
Benchmarking Cloud Serving Systems with YCSB

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, Russell Sears

Yahoo! Research
Santa Clara, CA, USA

{cooperb,silberst,etam,ramakris,sears}@yahoo-inc.com

ABSTRACT
While the use of MapReduce systems (such as Hadoop) for
large scale data analysis has been widely recognized and
studied, we have recently seen an explosion in the number
of systems developed for cloud data serving. These newer
systems address “cloud OLTP” applications, though they
typically do not support ACID transactions. Examples of
systems proposed for cloud serving use include BigTable,
PNUTS, Cassandra, HBase, Azure, CouchDB, SimpleDB,
Voldemort, and many others. Further, they are being ap-
plied to a diverse range of applications that differ consider-
ably from traditional (e.g., TPC-C like) serving workloads.
The number of emerging cloud serving systems and the wide
range of proposed applications, coupled with a lack of apples-
to-apples performance comparisons, makes it difficult to un-
derstand the tradeoffs between systems and the workloads
for which they are suited. We present the Yahoo! Cloud
Serving Benchmark (YCSB) framework, with the goal of fa-
cilitating performance comparisons of the new generation
of cloud data serving systems. We define a core set of
benchmarks and report results for four widely used systems:
Cassandra, HBase, Yahoo!’s PNUTS, and a simple sharded
MySQL implementation. We also hope to foster the devel-
opment of additional cloud benchmark suites that represent
other classes of applications by making our benchmark tool
available via open source. In this regard, a key feature of the
YCSB framework/tool is that it is extensible—it supports
easy definition of new workloads, in addition to making it
easy to benchmark new systems.

Categories and Subject Descriptors: H.3.4 [Systems
and Software]: Performance evaluation
General Terms: Measurement, Performance

1. INTRODUCTION
There has been an explosion of new systems for data stor-

age and management “in the cloud.” Open source systems
include Cassandra [2, 24], HBase [4], Voldemort [9] and oth-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCC’10, June 10–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0036-0/10/06 ...$10.00.

ers [3, 5, 7, 8]. Some systems are offered only as cloud
services, either directly in the case of Amazon SimpleDB [1]
and Microsoft Azure SQL Services [11], or as part of a pro-
gramming environment like Google’s AppEngine [6] or Ya-
hoo!’s YQL [13]. Still other systems are used only within a
particular company, such as Yahoo!’s PNUTS [17], Google’s
BigTable [16], and Amazon’s Dynamo [18]. Many of these
“cloud” systems are also referred to as “key-value stores” or
“NoSQL systems,” but regardless of the moniker, they share
the goals of massive scaling “on demand” (elasticity) and
simplified application development and deployment.

The large variety has made it difficult for developers to
choose the appropriate system. The most obvious differ-
ences are between the various data models, such as the
column-group oriented BigTable model used in Cassandra
and HBase versus the simple hashtable model of Voldemort
or the document model of CouchDB. However, the data
models can be documented and compared qualitatively. Com-
paring the performance of various systems is a harder prob-
lem. Some systems have made the decision to optimize for
writes by using on-disk structures that can be maintained us-
ing sequential I/O (as in the case of Cassandra and HBase),
while others have optimized for random reads by using a
more traditional buffer-pool architecture (as in the case of
PNUTS). Furthermore, decisions about data partitioning
and placement, replication, transactional consistency, and
so on all have an impact on performance.

Understanding the performance implications of these de-
cisions for a given type of application is challenging. De-
velopers of various systems report performance numbers for
the “sweet spot” workloads for their system, which may not
match the workload of a target application. Moreover, an
apples-to-apples comparison is hard, given numbers for dif-
ferent systems based on different workloads. Thus, devel-
opers often have to download and manually evaluate mul-
tiple systems. Engineers at Digg [20] reported evaluating
eight different data stores in order to implement one feature
(the Green Badge, or “what have my friends dugg” feature).
There have been multiple similar examples at Yahoo!. This
process is time-consuming and expensive.

Our goal is to create a standard benchmark and bench-
marking framework to assist in the evaluation of different
cloud systems. We focus on serving systems, which are sys-
tems that provide online read/write access to data. That is,
usually a web user is waiting for a web page to load, and
reads and writes to the database are carried out as part of
the page construction and delivery. In contrast, batch or an-
alytical systems such as Hadoop or relational OLAP systems

provide only near-line or offline queries, and are not typically
used to support serving workloads (though the result of a
batch computation may be cached into a serving store for
low-latency access). Other researchers [26] are doing work
to benchmark analytical systems such as these. Similarly,
there are existing benchmarks for a variety of data storage
systems (such as SQL databases [22] and filesystems [12,
10]). However, the novel interfaces (usually neither SQL
nor POSIX), elasticity, and new use cases of cloud serving
systems motivate a new benchmark.

We present theYahoo! Cloud Serving Benchmark (YCSB)
framework. We are using this framework to benchmark
our own PNUTS system and to compare it to other cloud
databases. The framework consists of a workload gener-
ating client and a package of standard workloads that cover
interesting parts of the performance space (read-heavy work-
loads, write-heavy workloads, scan workloads, etc.). An im-
portant aspect of the YCSB framework is its extensibility:
the workload generator makes it easy to define new work-
load types, and it is also straightforward to adapt the client
to benchmark new data serving systems. The YCSB frame-
work and workloads are available in open source so that
developers can use it to evaluate systems, and contribute
new workload packages that model interesting applications1.

In this paper, we describe the YCSB benchmark, and re-
port performance results for four systems: Cassandra, HBase,
PNUTS, and a simple sharded MySQL implementation. Al-
though our focus in this paper is on performance and elas-
ticity, the framework is intended to serve as a tool for evalu-
ating other aspects of cloud systems such as availability and
replication, and we discuss approaches to extending it for
these purposes.

The paper is organized as follows. Section 2 provides an
overview of cloud data serving systems. Section 3 discusses
benchmark tiers for performance and scaling. Section 4 dis-
cusses the core workloads of the benchmark in detail, while
Section 5 examines the architecture and extensibility of the
YCSB tool. Section 6 presents benchmarking results on sev-
eral systems. We propose future benchmark tiers covering
availability and replication in Section 7. Section 8 examines
related work, and Section 9 presents our conclusions.

2. CLOUD SYSTEM OVERVIEW

2.1 Cloud Serving System Characteristics
Clouds serving systems share common goals, despite the

different architectures and design decisions. In general, these
systems aim for:

• Scale-out: To support huge datasets (multiple terabytes
or petabytes) and very high request rates, cloud systems
are architected to scale-out, so that large scale is achieved
using large numbers of commodity servers, each running
copies of the database software. An effective scale-out
system must balance load across servers and avoid bot-
tlenecks.

• Elasticity: While scale-out provides the ability to have
large systems, elasticity means that we can add more
capacity to a running system by deploying new instances
of each component, and shifting load to them.

1YCSB can be obtained from http://research.yahoo.com/-
Web Information Management/YCSB.

• High availability: Cloud systems must provide high
levels of availability. In particular, they are often multi-
tenant systems, which means that an outage affects many
different applications. Moreover, the use of commodity
hardware means that failures are relatively common, and
automated recovery must be a first-class operation of the
system.

