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It is an attractive research topic to use model checking technique to automatically generate test cases

in the research community of formal method and software testing, and recent years has witnessed

many work. For infinite states systems with input/output domains defined on unbounded and abstract

types, in many contexts, explicit finite state models are not attained easily with the reasonable cost,

therefore, testing with traditional model checking is often considered. This paper presents the idea of

auto-generation of test cases based on symbolic execution and temporal formula rewriting method. The

method proceeds with building the symbolic representation of program execution model, such that it

can avoid explicitly building the model of infinite states systems with the enumeration of value of input

and output or state explosion problem; Then temporal formula (test purposes) rewriting is applied to

the symbolic execution model of program to generate complex constraint requirements according to

the counterexample patterns related to test purposes and the suitable SMT(Satisfiability Modulo The-

ory) solver is called for generating test cases. Notablely, the procedures of model building and formula

rewriting(the light-weighted model checking) are independent, in other word, the counterexamples are

derived without system knowledge. The prototype tool is developed, including main data structures

and algorithms. Some case studies are conducted though they are simple.

Keywords: Generation of Test Case; Model Checking; Symbolic Execution; Formula Rewriting.

1. Introduction

Testing is the most fundamental and successful method for ensuring the quality of software

systems. In modern software engineering practice, the cost of testing activities is more

than 50% of total development cost, even sometimes 80%. The testing activities are cost-

labored and inefficient, and the automation of testing activities, including generating test

cases, executing testing and evaluating the result, can change the situation. But due to the

complexity of systems under testing (abbrev. SUT) and testing activities, many challenges

in automating testing are faced, especially automated generation of test cases. In black box

testing, test cases are generated according to systems requirements, such as equivalence

partitioning and boundary value analysis [1]; in the setting of white box testing, given dif-

ferent coverage criterions, test cases are generated directly according to program source

codes and system designs, and typical coverage criterions include statement coverage, path

coverage and MC/DC [2], etc. But the limitations of these methods are obvious: (1) there

is no test oracle for specifying the expected output, (2) no viable techniques work well in
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different situations in automating the generation of test cases and (3) no rigorous format

specifies test requirement. Many research work [3, 4, 5] uses static syntax analysis or dy-

namical simulation execution of behavior model derived by program codes to automatically

derive test cases, but these methods do not scale well due to high complexity of program

codes, more importantly, they do not still solve the test oracle problem.

In modern software engineering, especially model driven development, formal or semi-

formal models in different levels of abstraction, which specify static structure and dynam-

ical behaviors of systems, play an important part in understanding and analyzing all facets

of the targeted software. It is widely recognized that formal specifications and models can

bring much to software testing, and all kinds of formal analysis techniques provide effec-

tive means for solving the problems faced by software testing, including theorem prover,

model checking and constraint solving. Recent years have witnessed that numerous meth-

ods, especially testing with model checker, have been proposed for the derivation of test

cases from various kinds of formal specifications and models. The detailed work is summa-

rized in [6, 7]. Model checking [8] is a technique for automatically verifying the correctness

of concurrent systems including hardwares/softwares. So far, many model checkers have

been successfully applied in industry-level projects. With the inputs of finite state machine

modeling the behaviors of systems and the property often specified by temporal logic for-

mula, mode checker confirms whether the property is satisfied by exploring the state space

of finite state machine, moreover, for a property not satisfied, the model checker produces

a path named a counter example in order to show how the verified system violates the

property. In the setting of testing, a counter example related to a property can be naturally

interpreted as a test case. As a prior, model checking need build a model of finite state

machine, so in the many contexts the state explosion unavoidably happens, say nothing of

that the explicit state model is not available at all with the acceptable cost.

When input, output domains and state variables are typed with boundless types, some

special methods are necessary to derive manageable models, for example, abstraction in-

terpretation [9, 10]. However, testing models need special consideration, for instance, the

models as the oracles, are not permitted to over-approximate the origin systems. In the

sequel, many technique cannot be directly used to derive testing models, such predicate

abstraction [11], partial order reduction and symmetry reduction.

Motivated by the above discussion, this paper presents the method for auto-generating

test cases of reactive systems based on symbolic execution and LTL formula rewriting.

Symbolic execution is a basic method for analyzing and reasoning complex systems, which

introduces the concept of ”symbolic constant” to build symbolic execution models of sys-

tems as a replacement of models with direct enumeration of value about input and output

variables, etc., such that explicitly building models is avoidable. The method has been

used to automatically generate test cases as a good means [12, 13]. Formula rewriting

is an important technique for implementing first order logic theorem provers and SMT

(Satisfiability Modulo and Theory) solvers, which are widely used in program analysis and

verification. The paper regards LTL formula rewriting based on states and symbolic states

as a light-weight model checking technique to automatize the generation of test cases of

infinite state system without the procedure of over-/under- approximate abstractions.
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The organization structure of the paper is as follows: the second section introduces the

elementary knowledge about mode checking and generation of test cases based on model

checker; The third section emphasizes on the existed challenges in automatically generat-

ing test cases of infinite states system, and at the same time, introduces a standard structure

IOSTS (Input/Output Symbolic Transition Systems). The fourth section detailedly dis-

cusses LTL formula rewriting based on state as en emphasis except for the syntax and

semantics of LTL. The forth section shows the frame and algorithm of auto-generating test

cases of reactive systems based on symbolic execution and LTL formula rewriting. The

sixth section deliberates the design and implementation of a prototype tool and conducts

some small examples. The last section concludes the paper.

2. Model Checking and Test Cases Generation

Model checking [8] is a technique of formal verification presented in 1980s, which achieves

great breakthrough in software/ardware verification due to its merit relative to theorem

proving, such as automation and counter example generation. With transition system mod-

eling system and temporal logic (a kind of modal logic) specifying property, model checker

mathematically proves whether the transition system is a model of some temporal logic

formula. Next, some basic definitions are provided for further presentation starting with

defining Kripke structure, semantical model of temporal logic, for example LTL. Let AP

be the set of atomic propositions

Definition 2.1 Kripke structure K is a tuple (S, S0, T, L), where S, S0, T,and L are de-

fined as follows:

- S is a finite set of states;

- S0 ⊆ S is the state of initial states;

- T ⊆ S × S is a total binary relation, that is, ∀s ∈ S · (∃t ∈ S · (S, t) ∈ T );

- L : AP → 2S is a label function, for p ∈ AP , L(p) is the set of states, where the

proposition p is satisfied.

Generally speaking, the initial state is sole, but here the limitation is loosed. The variables

of states in testing models of reactive systems are divided three parts: input variables, output

ones and internal ones, among which the former two shows the interaction between SUT

and its environment. Figure 1 (a) shows an example of the regular test model. Note that

it is straightforward to transform test model to Kripke structure by defining simple rules.

Based on Kripke structure, test case in testing with model checker is formally formulated

as follows.

