highlights.pdf

Graph Transformations and Software
Engineering: Success Stories and Lost
Chances - Highlights

Giovanni Toffetti, Mauro Pezze

September 30, 2011

Graph transformation systems are a powerful tool to deal with syntax, semantics and
transformation of diagrammatic/visual notations

Visual and diagrammatic languages are fundamental in software engineering but graph
transformations are still not common practice in industry

We look back at graph transformations in software engineering in the last fifteen years
and identify success stories

We discuss to what extent graph transformation succeeded, what are the main causes
of failures, and how they can help software engineering in the next fifteen years

main.tex

Click here to view linked References

Graph Transformations and Software Engineering:
Success Stories and Lost Chances

Giovanni Toffetti®*, Mauro PezzeP©

@ University College London
b University of Lugano
¢ University of Milano Bicocca

Abstract

Textual as well as visual and diagrammatic notations are essential in software
engineering, and are used in many different contexts. Chomsky grammars are
the key tool to handle textual notations, and find many applications for tex-
tual languages. Visual and diagrammatic languages add spatial dimensions
that reduce the applicability of textual grammars and call for new tools.

Graph transformation systems have been studied for over forty years and
are a powerful tool to deal with syntax, semantics and transformation of dia-
grammatic notations. The enormous importance of visual and diagrammatic
languages and the strong support that graph transformation provide to the
manipulation of diagrammatic notations would suggest a big success of graph
transformation in software engineering.

In this paper we discuss the main features of graph transformation and
how they can help software engineers. We look back to the many attempts
to use graph transformations in software engineering in the last fifteen years,
identify some success stories, and discuss to what extent graph transforma-
tion succeeded, when they have not succeeded yet, what are the main causes
of failures, and how they can help software engineering in the next fifteen
years.

Keywords:
Graph transformation, software engineering, model, model transformation,
visual language, dynamic system, evolving system.

*Corresponding author
Email addresses: g.toffetti@ee.ucl.ac.uk (Giovanni Toffetti),
mauro.pezzeQusi.ch (Mauro Pezze)

Preprint submitted to Journal of Visual Languages and Computing September 30, 2011

http://ees.elsevier.com/jvlc/viewRCResults.aspx?pdf=1&docID=471&rev=0&fileID=18581&msid={E9756737-F67A-4153-A632-16E567BE4783}

1. Introduction

Informatics is about information and its representation. Both scientists
and practitioners use many textual and diagrammatic notations to repre-
sent any kind of concept, from data to models, all the way to programs and
computation. Understanding and defining notations is essential to use them
properly, and formal languages are the best means to avoid ambiguities and
misinterpretations, and to enable automatic information processing. Formal
string grammars that Chomsky studied since the fifties are the most common
way to specify the infinite set of all valid statements (the syntax) of textual
(sequential) languages. As such, to name but one important application,
they play a fundamental role in compilers.

Diagrammatic notations introduce new dimensions beyond the sequential
successor relation that characterizes textual notations, and classic Chomsky
grammars cannot capture these new dimensions. In the context of diagram-
matic representations, the simplest and most natural abstraction is a graph,
and graph grammars, or more generally graph transformation, are the most
suitable specification for diagrammatic languages (graphs). As stated by
Heckel: ”Graph transformation has originally evolved in reaction to short-
comings in the expressiveness of classical approaches to rewriting, like Chom-
sky grammars and term rewriting, to deal with non-linear structures” [1].

Graphs are particularly suited for modeling and representing many struc-
tured and dynamic contexts, for instance software architectures, distributed
communications, call graphs and many more. Graph transformation systems
are not only an intuitive way to represent the syntax of graphs, but also to
formalize how graphs evolve. As stated by Ehrig et al.: ”Graph transforma-
tion allows one to model the dynamics in all these descriptions, since it can
describe the evolution of graphical structures” [2].

Research on graph transformation started over forty years ago, and right
from its inception it identified the main application directions. In 1969,
Pfaltz et al. gave the first examples of classes of graph grammars (called
Web grammars), setting the path to using graph grammars as formal speci-
fications of diagrammatic languages [3]. In 1971, Pratt adxdressed string to
graph language mappings with pair grammars, paving the way to the coming
generalization of pair grammars into triple grammars [4] and their applica-
tion to model transformation [5]. Finally, in 1973, Ehrig et al. introduced

the algebraic approach to graph transformation, which has proven a funda-
mental instrument in studying and demonstrating several properties of graph
transformation systems [6].