The main motivation for developing new cloud serving
systems is the difficulty in providing all of these features (es-
pecially scale-out and elasticity) using traditional database
systems. As a tradeoff, cloud systems typically sacrifice the
complex query capabilities and strong, sophisticated trans-
action models found in traditional systems. Without the
need for complex planning and processing of joins and aggre-
gates, scale-out and elasticity become significantly easier to
achieve. Similarly, scale-out (especially to multiple datacen-
ters) is easier to achieve without strong transaction protocols
like two-phase commit or Paxos. In particular, it is impos-
sible to simultaneously guarantee availability, consistency
and partition tolerance [21]. Because network partitions (or
delays and failures which mimic partitions) are unavoidable,
systems must prioritize either availability or consistency, and
most cloud systems choose availability. As a result, cloud
systems typically provide a consistency model that is weaker
in various ways than traditional ACID databases.

2.2 Classification of Systems and Tradeoffs
We now examine the different architectural decisions made

by cloud systems. As with many types of computer systems,
no one system can be best for all workloads, and different
systems make different tradeoffs in order to optimize for dif-
ferent applications. The main tradeoffs facing cloud serving
systems are:

• Read performance versus write performance

In a serving system, it is difficult to predict which record
will be read or written next. Unless all data fits in mem-
ory, this means that random I/O to the disk is needed to
serve reads (e.g., as opposed to scans). Random I/O can be
used for writes as well, but much higher write throughput
can be achieved by appending all updates to a sequential
disk-based log. However, log-structured systems that only
store update deltas can very inefficient for reads if the data
is modified over time, as typically multiple updates from
different parts of the log must be merged to provide a con-
sistent record. Writing the complete record to the log on
each update avoids the cost of reconstruction at read time,
but there is a correspondingly higher cost on update. Log-
structured merge trees [29] avoid the cost of reconstructing
on reads by using a background process to merge updates
and cluster records by primary key, but the disk cost of this
process can reduce performance for other operations. Over-
all, then, there is an inherent tradeoff between optimizing
for reads and optimizing for writes.

A particular case of this tradeoff is seen in systems such
as HBase that are based on filesystems optimized for batch
processing (for example, HBase is built on HDFS, which is
the data store for Hadoop). For a system to excel at batch
processing, it requires high throughput sequential reads and
writes, rather than fast random accesses; thus, Hadoop only
supports append-only files. Updates to existing records must
be handled by using a differential files scheme that shares

the same disadvantages as a log-structured file system with
respect to reads.

• Latency versus durability

Writes may be synched to disk before the system returns suc-
cess to the user, or they may be stored in memory at write
time and synched later. The advantages of the latter ap-
proach are that avoiding disk greatly improves write latency,
and potentially improves throughput (if multiple writes to
the same record can be serviced by a single I/O operation
or can be condensed in memory). The disadvantage is risk
of data loss if a server crashes and loses unsynched updates.

• Synchronous versus asynchronous replication

Replication is used to improve system availability (by di-
recting traffic to a replica after a failure), avoid data loss
(by recovering lost data from a replica), and improve per-
formance (by spreading load across multiple replicas and
by making low-latency access available to users around the
world). However, there are different approaches to repli-
cation. Synchronous replication ensures all copies are up
to date, but potentially incurs high latency on updates.
Furthermore, availability may be impacted if synchronously
replicated updates cannot complete while some replicas are
offline. Asynchronous replication avoids high write latency
(in particular, making it suitable for wide area replication)
but allows replicas to be stale. Furthermore, data loss may
occur if an update is lost due to failure before it can be
replicated.

• Data partitioning

Systems may be strictly row-based, or allow for column
storage. In row-based storage all of a record’s fields are
stored contiguously on disk. With column storage, differ-
ent columns or groups of columns can be stored separately
(possibly on different servers). Row-based storage supports
efficient access to an entire record (including low latency
reads and insertion/update in a serving-oriented system),
and is ideal if we typically access a few records in their en-
tirety. Column-based storage is more efficient for accessing
a subset of the columns, particularly when multiple records
are accessed.

2.3 A Brief Survey of Cloud Data Systems
To illustrate these tradeoffs, Table 1 lists several cloud

systems and the choices they have made for each dimension.
We now examine some of these decisions.

An application developer must match their workload re-
quirements to the best suited cloud database system. Con-
sider the read-optimized versus write-optimized tradeoff.
BigTable-like systems such as Cassandra and HBase attempt
to always perform sequential I/O for updates. Records on
disk are never overwritten; instead, updates are written to
a buffer in memory, and the entire buffer is written sequen-
tially to disk. Multiple updates to the same record may
be flushed at different times to different parts of the disk.
The result is that to perform a read of a record, multiple
I/Os are needed to retrieve and combine the various up-
dates. Since all writing is sequential, it is very fast; but
reads are correspondingly de-optimized. In contrast, a more
traditional buffer-pool architecture, such as that in MySQL
and PNUTS, overwrites records when they are updated. Be-
cause updates require random I/O, they are slower than the

BigTable-like systems; but reads are fast because a single
I/O can retrieve the entire, up-to-date record.

Latency versus durability is another important axis. If
developers know they can lose a small fraction of writes (for
example, web poll votes), they can return success to writes
without waiting for them to be synched to disk. Cassandra
allows the client to specify on a per-call basis whether the
write is durably persisted. MySQL and PNUTS always force
log updates to disk when committing a transaction, although
this log force can be disabled. HBase does not sync log
updates to disk, which provides low latency updates and
high throughput. This is appropriate for HBase’s target use
cases, which are primarily to run batch analytics over serving
data, rather than to provide guaranteed durability for such
data. For such a system, high throughput sequential reads
and writes are favored over durability for random updates.

Synchronous replication ensures freshness of replicas, and
is used in HBase and Cassandra. Cassandra also supports
asynchronous replication, as do MySQL and PNUTS. Asyn-
chronous replication supports wide-area replication without
adding significant overhead to the update call itself.

Column storage is advantageous for applications that need
only access a subset of columns with each request, and know
these subsets in advance. BigTable, HBase, and Cassandra
all provide the ability to declare column groups or fami-
lies, and add columns to any of them. Each group/family
is physically stored separately. On the other hand, if re-
quests typically want the entire row, or arbitrary subsets of
it, partitioning that keeps the entire row physically together
is best. This can be done with row storage (as in PNUTS),
or by using a single column group/family in a column store
like Cassandra.

The systems we discuss here are representative, rather
than comprehensive. A variety of other systems make dif-
ferent decisions. While we cannot survey them all here, we
will point out a few interesting characteristics. Dynamo,
Voldemort and Cassandra use eventual consistency to bal-
ance replication and availability. In this model, writes are
allowed anywhere, and conflicting writes to the same object
are resolved later. Amazon SimpleDB and Microsoft Azure
are hosted cloud serving stores. Both provide transactional
functions not found in other serving stores. The caveat is
that the user must partition their data into different contain-
ers, both in terms of size and request rate. SimpleDB calls
these containers domains, while Azure calls them databases.
The wide variance in design decisions has significant perfor-
mance implications, which motivated us to develop a bench-
mark for quantitatively evaluating those implications.