Definition 2.2 Given a Kripke structure K = (S, S0, T, L), a state sequence tc =<

s0, s1, . . . , sn > is named test case, where, for 0 ≤ i ≤ n, si ∈ S and s0 ∈ S0. n is

the length of test case tc, denoted |tc|. a set of test case tc composes a test suite TS.

Figure 1 (b) is a simple example of test case, a finite path in Kripke structure. The in-
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Fig. 1. Test Model and Test Case

put variales, such as I1, . . . , ln, and the output ones, such as O1, . . . , Om are regarded as

the controllable part and and the observable part, respectively, which play the test oracle

when testing execution. In testing based on model checker, tc is a counter example related

to some temporal property, automatically generated by calling model checker. The entire

technique frame of generation of test case based on model checking is shown in Figure 4.

Given a Kripke structure K and a property p specified by LTL formula in the context of the

paper, let CE(p) denote some counter example derived from K . Trap property related to

test coverage criterion C is defined as follows.

Definition 2.3 Given a Kripke structure K and a set of properties P constructing according

to some test coverage criterion C, let CE(P) = {CE(p) : p ∈ P}. Then p ∈ P is called

trap property if the member in CE(P) is interpreted as a test case.

In black-box testing and white-box testing, test coverage criterion is set according

to informal requirement specifications, design specifications and the measure of syntax

in program implementations. The typical examples include statements coverage, condi-

tions coverage, decisions coverage, boundary values coverage and composition cover-

age, etc. Model/specification-based testing enriches the intension of test coverage crite-

rion [15].Testers can construct test coverage criterion based on formal specifications in

syntax level and formal models in semantics level, such as specification language-specific

coverage criterion and transition systems coverage criterion, and one can find more details

in [7]. Moreover, the technique of model checking provides easiness of generating test suite

related to different test coverage critera.

Next, a simple example illustrates how to construct trap property using temporal logics,

such as LTL [14]. Firstly, let test coverage criterion C be the edges of state transitions

(simple transition coverage) explicitly shown in Figure 1 (a), then trap properties is as

follows:

s0 ∧ α → X (¬s1)

s1 ∧ β → X (¬s3)

s0 ∧ γ → X (¬s2)

s2 ∧ δ → X (¬s3)
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Fig. 2. Procedure of Auto-Generation of Test Cases

Where, s0, s1, s2 and s3 represent the pre/post state conditions of transitions, and

α, β, γ and δ are guard conditions. In the case of the more complex coverage criterion,

such as control and data coverage criteria, the construction of trap properties is not so

straightforward and the procedure of generating counter examples needs more cost.

The technique frame in Figure 4 defines the main activities of testing with model

checker. Consider the fact that the manageable formal model of finite state machine is

uneasily attainable in most cases, therefore the key activity, model checking, is disen-

abled. The paper presents a novel method, which specifies model of SUT in the form of

IOSTS structure, and uses symbolic execution and formula rewriting as the basis of auto-

generation of test cases. The method provides a more feasible and more flexible replace-

ment of testing with model checker when preserving the advantages of model checking.

The next section introduces the details about IOSTS structure.

3. Generation of Test Cases for Infinite States System

In testing with model checker, the availability of testing model as the test oracle, such

as finite state machine, overwhelmingly challenges testers. The work of building testing

model is demanding arduous, especially SUT has to be specified by infinite states model

with boundless types. The previous work in testing model checker targeted the control-

oriented systems. Certainly, testing model as the test oracle, cannot be directly derived

from the implementation of SUT, including the source codes and the machine codes, etc..

IOSTS structures symbolically specify behavior and the data without explicitly enu-

merating the values of variables with infinite domain, and have appropriate expressiveness

ability to specifying test models as test oracle with acceptable cost. Much research work

about IOSTS-based testing can be found in [16, 18] etc., and these work show the useful-

ness as a good media for integrating formal methods and testing. Next, the detail of IOSTS

is introduced. First, some conventions are clarified. v denotes a variable and Dv the domain

of the values v takes. Naturally, a set of variables is expressed as V = {v1, · · · , vn}, and

as the product of Dv1 × · · · × Dvn . Thus an element of DV is a vector of values for the

variables in V . In the IOSTS model, the guards ( predicates ) are logic formulae made of

the set of variable V and logical connectives, whose values are in the set {True,False}.

An assignment for a variable v and a set V ′ ⊆ V of variables depending on the set V are

formulated as DV → Dv and DV → DV ′ .
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Definition 3.1 An Input/Output Symbolic Transition System M is defined by a tuple

(V,Θ,A, T ), where:

- V = Vi ∪ Vx is the set of variables, partitioned into a set Vi of internal variables

and a set Vx of external variables.

- Θ is the initial conditions. It is a predicate Θ ⊆ DVi
defined on internal variables.

In general case, it is assumed that Θ has a unique solution in DVi
;

- A = A? ∪ Ai ∪ Aτ is the finite set of alphabet representing input/output actions

and internal actions. Each input or output action a carries parameters, whose types

are specified by sig(a) =< t1, · · · , tk > and regarded as the signature of action

a in A? and A!, which are the set of input actions and the set of output actions,

respectively. For distinguishing input actions and output actions, the name of the

former suffixes “?”, accordingly, that of the later prefixes “!”, such as a? and a!.

- T is a finite set of symbolic transitions. A symbolic transition t =< a,∆, G,A >

in T , also written [a(∆) : G(v,∆)?v′ := A(v,∆)], is defined as follows:

(a) a ∈ A? ∪ A! is an input or output action and ∆ =< p1, · · · , pk > is the

communication parameters of a. Without loss of generality, it is assumed

that each action a always carries the same parameters vector ∆ which is

well typed by the signature sig(a) =< t1, · · · , tk > of a, such that both

D∆ and Dsig(a) are Dt1 ×· · ·×Dtk ; Otherwise, a ∈ Aτ , as internal action,

is not often equipped with communication parameters.

(b) G ⊆ DVi
×D∆ is a guard defined on the internal variables and the communi-

cation parameters. For the sake of efficiently reasoning, the guard conditions

are expressed by formulae in a logic framework, such as propositional logic,

whose satisfiability is decidable.

(c) An assignment A : DVi
× D∆ → DVi

mainly defines the evolution of the

state variable of reactive systems, i.e. internal variables. For convenience, let

Av and AV ′ are the projection of A on the assignment of the variable v ∈ V

and the set of variables V ′ ⊆ V .

From the above definition, we conclude that IOSTS structure is an extension of I/O au-

tomata with communication parameters, actions, guards and assignment expressions which

detailedly specify complex data dependency besides the behaviors of SUT. A toy example

is shown in Figure 3. IOSTS structures do not define the concept of state due to its abstract

format, as a replacement, it equips with a special program counter variable encoding the

control locations between transitions, such as l0, l1, l2 and l3 in Figure 3, among which, the

first location l0 is the initial control location. The interactional behaviors between SUT and

environment are modeled by sequences of control locations and actions without internal ac-

tions, such as l0
in?(p)
−→ l1

in?(p)
−→ l2

ok!(p)
−→ l0 · · · and l0

in?(p)
−→ l1

in?(p)
−→ l2

nok!(p)
−→ l0 · · · . These

sequences identify actions in step when executing testing. Strictly speaking, a sequence

modeling the interactional behavior should exclude the existed internal actions.