Further application areas and methodologies were identified early on,
both applying graph transformation in a generative and in an analytic ap-
proach. For example in the eighties, Dolado and Torrealda used a gener-
ative approach to generate Forrester diagrams [7], while Gottler proposed
a generative approach to automatically derive diagram editors from graph
transformation [8], becoming a cornerstone for many more approaches to
develop domain-specific languages together with their editors and CASE
tools. On the other end, Bunke proposed an analytic application of graph
transformation to "read” diagrammatic notations (interpreting diagrams and
flowcharts) [9].

The nineties saw the interest in graph transformations spreading to other
communities that applied graph transformation in different fields, like soft-
ware architectures [10, 11] and reconfiguration for fault tolerance [12] to name
a few.

Over forty years of theoretical and applied research have shown the effi-
cacy and the limits of graph transformation systems. Graph trasformation
systems are an essential tool to formally define diagrammatic languages, find
many applications in informatics, and are widely accepted in the academic
community. However, notwithstanding a constant effort from the graph
transformation community to promote industrial acceptance with dedicated
workshops and symposia, for example the series: Graph-Grammars and Their
Application to Computer Science, widespread application of graph transfor-
mation in common practice is still lacking.

In this paper we discuss the impact of graph transformation in software
engineering. We do not aim to survey all the relevant applications of graph
transformation to software engineering, but we focus on identifying the way
graph transformation can be used in software engineering looking at a set of
key application areas. We illustrate the different way of using graph trans-
formation by discussing some sample work and analyzing the key elements
of success and the reasons behind the lack of wide adoption so far.

The next section introduces graph transformation to make the paper self
contained. Section 3 discusses the role that graph transformation has played
in software engineering. Section 4 illustrates the suitability of graph trans-
formation in software engineering by presenting few sample cases. Section 5
discusses the impact of graph transformation in academia and in industry.

Section 6 concludes and discusses the future of graph transformation in soft-
ware engineering.

2. Graph transformation in a nutshell

Graph transformations have be defined in many ways with different no-
tations to represent the rules, matching and glueing models, application con-
ditions and more. In this section we summarize the main elements of graph
transformation referring to the intuitive presentation of Heckel [1]. The inter-
ested readers can find a clear introduction and classification of graph trans-
formation systems in the paper by Blostein et al. [13] and a complete and
formal definition in the "Handbook of graph grammars and computing by
graph transformation” by Rozenberg and Ehrig [14].

Graph transformation defines transformations over graphs by means of
rules. A graph is a set of nodes and (directed or undirected) edges. Both
nodes and edges can be typed to represent different concepts, for example
a person or an object, and can have attributes, defined as name and value
pairs [1]. The type of nodes and edges of a graph can be specified intuitively
by means of sets of terminal and non-terminal nodes and edges. A more
expressive way to define types is by means of another graph, called type
graph. A type graph is a graph that represents the types of nodes and edges,
their attributes, and what is valid in an instance graph based solely on type
information and cardinality. For instance a node of type person can only
be connected by an edge of type is natural child of to two instances of the
node of type person. A type graph typically contains a single instance of
node per type, while edges represent both edge types, the types of nodes
they can connect, and the allowed cardinality. Montanari et. al give a
clear and practical example of type graphs applied to Entity-Relationship
modelling [15].

Once the types of nodes and edges are defined, we can define the rules, also
called productions, that represent the core of graph transformation systems.
A rule is composed of a left-hand side (LHS) and a right-hand side (RHS).
The LHS indicates the pre-conditions for applying the rule, while the RHS
indicates the post-conditions. A rule can be applied to a graph when the LHS
matches a subgraph, and the application of the rule replaces the matched
subgraph with the RHS of the rule.