3. BENCHMARK TIERS
In this section, we propose two benchmark tiers for eval-

uating the performance and scalability of cloud serving sys-
tems. Our intention is to extend the benchmark to deal with
more tiers for availability and replication, and we discuss our
initial ideas for doing so in Section 7.

3.1 Tier 1—Performance
The Performance tier of the benchmark focuses on the

latency of requests when the database is under load. La-
tency is very important in serving systems, since there is
usually an impatient human waiting for a web page to load.
However, there is an inherent tradeoff between latency and
throughput: on a given hardware setup, as the amount of

System Read/Write Latency/durability Sync/async Row/column
optimized replication

PNUTS Read Durability Async Row
BigTable Write Durability Sync Column
HBase Write Latency Async Column

Cassandra Write Tunable Tunable Column
Sharded MySQL Read Tunable Async Row

Table 1: Design decisions of various systems.

load increases, the latency of individual requests increases as
well since there is more contention for disk, CPU, network,
and so on. Typically application designers must decide on an
acceptable latency, and provision enough servers to achieve
the desired throughput while preserving acceptable latency.
A system with better performance will achieve the desired
latency and throughput with fewer servers.

The Performance tier of the benchmark aims to charac-
terize this tradeoff for each database system by measuring
latency as we increase throughput, until the point at which
the database system is saturated and throughput stops in-
creasing. In the terminology of the Wisconsin Benchmark, a
popular early benchmark used for parallel database systems,
our metric is similar to sizeup [19], where the hardware is
kept constant but the size of the workload increases.

To conduct this benchmark tier, we need a workload gen-
erator which serves two purposes: first, to define the dataset
and load it into the database; and second, to execute op-
erations against the dataset while measuring performance.
We have implemented the YCSB Client (described in more
detail in Sections 4 and 5) for both purposes. A set of pa-
rameter files defines the nature of the dataset and the opera-
tions (transactions) performed against the data. The YCSB
Client allows the user to define the offered throughput as
a command line parameter, and reports the resulting la-
tency, making it straightforward to produce latency versus
throughput curves.

3.2 Tier 2—Scaling
A key aspect of cloud systems is their ability to scale elas-

tically, so that they can handle more load as applications
add features and grow in popularity. The Scaling tier of the
database examines the impact on performance as more ma-
chines are added to the system. There are two metrics to
measure in this tier:

Scaleup—How does the database perform as the number of
machines increases? In this case, we load a given number of
servers with data and run the workload. Then, we delete the
data, add more servers, load a larger amount of data on the
larger cluster, and run the workload again. If the database
system has good scaleup properties, the performance (e.g.,
latency) should remain constant, as the number of servers,
amount of data, and offered throughput scale proportionally.
This is equivalent to the scaleup metric from [19].

Elastic speedup—How does the database perform as the
number of machines increases while the system is running?
In this case, we load a given number of servers with data
and run the workload. As the workload is running, we add
one or more servers, and observe the impact on performance.
A system that offers good elasticity should show a perfor-
mance improvement when the new servers are added, with a

short or non-existent period of disruption while the system
is reconfiguring itself to use the new server. This is similar
to the speedup metric from [19], with the added twist that
the new server is added while the workload is running.

4. BENCHMARK WORKLOADS
We have developed a core set of workloads to evaluate dif-

ferent aspects of a system’s performance, called the YCSB
Core Package. In our framework, a package is a collection
of related workloads. Each workload represents a particular
mix of read/write operations, data sizes, request distribu-
tions, and so on, and can be used to evaluate systems at one
particular point in the performance space. A package, which
includes multiple workloads, examines a broader slice of the
performance space. While the core package examines sev-
eral interesting performance axes, we have not attempted to
exhaustively examine the entire performance space. Users
of YCSB can develop their own packages either by defining
a new set of workload parameters, or if necessary by writing
Java code. We hope to foster an open-source effort to create
and maintain a set of packages that are representative of
many different application settings through the YCSB open
source distribution. The process of defining new packages is
discussed in Section 5.

To develop the core package, we examined a variety of
systems and applications to identify the fundamental kinds
of workloads web applications place on cloud data systems.
We did not attempt to exactly model a particular applica-
tion or set of applications, as is done in benchmarks like
TPC-C. Such benchmarks give realistic performance results
for a narrow set of use cases. In contrast, our goal was to
examine a wide range of workload characteristics, in order
to understand in which portions of the space of workloads
systems performed well or poorly. For example, some sys-
tems may be highly optimized for reads but not for writes,
or for inserts but not updates, or for scans but not for point
lookups. The workloads in the core package were chosen to
explore these tradeoffs directly.

The workloads in the core package are a variation of the
same basic application type. In this application, there is a
table of records, each with F fields. Each record is identi-
fied by a primary key, which is a string like “user234123”.
Each field is named field0, field1 and so on. The values of
each field are a random string of ASCII characters of length
L. For example, in the results reported in this paper, we
construct 1,000 byte records by using F = 10 fields, each of
L = 100 bytes.

Each operation against the data store is randomly chosen
to be one of:

• Insert: Insert a new record.

• Update: Update a record by replacing the value of one
field.

• Read: Read a record, either one randomly chosen field
or all fields.

• Scan: Scan records in order, starting at a randomly
chosen record key. The number of records to scan is
randomly chosen.

For scan specifically, the distribution of scan lengths is
chosen as part of the workload. Thus, the scan() method
takes an initial key and the number of records to scan. Of
course, a real application may instead specify a scan interval
(i.e., from February 1st to February 15th). The number of
records parameter allows us to control the size of these in-
tervals, without having to determine and specify meaningful
endpoints for the scan. (All of the database calls, including
scan(), are described in Section 5.2.1.)

4.1 Distributions
The workload client must make many random choices

when generating load: which operation to perform (Insert,
Update, Read or Scan), which record to read or write, how
many records to scan, and so on. These decisions are gov-
erned by random distributions. YCSB has several built-in
distributions:

• Uniform: Choose an item uniformly at random. For ex-
ample, when choosing a record, all records in the database
are equally likely to be chosen.

• Zipfian: Choose an item according to the Zipfian dis-
tribution. For example, when choosing a record, some
records will be extremely popular (the head of the distri-
bution) while most records will be unpopular (the tail).

• Latest: Like the Zipfian distribution, except that the
most recently inserted records are in the head of the dis-
tribution.

• Multinomial: Probabilities for each item can be speci-
fied. For example, we might assign a probability of 0.95
to the Read operation, a probability of 0.05 to the Up-
date operation, and a probability of 0 to Scan and Insert.
The result would be a read-heavy workload.

Figure 1 illustrates the difference between the uniform,
zipfian and latest distributions. The horizontal axes in the
figure represent the items that may be chosen (e.g., records)
in order of insertion, while the vertical bars represent the
probability that the item is chosen. Note that the last in-
serted item may not be inserted at the end of the key space.
For example, Twitter status updates might be clustered by
user, rather than by timestamp, meaning that two recently
inserted items may be far apart in the key space.

