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Abstract

Adaptive scientific computations require that periodic
repartitioning (load balancing) occur dynamically to main-
tain load balance. Hypergraph partitioning is a successful
model for minimizing communication volume in scientific
computations, and partitioning software for the static case
is widely available. In this paper, we present a new hy-
pergraph model for the dynamic case, where we minimize
the sum of communication in the application plus the mi-
gration cost to move data, thereby reducing total execution
time. The new model can be solved using hypergraph par-
titioning with fixed vertices. We describe an implementa-
tion of a parallel multilevel repartitioning algorithm within
the Zoltan load-balancing toolkit, which to our knowledge
is the first code for dynamic load balancing based on hy-
pergraph partitioning. Finally, we present experimental re-
sults that demonstrate the effectiveness of our approach on
a Linux cluster with up to 64 processors. Our new algorithm
compares favorably to the widely used ParMETIS partition-
ing software in terms of quality, and would have reduced
total execution time in most of our test cases.
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1 Introduction

Dynamic load balancing is an important feature in paral-
lel adaptive computations [7]. Even if the original problem
is well balanced, e.g., by using graph or hypergraph parti-
tioning, the computation may become unbalanced over time
due to the dynamic changes. A classic example is simula-
tion based on adaptive mesh refinement, in which the com-
putational mesh changes between time steps. The difference
is often small, but over time, the cumulative change in the
mesh becomes significant. An application may therefore
periodically re-balance, that is, move data among proces-
sors to improve the load balance. This process is known as
dynamic load balancing or repartitioning and is a well stud-
ied problem [7, 8, 11, 25, 27, 28, 30, 33, 34]. It has multiple
objectives with complicated trade-offs among them:

1. good load balance in the new data distribution;

2. low communication cost within the application (as
given by the new distribution);

3. low data migration cost to move data from the old to
the new distribution; and

4. short repartitioning time.

Much of the early work in load balancing focused on
diffusive methods [7, 17, 26, 33], where overloaded proces-
sors give work to neighboring processors that have lower
than average loads. A quite different approach is to parti-
tion the new problem “from scratch” without accounting for
existing partition assignments, and then try to remap parti-
tions to minimize the migration cost [25, 28]. These two
strategies have very different properties. Diffusive schemes
are fast and have low migration cost, but may incur high
communication volume. Scratch-remap schemes give low



communication volume but are slower and often have high
migration cost.

Dynamic load balancing schemes should be designed
such that the compromise between these extreme choices
can be tweaked by the application developer. In [27],
Schloegel et al. introduced a parallel adaptive reparti-
tioning scheme based on the multilevel graph partitioning
paradigm. In their work, relative importance of migration
time against communication time is set using a user-given
parameter, and it is taken into account in the refinement
phase of the multilevel scheme. Aykanat et al. [1] proposed
a graph-based repartitioning model, RM model, where the
original computational graph is augmented with new ver-
tices and edges to account for migration cost. Then the
graph is repartitioned using graph partitioning with fixed
vertices using a serial tool RM-METIS that they developed
by modifying the graph partitioning tool METIS [19]. Al-
though these approaches attempt to minimize both commu-
nication and migration costs, their applicability is limited
to problems with symmetric, bi-directional dependencies.
In a concurrent work, Cambazoglu and Aykanat [4] have
recently proposed a hypergraph-partitioning based model
for the adaptive screen partitioning problem in the context
of image-space-parallel direct volume rendering of unstruc-
tured grids. However, in that application, communication
occurs only for data replication (migration); hence, their
model accounts only for migration cost.

In this work, our approach is to directly minimize the
total execution time. We use the common model [27]

ttot = α(tcomp + tcomm) + tmig + trepart,

where tcomp and tcomm denote computation and commu-
nication times within the application, respectively, tmig is
the data migration time, and trepart is the repartitioning
time. The parameter α indicates how many iterations (e.g.,
time steps in a simulation) the application performs between
every load-balance operation. Since the goal of load bal-
ancing is to minimize the communication cost while main-
taining well-balanced computational loads, we can safely
assume that computation will be balanced and hence drop
tcomp term. The repartitioning time is typically signifi-
cantly smaller than α(tcomp + tcomm) due to fast state-of-
the-art repartitioners, so we also ignore trepart . Thus, the
objective of our model is to minimize αtcomm + tmig .