Figure 1 shows an example of rule (top of the figure) taken from [1]. The
LHS of the rule is the graph L and the RHS is the graph R. The bottom

marbis-m L , R marbios-m:1
f1 > F2, f2 > F1
OLﬂpaP,me/vn ﬁon
[Et:Field }— MiMarve | G H [Fi:Field P:Pacitan
| E3:Field |—] M2:Marble | | E3:Field [«—{ M2:Marble |

Figure 1: Rule and application from Heckel [1]

part of the figure shows the application of the rule to transform the graph
G into H. The matching elements of LHS and G are represented by the
mapping O, where O stands for "occurrence”. The rule is applied in three
main steps: match the LHS to a subgraph of G, modify G by deleting all
the elements of the matched subgraph that are not preserved in RHS (i.e.,
LHS \ RHS), modify G by adding the new elements introduced by RHS (i.e.,
RHS \ LHS) obtaining H.

Deleting a subgraph (step 2) may leave dangling edges, that are edges not
connected to two nodes, and hence produce invalid graphs. A common solu-
tion to this problem is augmenting the rules with a graph K that indicates
elements that must exist in the graph to apply the rule and are preserved by
the application of the rule, thus preventing edges to remain partially discon-
nected during the application of the rule. The graph K is called the gluing
condition and the approach is called double-pushout approach (DPO) [6].

Rules can be applied directly, when the users specify the rule to apply
and the matching to be used, or in undirected fashion, when rules are ordered
or organized in layers and applied repeatedly until no further matchings are
possible.

To expressiveness of graph transformation has been enhanced with sev-
eral extensions, the most common being constraints and (negative) appli-
cation conditions. Application conditions (ACs) and negative application
conditions (NACs) limit the application of rules to guarantee that some re-
quired properties are satisfied. They specify the context in the graph that
must (AC) or must not (NAC) be matched. ACs and NACs are powerful
constraints at rule level that allow complex specifications, for example a user

can be member of at most one role, but can be authorized for a role if the
role is inherited from the role of assignment. The key characteristics of appli-
cation conditions is that the context to which they refer to can be arbitrarily
far from the nodes to which the rule is applied, allowing the designer of the
rule to specify elaborated conditions. Some popular tools, like PROGRESS,
further enhance the expressive power of rules and conditions by set nodes
and paths. Set nodes, also called multi-objects, are used as a short-hand no-
tation to represent a set of rules in which the set node appears n times with
n > 0. This allows to specify for example rules deleting all instances of a give
node type. Paths indicate sequences of directed edges of arbitrary length,
and allow to represent concepts such as for instance multi-hop connectivity
in graphs.

3. Graph transformation in software engineering

Graphs are a natural wvisual representation of structured information,
With nodes modeling entities and (hyper) edges (n-ary) relationships among
entities, they provide a simple visual abstraction of the reality. In particu-
lar, they provide a powerful means to represent nodes and edges with types,
attributes, and composition constraints.

In software engineering, modeling is a basic tool used at all abstraction
levels and during the whole software development process. Models and in
particular diagrammatic models based on graphs are used to represent and
analyze software procedures, processes, components, functioning, architec-
tures, interactions, as well as the entire software life cycle in its various
phases and declinations, like re-factoring, testing, bug assignments, deploy-
ment and composition. Thus, graph transformation systems have a natural
application in several areas of software engineering.

Software engineers have exploited three main features of graph transfor-
mation systems: their ability to provide an intuitive diagrammatic repre-
sentation of modeling concepts, their suitability to formally specify graph
languages and mechanisms to guarantee that (or verify whether) a graph is
a valid language production and their flexibility in modeling and reasoning
about graph evolution, as a representation of dynamic behavior, with rules
and the possibility to prove dynamic properties, for example by studying
parallel /sequential rule applications. So far, graph transformation systems
have been applied in various contexts:

modeling several aspects of software and the software development process
to prove, classify, reason over their characteristics;

defining visual languages and their tools to produce domain-specific de-
velopment environments, with focus on the syntax, the specification of
the visual language;

modeling transformations and mappings across notations and languages;

checking and proving the consistency of dynamic systems with focus
on the semantics, the dynamics of the representation.

The paper by Blostein et al. provides a thorough analysis of the state of
the practical use of graph rewriting systems up to 1996 [13]. At that time,
despite the advantages in terms of abstraction, correctness, and convergence,
graph transformation systems had not attained widespread practical use.
Blostein et al. identified as a factor hindering the industrial application of
graph transformation in software engineering the lack of education and tools
with consequent lack of experimental data about the advantages of graph
transformation in the field. In the last fifteen years, the graph transforma-
tion community has endured a consistent effort, producing a vast amount of
educational material, a series of conferences dedicated to practical uses of
graph transformation, as well as a set of development tools that have moved
from research prototypes to products used in industrial scale projects, like
Fujaba.