A key difference between the Latest and Zipfian distribu-
tions is their behavior when new items are inserted. Under
the Latest distribution, the newly inserted item becomes the
most popular, while the previously popular items become
less so. Under the Zipfian distribution, items retain their
popularity even as new items are inserted, whether or not
the newly inserted item is popular. The Latest distribution
is meant to model applications where recency matters; for
example, only recent blog posts or news stories are popular,
and the popularity decays quickly. In contrast, the Zipfian
distribution models items whose popularity is independent
of their newness; a particular user might be extremely pop-

Uniform:

Insertion order

Po
pu

la
rit

y

0 1 ... N

Zipfian:

Insertion order

Po
pu

la
rit

y

0 1 ... N

Latest:

Insertion order

Po
pu

la
rit

y

0 1 ... N

Figure 1: Probability distributions. Horizontal axes
represents items in order of insertion, and vertical
axes represent probability of being chosen.

ular, with many views of her profile page, even though she
has joined many years ago.

4.2 The Workloads
We defined the workloads in the core package by assign-

ing different distributions to the two main choices we must
make: which operation to perform, and which record to read
or write. The various combinations are shown in Table 2.
Although we do not attempt to model complex applications
precisely (as discussed above), we list a sample application
that generally has the characteristics of the workload.

Loading the database is likely to take longer than any
individual experiment. In our tests, loads took between 10-
20 hours (depending on the database system), while we ran
each experiment (e.g., a particular workload at a particular
target throughput against a particular database) for 30 min-
utes. All the core package workloads use the same dataset,
so it is possible to load the database once and then run all
the workloads. However, workloads A and B modify records,
and D and E insert records. If database writes are likely to
impact the operation of other workloads (e.g., by fragment-
ing the on-disk representation) it may be necessary to re-load
the database. We do not prescribe a particular database
loading strategy in our benchmark, since different database
systems have different loading mechanisms (including some
that have no special bulk load facility at all).

5. DETAILS OF THE BENCHMARK TOOL
We have developed a tool, called the YCSB Client, to

execute the YCSB benchmarks. A key design goal of our
tool is extensibility, so that it can be used to benchmark
new cloud database systems, and so that new workloads
can be developed. We have used this tool to measure the
performance of several cloud systems, as we report in the
next section. This tool is also available under an open source
license, so that others may use and extend the tool, and
contribute new workloads and database interfaces.

Workload Operations Record selection Application example
A—Update heavy Read: 50% Zipfian Session store recording recent actions in a user session

Update: 50%
B—Read heavy Read: 95% Zipfian Photo tagging; add a tag is an update, but most operations

Update: 5% are to read tags
C—Read only Read: 100% Zipfian User profile cache, where profiles are constructed elsewhere

(e.g., Hadoop)
D—Read latest Read: 95% Latest User status updates; people want to read the latest statuses

Insert: 5%
E—Short ranges Scan: 95% Zipfian/Uniform* Threaded conversations, where each scan is for the posts in a

Insert: 5% given thread (assumed to be clustered by thread id)

*Workload E uses the Zipfian distribution to choose the first key in the range, and the Uniform distribution to choose the number of records to

scan.

Table 2: Workloads in the core package

! ...

Threads

Workload file
! Read/write mix
! Record size
! Popularity distribution
! ...

YCSB Client

Command line properties
! DB to use
! Workload to use
! Target throughput
! Number of threads

Client

StatsEx
ec

ut
or

D
B

 In
te

rf
ac

e
La

ye
r

W
or

kl
oa

d

Serving
Store

Cloud

Figure 2: YCSB client architecture

In this section we describe the architecture of the YCSB
client, and examine how it can be extended. We also de-
scribe some of the complexities in producing distributions
for the workloads.

5.1 Architecture
The YCSB Client is a Java program for generating the

data to be loaded to the database, and generating the op-
erations which make up the workload. The architecture of
the client is shown in Figure 2. The basic operation is that
the workload executor drives multiple client threads. Each
thread executes a sequential series of operations by mak-
ing calls to the database interface layer, both to load the
database (the load phase) and to execute the workload (the
transaction phase). The threads throttle the rate at which
they generate requests, so that we may directly control the
offered load against the database. The threads also measure
the latency and achieved throughput of their operations, and
report these measurements to the statistics module. At the
end of the experiment, the statistics module aggregates the
measurements and reports average, 95th and 99th percentile
latencies, and either a histogram or time series of the laten-
cies.

The client takes a series of properties (name/value pairs)
which define its operation. By convention, we divide these
properties into two groups:

• Workload properties: Properties defining the work-

load, independent of a given database or experimental
run. For example, the read/write mix of the database,
the distribution to use (zipfian, latest, etc.), and the size
and number of fields in a record.

• Runtime properties: Properties specific to a given ex-
periment. For example, the database interface layer to
use (e.g., Cassandra, HBase, etc.), properties used to
initialize that layer (such as the database service host-
names), the number of client threads, etc.

Thus, there can be workload property files which remain
static and are used to benchmark a variety of databases
(such as the YCSB core package described in Section 4). In
contrast, runtime properties, while also potentially stored in
property files, will vary from experiment to experiment, as
the database, target throughput, etc., change.

5.2 Extensibility
A primary goal of YCSB is extensibility. In fact, one

of our motivations was to make it easy for developers to
benchmark the increasing variety of cloud serving systems.
The shaded boxes in Figure 2 show the components which
can be easily replaced. The Workload Executor contains
code to execute both the load and transaction phases of
the workload. The YCSB package includes CoreWorkload, a
standard workload executor for the core package described
in Section 4. Users of YCSB can define new packages in
two ways. The most straightforward is to define a set of
workloads that use CoreWorkload but define different work-
load parameters. This allows users to vary several axes of
the core package: which operation to perform, the skew in
record popularity, and the size and number of records. The
second approach is to define a new workload executor class
(e.g., by writing Java) and associated parameters. This ap-
proach allows for introducing more complex operations, and
exploring different tradeoffs, than the core package does; but
involves greater effort compared to the former approach.

The Database Interface Layer translates simple requests
(such as read()) from the client threads into calls against
the database (such as Thrift calls to Cassandra or REST
requests to PNUTS). The Workload Executor and Database
Interface Layer classes to use for an experiment are specified
as properties, and those classes are loaded dynamically when
the client starts. Of course, as an open source package, any
class in the YCSB tool can be replaced, but the Workload
Executor and Database Interface Layer can be replaced most
easily. We now discuss in more detail how the YCSB client
can be extended with new database backends and workloads.

5.2.1 New Database Backends
The YCSB Client can be used to benchmark new database

systems by writing a new class to implement the following
methods:

• read()—read a single record from the database, and re-
turn either a specified set of fields or all fields.

• insert()—insert a single record into the database.

• update()—update a single record in the database, adding
or replacing the specified fields.

• delete()—delete a single record in the database.

• scan()—execute a range scan, reading a specified num-
ber of records starting at a given record key.

These operations are quite simple, representing the stan-
dard “CRUD” operations: Create, Read, Update, Delete,
with Read operations to read one record or to scan records.
Despite its simplicity, this API maps well to the native APIs
of many of the cloud serving systems we examined.