This work has two main contributions:

• We present a new hypergraph model for repartition-
ing where we minimize the sum of total communica-
tion volume in the application plus the migration cost
to move data. Hypergraphs accurately model the ac-
tual communication cost and have greater applicabil-
ity than graph models (e.g., hypergraphs can represent
non-symmetric and/or non-square systems) [5]. Fur-

thermore, directly incorporating both the communica-
tion and migration costs into a single hypergraph/graph
model is more suitable to successful multilevel parti-
tioning than accounting for migration costs only in re-
finement (see Section 2 for details).

• We present a new parallel repartitioning tool based on
hypergraph partitioning with fixed vertices. Although
serial hypergraph partitioners with fixed-vertex parti-
tioning exist (PaToH [6]), to the best of our knowledge
our tool (Zoltan [2]) is the first parallel hypergraph par-
titioner with this feature.

The rest of the paper is organized as follows. Section 2
contains some preliminaries about hypergraph partitioning
and multilevel partitioning. The details of the proposed
hypergraph model for repartitioning are presented in Sec-
tion 3. Section 4 describes the algorithm for parallel hyper-
graph partitioning with fixed vertices. Experimental eval-
uation of the proposed approach is presented in Section 5.
Finally, Section 6 contains our conclusions.

2 Preliminaries

The static partitioning problem is often modeled as graph
or hypergraph partitioning, where vertices represent the
computational load associated with data and the edges (hy-
peredges) represent data dependencies. The edges (hy-
peredges) that span more than one partition (so-called cut
edges) incur communication cost. We use the hypergraph
model because it more accurately reflects communication
volume and cost and has greater applicability than graph
models [5, 14].

2.1 Hypergraph Partitioning

A hypergraph H = (V,N) is defined by a set of ver-
tices V and a set of nets (hyperedges) N among those
vertices, where each net nj ∈ N is a non-empty subset
of vertices. Non-negative weights (wi ) and costs (cj ) can
be assigned to the vertices (vi ∈ V ) and nets (nj ∈ N)
of the hypergraph, respectively. P = {V1, V2, . . . , Vk}
is called a k -way partition of H if each part is a non-
empty, pairwise-disjoint subset of V and the union of all
Vp, p = 1, 2, . . . , k, is equal to V . A partition is said to be
balanced if

Wp ≤ Wavg(1 + ε) for p = 1, 2, . . . , k, (1)

where part weight Wp =
∑

vi∈Vp
wi is the sum of the ver-

tex weights of part Vp , Wavg =
(∑

vi∈V wi

)
/k is the

weight of each part under perfect load balance, and ε is
a predetermined maximum imbalance allowed.
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In a partition, a net that has at least one vertex in a part is
said to connect to that part. The connectivity λj(H,P ) of
a net nj denotes the number of parts connected by nj for
a given partition P of H . A net nj is said to be cut if it
connects more than one part (i.e., λj > 1 ).

There are various ways of defining the cut-size
cuts(H,P ) of a partition P of hypergraph H [24]. The
relevant one for our context is known as connectivity-1 (or
k -1) cut, defined as follows:

cuts(H,P ) =
∑

nj∈N

cj(λj − 1) (2)

The hypergraph partitioning problem [24] can then be
defined as the task of dividing a hypergraph into k parts
such that the cut-size (Eq. 2) is minimized while the balance
criterion (Eq. 1) is maintained.

2.2 Multilevel Partitioning

Although graph and hypergraph partitioning are NP-
hard [13, 24], algorithms based on multilevel paradigms [3,
16, 21] have been shown to quickly compute good par-
titions in practice for both graphs [15, 20, 32] and hy-
pergraphs [6, 22]. Recently the multilevel partitioning
paradigm has been adopted by parallel graph [23, 32], and
hypergraph [9, 29] partitioners.

In multilevel partitioning, instead of directly partitioning
the original large hypergraph (graph), a hierarchy of smaller
hypergraphs (graphs) that approximate the original is gener-
ated during the coarsening phase. The smallest hypergraph
(graph) is partitioned in the coarse partitioning phase. In
the refinement phase, the coarse partition is projected back
to the larger hypergraphs (graphs) in the hierarchy and im-
proved using a local optimization method.