IOSTS is easily used to visually specify the interactive behaviors between the environ-

ment and SUT, therefore, which, some tools, such as STG [24], use to specify both testing
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Fig. 3. An Example of IOSTS Structure

model and testing purpose. But the method has some shortcomings. On the one hand, the

new algorithm need redesign instead of reuse the existing algorithms and tools of model

checking; on the other hand, IOSTS has the limited expressivity to specify the other prac-

tically needed test purposes despite its many advantages of expressing interactive actions

sequence. In practice, testers often have to test the targeted system from different angles be-

sides its interactive behaviors, such as control and data flow, inclusively, a more expressive

formalism is needed. LTL, a specification formalism widely used in formal verification,

can concisely and naturally specify all kinds of test purposes including interactive behav-

iors. Take an example as follows: F(def(x)∧X (¬def(x)) U u(v, x)), where x and v are

variables, def(x) and u(v, x) are the predicates “x is defined” and “v is assigned with the

expression containing the variable x”. It explicitly defines the test purpose of DU chain

related to control and data flow. Another example is GFs with complex temporal feature.

Considering the aspects of generation of test cases for infinite states system, a novel

idea is presented, which integrates the advantages of traditional model checking, SAT and

IOSTS, the abstract testing model. Figure 4 shows the overall framework. It takes as the

inputs test models specified by IOSTS and test purposes specified by LTL formulae.

The formula rewriting and symbolic simulator, as the replacement of model checker,

play the pivotal roles. The formula rewriting technique is used to compute the necessary

condition, which the test case related to some trap property should satisfy, instead of verify

whether a property is satisfied by a path just as in runtime verification. The necessary

condition is encoded by a free-quantifier first order formula, denoted Constraint(). Given

a test case π =< s0, s1, · · · , sn >, s0 ∧ s1 ∧ · · · ∧ sn |= Constraint() holds. The next

section will expound the technical detail of LTL formulae rewriting.

Symbolic execution is an important technique of handling the symbolic and abstract

specification without directly enumerating huge space of concrete states of the targeted

system, widely used in program static analysis, testing and verification. Because LTL is

semantically interpreted as state-based structure, the symbolic-state based execution model

of IOSTS is constructed using symbolic execution technique. Firstly, some basic concepts

are provided.

Definition 3.1 Given an IOSTS structure M = (V,Θ,A, T ), for a variable v ∈ V , let T

be the type of v, Dv the domain of value. The symbolic type of T denoted ST is a type,
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· ·,·,·

Fig. 4. The Main Framework of Auto-Generation of Test Cases for Infinite States System

whose domain is a infinite countable set SDv = {t1, t2, · · · }, and the elements t1, t2, · · ·

are named symbolic constants. Each symbolic constant ti can represent any concrete value

typed T .

In Figure 3, all variables are integer int, whose symbolic type is Sint. Moreover, a

special symbol constant ⊥ is introduced for every symbolic type representing nondeter-

ministic value. Given two groups assignments: (v1 = t1, v2 = t1) and (v1 =⊥, v2 =⊥)

for variables v1 and v2, it is concluded that the predicate v1 = v2 is satisfied in the first

group, but not in the second.

With the enumeration of the values of variables, the semantics model of IOSTS struc-

ture can be defined in term of labeled transition system, LTS for short [18]. But accu-

rately modeling infinite states systems by this means is infeasible in model-based test-

ing. Next, the concept of symbolic state is introduced, as the basis of deriving the sym-

bolic state based symbolic execution model from IOSTS structure. For an IOSTS struc-

ture M = (V,Θ,A, T ), let SExpr(V ) be the meaning expressions set defined on
⋃

v∈V

Dv,
⋃

v∈V

SDv, f1, · · · , fn, where for 1 ≤ i ≤ n, fi is the operator with unambigu-

ous meaning, such as plus, substract and reference operator[ ] of element in an array, etc.,

Pred(SExpr(V )) the set of predicates defined on SExpr(V ).

Definition 3.2 Given an IOSTS structure M = (V,Θ,A, T ), binary tuple (Ω,Π) is named

symbolic state, where Ω : V → SExpr(V ) is an assignment, which assigns the expression

in SExpr(V ) to the variables in V , and Π ∈ Pred(SExpr(V )) is a predicate named state

condition or state invariant, also, which is regarded as a new state variable. Ω[v] and Ω[V ′]

are the projection of the assignment Ω in the variable v ∈ V and the variables set V ′ ⊆ V .

According to the following two rules, the symbolic execution model related to an
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IOSTS structure M = (V,Θ,A, T ) can be constructed.

Rule 1: The initial symbolic state (Ω0,Π0): Ω0 assigns the symbolic constants to the

variables in V and Π0 = Θ[Ω0], where Θ[Ω0] is the expression replacing the variables in

Θ with the related symbolic constants assigned by Ω0.

Rule 2: For [a(∆) : G(Vi,∆)?v′ := A(v,∆)] ∈ T and ∆ = {p1, · · · , pk}, the sym-

bolic states pair (ξ1 = (Ω1,Π1), ξ2 = (Ω2,Π2)) is derived by assigning the symbolic con-

stants to the variables in ∆, where, Ω2 = A(Ω1[Vi]),Ω1[∆]), Π2 = G(Ω1[Vi]),Ω1[∆]).

Generally, if the A only rearranges the only variable v, then v = Ω2[v] and ∀w ∈ V · (w 6∈

{v} ⇒ Ω2[w]) = Ω1[w] in ξ2. (ξ1, ξ2) is named symbolic states transition.

Starting from the initial symbolic state (Ω0,Π0), a finite or infinite symbolic states tree

can be constructed by using Rule 1 and Rule 2, and the tree with the root node (Ω0,Π0)

is the symbolic execution model related to IOSTS structure M , denoted M. Given a finite

symbolic execution path π =< ξ0, ξ1, · · · , ξn >, PC = Π0∧Π1 · · ·∧Πn is called the path

condition of π. Let π =< ξ0, ξ1, · · · > be the symbolic execution path with ξ0 = (Ω0,Π0),

and ι the substitution using numeric values to instantiate the symbolic constants. Then

πι represents the concrete execution path in labeled transition structure M∔ which is the

semantics model of M and PC is satisfiable with the assignment ι. Further, let path(M)

and Path(M∔) be the feasible symbolic execution paths in symbolic execution model M

and concrete execution paths set in labeled transition system M∔, respectively, according

to the relationship between M and M∔, the following conclusion can be drawn:

π ∈ Path(M∔) ⇒ ∃π′ ∈ Path(M)∃ι · π′ι = π

π ∈ Path(M) ⇒ ∀ι∃π′ ∈ Path(M∔) · πι = π′

In the symbolic execution model, the internal and external variables are uniformly regarded

as state variables, but the function of the external variables Vx, as communication param-

eters, are localized, that is, the values of communication parameters ∆ in some transi-

tion cannot be again referred in other locations, where are set the nondeterminate value

⊥. About IOSTS structure, some more complex features are not considered in the paper,

such as nondeterminacy and concurrency. Of course, the presented method can handle the

IOSTS structure with nondeterminacy and concurrency.