5.2.2 New Workload Executors
A user can define a new workload executor to replace

CoreWorkload by extending the Workload class of the YCSB
framework. One instance of the workload object is cre-
ated and shared among the worker threads, which allows
the threads to share common distributions, counters and
so on. For example, the workload object can maintain a
counter used to generate new unique record ids when insert-
ing records. Similarly the workload object can maintain a
common LatestGenerator object, which assigns high pop-
ularity to the latest record ids generated by the counter.

For each operation, the thread will either execute the
workload object’s doInsert() method (if the client is in
the load phase) or the workload object’s doTransaction()
method (if the client is in the transaction phase).

5.3 Distributions
One unexpectedly complex aspect of implementing the

YCSB tool involved implementing the Zipfian and Latest
distributions. In particular, we used the algorithm for gen-
erating a Zipfian-distributed sequence from Gray et al [23].
However, this algorithm had to be modified in several ways
to be used in our tool. The first problem is that the popular
items are clustered together in the keyspace. In particular,
the most popular item is item 0; the second most popular
item is item 1, and so on. For the Zipfian distribution, the
popular items should be scattered across the keyspace. In
real web applications, the most popular user or blog topic is
not necessarily the lexicographically first item.

To scatter items across the keyspace, we hashed the out-
put of the Gray generator. That is, we called a nextItem()
method to get the next (integer) item, then took a hash of
that value to produce the key that we use. The choice of hash
function is critical: the Java built-in String.hashCode()
function tended to leave the popular items clustered. Fur-
thermore, after hashing, collisions meant that only about 80
percent of the keyspace would be generated in the sequence.
This was true even as we tried a variety of hash functions
(FNV, Jenkins, etc.). One approach would be to use perfect
hashing, which avoids collisions, with a downside that more
setup time is needed to construct the perfect hash (multiple
minutes for hundreds of millions of records) [15]. The ap-
proach that we took was to construct a Zipfian generator for

a much larger keyspace than we actually needed; apply the
FNV hash to each generated value; and then take mod N
(where N size of the keyspace, that is, number of records in
the database). The result was that 99.97 % of the keyspace
is generated, and the generated keys continued to have a
Zipfian distribution.

The second issue was dealing with changing numbers of
items in the distribution. For some workloads, new records
are inserted into the database. The Zipfian distribution
should result in the same records being popular, even af-
ter insertions, while in the Latest distribution, popularity
should shift to the new keys. For the Latest, we computed
a new distribution when a record was inserted; to do this
cheaply we modified the Gray algorithm of [23] to compute
its constants incrementally. For Zipfian, we expanded the
initial keyspace to the expected size after inserts. If a data
set had N records, and the workload had T total opera-
tions, with an expected fraction I of inserts, then we con-
structed the Zipfian generator to draw from a space of size
N + T × I + ε. We added an additional factor ε since the
actual number of inserts depends on the random choice of
operations during the workload according to a multinomial
distribution. While running the workload, if the genera-
tor produced an item which had not been inserted yet, we
skipped that value and drew another. Then, the popularity
distribution did not shift as new records were inserted.

6. RESULTS
We present benchmarking results for four systems: Cas-

sandra, HBase, PNUTS and sharded MySQL. While both
Cassandra and HBase have a data model similar to that
of Google’s BigTable [16], their underlying implementations
are quite different—HBase’s architecture is similar to BigTable
(using synchronous updates to multiple copies of data chunks),
while Cassandra’s is similar to Dynamo [18] (e.g., using gos-
sip and eventual consistency). PNUTS has its own data
model, and also differs architecturally from the other sys-
tems. Our implementation of sharded MySQL (like other
implementations we have encountered) does not support elas-
tic growth and data repartitioning. However, it serves well
as a control in our experiments, representing a conventional
distributed database architecture, rather than a cloud-oriented
system designed to be elastic. More details of these systems
are presented in Section 2.

In our tests, we ran the workloads of the core package de-
scribed in Section 4, both to measure performance (bench-
mark tier 1) and to measure scalability and elasticity (bench-
mark tier 2). Here we report the average latency of requests.
The 95th and 99th percentile latencies are not reported, but
followed the same trends as average latency. In summary,
our results show:

• The hypothesized tradeoffs between read and write opti-
mization are apparent in practice: Cassandra and HBase
have higher read latencies on a read heavy workload than
PNUTS and MySQL, and lower update latencies on a
write heavy workload.

• PNUTS and Cassandra scaled well as the number of
servers and workload increased proportionally. HBase’s
performance was more erratic as the system scaled.

• Cassandra, HBase and PNUTS were able to grow elasti-
cally while the workload was executing. However, PNUTS

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000

R
ea

d
la

te
nc

y
(m

s)

Throughput (ops/sec)

Cassandra
HBase

PNUTS
MySQL

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000 12000 14000

U
pd

at
e

la
te

nc
y

(m
s)

Throughput (ops/sec)

Cassandra
HBase

PNUTS
MySQL

(a) (b)

Figure 3: Workload A—update heavy: (a) read operations, (b) update operations. Throughput in this (and
all figures) represents total operations per second, including reads and writes.

provided the best, most stable latency while elastically
repartitioning data.

It is important to note that the results we report here are
for particular versions of systems that are undergoing con-
tinuous development, and the performance may change and
improve in the future. Even during the interval from the
initial submission of this paper to the camera ready version,
both HBase and Cassandra released new versions that sig-
nificantly improved the throughput they could support. We
provide results primarily to illustrate the tradeoffs between
systems and demonstrate the value of the YCSB tool in
benchmarking systems. This value is both to users and de-
velopers of cloud serving systems: for example, while trying
to understand one of our benchmarking results, the HBase
developers uncovered a bug and, after simple fixes, nearly
doubled throughput for some workloads.

6.1 Experimental Setup
For most experiments, we used six server-class machines

(dual 64-bit quad core 2.5 GHz Intel Xeon CPUs, 8 GB of
RAM, 6 disk RAID-10 array and gigabit ethernet) to run
each system. We also ran PNUTS on a 47 server cluster to
successfully demonstrate that YCSB can be used to bench-
mark larger systems. PNUTS required two additional ma-
chines to serve as a configuration server and router, and
HBase required an additional machine called the “master
server.” These servers were lightly loaded, and the results
we report here depend primarily on the capacity of the six
storage servers. The YCSB Client ran on a separate 8 core
machine. The Client was run with up to 500 threads, de-
pending on the desired offered throughput. We observed in
our tests that the client machine was not a bottleneck; in
particular, the CPU was almost idle as most time was spent
waiting for the database system to respond.

We ran Cassandra 0.5.0, HBase 0.20.3, and MySQL 5.1.24
(for PNUTS) and 5.1.32 (for sharded MySQL). For one ex-
periment (elastic speedup), we used Cassandra 0.6.0-beta2,
at the suggestion of the Cassandra developers. For Cas-
sandra, we used the OrderedPartitioner with node tokens
evenly spaced around the key space. Our sharded MySQL
implementation used client-side hashing to determine which
server a given record should be stored on.