3 A New Hypergraph Model for Dynamic
Load Balancing

Dynamic load balancing (repartitioning) is difficult be-
cause there are multiple objectives that often conflict. Thus,
some algorithms focus on minimizing communication cost
while others focus on migration cost. We propose a novel
unified model that combines both communication cost and
migration cost. We then minimize the composite objective
directly using hypergraph partitioning.

First consider the computational structure of an adap-
tive application in more detail. A typical adaptive applica-
tion, e.g., time-stepping numerical methods with adaptive
meshes, performs a sequence of iterations. Between each
iteration the structure of the problem (computation) may
change slightly, but usually not much. After a certain num-
ber of iterations, a load balancer is called to rebalance the

workloads. The required data is then moved (migrated) be-
tween parts to establish the new partitioning, and the com-
putation continues.

We call the period between two subsequent load balanc-
ings an epoch of the application. A single epoch may con-
sist of one or more iterations of the computation in the ap-
plication. Let the number of iterations in epoch j be αj .

It is possible to model the computational structure and
dependencies of each epoch using a computational hyper-
graph [5]. Since each epoch contains computations of
the same type, but the structure may change, a differ-
ent hypergraph is needed to represent each epoch. Let
Hj = (V j , Ej) be the hypergraph that models the j th
epoch of the application.

We assume the following procedure. Load balancing of
the first epoch is achieved by partitioning the first epoch hy-
pergraph H1 using a static partitioner. At the end of epoch
1, we need to decide how to redistribute the data and com-
putation for epoch 2. The cost should be the sum of the
communication cost for H2 , with the new data distribu-
tion, scaled by α2 (since epoch 2 will have α2 iterations)
plus the migration cost for moving data between the two
distributions. This principle holds for Hj at every epoch
j , j > 1 . We assume that the hypergraph Hj describing
the task-data dependencies of the computations of epoch
j is known at the end of epoch j − 1 . As described be-
low, we construct a repartitioning hypergraph by augment-
ing epoch j ’s hypergraph Hj with additional vertices and
nets to model data migration cost. With these additions, dy-
namic load balancing (repartitioning) reduces to hypergraph
partitioning with fixed vertices. After this repartitioning, the
resulting partition can be decoded easily to infer the data-
migration pattern and cost.

We propose a new repartitioning hypergraph model. The
repartitioning hypergraph H̄j for epoch j is constructed by
augmenting epoch j ’s hypergraph Hj with k new vertices
and |V j | new hyperedges to model the migration cost. In
H̄j we keep the vertex weights intact, but we scale each
net’s cost (representing communication) by αj . We add
one new partition vertex ui , with zero weight, for each par-
tition i , i = 1, 2, . . . , k . Thus, the vertices in H̄j are
V j ∪ {ui|i = 1, 2, . . . , k} . For each vertex v ∈ V j , we
add a migration net between v and ui if v is assigned to
partition i at the end of epoch j−1 . This migration net rep-
resents the data that needs to be migrated for moving vertex
v to a different partition; therefore, its cost is set to the size
of the data associated with v .

Figure 1 illustrates a sample hypergraph Hj−1 for epoch
j − 1 , and a repartitioning hypergraph for epoch j . Our
model does not require distinguishing between the two
types of vertices and nets; however, for clarity in this fig-
ure, we represent computation vertices with circles and par-
tition vertices ui with hexagons. Similarly, nets modeling
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Figure 1. (left) A sample hypergraph for epoch j − 1 ; (right) repartitioning hypergraph for epoch j
with a sample partitioning.

communication during computation are represented with
squares, and migration nets modeling data that must be mi-
grated if a vertex assignment changes are represented with
diamonds. At epoch j − 1 there are nine vertices with, say,
unit weights partitioned into three parts with a perfect load
balance. There are three cut nets representing data that need
to be communicated between three parts. Assuming the cost
of each net is one, the total communication volume (Eq. 2)
is three, since each cut net has a connectivity of two. In
other words, each iteration of epoch j− 1 incurs a commu-
nication cost of three.

In epoch j of Figure 1 (right), the computational struc-
ture is changed: vertices 8 and 9 are removed, and new ver-
tices a and b are added. The repartitioning hypergraph H̄j

shown reflects these changes. Additionally, there are three
partition vertices u1 , u2 and u3 . The seven old vertices of
Hj−1 are connected, via migration nets, to the partition ver-
tices for the partitions to which they were assigned in epoch
j − 1 . Similarly, new vertices a and b are connected to
the partition vertices associated with the partition they were
created.