4. LTL Formula Rewriting

The last section introduces the challenges faced by testing systems with boundless types

based on model, and presents the solution shown in Figure 4. The section will put the

emphasis on the technical details starting with LTL formula rewriting.

4.1. LTL and Interpretation of Finite Path

4.1.1. Syntax and Semantics of LTL

In most cases, the behavior of the targeted system can be modeled by tree-like structure

or the set of finite and infinite paths; in the level of syntax, the properties satisfied by the
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behavior model is specified using temporal logic, a concise and intelligible format. Linear

temporal logic (LTL) [19] is a widely used temporal logic, and many model checkers based

on LTL have been applied to verify the industry-level hardwares and softwares, typically

for example, SPIN. Let AP be a set of atomic propositions, the abstract definition of LTL

formula is the following:

α , true|false|a|¬α|α1 ∧ α2|α1 ∨ α2|α1 → α2|α1Uα2|Fα|Xα|Gα

where, a ∈ AP , X , G, F and U are temporal operators, which mean “next”, “globally”,

“future” and “until”, respectively, and other operators standard logic connectives. Next, the

complete definition of the semantics of LTL formulae is provided.

The semantics of LTL formulae is defined in term of Kripke structure. Given a Kripke

structure K and a infinite path π, the following (1)-(10) terms detailedly interpret the LTL

formulae in the level of semantics.

(1). (K,π) |= true

(2). (K,π) 6|= false

(3). (K,π) |= a iff a ∈ L(π(0))

(4). (K,π) |= ¬α iff (K,π) 6|= α

(5). (K,π) |= α1 ∧ α2 iff (K,π) |= α1 and (K,π) |= α2

(6). (K,π) |= α1 ∨ α2 iff (K,π) |= α1 or (K,π) |= α2

(7). (K,π) |= Xα iff (K,π1) |= α

(8). (K,π) |= Fα iff ∃i ≥ 0 · (K,πi) |= α

(9). (K,π) |= Gα iff ∀i ≥ 0 · (K,πi) |= α

(10). (K,π) |= α1Uα2 iff ∃i ≥ 0 · (K,πi) |= α2 ∧ ∀0 ≤ j < i · (K,πj) |= α1

where, π(0) denotes the initial state of π, πi the postfix of π starting from the (i+1)th state.

If for every path π, (K,π) |= α holds, then (K,π) |= α can be simplified not explicitly

illustrating π, such as K |= true and K 6|= false. Moreover, in the unambiguous context,

K is also omitted, such as π |= α. The infinite path semantics of LTL formulae has built

the basis of relating trap properties specified by LTL formulae and test cases modeled by

finite path, and the next subsection discusses the detail.

4.1.2. The Meaning of Finite Path

Property violation can be mostly witnessed by a finite path (test case), thus some insights

about the meaning of finite path related to LTL formula need clarify in the context of the

infinite path semantics of LTL. Firstly, consider the finite path in Figure 5 (a). Obviously,

G(p → X q) is not satisfied by the path as the state sn labeled by p has not a successive

state labeled by q; in the other hand, it cannot refute the G(p → X q), as a counter example.

Any infinite path can avoid the predicament. For solving the problem created by finite path,

some strategies have to be used for handling the finite path and LTL formula. A straightfor-

ward way is to repeat the final state of the finite path, such that an infinite path is derived

when the main feature of the origin path is preserved. But when the infinite path is used to

evaluate LTL formula, some side effect exists. Again consider the example in Figure 5 (a),
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if sn ∈ L(¬q) which means sn 6∈ L(q), we immediately derive the incorrect conclusion

that the path is the counter example of G(p → X q). Next, the test case model is introduced.

Based on the test case model, a more elegant measure is adopted to formally clarify how a

finite path refutes a property in the setting of testing. Let Lengtht(s) ≤ l be a proposition,

which evaluates to true only if the current state of a sequence is any state prior to the final

state. The similar idea can be found in [20], where l is the size of the finite path t

Definition 4.1.2.1 Given a Kripke structure K = (S, s0, T, L) and a test case t =<

s0, s1, · · · , sn >, the test case model related t denoted Kt is the tuple (St, S0, Tt, Lt),

where {s0, s1, · · · , sn} ⊆ St ⊆ S, Tt ⊆ T , for p ∈ AP Lt(p) = L(p),Lt(lengtht(si) ≤

l) = {s0, s1, · · · , sl}, and Lt(¬(lengtht(si) ≤ l)) = {si|i > l}.

The test case model derived from a finite path t may be regarded as a special Kripke

structure, in which, all paths include the prefix t, moreover we can distinguish the prefix

t and the corresponding postfix by the proposition Lengtht(s) ≤ l, that is, in the prefix,

each state satisfies Lengtht(s) ≤ l, but in the postfix, each state does not. By more ob-

servation, we easily find that Kt 6|= G(p → X q) does not certainly lead to the conclusion

that the prefix t must be the counter example of G(p → X q). The original intention for

defining test case model that if Kt 6|= p for some property, then t is the counter example

of p, otherwise Kt |= p is still in unfulfilment. To bridge the gap, we use the proposition

lengtht(s) ≤ l to construct a new formula pt from p. Take an example as p = G(p → X q)

and pt = G(Lengtht(s) ≤ l → (p → X (Lengtht(s) ≤ l → q))). pt is derived by

recursively replacing the subformula α of some property p with Lengtht(s) ≤ l → α.

Obviously, Kt 6|= pt implies that Kt 6|= p, moreover, t or its prefix refutes p. Using the

above technique, a finite path can be used to evaluate the true value of LTL formulae when

preserving the infinite path semantics of LTL formulae. Of course, Kt |= pt only shows

fact that t cannot refute p, but in the setting of model based testing, it is rational.

In model checking, another class of properties needs infinite path to refute, such as

the liveness property Fp. When the trap properties are specified by the class of formulae,

we have to find the appropriate finite paths showing the features of infinite paths in order

to falsify the trap properties as counter examples (test cases). Model-checkers make use

of so called lasso-shaped sequences, a special kind of infinite path where a finite sub-

sequence at the end of a trace is repeated infinitely, which produce the test cases related

to the liveness trap properties. Let π =< s0, · · · , si, · · · , · · · >, ρ =< si, · · · , sj > and

ρ′ =< s0, · · · , si−1 >. If (sj , si) ∈ T , ρ′ρω is a lasso-shape path with ρ infinitely repeated.