Blonstein et al. identified also lack of graph rewriting system modular-
ization, grammar evolution, and graph inspections support as key technical
factors hindering the industrial applicability of graph transformation. These
problems are grounded in the lack of design techniques and patterns, effi-
ciency, appropriate choice of rule organization (i.e., graph grammars, un-
ordered, ordered, and event-based graph rewriting systems), structure of
large rule collections and common extensions to rewrite mechanisms (for
instance application conditions and set-rules). Notwithstanding the research
effort, some of the considerations of Blonstein et al. are still valid today, and
are affecting the industrial success of graph transformation.

In the following section, we sample some applications of graph transfor-
mation to software engineering, highlighting how different features of graph
transformation have exploited in different contexts and discussing the limits
of the solutions.

4. Application examples

The many applications of graph transformation in software engineering
exploit the ability of modeling both static and dynamic aspects of diagram-
matic representation, the possibility of reasoning about model evolution and
the ability of supporting visual languages and their semantics.

In this section we present some examples of applications that exploit the
different features of graph transformation. The examples represent applica-
tions in different fields and aim to indicate how graph transformation can
meet different needs, without claiming neither completeness nor generality.

4.1. Modeling static and dynamic aspects

While capturing the syntactic aspects of diagrammatic notations is quite
simple, formally modeling and reasoning about the dynamic semantics of
diagrammatic notations is difficult. Graph transformation represents well
both static and dynamic aspects, as well as the interplay between syntax
and semantics, and provides a powerful means to analyze the diagrams and
their evolution.

In this section we illustrate the ability of modeling both static and dy-
namic aspects referring to applications of graph transformation to software
architecture styles and security.

Software Architecture Styles

Software architecture styles constrain the freedom of software architects
who shall follow specific conventions in identifying and composing subsys-
tems and components. Designing architectures compliant with a given style
requires the ability to enforce some rules that often reflect dynamically evolv-
ing constraints on diagrams. Graph transformation is an ideal means to de-
fine composition rules that can be dynamically adapted to new needs and
requirements, and can be used to derive syntax driven editors, analyze the
compliance of architecture designs with a given style and define transforma-
tions to change architectural style.

To represent and verify software architecture styles we need both a for-
mal framework and a natural (graphical) way to express software design
choices, features that characterize graph transformation. Le Metayer sug-
gested to define entities (like procedures, modules and processes) as graph
nodes, communication links as edges, and the constraints that characterize
the architecture style as graph transformation rules [11].

In Le Metayer’s approach, entities evolve by changing internal and public
variables according to the semantics of the programming language, while a
coordinator manages the architecture itself and maintains the consistency
of the architecture style by adding and removing nodes and edges using
conditional graph rewriting based on the values of public variables of the
entities.

Graph transformation rules ensure the topological properties of the archi-
tecture by construction, and reconcile the dynamic view of the architecture,
defined as its evolution through the coordinator rewrite system, with the
static verification of the architectural style defined on a set of graph trans-
formation rules. The intuitiveness and formality of the notation, as well
as the separation of the logic of the coordinator and the entities, support
the definition and evaluation of properties of information flows for different
architectural styles.

Graph transformation rules support the static type checking of the coordi-
nator and the identification of violations of the constraints that characterize
the architectural style. The type checker first builds a reduction graph, that
is a cyclic graph whose origin is the left hand side of a coordinator rule, the
terminal node is the axiom of the grammar associated to the architectural
style, and the internal nodes are derived by applying the reverse grammar
of the style. It then checks whether the right hand side of the coordination
rule in all its application contexts that are given by the reduction graph can
be reduced to the axiom of the architectural style grammar.

Le Metayer clearly indicates the advantages of graph transformation for
enforcing architectural styles and indicates in the choice of context-free gram-
mars the strength as well as the limitations of the approach: context-free
grammars reduce the complexity of the checks, but limit the rules that can

be defined.