We now have a new repartitioning hypergraph H̄j that
encodes both communication cost and migration cost. By
using this novel repartitioning hypergraph with a crucial
constraint — vertex ui must be assigned, or fixed, to parti-
tion i — the repartitioning problem reduces to hypergraph
partitioning with fixed vertices. In Section 4, we describe
how partitioning with fixed vertices can be achieved in a
parallel multilevel hypergraph partitioning framework.

Let P = {V1, V2, . . . , Vk} be a valid partitioning for this
problem. We decode the result as follows. If a vertex v is
assigned to partition Vp in epoch j − 1 and to partition Vq

in epoch j , where p 6= q , then the migration net between
v and up is cut with connectivity 2, since up is fixed in
Vp . Hence this migration net will contribute its cost, size of
the data associated with v , to the cut-size (Eq. 2) accurately
modeling the migration cost of vertex v ’s data. Recall that
cost of a communication net is size of the data item that will

be communicated during computation scaled by the number
of iterations. If a communication net with connectivity λ is
cut, it contributes (λ− 1) times its cost to the total cut-size
accounting the true communication volume incurred by this
net in the computation phase [5]. Thus our repartitioning
hypergraph accurately models the sum of communication
during computation phase plus migration cost due to moved
data.

In Figure 1, assume that the example epoch j has, say,
five iterations, i.e. αj = 5 . Then the cost of each com-
munication net is five. Further assume that each vertex has
size three; i.e. the migration cost of each vertex, hence the
cost of each migration net, is three. In this example, ver-
tices 3 and 6 are moved to partitions V2 and V3 , respec-
tively. Thus, the migration nets connecting them to their
previous parts are now cut with connectivity of two. To-
tal migration cost is then 2 × 3 × (2 − 1) = 6 . Further-
more, communication nets {2, 3, a} and {5, 6, 7} are cut
with connectivity of two, as is net {4, 6, a} with connectiv-
ity of three. They represent a total communication volume
of 2× 5× (2− 1) + 1× 5× (3− 1) = 20 , resulting in a
total cost of 26 for epoch j .

4 Parallel Multilevel Hypergraph Partition-
ing with Fixed Vertices

Another contribution of our work is the development
of a new technique for parallel hypergraph partitioning
with fixed vertices. As described in Section 2, hyper-
graph partitioning is NP-hard but can be effectively (ap-
proximately) solved in practice using multilevel heuristic
approaches. Multilevel hypergraph partitioning algorithms
can be adapted to handle fixed vertices [6]. Here we de-
scribe our technique for parallel multilevel hypergraph par-
titioning with fixed vertices. Our implementation is based
on the parallel hypergraph partitioner in Zoltan [9].

The main idea of partitioning with fixed vertices is to
make sure that the fixed partition constraint of each ver-
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tex is maintained during phases of multilevel partitioning.
We will first describe how this works assuming that we are
using a direct k -way multilevel paradigm. Later we will
briefly discuss how this is handled when a recursive bisec-
tion approach is used.

4.1 Coarsening Phase

The goal of the coarsening phase is to approximate
the original hypergraph via a succession of smaller hyper-
graphs. This process terminates when the coarse hyper-
graph is small enough (e.g., it has less than 2k vertices)
or when the last coarsening step fails to reduce the hyper-
graph size by a threshold (typically 10%). In this work we
employ a method based on merging similar pairs of ver-
tices. We adopted a method called inner-product matching
(IPM), that was initially developed in PaToH [5] (where it
was called heavy-connectivity matching), and later adopted
by hMETIS [18] and Mondriaan [31]. The greedy first-
choice method is used to match pairs of vertices.

Conceptually, the parallel implementation of IPM works
in rounds where in each round, each processor selects a sub-
set of vertices as candidate vertices that will be matched in
that round. The candidate vertices are sent to all processors.
Then all processors concurrently contribute the computa-
tion of their best match for those candidates. Matching is fi-
nalized by selecting a global best match for each candidate.
Zoltan uses a two-dimensional data distribution; hence, the
actual inner workings of IPM are somewhat complicated.
Since a detailed description is not needed to explain the ex-
tension for handling fixed vertices, we have omitted those
details. Readers may refer to [9] for more details.