In essence, the structure and property of the lasso-shape path ρ′ρω can be manifested by

the finite path ρ′ρρ shown in Figure 5, even ρ′ρ. It is summarized that the liveness trap

properties can be falsified by finite paths derived from lasso-shape paths. the lasso-shape

path ρ′ρω is denoted Kωρ as the test model related to the liveness trap property Fp.



October 26, 2012 10:29 WSPC/INSTRUCTION FILE ”auto-generation of test
cases for infinite states reactive systems based on symbolic execution and formula rewrit-
ing”

12 Donghuo Chen

Ø Ø

Ø Ø

Fig. 5. Examples of Finite Paths

4.2. Formula Rewriting

The state-based LTL formula rewriting approach is used to automatically verify the as-

sertions specify by LTL about the execution trace of the targeted system in running veri-

fication [21]. Due to the complexity of space and time in exploring full state space, LTL

formula rewrting, as a light-weight model checking technique, can be introduced into the

domain of testing with model checker. It helps us to take low cost to generate test case and

reduce the redundancy of test suite [22]. few research work in this field is done. The paper

extends the usefulness of LTL formula rewriting in testing with model checker as the basis

of automatically generating test cases of infinite states system. The subsection will expound

how to integrate the formula rewriting and symbolic execution model of program to com-

pute the theory expressed in the multi-type first order logic for formalizing the requirement

of the corresponding test cases.

Given a Kripke structure K = (S, s0, T, L) and a finite path π =< s0, s1, · · · , sn >,

the formula rewriting approach determines whether π satisfies some trap property targeting

to generate a test case by recursively checking the responsibility of the corresponding states

in π. Let θ[s] denote that state s is applied to the formula. In essence, we can regard formula

rewriting as a light-weighted model checking technique in the sense that it checks the set

of states in the related path rather than the whole state space. Application of a state to

a formula determines, whether the propositions valid in that state have an effect on the

formula. The following rewriting rules show for the state how to be applied the formula

according to the syntax structure of the formula.
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a[s] =

{

false s 6∈ L(a)

true s ∈ L(a)
(RW1)

¬α[s] = ¬(α[s]) (RW2)

(α1 ∧ α2)[s] = α1[s] ∧ α2[s] (RW3)

(α1 ∨ α2)[s] = α1[s] ∨ α2[s] (RW4)

(α1 → α2)[s] = α1[s] → α2[s] (RW5)

(Xα)[s] = α (RW6)

(Gα)[s] = α[s] ∧ Gα (RW7)

(Fα)[s] = α[s] ∨ Fα (RW8)

(α1Uα2)[s] = α2 ∨ (α1[s] ∧ (α1Uα2)) (RW9)

According to the state-based formula rewriting rules, the rule path-based formula

rewriting of the finite path, denoted α[π] or α[< s0, s1, · · · , sn >], can be formulated

as follows:

α[< s0, s1, · · · , sn >] = (α[s0])[< s1, · · · , sn >]

= ((· · · ((α[s0])[s1]) · · · )[si−1])[< si, · · · , sn >] (RW )

The above expression defines the detailed procedure of evaluating the formula in the

path. The rewriting result of φ[sk] is true, false, or φ′, where 0 ≤ k < n and

φ = (· · · ((α[s0])[s1]) · · · )[sk−1]. According to different results, different conclusions are

derived:

- The result false implies that a counter example is found, for example <

s0, s1, · · · , sk >, and the procedure of rewriting is terminated,

- if the result is one of true and α′ for k = n, a witness of validating the property

is found in the test model, otherwise

- the procedure of rewriting continues.

Given α = G(p → X q) and π =< s0 = (¬p, q), s1 = (p, q), s2 = (p,¬q) >, the next

example shows the method of path based formula rewriting.

α[π] = (G(p → X q)[(¬p, q)])[π1] = ((p → X q)[(¬p, q)] ∧ G(p → X q))[π1]

= ((p → X q)[(p,¬q)] ∧ G(p → X q))[π2]

= ((true → q)[(p, q)] ∧ G(p → q)[(p, q)])[π3]

= ((p → X q)[(p, q)] ∧ G(p → X q))[(p,¬q)]

= (true → q)[(p,¬q)] ∧ (G(p → X q))[(p,¬q)] = false

Conclusively, π is the test case for the trap property α.

4.3. Temporal Path Constraint

Model checking technique cannot be directly applied to the symbolic execution model

derived from IOSTS structure for generating test cases related to trap properties. Here a
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novel method without calling model checker is presented, and it contributes us what test-

ing with model checker can give, which uses the adapted version of LTL formula rewrit-

ing rules to compute the complex constraint specifying the test purpose (named temporal

path constrain). The temporal path constrain is encoded into the quantifier-free first or-

der formulae with multi-type, in other word, the quantifier-free first order formula, which

can be efficiently reasoned by the SMT tool, defines the necessary condition of the path

as the targeted test case. Notablely, the temporal path constrain is computed without the

knowledge of testing model. Given a LTL formula α, a path bound n and a infinite path

π =< ξ0, ξ1, ξ2, · · · >, where every state is labeled by true:

α[< ξ0, ξ1, ξ2, · · · >] = · · · = ((· · · ((α[ξ0])[ξ1]) · · · )[ξi−1])[ξi · · · ] = · · ·

= ((· · · ((α[ξ0])[ξ1]) · · · )[ξn])[ξn+1, · · · ] (RW ′)

(RW ) and (RW ′) with the consistent syntax have different functions: RW ′ sequently

labels the state in π with the necessary condition for confirming the temporal property

α, but (RW ) verifies whether α is satisfied. In (RW ′), the part with the overline repre-

sents the result after labeling the state ξi−1. When the result, the formula with the un-

derline after labeling ξn is true, the rewriting procedure terminates. < ξ0, ξ1, · · · , ξn >

is called the temporal path constraint related to α, also denoted ξ0 ∧ ξ1 ∧ · · · ∧ ξn. If

((· · · ((α[ξ0])[ξ1]) · · · )[ξi−1]) for i ≥ 1 is false, it is concluded that α is inconsistent and

the rewriting procedure terminates.

The rewriting rule (RW’) can be applied to compute temporal path constraint of test

case related to some trap property in the case of testing with model. Next, let us deliberate

the concepts of focus state of test case and counterexample pattern. Given a trap property

α and the corresponding test case π =< s0, · · · , sn >, the state sn is titled the focus state

for the test case π in the sense that any proper prefix π′ of π cannot refute α (Kπ 6|= απ

and Kπ′

|= απ′

), or π′ refutes α and the length of π′ is not in the range of path bound.

Provided that the length of counterexample related to some trap property is predefined and

the state in the last position is the focus state for test case, the rewriting rules (RW’) can

determine the responsibility taken by every state in the corresponding position according to

the structure of trap property, called the counterexample pattern. Figure 6 definitely shows

the pattern for formulae in the form of Fα, α1Uα2,Gα and Xα, and we can easily derive

the pattern for the other formulae. The patterns clearly formalize the constrain conditions

for the corresponding trap properties, such as ∃i ≥ 0 · (∀j ≤ i · (πj |= α)∧ πi+1 6|= α) for

Gα. Note that the pattern of counterexample for Fα should have the feature of lasso-shape

path. If α is not atomic formula or its negative, the rule (RW’) is recursively applied.