Role-based access control

Access control (AC) is a common security mechanism used to determine
and enforce which entities (programs or users) can have access to objects,
for example files or devices, and with what permissions, for example read,
write or execute. Role-based access control (RBAC) uses the notion of roles
assigned to users within an organization to eliminate or at least reduce the
errors in AC managers. RBAC are defined as constraints over roles, role
evolution and resource accesses. The set of constraints and the dynamics of
RBAC can be extremely complex, and can evolve over time following changes

in roles and access control policies. Consistency and completeness of access
control rules are very important to prevent security leaks, but verifying that
a complex set of evolving rules is consistent and complete is a hard problem.
Koch et al. suggest that graph transformation can define formally and in-
tuitively a set of RBAC constraints and can support automatic verification
of important security properties [16]. Koch’s framework provides an intu-
itive visual description of AC in terms of graphs, an expressive specification
language for different AC schemas, the specification of static and dynamic
consistency conditions through graphs, and an executable specification that
can leverage on existing tools to verify the properties of a graph-based RBAC
description.

Users Roles Permissions

Figure 2: A graphical specification of user-role, role-permission and permission-object
assignment from [16]

The approach relies on a specific type graph as a first constraint for graphs
representing RBAC. As shown in Figure 2, the type graph models concepts
such as users that can be associated to roles, and have sessions. Roles are
associated to permissions on a set of objects. Hierarchies of roles are modeled
with the semantics of (reverse) inheritance of permissions: For example a
higher level role has a superset of the permissions of the lower level role.

Type graphs can model common RBAC concepts and schemas, and sup-
port the proof of the correctness of a graph-based RBAC specification with
respect to common consistency requirements, for example dynamic separa-
tion of duties. can be specified as graphical constraints that are expressed as
undesired subsystem states, and can be automatically verified.

10

4.2. Model evolution

The scale of development and ubiquity of software increasingly require
methodologies to assess and enforce software quality. With the aim of im-
proving the software development process across all its phases, modeling
techniques are being applied to represent and reason about several aspects
and concerns, all the way from formal requirement collection, platform spec-
ifications, deployment, to collaboration diagrams. Maintaining consistency
across heterogeneous models at different abstraction levels is a difficult task.

Model transformation systems represent a natural approach for dealing
with multi models frameworks and are increasingly applied in this context
to automatically generate code from models, maintain the consistency across
several notations when updating a model, map informal onto formal repre-
sentations to be used for proving properties, reflect changes to the formal
representation into the informal one.

The most relevant contribution of graph transformation to model trans-
formation are triple graph grammars (TGGs). They are a generalization of
Pratt’s pair grammars [5] and have been introduced by Schiirr in 1994 [4].
TGGs aim to provide a mapping between different graph that represent dif-
ferent modelling languages and notations and that can be used to automate
model transformations. They are called triple because their rules consist
(generally on both LHS and RHS) of elements from three different (type)
graphs: the source, the target, and the correspondence graphs. Figure 3
shows an example of a triple graph grammar diagram. The source and tar-
get graphs represent the notations to be mapped, while the correspondence
graph acts as an explicit representation of the correspondence relations be-
tween elements of the source and target graphs. Any TGG can be compiled
into a pair of forward and backward graph translations (respectively FGT
and BGT) that can then be used to transform a graph in the source language
into a graph in the target language (FGT) and back (BGT). These features
make them extremely appropriate to specify and implement mappings across
software engineering models and artifacts.

An interesting application of model transformation is the need of mixing
informal and formal notations. The long debate between supporters of for-
mal versus informal models indicate that we need both the ability of proving
properties which is typical of formal models and the flexibility that is typical
of informal models. Baresi and Pezzé introduced an interesting application
of pairs of graph transformation systems to support the on the fly generation
of formal notations from evolving informal diagrams to conjugate flexibility

11

E! Eﬂ 0.1
Class @ Table

* *

D1 Attr @ Column =
s il

Figure 3: TGG schema that defines a correspondence structure (center) between elements
of class diagrams (left) and relational database schemata (right) from [17]

and formality [18]. Practitioners can bend the semantics of informal dia-
grammatic notations by modifying simply graph transformation rules that
adapt the formal models to the next interpretation.

As discussed in a recent paper by Schiirr and Klar, TGGs found many
practical applications, the most notable one is in the OMG’s model transfor-
mation language QVT that adopted some fundamental ideas from TGGs [17].
Inefficient parsing, negative application condition semantics, lack of modular-

ization, refinement, and reuse are still hindering the wide-spread application
of TGGs.