During the coarsening, we do not allow two vertices to
match if they are fixed to different partitions. Thus, there are
three possible scenarios: 1) two matched vertices are fixed
to the same partition, 2) only one of the matched vertices is
fixed to a partition, or 3) both are not fixed to any partitions
(free vertices). For cases 1 and 2, the resulting coarse vertex
is fixed to the part in which either of its constituent vertices
was fixed; for case 3, the resulting coarse vertex is free.
By constraining matching in this way, we ensure that the
fixed vertex information appropriately propagates to coarser
hypergraphs, and coarser hypergraphs truly approximate the
finer hypergraphs and their constraints.

In order to efficiently implement this restriction, we
allow each processor to concurrently compute all match
scores of possible matches, including infeasible ones (due
to the matching constraint), but at the end when the best lo-
cal match for each candidate is selected we select a match
that obeys the matching constraint. We have observed that
this scheme only adds an insignificant overhead to the unre-
stricted IPM matching.

4.2 Coarse Partitioning Phase

The goal of this phase is to construct an initial solution
using the coarsest hypergraph available. When coarsen-
ing stops, if the coarsest hypergraph is small enough (i.e.,
if coarsening did not terminate early due to unsuccessful
coarsening) we replicate it on every processor and each pro-
cessor runs a randomized greedy hypergraph growing algo-
rithm to compute a different partitioning into k partitions.
If the coarsest hypergraph is not small enough, then each
processor contributes computation of an initial partitioning
using a localized version of the greedy hypergraph algo-
rithm. In either case, we ensure that fixed coarse vertices
are assigned to their respective partitions.

4.3 Refinement Phase

The refinement phase takes a partition assignment,
projects it to finer hypergraphs and improves it using a lo-
cal optimization method. Our code is based on a localized
version of the successful Fiduccia–Mattheyses [12] method,
as described in [9]. The algorithm performs multiple pass-
pairs and in each pass, each vertex is considered to move to
another part to reduce cut cost. As in coarse partitioning,
the modification to handle fixed vertices is quite straight-
forward. We do not allow fixed vertices to be moved out of
their fixed partition.

4.4 Handling Fixed Vertices in Recursive
Bisection

Achieving k -way partitioning via recursive bisection
(repeated subdivision of parts into two parts) can be ex-
tended easily to accommodate fixed vertices. For example,
in the first bisection of recursive bisection, the fixed vertex
information of each vertex can be updated as follows: ver-
tices that are originally fixed to partitions 1 ≤ p ≤ k/2 , are
fixed to partition 1, and vertices originally fixed to partitions
k/2 < p ≤ k are fixed to partition 2. The partitioning algo-
rithm with fixed vertices then can be executed without any
modifications. This scheme is recursively applied in each
bisection. Zoltan uses this recursive bisection approach.

5 Results

Our repartitioning code is based on the hypergraph parti-
tioner in the Zoltan toolkit [10, 9], which is freely available
from the Zoltan web site1. The code is written in C and
uses MPI for communication. We ran our tests on a Linux
cluster that has 64 dual-processor Opteron 250 nodes inter-
connected via an Infiniband network.

1www.cs.sandia.gov/Zoltan
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Name |V | |E| vertex degree Application Area
min max avg

xyce680s 682,712 823,232 1 209 2.4 VLSI design
2DLipid 4,368 2,793,988 396 1,984 1,279.3 Polymer DFT
auto 448,695 3,314,611 4 37 14.8 Structural analysis
apoa1-10 92,224 17,100,850 54 503 370.9 Molecular dynamics
cage14 1,505,785 13,565,176 3 41 18.0 DNA electrophoresis

Table 1. Properties of the test datasets; |V | and |E| are the numbers of vertices and graph edges,
respectively.

Due to the difficulty of obtaining data from real-world
adaptive simulations, we present results from synthetic dy-
namic data. The base cases were obtained from real ap-
plications, as shown in Table 1. All these problems are
structurally symmetric, and can be accurately represented
as both graphs and hypergraphs. (We expect our hypergraph
approach to have a clear advantage for non-symmetric prob-
lems.)