We configured and tuned each system as well as we knew
how. In particular, we received extensive tuning assistance
from members of the development teams of the Cassandra,

HBase and PNUTS systems. For HBase, we allocated 1GB
of heap to Hadoop, and 5GB to HBase. For PNUTS and
sharded MySQL, we allocated 6 GB of RAM to the MySQL
buffer pool. For Cassandra, we allocated 3GB of heap to the
JVM, at the suggestion of Cassandra developers, so the rest
of RAM could be used for the Linux filesystem buffer. We
disabled replication on each system so that we could bench-
mark the baseline performance of the system itself. In on-
going work we are examining the impact of replication. For
Cassandra, sharded MySQL and PNUTS, all updates were
synched to disk before returning to the client. HBase does
not sync to disk, but relies on in-memory replication across
multiple servers for durability; this increases write through-
put and reduces latency, but can result in data loss on fail-
ure. We ran HBase experiments with and without client-side
buffering; since buffering gave a significant throughput ben-
efit, we mainly report on those numbers. Cassandra, and
possibly PNUTS and sharded MySQL, may have benefited
if we had given them a dedicated log disk. However, to
ensure a fair comparison, we configured all systems with a
single RAID-10 array and no dedicated log disk. Users of
YCSB are free to set up alternative hardware configurations
to see if they can get better performance.

HBase performance is sensitive to the number of log struc-
tured files per key range, and the number of writes buffered
in memory. HBase shrinks these numbers using compactions
and flushes, respectively, and they can be system or user-
initiated. We periodically applied these operations during
our experiments; but HBase users must evaluate how often
such operations are needed in their own environment.

Our database consisted of 120 million 1 KB records, for
a total size of 120 GB. Each server thus had an average of
20 GB of data, more than it could cache entirely in RAM.
Read operations retrieved an entire record, while updates
modified one of the fields (out of ten).

6.2 Workload A—Update Heavy
First, we examined Workload A, which has 50 percent

reads and 50 percent updates. Figure 3 shows latency ver-
sus throughput curves for each system for both the read
and update operations. In each case, we increased the of-
fered throughput until the actual throughput stopped in-
creasing. As the figure shows, for all systems, operation la-
tency increased as offered throughput increased. Cassandra,
which is optimized for write-heavy workloads, achieved the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

R
ea

d
la

te
nc

y
(m

s)

Throughput (ops/sec)

Cassandra
HBase

PNUTS
MySQL

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

U
pd

at
e

la
te

nc
y

(m
s)

Throughput (ops/sec)

Cassandra
HBase

PNUTS
MySQL

(a) (b)

Figure 4: Workload B—read heavy: (a) read operations, (b) update operations.

best throughput and the lowest latency for reads. At high
throughputs, Cassandra’s efficient sequential use of disk for
updates reduces contention for the disk head, meaning that
read latency is lower than for the other systems. PNUTS
has slightly higher latency than MySQL, because it has extra
logic on top of MySQL for distributed consistency. HBase
had very low latency for updates, since updates are buffered
in memory. With buffering off, writes are committed to
memory on the HBase server, and latency was only 10-50%
lower than read latency. Because of efficient sequential up-
dates, Cassandra also provides the best throughput, peaking
at 11978 operations/sec, compared to 7904 operations/sec
for HBase, 7283 operations/sec for sharded MySQL, and
7448 operations/sec for PNUTS.

6.3 Workload B—Read Heavy
Workload B, the read heavy workload, provides a differ-

ent picture than workload A. The results for workload B are
shown in Figure 4. As the figure shows, PNUTS and sharded
MySQL are now able to provide lower latencies on reads
than either Cassandra or HBase. Cassandra and HBase still
perform better for writes. The extra disk I/Os being done
by Cassandra to assemble records for reading dominates its
performance on reads. Note that Cassandra only begins
to show higher read latency at high throughputs, indicat-
ing that the effects matter primarily when the disk is close
to saturation. HBase also has to reconstruct fragments of
records from multiple disk pages. However, the read latency
is relatively higher because of HBase’s log-structured stor-
age implementation. HBase flushes its memtables to disk in
separate files, and potentially must search each such file for
fragments of the record, even if only some contain relevant
fragments. In fact, we observe worse latency and through-
put as the number of files grows, and improvement when
the number shrinks through compaction. When there is a
great deal of fragmentation (for example, after a large num-
ber of writes), throughput drops to as low as 4800 opera-
tions/sec due to the expense of reconstruction. Future im-
provements, such as Bloom filters, may cut down such false
positive searches.

6.4 Workload E—Short Ranges
We ran workload E (short ranges) using HBase, Cassandra

and PNUTS, with ranges up to 100 records. Our sharded
MySQL implementation is a hash table and does not sup-
port range scans. The results are shown in Figure 5. As the

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600

R
ea

d
la

te
nc

y
(m

s)

Throughput (ops/sec)

Cassandra
HBase

PNUTS

Figure 5: Workload E—short scans.

results show, both HBase and PNUTS can sustain similar
maximum throughputs (1519 ops/sec for HBase, and 1440
ops/sec for PNUTS) with roughly equivalent latency. Cas-
sandra performs much worse. Cassandra’s range scan sup-
port is relatively new in version 0.5.0, and is not yet heavily
optimized; future versions may or may not be able to pro-
vide better scan latency. HBase and PNUTS have similar
scan performance, but only for short scans. We ran an ex-
periment where we varied the average range query from 25
to 800 records. The results (not shown) demonstrate that
HBase has better scan performance when the range scans
retrieve more than 100 records on average. MySQL’s on
disk storage used a B-Tree to support low latency reads;
but B-trees inherently have some fragmentation, so the cost
of reading pages with empty space increases the cost of a
range scan in PNUTS. HBase stores data more compactly
on disk, improving performance for large ranges. For exam-
ple, when the average range scan is for 800 records, HBase’s
response time is 3.5 times faster than PNUTS.

6.5 Other Workloads
Next, we ran the other core YCSB workloads. The re-

sults of workload C (read only) were similar to those of
the read-heavy workload B: PNUTS and sharded MySQL
achieved the lowest latency and highest throughput for the
read operations. Workload D (read latest) also showed sim-
ilar results to workload B. Although the popularity of items
shifted over time, the dominant effect was that PNUTS and
MySQL were most efficient for reads, and workload D is
dominated by read requests. Note that in workload D the
recently inserted records are not necessarily clustered on the

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12

R
ea

d
la

te
nc

y
(m

s)

Servers

Cassandra
HBase

PNUTS

Figure 6: Read performance as cluster size in-
creases.

same server. Such a clustering scheme would not likely be
used in practice, as it would result in a severe hotspot on
one server while the other servers were underutilized. “Read
latest” applications instead typically construct the record
keys to cluster records by some other attribute to avoid this
hotspot, and we did this as well. This mimics the design
of an application like blogging or Twitter, where recent up-
dates are most popular but are likely clustered by user rather
than by time. We have omitted the graphs for workloads C
and D for lack of space.

We also ran a “read-modify-write” workload that reflects
the frequently used pattern of reading a record, modifying
it, and writing the changes back to the database. This work-
load is similar to workload A (50/50 read/write ratio) except
that the updates are “read-modify-write” rather than blind
writes. The results (not shown) showed the same trends as
workload A.

