CS 2310: Project Final Presentation
Multimedia Data Streams
Abstract
Multimedia applications today are becoming the standard, for they utilize the enormous human brain computational power. In the past, the Relational Database Model was generalized to the Multimedia Databases Model. Orthogonally, the Relational Database model was generalized to the Data Streams Model, as the technology advanced and Data became bulky and unbounded in size, utilizing sensor networks. In this paper, we take one more step of generalization, by providing a Multimedia Data Streams model. We give the formalization in details of the multimedia data streams problem. The objective is to furnish a formal framework to efficiently design a Multimedia Data Streams (MMDS) schema that achieves an efficient performance in regard with content based retrieval. We also extend the Functional Dependency Theory and the Normalization Framework to handle Multimedia Data Streams. Finally, we discuss algorithmic methods of generating Continuous Multimedia Queries, along with concrete examples for further illustration.
Keywords: multimedia data streams management systems (MMDSMS), data dependency, normalization,

1. Introduction
Multimedia Databases have been used in many applications for over two decades now. The internet boom has increased and called for this trend, introducing many new interesting related to query processing and content based retrieval. In [4] a Normalization Framework for Multimedia Databases was provided, as a generalization to the Traditional Relational Database model. The data dependency was also extended to include dependencies involving different types of multimedia data. Recently, a new research area is being proposed called Human Computation [5], which utilizes the ultimate powerful computational units all humans possesses; i.e. human brain. Starting with CAPTCHA, Luis et. al., proposed many Multimedia Games (applications that utilizes Multimedia databases) to utilize Human Computational power in solving couple of problems [5].
The data steam management concept was first introduced in [9], and later a full-blown Stream Management Systems were proposed, such as STREAM [3], Borealis [1], and Aurora [2]. And couple of commercial Data Stream Management Systems (DSMSs) are now available [10], [11]. Data streams emerged as the new data management model that can handle the huge massive updates of data collected from sensor networks or monitoring applications.

In the push-model for the data streams, data updates arrives along the time with high frequency, while a certain set of queries (continuous queries) reside in the data stream server to process incoming data [???]. In other words, users register their continuous queries (CQs), and data will be pulled into these queries as they arrive. This model is to be opposed to the pull-model of traditional databases. Data streams has many critical and important applications ranges from network monitoring applications, to military applications, passing through environmental monitoring. Data streams was even more promoted by the back then new technology of sensor networks; small devices that can easily be spread over a large area to collect some information.

From what precedes, one senses that soon enough, as technology advances, Multimedia data will become massive and unbounded; i.e. a stream of multimedia objects, or what we call: Multimedia Data Streams. It is hence required to generalize the Multimedia Dependency Theory & Multimedia Normalization to be applicable for Multimedia Data Streams (MMDS) and to provide a model for MMDS, based upon which, we can draw some performance guarantees such as minimum output rate per query, maximum supported queries per site, and maximum supported streams per site. The Dependency Theory should also be extended to included dependencies among Multimedia Data Streams.

In this paper we provide a Multimedia Data Streams model. We give the formalization in details of the multimedia data streams problem. The objective is to furnish a formal framework to efficiently design a Multimedia Data Streams (MMDS) schema that achieves an efficient performance in regard with content based retrieval. We also extend the Functional Dependency Theory and the Normalization Framework to handle Multimedia Data Streams. Finally, we discuss algorithmic methods of generating Continuous Multimedia Queries, along with concrete examples for further illustration. Multimedia data streams have potential critical applications.
The paper is organized as follows. Two motivating examples are presented in Section 2. Section 3 provides the mathematical model of the multimedia data streams along with performance bounds. Dependency Theory is extended in section 4. Algorithms for multimedia data Streams continuous querying are presented in section 5, and a set of illustrative examples are given in section 6. Finally, the related work and conclusions are given in sections 7 and 8, respectively.

2. Motivating Examples
Consider the following two motivating examples from a health application, and another from a security application.
Motivating example 1: Security System: Given a security system, having video cams fixed in hidden places in some secured building or store. Typically a guard or two keep rotating between the captured videos and they interact when something suspicious or a threat shows. However, this suffer two major problems: first, inevitable human error, and second, if a WANTED person shows up, it is less likely that the security guard can pay attention, and hence interfere before-crises, as opposed to after-crises. However, if we have a Multimedia Data Stream management system, that receives the stream of videos captures, or stream of frames, and has a relation (i.e. a table) with images of all WANTED criminals, and another relation with images of all white weapons. Then one can register couple of useful Continuous Queries registered to automate (and hence make it robust) the task of the guards, and help them doing there job and avoid human errors. Such CQs include:

1) Tell me whenever you see an object similar to any white weapon.

2) Tell me whenever you see a WANTED person.

3) Tell me whenever an object (or more) in 2 frames within the last 30 seconds moves in a very “violent” manner.