Let M be the symbolic execution model of the IOSTS structure M = (V,Θ,A, T )

and P the set of trap properties. Given some trap property θ ∈ P , π =< ξ0, ξ1, · · · > and

the corresponding counterexample pattern P , the expression Constraint(π,P , θ) denotes

the temporal path constrain, which is necessarily satisfied by any concrete test case related

to the trap property θ, and Sat(ξi, θ
′) denotes θ′[< ξi, ξi + 1, · · · >]. According to RW ′,

Sat(ξi, θ
′) is computed recursively calling rewriting rules (RW1) − (RW9). Of course,

the rule (RW1) need replace by the following rules (RW1′) and (RW1′′) due to different
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essence of (RW ) and (RW ′). The temporal path constraint Constraint(π,P , θ) such as

the trap properties Xα and Gα are listed as follows:

Constraint(π,P ,Xα) = Sat(ξ0, true) ∧ Sat(ξ1, α)

Constraint(π,P ,Gα) = Sat(ξ0, α) ∧ · · · ∧ Sat(ξn−1, α) ∧ Sat(ξn,¬α)

...

As noted previously, (RW ′) is used to compute the temporal path constrain, the neces-

sary condition necessarily satisfied by test case for some trap property, therefore, (RW1)

should be replaced by the following rules (RW1′) and (RW1′′)

a[s] = a (RW1′)

¬a[s] = ¬a (RW1′′)

Where a is the atomic proposition. The rules (RW2)− (RW9) reflect the logic structure

of LTL formula with the underlying temporal semantics, and (RW1′) and (RW1′′) label

states with atomic propositions or their negate.

Given a trap property, the concrete test case is jointly determined by the temporal path

constrain and the symbolic path produced from IOSTS. Let a tuple Theory(α,P , π) =

(Constraint(π′,P , α), CMD(π)) decode the complete assertions satisfied by the con-

crete test case related to the trap property α, where CMD(π) specifies the abstract behav-

ior of the symbolic path π. When π =< ξ0, · · · , ξn >, straightforwardly, CMD(π) is the

conjunction of the assignments and state variants in all symbolic states, including Ωi and

Πi, 0 ≤ i ≤ n. Modern SMT tools, such as Z3, can effectively solve Theory(α,P , π) to

derive the concrete test case. Constraint(π′,P , α) and CMD(π), the quantifier-free first

order formulae with multi types, are defined on the variables set V and the symbolic con-

stants of the corresponding types. It is highlighted that π′ in Constraint(π′,P , α) is only

a time line induced by the a totally ordered set (S, <), isomorphic to (N,<). In order to

explicitly specify the assertions and relations among them in different states, the variables

occurring in Constraint(π′,P , α) and CMD(π) need rename, in other word, relate the

variables with the states (pisitions). Only by modifying the rule (RW1′) and (RW1”), can

the formula rewriting and variable renaming be processed simultaneously. The new rules

R−RW1′ and R−RW1′′ are shown as follows:

a[s] = a[vs/v ∈ depend(a)] (R−RW1′)

¬a[s] = ¬a[vs/v ∈ depend(a)] (R−RW1′′)

Where depend(a) is the set of variable occurring in a and vs is the renamed version of v.

Similarly, CMD(π) is renamed according to the following expression:

CMD(π)[V π/V ] =
∧

{Ωi[V
ξi/V ]|0 ≤ i ≤ n} ∧

∧

{Πi[V
ξi/V ]|0 ≤ i ≤ n}.

Ωi[V
ξi/V ] and Πi[V

ξi/V ] are the result of renaming the variables in Ωi and Πi. The

implementation of variables renaming can easily resort to the SSA (Static Single Assign-

ment [25]) method used in compiling theory. Inclusively, with the complete conditions of
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Fig. 6. The Patterns of Counter Example for Fα,α1Uα2,Gα and Xα

test case related to some trap property expressed by the quantifier-free first order formula

as the input, the SMT tool is called to automatically generate the concrete test case.

5. Auto-Generation of Concrete Test Cases

5.1. Elements of SMT

SMT (Satisfibility Module Theory) is the extension of SAT in predicate logic [23]. SMT

solvers, which play important roles in analysis and verification of software and hardware,

are the core engine in the technique frame presented here. Pure formal logic discusses the

theory about general reasoning, but does not involve the knowledge about some special

background. In practice, most SMT tools can reason complex knowledge expressed by the

logic formulae including all sorts of background theory, such as integer theory, real theory,

EUF(Enqulity of Uninterpreted Function) theory and some special theory about array, list

and vector, etc., used for analysis of software and hardware. The built-in theory provides

the strong ability to specify and resolve the problem like generating test cases.

Many SMT tools were developed due to the purpose of research and application in

industry, such as Z3, CVC and MathSAT. Most tools provide the standard and usable man-

machine interfaces and programming ones. The researchers designed the standard language

and commands for communicating with SMT tools named SMT-LIB, therefore SMT tools

are conveniently used in different cases. Please refer the literature [23], etc., about the more

detail of SMT.

5.2. Algorithm

Auto-generation of test cases based on symbolic execution and formula rewriting has the

advantages of avoiding to explicitly build the states model of system under test and select-

ing the test cases targeting on testing abstract behaviors and different kinds of syntax struc-

ture elements of system specifications in all levels of abstract. Table 1 shows the skeleton

of the algorithm of auto-generation of test cases for infinite states system. This algorithm

takes the policy of depth first search, and its time complexity is determined by the size of

symbolic execution model, the length of pattern of counterexample and the text complexity

of trap properties.

The values of lowbound and highbound are set according to testing scene in practice.
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Table 1. The Main Algorithm of Auto-Generation of Test Cases for Infinite States System

Input K: IOSTS struture, P: a set of trap properties;

Output TS: test suite

for (α in P ) {

if(test(α,TS)) continue;// delete redundancy phenomena in TS

M=SymSimulator(K);// M: the symbolic execution model

flag=false;

for (π in Path(M) ) {

for(P=GetCEPattern(α) ) {

constraint=LTLRW(P , π) ;// call the formula rewriting engine

if(lowbound ≤ length ≤ highbound){

//length is the length of pattern of counterexample

path condition=CMD(π);

tc=SMT(constraint,path condition); // call the SMT tool

TS=TS∪{tc};

flag=true;

break; }

}

if(flag=true) break;

}

}

In fact, they play the similar role as the bound in bound model checking. Further, some

measures can be taken to improve the performance of the algorithm, such as different search

policy, more concise pattern of counter example and special background knowledge.