6.6 Scalability
So far, all experiments have used six storage servers. (As

mentioned above, we did run one experiment with PNUTS
on 47 servers, to verify the scalability of YCSB itself). How-
ever, cloud serving systems are designed to scale out: more
load can be handled when more servers are added. We
first tested the scaleup capability of Cassandra, HBase and
PNUTS by varying the number of storage servers from 2 to
12 (while varying the data size and request rate proportion-
ally). The resulting read latency for workload B is shown
in Figure 6. As the results show, latency is nearly constant
for Cassandra and PNUTS, indicating good elastic scaling
properties. In contrast, HBase’s performance varies a lot as
the number of servers increases; in particular, performance
is better for larger numbers of servers. A known issue in
HBase is that its behavior is erratic for very small clusters
(less than three servers.)

6.7 Elastic Speedup
We also examined the elastic speedup of Cassandra, HBase

and PNUTS. Sharded MySQL is inherently inelastic. In this
case, we started two servers, loaded with 120 GB of data.
We then added more servers, one at a time, until there were
six servers running. After adding each server, we attempted
to run long enough to allow the system to stabilize before
adding the next server (although in some cases it was diffi-
cult to determine if the system had truly stabilized.) Dur-
ing the entire run, we set the YCSB client to offer the same
throughput; in particular, the offered throughput was 80

percent of that achievable with 6 servers. This models a
situation where we attempt to elastically expand an over-
loaded cluster to a size where it can handle the offered load,
a situation that often occurs in practice.

First, we show a slice of the time series of read latencies for
Cassandra in Figure 7(a). In this figure, the first ten minutes
represent five servers, after performance has stabilized; then,
a sixth server is added. As the figure shows, this results in
a sharp increase in latency, as well as a wide variance in the
latency. This performance degradation results from moving
data to the 6th server; regular serving requests compete for
disk and network resources with the data repartitioning pro-
cess, resulting in high and highly variable latency. In fact,
under load, it takes many hours for Cassandra to stabilize.
In our test, we had to stop the YCSB workload after 5.5
hours to allow the system to complete its repartitioning and
quiesce. The high cost of repartitioning is a known issue with
Cassandra 0.5.0 and is being optimized in ongoing develop-
ment. After completing its repartitioning, the performance
of the system under load matched that of a system that had
started with 6 servers, indicating that eventually, the elastic
expansion of the cluster will result in good performance.

Results for HBase are shown in Figure 7(b). As before,
this figure represents just one slice of the total experiment.
As the figure shows, the read latency spikes initially after
the sixth server is added, before the latency stabilizes at a
value slightly lower than the latency for five servers. This re-
sult indicates that HBase is able to shift read and write load
to the new server, resulting in lower latency. HBase does
not move existing data to the new server until compactions
occur2. The result is less latency variance compared to Cas-
sandra since there is no repartitioning process competing
for the disk. However, the new server is underutilized, since
existing data is served off the old servers.

A similar slice of the timeseries (adding a sixth server
at time=10 minutes) is shown for PNUTS in Figure 7(c).
PNUTS also moves data to the new server, resulting in
higher latency after the sixth server is added, as well as
latency variability. However, PNUTS is able to stabilize
more quickly, as its repartitioning scheme is more optimized.
After stabilizing at time=80 minutes, the read latency is
comparable to a cluster that had started with six servers,
indicating that PNUTS provides good elastic speedup.

7. FUTURE WORK
In addition to performance comparisons, it is important

to examine other aspects of cloud serving systems. In this
section, we propose two more benchmark tiers which we are
developing in ongoing work.

7.1 Tier 3—Availability
A cloud database must be highly available despite failures,

and the Availability tier measures the impact of failures on
the system. The simplest way to measure availability is to
start a workload, kill a server while the workload is running,
and observe any resulting errors and performance impact.
However, in a real deployed system, a variety of failures can
occur at various other levels, including the disk, the network,

2It is possible to run the HDFS load balancer to force data
to the new servers, but this greatly disrupts HBase’s ability
to serve data partitions from the same servers on which they
are stored.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350

R
ea

d
la

te
nc

y
(m

s)

Duration of test (min)

Cassandra

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25

R
ea

d
la

te
nc

y
(m

s)

Duration of test (min)

HBase

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

R
ea

d
la

te
nc

y
(m

s)

Duration of test (min)

PNUTS

(a) Cassandra (b) HBase (c) PNUTS

Figure 7: Elastic speedup: Time series showing impact of adding servers online.

and the whole datacenter. These failure may be the result
of hardware failure (for example, a faulty network interface
card), power outage, software faults, and so on. A proper
availability benchmark would cause (or simulate) a variety
of different faults and examine their impact.

At least two difficulties arise when benchmarking avail-
ability. First, injecting faults is not straightforward. While
it is easy to ssh to a server and kill the database process,
it is more difficult to cause a network fault for example.
One approach is to allow each database request to carry a
special fault flag that causes the system to simulate a fault.
This approach is particularly amenable to benchmarking be-
cause the workload generator can add the appropriate flag
for different tests to measure the impact of different faults.
A “fault-injection” header can be inserted into PNUTS re-
quests, but to our knowledge, a similar mechanism is not
currently available in the other systems we benchmarked.
An alternate approach to fault injection that works well at
the network layer is to use a system like ModelNet [34] or
Emulab [33] to simulate the network layer, and insert the
appropriate faults.

The second difficulty is that different systems have dif-
ferent components, and therefore different, unique failure
modes. Thus, it is difficult to design failure scenarios that
cover all systems.

Despite these difficulties, evaluating the availability of sys-
tems is important and we are continuing to work on devel-
oping benchmarking approaches.

7.2 Tier 4—Replication
Cloud systems use replication for both availability and

performance. Replicas can be used for failover, and to spread
out read load. Some systems are also designed to split write
requests across replicas to improve performance, although
a consistency mechanism (such as eventual consistency in
Cassandra, or timeline consistency in PNUTS) is needed to
avoid corruption due to write-write conflicts.

Replication may be synchronous or asynchronous. HBase,
for example, writes synchronously to multiple replicas, while
PNUTS performs replication asynchronously. Thus, the fol-
lowing measures are important when evaluating replication:

• Performance cost or benefit—what is the impact to
performance as we increase the replication factor on a
constant amount of hardware? The extra work to main-
tain replicas may hurt performance, but the extra repli-

cas can potentially be used to spread out load, improving
performance.

• Availability cost or benefit—what is the impact to
availability as we increase the replication factor on a con-
stant amount of hardware? In some systems, the read
availability may increase but the write availability may
decrease if all replicas must be live to commit an update.

• Freshness—are replicas consistent, or are some replicas
stale? How much of the data is stale and how stale is
it? This is primarily an issue for systems that use asyn-
chronous replication.

• Wide area performance—how does replication per-
form between datacenters in geographically separate lo-
cations? Some replication schemes are optimized to be
used within the datacenter or between nearby datacen-
ters, while others work well in globally distributed data-
centers.

8. RELATED WORK

Benchmarking
Benchmarking is widely used for evaluating computer sys-

tems, and benchmarks exist for a variety of levels of ab-
straction, from the CPU, to the database software, to com-
plete enterprise systems. Our work is most closely related
to database benchmarks. Gray surveyed popular database
benchmarks, such as the TPC benchmarks and the Wiscon-
sin benchmark, in [22]. He also identified four criteria for a
successful benchmark: relevance to an application domain,
portability to allow benchmarking of different systems, scala-
bility to support benchmarking large systems, and simplicity
so the results are understandable. We have aimed to satisfy
these criteria by developing a benchmark that is relevant to
serving systems, portable to different backends through our
extensibility framework, scalable to realistic data sizes, and
employing simple transaction types.