4.3. Visual languages

Visual languages and in particular diagrammatic notations have been
extensively used to represent complex models. The impossibility of matching
the many needs of different application domains has triggered the interest
in domain-specific languages, that are visual notations or full-fledged visual
programming languages that, by concentrating on a clearly identified domain
and its underlying assumptions, manage to offer representations that are at
the same time very compact and expressive for a specific problem [19].

Domain specific languages are applied in niche areas sometime too small
to justify the big effort required to design the visual language, define its
semantics, and implement the associated editing tools. Providentially, ”the
syntax and static semantics of a visual language can be unambiguously de-
fined using graph transformation” [20], and indeed several applications of
graph transformations with this purpose are common in literature. An ex-
tensive and rigorous exposition on the subject can be found in the work of
Bardohl et al. [21].

The common definition of a visual language separates the concrete from
the abstract syntax of the language, as depicted in Figure 4. The concrete

12

pdrsmg
Derivation rendermg
Abstract Syntax translation Spatial Relanons
Graph (ASG) Graph (SRG)

‘ scanmng

syntax-directed editor layout algorithm
interpreter/compiler graphics editor

Figure 4: Abstract and concrete syntax of visual languages from [21]

syntax represents the diagrammatic symbols, for example boxes, bubbles and
arrows, and the spatial relations, for example containment, connection and
positioning, that are used in the visual notation. The concrete syntax of
a visual language is usually given by means of a spatial relationship graph
(SRG). The abstract syntax predicates on the concepts represented by the
concrete symbols and relations, for example classes and relationships in a
class diagram, and is commonly given as an abstract syntax graph (ASG).
Figure 5 shows an example of a visual language rule representing both the
abstract syntax (top) and the concrete one (bottom).

Graph transformation systems can naturally specify both the SRGs and
ASGs, and thus support the generation of parsers for newly defined visual
languages. Bardohl et al. write ”Despite the wide-spread usage of visual
modeling . ..there is a considerable lack of formalisms for defining their syn-
tax and semantics. ...As a consequence, most published visual languages
come with informal an imprecise definitions, and the development of their
tools often requires far too many person years” [21]. Graph transformation
can solve the problem and boost the use of domain specific visual languages.

The most popular editors generated from graph transformation systems
support either syntax directed or free-hand editing. Syntax directed editors
offer a set of editing operations that designers can use to create diagrams,
while free hand editors provide parsers for diagrams that users can edit freely
with any editing tool. The complexity of building efficient diagram parsers
privileges syntax directed over free hand editors. Syntax driven editors can
be either grammar- or transformation-based. Grammar-based editors specify
the language independently from the editor using a grammar, while in the
transformation-based approach the language is defined by its editing rules.
Grammar-based approach provide a more concise syntax definition, while

13

ﬁ_AssocClass [1:Class<—beg-assocclass T AseCl abstract syn&
N :AssClasq
: 2:Class HE A / :
= W /" end_assocclass
. . - :Class| N /) -

T T ey
" [. o » - . concrete syntax

" s . = \ — - after rendering
w w Se-ol =

. = Y

Figure 5: Rule describing the insertion of an association class (dashed arrows represent
the coupling between abstract and concrete syntax) from [21]

transformation-based editors offer the possibility of modelling intermediate
editing steps that might be invalid in the visual language syntax but are
often needed to simplify the editing process, hence is the preferred solution.

Recently, graph transformation approached have been combined with
meta-modelling solutions to specify visual language tools. An example is
provided in De Lara et al. [22].

5. Academic and industrial impact

In the former chapter we sampled several applications of graph transfor-
mation that have been proposed in the last 15 years. The wide range of
application fields and studies indicate that the scientific community believes
in the possibility of overcoming the problems highlighted by Blostein et al.
in 1996. Most of the work surveyed in the former chapter is still part of
research projects, but there are some interesting industrial success stories
that indicate how graph transformation can move from research project to
industrial best practice.

One for all, we would like to mention the large and successful project on
mechatronics carried on in the University of Paderborn that aims to develop a
new generation transportation system in which unmanned, independent and
lightweight trains combine each other into convoys to optimize the service
offered to passengers [23]. The ambitious project has moved in a decade
from visionary research to pre-competitive industrial prototype, and needs
to deal with real time constraints in a hybrid embedded systems that shall
evolve and self-adapt to different traffic and environmental condition. The

14

project relies on graph transformation to describe and analyze combination
of heterogeneous components, evolution and self-adapting behavior [24]. As
a side effect, the project has produced Fujaba, a CASE tool that support
model-based software engineering and re-engineering and is based on graph
transformation. The tool is now available for open use and is being applied
to new industrial scale projects.