We used two different methods to generate synthetic dy-
namic data. The first method represents biased random per-
turbations that change the structure of the data. In this
method, we randomly select a certain fraction of vertices
in the original data and delete them along with the incident
edges. At each iteration, we delete a different subset of ver-
tices from the original data. Therefore, we simulate dynam-
ically changing data that can both lose and gain vertices and
edges. The results presented in this section correspond to
the case where half of the partitions lose or gain 25% of the
total number of vertices at each iteration.

The second method we used to generate synthetic data
simulates adaptive mesh refinement. Starting with the initial
data, we randomly select a certain fraction of the partitions
at each iteration. Then, the sub-domain corresponding to
selected partitions performs a simulated mesh refinement,
where each vertex increases both its weight and its size by a
constant factor. In the results displayed in this section, 10%
of the partitions are selected at each iteration and the weight
and size of each vertex in these partitions are randomly in-
creased to between 1.5 and 7.5 of their original value.

We tested several other configurations by varying the
fraction of vertices lost or gained and the factor that scales
the size and weight of vertices. The results we obtained in
these experiments were similar to the ones presented in this
section.

We compare four different algorithms:

1. Zoltan-repart: Our new method implemented within
the Zoltan hypergraph partitioner,

2. Zoltan-scratch: Zoltan hypergraph partitioning from
scratch.

3. ParMETIS-repart: ParMETIS graph repartitioning us-
ing the AdaptiveRepart option.

4. ParMETIS-scratch: ParMETIS graph partitioning
from scratch (Partkway).

We used ParMETIS version 3.1 in these experiments. For
the scratch methods, we used a maximal matching heuristic
in Zoltan to map partition numbers to reduce migration cost.
We do not expect the partition-from-scratch methods to be
competitive for dynamic problems, but include them as a
useful baseline.

In Figures 2 through 6, experimental results for total
cost while varying the number of processors and α are pre-
sented. In our experiments we varied the number of proces-
sors (partitions) between 16 and 64, and α from 1 to 1000.
(Our α corresponds to the ITR parameter in ParMETIS.)
We report the average results over a sequence of 20 trials for
each experiment. For each configuration, there are four bars
representing total cost for Zoltan-repart, ParMETIS-repart,
Zoltan-scratch and ParMETIS-scratch, from left to right re-
spectively. Total cost in each bar is normalized by α and
consists of two components: communication (bottom) and
migration (top) costs. In order to improve the readability of
the charts, we limited the y-axis for α = 1 where total costs
for Zoltan-scratch and ParMETIS-scratch were much larger
than the costs for Zoltan-repart and ParMETIS-repart.

The results show that in the majority of the test cases, our
new hypergraph repartitioning method Zoltan-repart outper-
forms ParMETIS-repart in terms of minimizing the total
cost. Since minimizing the migration cost is a more deeply
integrated objective starting from coarsening, Zoltan-repart
trades off communication cost better than ParMETIS-repart
to minimize the total cost. This is more clearly seen for
small α values where minimizing migration cost is as
important as minimizing the communication cost. As α
grows, migration cost decreases relative to communication
cost and the problem essentially reduces to minimizing the
communication cost alone. Due to increased emphasis on
communication volume, the partitioners find smaller com-
munication cost with increasing α .
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Figure 2. Normalized total cost (communication volume + (migration volume)/α ) for xyce680s with (a)
perturbed data structures and (b) perturbed weights. Each group of four bars represents results for
Zoltan-repart, ParMETIS-repart, Zoltan-scratch and ParMETIS-scratch, from left to right respectively.

Figure 3. Normalized total cost (communication volume + (migration volume)/α ) for 2DLipid with (a)
perturbed data structures and (b) perturbed weights. Each group of four bars represents results for
Zoltan-repart, ParMETIS-repart, Zoltan-scratch and ParMETIS-scratch, from left to right respectively.

Similar observations can be made when compar-
ing Zoltan-repart against Zoltan-scratch and ParMETIS-

scratch. Since the sole objective in Zoltan-scratch and
ParMETIS-scratch is to minimize communication cost, the
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Figure 4. Normalized total cost (communication volume + (migration volume)/α ) for auto dataset
with (a) perturbed data structures and (b) perturbed weights. Each group of four bars represents
results for Zoltan-repart, ParMETIS-repart, Zoltan-scratch and ParMETIS-scratch, from left to right
respectively.

