CS2310 Milestone #2 Report
Mengjie Mao

Title:
A digit recognition system prototyped by SIS Testbed

1. Input

In this project we use the MNIST dataset as the input for recognition. MNIST contains a training
set of 60,000 handwritten digit examples, and a test set of 10,000 handwritten digit examples.
Figure 1 shows five different styles extracted from MNIST dataset.

0/2—-5’9567?9

Q
N\~
PR,
W\
N L
N &
ST o>
NN W
9 A =0
D O~

Figure 1 the black-white figure of digits from MNIST.

The package of MNIST has four files, including TRAINING SET LABEL FILE (train-labels-idx1-
ubyte), TRAINING SET IMAGE FILE (train-images-idx3-ubyte), TEST SET LABEL FILE (t10k-labels-
idx1-ubyte) and TEST SET IMAGE FILE (t10k-images-idx3-ubyte). Two label files share the same
format:

[offset] [type] [value] [description]

0000 32 bit integer 0x00000801(2049) magic number (MSB Ffirst)
0004 32 bit integer 60000 number of items

0008 unsigned byte ?7? label

0009 unsigned byte ?7? label

XXXX unsigned byte ?7? label

The label is from 0 to 9.

Two image file also have the same format, as shown in following:



[ofFfset] [type] [value] [description]

0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 60000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?7? pixel

0017 unsigned byte ?7? pixel

XXXX unsigned byte ?7? pixel

Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255
means foreground (black). Continuous 28x28 pixels in the image file consist of a digit.

From the label format and image format we can build a training dataset and a testing dataset
for auto associative memory. The input for associative memory can be a vector consisted by
784 unsigned integers, each of which is between 0 and 255.

2. Algorithm

We use the The Brain-state-in-a-box (BSB) model, which is a simple, auto-associative, nonlinear,
energy-minimizing neural network. A common application of the BSB model is optical character
recognition (OCR) for printed text. The BSB model is a simple auto-associative neural network
with two main operations — training and recall. The mathematical model for recall can be
represented as:

X(t+1)=5(a-A xx(t)+ A =xx(t))

where, x is an N dimensional real vector, and A is an N-by-N connection matrix. A X x(t) is a
matrix-vector multiplication, which is the main function of the recall operation. a is a scalar
constant feedback factor. A is an inhibition decay constant. S(y) is the “squash” function defined
as follows:

1, if y=1
S(y) = y, if -1<y<l1
—1, if y< -1

For a given input pattern x(0), the recall function computes above function iteratively until
convergence, that is, when all the entries of x(t+1) are either “1” or “—1”.

The BSB model has been implemented with C++, below two figure show the training source
code recall source code:



bool THAINBSB (s102c *vac, float *wm)

{

bool converged;

int i, 3, k;

float w;

wx = {(float *Jmalloc{BsbSize*sizecf{float));

S/ Compute W*X
for (i=0;i<BsabSize;) {
wxl[i]l] = 0.0;
for(j=0;]<BasbSize;){
wx[i] += wm[i*BsbSizet+j] * wecl[jl:
++is
}
++i;
}

EE!I?.’EIg'Ed. = true;

S/ Compute X-W*x
for (i=0;i<BsabSize;) {

wx[i] = vec[i] - wx[i];
if(fabaf(wx[i]) > 1.0E-4) converged = false;
++i;

}

[/ Update W = W + LR*(¥- W*X) _outter_product_ X
for (i=0;i<BabSize;) {
for{j=0;j<BabSize;) {
wm[i*BsbSizet]] = wm[i*BebSizet+]j] + LEARRN RATE*wx[i]l*wvec[]];
++3;
}
++i;
}

free (wx);
return converged;
} = end TrainBSE =

Figure 2 the training function of BSB model



bool RecallBSB isicax *wac, float *wm)

{

int i, 3, k;

bool converged;

float Wy

wx = (float *)malloc{BsbSize*sizecf(float));

£ Compute W*X
for (i=0;i<BabSize;) {
wx[i] = 0.0;
for (J=0;J<BabSi=ze; ) {
wx[i] += wvm[i*BabSizet]] * wecl[]l;
++is
I
++i;
}

£ Compute S(Alpha*W*X + Lamda¥*x)
for(i=0;i<BabSize;) {

wx[i] = ALPHA*wx[i] + LAMDA*wvec[i];
if(wx[i] <= -1.0)
wec[i] = -1.0;
elze
if{wx[i] »>= 1.0)
vec[i] = 1.0;
elae
vec[i] = wilil;
++i;

}

/' Check convergence
converged = true;

for{i=0;i<Tagdffeet; ++i){ /S When conwverged, all tags must be 1.0
if{wvec[i] != 1.0) converged = false;

}

forl{i=0;i<BsbSize;++1i) { /¥ When cenverged, all image entries must be eith -1 or 1
if{fabsfivec[i]) != 1.0) converged = false;
}

free (wx) ;
return converged;
1 « end RecallBSBE

Figure 3 the recall function of BSB model