Software ubiquity is driving every day more the need of methodologies
to assess and enforce software quality. As modelling techniques and guide-
lines continuously gain wider acceptance in the industrial practice, graph
transformations are directly applied to study program behaviours discovery
and verification [25], while graph grammars concepts have a major impact
in model transformation and mapping (e.g., model to model, or code gener-
ation). Important results are achieved by combining graph transformation,
programming languages, and mathematical modelling tools. The mutual ef-
fects that these different approaches have on each other contribute in advanc-
ing and improving the available tools and techniques. One notable example
is the impact of triple graph grammars on OMG’s model transformation lan-
guage QVT [17]. But also graph transformations overcome some limitations
by adopting external concepts. For instance, Legros et al. use graph rewrit-
ing to enforce modelling guidelines for automotive industry, and, in order
to reduce the number of rules in common scenarios, extend graph trans-
formation modularity by adopting programming language concepts such as
generics and reflection [26].

Both academic and industrial experience indicate that graph transforma-
tion systems are the right tool to deal with diagrammatic models of dynam-
ically evolving systems.

The recent years are seeing an increasing impact of systems that because
of their nature and complexity cannot be designed and sealed at design time,
but change and evolve at runtime. Notable examples are self-organizing or
ad-hoc networks that have a potentially unbounded number of nodes, no
centralized management, and evolve over time as nodes join or leave [27].
Another emerging area with highly dynamic and evolving characteristics is
the area of autonomic and self adaptive systems. These systems are designed
to adapt at runtime to different and evolving execution conditions. A par-
ticularly interesting area where graph transformations can be applied is the
study of the behaviour and interaction of several concurrent control loops in
autonomic systems [28].

15

6. Conclusions

In this paper, we sampled the applications of graph transformation sys-
tems to research and industrial projects to identify success stories and failure
factors. Although over forty years of research and applications have largely
advanced the state of art and practice of graph transformation, the key ingre-
dients for the success of graph transformations have been already identified
and studied in the early years.

Blostein et al. in a very thorough paper of fifteen years ago indicated
education and technical factors that hindered the industrial success of graph
transformation. In this paper we sample the research an industrial experience
of the last fifteen years to identify advances and open problems. Although
some of the key technical problems identified by Blostein, in particular lack
of modularization and structure, are not completely solved yet, the projects
surveyed in this paper indicate interesting advances in tool support and de-
sign techniques and patterns. The many research experiences and the few
relevant industrial scale projects produced tools and methodologies that are
ready for industrial use.

The research and industrial experience referred to in the former sections
indicates that technical factors are not a major impediment to the use of
graph transformation. The importance of mastering dynamically evolving
systems at runtime is becoming a necessity in many relevant application
domains like distributed systems and autonomic computing, and is opening
new opportunities for graph transformation systems.

The industrial success of graph transformation does not depend on tech-
nical issues, but on commercial aspects, like the timeliness of success stories,
the definition of a strong market for tools based on graph transformation
systems, and the willingness to invest in formal approaches.

References

[1] R. Heckel, Graph transformation in a nutshell, Electron. Notes Theor.
Comput. Sci. 148 (2006) 187-198.

[2] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation (Monographs in Theoretical Computer Science.
An EATCS Series), Springer, 2006.

16

3]

[10]

[11]

[12]

[13]

[14]

J. Pfaltz, A. Rosenfeld, Web grammars, in: Int. Joint Conference on
Artificial Intelligence, 1969, pp. 609-619.

A. Schiirr, Specification of graph translators with triple graph gram-
mars., in: WG’94, 1994, pp. 151-163.

T. Pratt, Pair grammars, graph languages and string-to-graph transla-
tions™, Journal of Computer and System Sciences 5 (6) (1971) 560-595.

H. Ehrig, M. Pfender, H. Schneider, Graph-grammars: An algebraic
approach, in: 14th Annual Symposium on Switching and Automata
Theory, IEEE, 1973, pp. 167-180.