Next, a simple example of the beverage machine shows the procedure of generating

concrete test cases. Figure 7 defines the behavior of the beverage machine and the interac-

tion between the system and its environment using IOSTS structure. Some internal actions

are discarded for the sake of simplification. The values of some variables like discount are

set by the internal actions. The type of all the variables occurring in Figure 7 is the integer

except discount.

Take the trap propertyα = G(vQuan ≥ 5 → X (sum 6= p×discount)) as an example.

Let mQuan = c and mBeverage = s, where c and s are the symbolic constants. A pattern

of counterexample of α = G(vQuan ≥ 5 → X (sum 6= p × discount)) is graphed by

Figure 8. The following table specifies Constraint(π,P ,

G(vQuan ≥ 5 → X (sum 6= p × discount))) and CMD(π). domain(discount, p)
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Fig. 7. IOSTS: Beverages Machine
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Fig. 8. The pattern of counter example of α = G(vQuan ≥ 5 → X (sum 6= p× discount))

defines the background knowledge about the variables discount and p, and other constraint

conditions. Using SMT tool Z3 to parse the standard SMT-LIB document and resolving

Theory(G(vQuan ≥ 5 → X (sum 6= p × discount)),P , π), test cases can be derived,

such as (mCoin = 5,mCoin = 1,mCoin = 2), where only the parameters of input and

output actions are shown.

6. Prototype Tool and Experiment

6.1. Architecture and Interface

Based on the preceding methodology, the prototype tool is developed. Its main components

include LTL formula rewriting engine, IOSTS symbolic execution simulator, interface lan-

guages analyzer, and C/C++ API of Z3 DLL, etc. The tool takes LTL and STG format as

main interface languages, respectively used to specify test purposes and systems under test.

STG format is a simplified version of IF specification [26], which is the input language of

STG [27] with the ability of defining reactive systems. The basic grammar rules of STG

format is shown in table 3, including < system >, < process > and < transition >.

Other elements without explicit definition can be understood from the literal meaning. The

IOSTS structure can naturally interpret the semantics of the language defined by the rules

in table 3. The detail is left out. Figure 9 shows the main window, where the documents
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Table 2. The SMT-LIB Specification of Theory(G(vQuan ≥ 5 → X (sum 6= p× discount)), π,P)

;Constraint(π,P ,G(vQuan ≥ 5 → X (sum 6= p× discount)))

(set-logic AUFNIRA)

(declare-funs((vQuan0 Int) (sum0 Int) (p0 Int) (discount0 Real)))

· · ·

(declare-funs((vQuan3 Int) (sum3 Int) (p3 Int) (discount3 Real)))

(assert (and (and (< vQuan0 5) (< vQuan1 5)) (>= vQuan2 5) ))

(assert(= sum3 (* p3 (* vQuan3 discount3))))

; Domain(discount, p)

(assert(and (and (= discount0 0.8) (= discount1 0.8))

(and (= discount2 0.8) (= discount3 0.8) ))

(assert ( or (and (= p1 2)(= vBeverage1 1)) ( or (and (= p1 4)

(= vBeverage1 2)) (and (= p1 5)(= vBeverage1 3)))) )

(assert (and (= p2 p1) (= p3 p1)))

; CMD(π)

(declare-funs (c Int) (s Int)) (assert(> p0 0))

(assert(= discount0 0.8) )

(assert (and (= sum0 0) (= pay0 0)))

(declare-funs((vBeverage0 Int))) (declare-funs((vBeverage1 Int)

(vBeverafe2 Int) (vBeverage3 Int)))

(assert(= vBrverage1 s))(assert(= vQuan2 c))

(assert(= sum3 (* p3 (* c discount3))))(assert(>= c 5))

(assert(and (= vQuan1 vQuan0) (= vQuan3 c)))

(assert(and (=vBeverage2 s)(= vBeverage3 s)))

(assert(and (= sum1 0) (= sum2 0) ))

check-sat (get-info model)

respectively describe the STG format specification of windscreen wiper controller (adapted

from [20]), the related test purposes and teste cases. Moreover, the tool provides the in-

terfaces handily defining the domain knowledge of system under test, including complex

initial conditions and state invariant.

6.2. Implementation of Formula Rewriting Engine

The formula rewriting engine is the most core component, and the implementation is simply

demonstrated in the sequel.

The formula rewriting engine transforms a LTL formula α to a formula of proposition

logic f according to the rewriting rules. Every formula like f , named indexed proposi-

tional formula which consists of atomic propositions with the subscript of state position,
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Fig. 9. The Main Window

determines some length-fixed paths with the indispensable requirement in every state for

validating LTL formula α. The complete procedure is divided into two steps: construction

of rewriting tree and reduction of indexed propositional formula. The algorithm of the first

step can be thought of as an implementation of the tableau construction for LTL as a whole,

but the output is a rewriting tree, rather than a Büchi automaton. The details are referred

to [8]. Take α = a and (b or (c and XX d)) and X e as an example, where, a, b, · · ·

are atomic propositions, and and, or and X logic connectives and temporal operator. Fig-

ure 10 shows the result of the first step, which is inductively defined on the following data

structure:

< system >::= system < system− id >;

[const < constant >]

[type < type >]

gate < gate >

< process >+

< process >::= process < process− id >;

input < gate− id >+

output < gate− id >+

[parameters < params >+]

[variable < vars >+]

state < state >+

transition < transition >+

< transition >::= from < state− id >

[< guard >]

[< action >]

[< statement >]

to < state− id >

Table 3. Formal Grammar of STG Format
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struct Node {

CArray<CProposition *,CProposition* > stateINV;

CArray<struct Node *,struct Node *> nextNodeList;

CArray<CProposition *, CProposition *> disjuctive; }

The data structure is coded based on MFC and C++. Next, we expound the second step:

reduction of indexed propositional formula, consequently, make the underlying meaning of

the tree shown in Figure 10 clear. Let Condα(p) be the constraint condition in the form of

index propositional formula reduced from the tree in Figure 10, INV (s) the state invari-

ance of state s. The computation of Condα(p) tells the essence of indexed propositional

formula.

Condα(p) = INV (s0) ∧ INV (s1)

INV (s0) =
∧

β∈ stateINV |s0

β ∧
∨

i=1,2

Condαi
(pi), where α1 = b, α2 = c and XX d

Condα1
(p1) = disjuctive(1)|s0 = bs0

Condα2
(p2) = disjuctive(2)|s0 ∧ INV (s′1) ∧ INV (s′2) = cs0 ∧ trues′

1
∧ ds′

2

INV (s1) =
∧

β∈ stateINV |s1

β = es1

Summarily, Condα(p) = as0 ∧ (bs0 ∨ cs0 ∧ trues′
1
∧ ds′

2
) ∧ es1

= as0 ∧ bs0 ∧ es1 ∨ as0 ∧ cs0 ∧ trues′
1
∧ ds′

2
∧ es1

_stateInv={a}

_disjuctive={b,c}

_nextNodeList

Fig. 10. The Rewriting Result of a and (b or (c and XX d)) and X e

The first clause of DNF of Condα(p) implies that a path (s0, s1) is a witness of

validating α if a and b are satisfied by the initial state s0 and e is satisfied by s1.