Despite the existence of database benchmarks, we felt it
was necessary to define a new benchmark for cloud serving
systems. First, most cloud systems do not have a SQL in-
terface, and support only a subset of relational operations
(usually, just the CRUD operations), so that the complex
queries of many existing benchmarks were not applicable.
Second, the use cases of cloud systems are often different
than traditional database applications, so that narrow do-
main benchmarks (such as the debit/credit style benchmarks

like TPC-A or E-commerce benchmarks like TPC-W) may
not match the intended usage of the system. Furthermore,
our goal was to develop a benchmarking framework that
could be used to explore the performance space of different
systems, rather than to measure a single performance num-
ber representing a particular application. It is for similar
reasons that new benchmarks have been developed for other
non-traditional database systems (such as XMark for XML
systems [28] and Linear Road for stream systems [14]).

Designing an accurate and fair benchmark, and using it
to gather accurate results, is non-trivial. Seltzer et al [30]
argue that many micro and macrobenchmarks do not effec-
tively model real workloads. One approach they propose
(the vector approach) is to measure the performance of sys-
tem operations, and compute the expected performance for a
particular application that uses some specified combination
of those operations. Our approach is similar to this, except
that we directly measure the performance of a particular
combination of operations; this allows us to accurately mea-
sure the impact of things like disk or cache contention when
the operations are used together. Shivam et al [31] describe
a workbench tool for efficiently running multiple benchmark
tests to achieve high confidence results. Their tool inter-
faces with a workload generator, like the YCSB Client, to
execute each run. We are examining the possibility of using
their workbench to run our benchmark.

Cloud systems
The term “cloud” has been used for a variety of different

kinds of systems and architectures. A special issue of the
Data Engineering Bulletin [25] showcased several aspects of
data management in the cloud. We have focused on serving
systems like PNUTS, Cassandra, and others. In contrast,
batch systems provide near-line or offline analysis, but are
not appropriate for online serving. Pavlo et al [26] have
benchmarked cloud systems like Hadoop against more tra-
ditional relational systems and relational column stores like
Vertica/C-Store [32]. Some batch systems might use the
same database systems that would be used in a serving envi-
ronment. For example, HBase can be used both as a serving
store and as a storage backend for Hadoop, and is reportedly
used this way at StumbleUpon, one of the major developers
of HBase [27].

9. CONCLUSIONS
We have presented the Yahoo! Cloud Serving Benchmark.

This benchmark is designed to provide tools for apples-to-
apples comparison of different serving data stores. One con-
tribution of the benchmark is an extensible workload gener-
ator, the YCSB Client, which can be used to load datasets
and execute workloads across a variety of data serving sys-
tems. Another contribution is the definition of five core
workloads, which begin to fill out the space of performance
tradeoffs made by these systems. New workloads can be
easily created, including generalized workloads to examine
system fundamentals, as well as more domain-specific work-
loads to model particular applications. As an open-source
package, the YCSB Client is available for developers to use
and extend in order to effectively evaluate cloud systems.
We have used this tool to benchmark the performance of
four cloud serving systems, and observed that there are clear
tradeoffs between read and write performance that result
from each system’s architectural decisions. These results

highlight the importance of a standard framework for exam-
ining system performance so that developers can select the
most appropriate system for their needs.

10. ACKNOWLEDGEMENTS
We would like to thank the system developers who helped

us tune the various systems: Jonathan Ellis from Cassan-
dra, Ryan Rawson and Michael Stack from HBase, and the
Sherpa Engineering Team in Yahoo! Cloud Computing.

11. REFERENCES
[1] Amazon SimpleDB. http://aws.amazon.com/simpledb/.
[2] Apache Cassandra. http://incubator.apache.org/cassandra/.
[3] Apache CouchDB. http://couchdb.apache.org/.
[4] Apache HBase. http://hadoop.apache.org/hbase/.
[5] Dynomite Framework. http://wiki.github.com/cliffmoon/-

dynomite/dynomite-framework.
[6] Google App Engine. http://appengine.google.com.
[7] Hypertable. http://www.hypertable.org/.
[8] mongodb. http://www.mongodb.org/.
[9] Project Voldemort. http://project-voldemort.com/.

[10] Solaris FileBench.
http://www.solarisinternals.com/wiki/index.php/FileBench.

[11] SQL Data Services/Azure Services Platform.
http://www.microsoft.com/azure/data.mspx.

[12] Storage Performance Council.
http://www.storageperformance.org/home.

[13] Yahoo! Query Language. http://developer.yahoo.com/yql/.
[14] A. Arasu et al. Linear Road: a stream data management

benchmark. In VLDB, 2004.
[15] F. C. Botelho, D. Belazzougui, and M. Dietzfelbinger.

Compress, hash and displace. In Proc. of the 17th European
Symposium on Algorithms, 2009.

[16] F. Chang et al. Bigtable: A distributed storage system for
structured data. In OSDI, 2006.

[17] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data serving
platform. In VLDB, 2008.

[18] G. DeCandia et al. Dynamo: Amazon’s highly available
key-value store. In SOSP, 2007.

[19] D. J. DeWitt. The Wisconsin Benchmark: Past, present and
future. In J. Gray, editor, The Benchmark Handbook. Morgan
Kaufmann, 1993.

[20] I. Eure. Looking to the future with Cassandra.
http://blog.digg.com/?p=966.

[21] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 33(2):51–59, 2002.

[22] J. Gray, editor. The Benchmark Handbook For Database and
Transaction Processing Systems. Morgan Kaufmann, 1993.

[23] J. Gray et al. Quickly generating billion-record synthetic
databases. In SIGMOD, 1994.

[24] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A
structured storage system on a P2P network. In SIGMOD,
2008.

[25] B. C. Ooi and S. Parthasarathy. Special issue on data
management on cloud computing platforms. IEEE Data
Engineering Bulletin, vol. 32, 2009.

[26] A. Pavlo et al. A comparison of approaches to large-scale data
analysis. In SIGMOD, 2009.

[27] R. Rawson. HBase intro. In NoSQL Oakland, 2009.
[28] A. Schmidt et al. Xmark: A benchmark for XML data

management. In VLDB, 2002.
[29] R. Sears, M. Callaghan, and E. Brewer. Rose: Compressed,

log-structured replication. In VLDB, 2008.
[30] M. Seltzer, D. Krinsky, K. A. Smith, and X. Zhang. The case

for application-specific benchmarking. In Proc. HotOS, 1999.
[31] P. Shivam et al. Cutting corners: Workbench automation for

server benchmarking. In Proc. USENIX Annual Technical
Conference, 2008.

[32] M. Stonebraker et al. C-store: a column-oriented DBMS. In
VLDB, 2005.

[33] B. White et al. An integrated experimental environment for
distributed systems and networks. In OSDI, 2002.

[34] K. Yocum et al. Scalability and accuracy in a large-scale
network emulator. In OSDI, 2002.