J. Dolado, F. Torrealdea, Formal manipulation of Forrester diagrams by

graph grammars, Systems, Man and Cybernetics, IEEE Transactions on
18 (6) (1988) 981-996.

H. Gottler, Graph grammars and diagram editing, in: Graph-Grammars
and Their Application to Computer Science, Springer, 1987, pp. 216—
231.

H. Bunke, Attributed programmed graph grammars and their applica-
tion to schematic diagram interpretation, Pattern Analysis and Machine
Intelligence, IEEE Transactions on (6) (1982) 574-582.

T. Dean, J. Cordy, A syntactic theory of software architecture, Software
Engineering, IEEE Transactions on 21 (4) (1995) 302-313.

D. L. Métayer, Describing software architecture styles using graph gram-
mars, IEEE Trans. Software Eng. 24 (7) (1998) 521-533.

M. Derk, L. DeBrunner, Reconfiguration for fault tolerance using graph
grammars, ACM Transactions on Computer Systems (TOCS) 16 (1)
(1998) 41-54.

D. Blostein, H. Fahmy, A. Grbavec, Issues in the practical use of graph
rewriting, in: Graph Grammars and Their Application to Computer
Science, Springer, 1996, pp. 38-55.

G. Rozenberg, H. Ehrig, Handbook of graph grammars and computing
by graph transformation, Vol. 1, World Scientific, 1997.

17

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

A. Corradini, H. Ehrig, M. Lowe, U. Montanari, J. Padberg, The cate-
gory of typed graph grammars and its adjunctions with categories, in:
J. E. Cuny, H. Ehrig, G. Engels, G. Rozenberg (Eds.), TAGT, Vol. 1073
of Lecture Notes in Computer Science, Springer, 1994, pp. 56-74.

M. Koch, L. V. Mancini, F. Parisi-Presicce, A graph-based formalism
for RBAC, ACM Trans. Inf. Syst. Secur. 5 (2002) 332-365.

A. Schiirr, F. Klar, 15 years of triple graph grammars, Graph Transfor-
mations (2008) 411-425.

L. Baresi, M. Pezze, Formal interpreters for diagram notations, ACM
Trans. Softw. Eng. Methodol. 14 (1) (2005) 42-84.

H. Gottler, Diagram editors = graphs + attributes + graph grammars,
International Journal of Man-Machine Studies 37 (4) (1992) 481-502.

D. Blostein, A. Schiirr, Computing with graphs and graph transforma-
tions, Softw., Pract. Exper. 29 (3) (1999) 197-217.

R. Bardohl, G. Taentzer, M. Minas, A. Schiirr, Application of graph
transformation to visual languages, World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1999, pp. 105-180.

J. de Lara, H. Vangheluwe, Defining visual notations and their manip-
ulation through meta-modelling and graph transformation, Journal of
Visual Languages and Computing 15 (3-4) (2004) 309 — 330, domain-
Specific Modeling with Visual Languages.

C. Henke, M. Tichy, T. Schneider, J. Bocker, W. Schafer, System archi-
tecture and risk management for autonomous railway convoys, in: Proc.

2nd Annual IEEE Intl. Systems Conf, 2008.

T. Eckardt, C. Heinzemann, S. Henkler, M. Hirsch, C. Priesterjahn,
W. Schafer, Modeling and verifying dynamic communication structures
based on graph transformations, Computer Science-Research and De-
velopment (2011) 1-20.

C. Zhao, J. Kong, K. Zhang, Program behavior discovery and verifi-
cation: A graph grammar approach, IEEE Transactions on Software
Engineering (2010) 431-448.

18

[26]

[27]

E. Legros, C. Amelunxen, F. Klar, A. Schiirr, Generic and reflective
graph transformations for checking and enforcement of modeling guide-
lines, J. Vis. Lang. Comput. 20 (2009) 252-268.

M. Saksena, O. Wibling, B. Jonsson, Graph grammar modeling and
verification of ad hoc routing protocols, in: Proceedings of the Theory
and practice of software, 14th international conference on Tools and
algorithms for the construction and analysis of systems, Springer-Verlag,
2008, pp. 18-32.

Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Miiller, M. Pezze, M. Shaw, Engineering self-adaptive
systems through feedback loops, Software Engineering for Self-Adaptive
Systems (2009) 48-70.

19