In the same way, the second clause can be interpreted. Furthermore, as0 , bs0 and ds′
2
,

etc. can be simplified by omitting the state labels in the subscripts like s and s′, then

Condα(p) = a0∧b0∧e1∨a0∧c0∧true1∧d2∧e1. Table 4 gives the algorithm of reduction
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of indexed propositional formula. For the sake of space, the details of implementation of

other components are not introduced.

Procedure sparseTree( tree, index)

Input: Node * tree, int index

Output: IndexedFormula path formula // indexed propositional formula

1 Begin

2 path formula=trueindex;

3 foreach(inv∈ stateINV)

4 path formula=path formula∧Index( inv,index);

5 nextNode=first( nextNodeList);// the first of nextNodeList

6 path formula=path formula∧ sparseTree(nextNode,index);

7 disjunct=falseindex;

8 foreach(1 <=pos<length){// length denots the size of tail( nextNodeList)

9 disjunct=disjunct ∨(Index( disjuncts[pos],index+1)

10 ∧sparseTree( nextNodeList[pos],index+1));

11 path formula=path formula ∧disjunct; }

12 End

Table 4. The Algorithm of reduction of indexed propositional formula

6.3. Symbolic Execution Simulator

Symbolic execution simulator is another core component with the responsibility of deriv-

ing the symbolic execution model, and choosing the symbolic path with different strategies.

The first version of prototype tool is implemented naively without aggressively reducing

the amount of invalid path enumerations. The invalid path enumerations lead to needlessly

time-consuming procedures for calling SMT solver. The experimental result of the subsec-

tion will show this point.

Figure 11 clearly outlines the technique route for improving the performance of sym-

bolic execution simulator. The strategies are divided into off-line strategies and on-line

ones among which, the off-line strategies preprocess the original IOSTS specification of

SUT, such as elimination of infeasible path and invariant label of loop structure, and the

on-line ones are used to control and optimize the procedure of enumerating paths and solv-

ing Theory(·, ·, ·). The loop structures are indicated by decomposing the SCC (Strong

Connectivity Component) in symbolic execution model. The off-line and on-line strategies

are not integrated into the prototype tool, therefore, the detail of Figure 11 is not detailedly

expounded.

6.4. Experiment

The goal of our experiment is to show the function and performance of the prototype

tool, rather than comparing the performance with the other related tools based on different
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Fig. 11. The Optimization of Symbolic Execution Simulator

methodologies. The chosen systems under test include windscreen wiper controller, bever-

age machine and elevator controller, which are specified by STG format. Table 5 lists all

considered test purposes. The experiments are performed on Microsoft Windows machine

with an Inter Core 2.0 G processor and 2GB RAM. The experimental result is shown in

Table 6. The second column depicts the average length of test cases of SUT (Ave. Len.),

and the successive ones respectively the maximal length (Max. Len.), the average amount

of the traversed transitions for generating one test case (Sum. Len.), peak memory (Peak

Mem.) and execution time (Time).

The index of average amount of the traversed transitions reflects the efficiency and

validity of the prototype tool. Besides Ave. Len. and Max. Len., the static structure of

specification of SUT and the range of path bound have impact on the Sum. Len.. Some

extreme cases can lead to the mass of invalid traversal of transitions just like what shown

in the last row of Table 6. In order to improve the performance of prototype tool, some

more elaborate strategies need to be taken into account: (1) Classifying the set of transi-

tions according to domain knowledge and rewriting result of test purposes to control the

procedure of the enumeration of symbolic execution paths, (2) dynamical path bound and

(3) optimizing the decision procedure of Z3, etc.. Figure 11 shows more details. Moreover,

the implementation of prototype tool involves frequent dynamic memory access, which im-

pact on the overall performance, such as peak memory and execution time, therefore, the

operator system-independent memory manager is a requisite. Ulteriorly,

It should be emphasized that the experiment work in the section is not adequate. We

need conduct some industry-level case studies for evaluating our methodology and tool.

7. Concluded Remark and Future Work

Testing with model checkers is an important breakthrough in the automatization of testing.

Due to the complexity of system and the difference between testing model and verifying

model, the function of general model checking technique is very restricted in generating



October 26, 2012 10:29 WSPC/INSTRUCTION FILE ”auto-generation of test
cases for infinite states reactive systems based on symbolic execution and formula rewrit-
ing”

24 Donghuo Chen

Systems Test Purpose

Windscreen

wiper

[1]G(statecode==4 and in pump==0 imply X (statecode!=3))

[2]G(statecode==1 and in pump==1 imply X (statecode!=4))

[3]G(statecode==1 and in pump==0 and in speed¿0 imply X (statecode!=2))

[4]G(statecode==3 and in pump==1 imply X (statecode!=4))

[5]G(statecode==3 and counter!=0 and in pump==1 imply X (statecode!=4))

[6]G(statecode==3 and counter==3 and in pump==0 imply X (statecode!=2))

[7]G(statecode==2 and in speed==0 and endswitch==1 and in pump==0

imply X (statecode!=1))

[8]G(statecode==2 and in pump==1 imply X (statecode!=4))

Beverage

machine

[1]G(mRemaining>0 imply mRemaining!=pay-sum)

[2]G(Quan<5 and Quan!=0 imply X (sum!=price * Quan))

[3]G(Quan>=5 imply X (sum!=price * Quan * discount))

[4]G(mRemaining>0 and mCancel==1 imply X(mRemaining!=pay))

[5]G(mCoin>0 imply X(pay!=sum))

[6]G(mCoin>0 imply X (pay<=sum ))

[7]G(mBeverage=1 imply X (vBeverage!=1))

[8]G(statecode==1 imply not (Quan==0 and pay==0 and sum==0))

Elevator

[1] G(statecode==2 imply 2*curr!=max)

[2]G(curr==goal and statecode==3 imply X (statecode!=2))

[3]G(curr<goal and curr>5 imply X(statecode!=3))

[4]G(curr>goal and curr<5 imply X(statecode!=3))

[5]G(goal>5 and curr==goal imply X(statecode!=2))

[6]G(statecode==3 and goal==max imply curr!=goal)

Table 5. The Set of Test Purposes

Systems Ave. Len. Max. Len. Sum. Len. Peak Mem.(MB) Time (s)

Windscreen wiper 4 7 64 1.4 0.8

Beverage machine 5 8 56 1.0 0.3

Elevator 7 13 10000 10 106

Table 6. The Exprimental Report

test cases. This paper presents the idea of auto-generation of test cases based on symbolic

execution and temporal formula rewriting method and discusses the basic technique. The

method has some advantages and extends testing with model checker and other testing

based on model. The basic algorithms based on the methodology are implemented and

some small examples are studied. Of course, the work in the paper is not enough. Our

future work will focus on improving the performance of the algorithm and conducting the

case studies in industry level.
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