Figure 5. Normalized total cost (communication volume + (migration volume)/α ) for apoa1-10 with (a)
perturbed data structures and (b) perturbed weights. Each group of four bars represents results for
Zoltan-repart, ParMETIS-repart, Zoltan-scratch and ParMETIS-scratch, from left to right respectively.

migration cost is extremely large, especially for small α .
The total cost using Zoltan-scratch and ParMETIS-scratch
is comparable to Zoltan-repart only when α is greater than
100. For larger values of α , the objective of minimizing
the communication cost dominates; however, Zoltan-repart
still performs as well as the scratch methods to minimize
the total cost.

When using ParMETIS-repart, migration cost increases
noticeably compared to communication cost with increas-

ing number of partitions (processors). On the other hand,
with Zoltan-repart, the increase in migration cost is kept
small at the expense of a modest increase in communica-
tion cost. Consequently, Zoltan-repart achieves a better bal-
ance between communication and migration costs; hence,
the total cost gets better compared to ParMETIS-repart as
the number of partitions increases. This shows that Zoltan-
repart is superior in minimizing the total cost objective as
well as in scalability of the solution quality compared to
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Figure 6. Normalized total cost (communication volume + (migration volume)/α ) for cage14 with (a)
perturbed data structures and (b) perturbed weights. Each group of four bars represents results for
Zoltan-repart, ParMETIS-repart, Zoltan-scratch and ParMETIS-scratch, from left to right respectively.

Figure 7. Run time with perturbed data
structure for xyce680s. Each group of
four bars represents results for Zoltan-
repart, ParMETIS-repart, Zoltan-scratch and
ParMETIS-scratch, from left to right respec-
tively.

ParMETIS-repart.
Run times of the tested partitioners while changing the

data’s structure are given in Figures 7 and 8. Results for
changing vertex weights and sizes are omitted since they
were similar to the ones presented here. As shown in the
figures, Zoltan-repart is at least as fast as ParMETIS-repart
on the sparse dataset xyce680s. For the dense 2DLipid
data, although graph partitioning approaches run faster
for small number of partitions, their execution times in-
crease and become comparable to that of hypergraph par-
titioning approaches as the number of partitions increases.
For medium-dense graphs (e.g., auto, cage14, apoa1-10),
Zoltan-repart is significantly slower than ParMETIS-repart.
Here, we present run time results for only the auto data. The
results for cage14 and apoa1-10 were very similar to that of
auto, displaying 10 to 15 times faster execution for graph-
based approaches compared to hypergraph-based ones. We
plan to improve this performance by using local heuristics
in Zoltan-repart to reduce global communication (e.g., us-
ing local IPM instead of global IPM).

6 Conclusions

We have presented a new approach to dynamic load bal-
ancing based on a single hypergraph model that incorpo-
rates both communication volume in the application and
data migration cost. Our experiments, using data from
a wide range of application areas, show that our method
produces partitions that give similar or lower cost than
the adaptive repartitioning scheme in ParMETIS. Our code
generally required longer time than ParMETIS but that is
mostly due to the greater richness of the hypergraph model.
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Figure 8. Run time with perturbed data structure for (a) 2DLipid and (b) auto. Each group of four bars
represents results for Zoltan-repart, ParMETIS-repart, Zoltan-scratch and ParMETIS-scratch, from
left to right respectively.

The full benefit of hypergraph partitioning is realized on
unsymmetric and non-square problems that cannot be rep-
resented easily with graph models. To provide compari-
sions with graph repartitioners, we did not test such prob-
lems here, but they have been studied elsewhere [5, 9]. The
experiments showed that our implementation is scalable.

Our approach uses a single user-defined parameter α
to trade between communication cost and migration cost.
Experiments show that our method works particularly well
when migration cost is more important, but without com-
promising quality when communication cost is more impor-
tant. Therefore, we recommend our algorithm as a universal
method for dynamic load balancing. The best choice of α
will depend on the application, and can be estimated. Rea-
sonable values are in the range 1− 1000 .

In future work, we will test our algorithm and implemen-
tation on real adaptive applications. We will also attempt
to speed up our algorithm by exploiting locality given by
the data distribution. We believe the implementation can
be made to run faster without reducing quality. However,
since the application run time is often far greater than the
partitioning time, this enhancement may not be important
in practice.
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[5] U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning
based decomposition for parallel sparse-matrix vector mul-
tiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, 1999.
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