40. Noy NF, Chugh A, Liu W, Musen MA (2006) A framework for on-
tology evolution in collaborative environments. In: ISWC’06: Pro-
ceedings of the 5th international semantic web conference. LNAI,
vol 4273. Springer, Berlin, pp 544–558

41. Puppe F (1998) Knowledge reuse among diagnostic problem-
solving methods in the Shell-Kit D3. Int J Hum-Comput Stud
49:627–649

42. Puppe F (2000) Knowledge formalization patterns. In: PKAW
2000: Proceedings of the pacific rim knowledge acquisition work-
shop, Sydney, Australia

43. Quinlan JR (1986) Induction of decision trees. Mach Learn
1(1):81–106

44. Reggia JA, Nau DS, Wang PY (1983) Diagnostic expert systems
based on a set covering model. J Man-Mach Stud 19(5):437–460

45. Reutelshoefer J, Baumeister J, Puppe F (2008) Ad-hoc knowledge
engineering with semantic knowledge wikis. In: SemWiki’08:
Proceedings of 3rd semantic wiki workshop—the wiki way of se-
mantics (CEUR proceedings 360)

46. Reutelshoefer J, Lemmerich F, Haupt F, Baumeister J (2009) An
extensible semantic wiki architecture. In: SemWiki’09: Proceed-
ings of the 4th workshop on semantic wikis—the semantic wiki
web (CEUR proceedings 464)

47. Schaffert S (2006) IkeWiki: A semantic wiki for collabora-
tive knowledge management. In: STICA’06: 1st international
workshop on semantic technologies in collaborative applications,
Manchester, UK

48. Schaffert S, Gruber A, Westenthaler R (2006) A semantic wiki for
collaborative knowledge formation. In: Proceedings of SEMAN-
TICS 2005 conference. Trauner Verlag, Linz

49. Schaffert S, Bry F, Baumeister J, Kiesel M (2008) Semantic wiki.
IEEE Softw 25(4):8–11

50. Schreiber G, Akkermans H, Anjewierden A, de Hoog R, Shadbolt
N, Van de Velde W, Wielinga B (2001) Knowledge engineering
and management—The CommonKADS methodology, 2nd edn.
MIT Press, Cambridge

http://d3web.sourceforge.net


344 J. Baumeister et al.

51. Stojanovic L, Maedche A, Motik B, Stojanovic N (2002) User-
driven ontology evolution management. In: EKAW’02: Ontolo-
gies and the semantic web, 13th international conference. LNAI,
vol 2473. Springer, Berlin, pp 285–300

52. Studer R, Benjamins VR, Fensel D (1998) Knowledge engineer-
ing: Principles and methods. Data Knowl Eng, 25(1–2):161–197

53. Sure Y, Erdmann M, Angele J, Staab S, Studer R, Wenke D
(2002) OntoEdit: Collaborative ontology development for the Se-
mantic Web. In: ISWC’02: International semantic web conference,
pp 221–235

54. Sure Y, Staab S, Studer R (2004) On-to-knowledge methodology
(OTKM). In: Staab S, Studer R (eds) Handbook on ontologies,
international handbooks on information systems. Springer, Berlin,
pp 117–132

55. Vrandecić D, Pinto HS, Sure Y, Tempich C (2005) The DILI-
GENT knowledge processes. J Knowl Manag 9(5):85–96

56. W3C (January 2008) SPARQL recommendation: http://www.w3.
org/tr/rdf-sparql-query

57. W3C (July 2008) RIF-BLD specification: http://www.w3.org/tr/
rif-bld

http://www.w3.org/tr/rdf-sparql-query
http://www.w3.org/tr/rdf-sparql-query
http://www.w3.org/tr/rif-bld
http://www.w3.org/tr/rif-bld

	KnowWE: a Semantic Wiki for knowledge engineering
	Abstract
	Introduction
	Dilemmas of knowledge engineering

	Wikis for knowledge engineering
	KnowWE by example
	Transformation of wiki articles to knowledge bases
	A task ontology for problem-solving knowledge
	Fundamental concepts of the task ontology
	Interweaving the task ontology and the application ontology
	Problem-solving sessions
	Related approaches


	Distributed inference

	Knowledge acquisition with textual markups
	Terminology definition
	Semantic annotations
	Rules
	Decision trees
	Set-covering models
	Design and evolution of textual markups

	Management and evaluation of knowledge bases
	Management
	Evaluation

	Case study: the Digitalys CareMate system
	Medical decision support with CareMate
	Structure and engineering of the knowledge base
	Export for a runtime version
	Reflections on the benefits of using a Semantic Wiki

	Conclusions
	Acknowledgements
	References