4) If any of the above, start recording the video on a “Threat” clip for future reference.

Thus, if the guard missed anything, or had to leave his place for whatever reason, the system can help him. Moreover, new things that he were not able to do, such as identifying WANTED criminals is now achievable.

Motivating example 2: Health System: One of the major data streams applications is the health monitoring systems, where the patients heart rate, or body temperature is continuously monitored, and a CQ to report when these values goes beyond the normal values are being continuously executed. Imagine the case for some diseases when an X-Ray photo need to be inspected to follow up progress, or identify anomalies, this is a multimedia stream, that can be fed to a multimedia data stream management system with the appropriate queries. This can be also applied to may be some health experiments done on animals, the animal reaction could be captured as photos or X-Rays, and these could be fed to the MMDSMS for anomalies discovery.
3. Multimedia Data Streams Model
In this section we will give some definitions then we will provide the mathematical model of the Multimedia Data Streams problem. At the end, we will try to give a concrete example.
3.1) Definitions:

First we need to define what we mean by a multimedia data stream. This what constitutes the first set of definitions (Definition 1 through 6). Second, we define some mathematical variables to used in the mathematical model.
Definition 1. Data Stream: A Data Stream is a huge sequence of tuples according to a certain schema that keeps arriving to a Data Stream Management System. Tuples could be of one out of three types: add, delete and the update tuples. Each tuple has both a unique identifier and a timestamp that is used to order the tuples.
Definition 2. Micon: A Micon is a multimedia icon that could be: text (ticon), still image (icon), audeio (earcon), video (vicon), or a number of the multicons.

Definition 3. Multimedia Data Streams: A Multimedia data stream (MMDS) is a data stream (as defined later) that contains at least one Micon as one of its attributes, according to a certain schema.
Please note that the data stream schema refers to the specification of the attributes’/fields’ names, and their types that constitutes any tuple that belongs to that stream, as well as the relationships and/or interactions among different streams. In a sense, a stream in the data streams model is comparable to a relation in the relational database model. However, it should be noted that a relation could be easily modeled as a stream. This will be clarified after we define the data stream below. An example of a multimedia stream is the video stream captured by some security camera. It would follow the following schema:

Video (frame-number, time-stamp, one-frame-of-video-data, location-id)
This is further illustrated in the Figure 1 below.

[image: image1]
Figure 1: A Multimedia Stream illustration
Now, let us review what is a data stream, and what is a multimedia icon (Micon).

Generalization or restriction? The question now: does a multimedia data stream generalize the data stream, or the other way around? In fact, the multimedia data stream is a special case of any data stream. However, the MMDSMS allows both multimedia data streams, and non-multimedia (regular) data streams. Hence, the model of the streams that are allowed to be registered in a MMDSMS should be of the general type.

Now, we will furnish some definitions related to a Multimedia Data Stream Management System (MMDSMS), then we will provide some mathematical definitions that will be used in the model we are proposing.
Definition 4. Continuous Query: A Continuous Query (CQ) is a query registered by a user at the MMDSMS, that is to be executed - theoretically - forever. If the CQ include one or more multimedia operators (transformation or fusion operators – as defined in Rohit’s project) then the CQ is called a multimedia CQ (m-CQ).
Since a data stream in naturally unbounded in size, some query operators can not be applied except for a certain portion (window) of the data, such as aggregate and join operators. Such operators are called windowed operators, and are defined as follows.
Definition 5. Windowed Operators: A windowed operator is to be executed over a certain portion of the data stream (window) as opposed to the whole stream. The window is used to bound an unbounded computation, such as a join of 2 streams or an average (or any aggregate) function of a stream. The window is specified using a range (size) and a slide (step). A window could be time-based, or tuple-based and could be sliding (if the step is less than the size), or tumbling (if the step equals the size).
Tuple-based window is a window specified in terms of number of tuples. While a time based window is specified in terms of time units. Note that it is easier to deal with tuple-based windows, since the size of each window in terms of number of tuples is fixed, while in time-based windows, each window instance size vary based on the arrival process. Now we are ready to define a MMDSMS.
Definition 6. A Multimedia Data Stream Management System: A MMDSMS is a virtual center (could be physically distributed) that receives the tuples of all streams registered within it (both multimedia streams and regular streams). Users use the MMDSMS’s user interface to register a set of CQs and the m-CQs. The MMDSMS responsibility is to continuously process the tuples under real-time constraints with respect to the registered CQs, and to disseminate the results back to the users.
The architecture of the MMDSMS is illustrated in Figure 2 below (if this is based upon some paper, it should be cited).

[image: image16.jpg]

Figure 2: MMDSMS Architecture
We are now ready to give some mathematical definitions:
Definition 7. Multimedia Tool Box of Type 1: A multimedia tool box of type 1 (mtb1) is some black box (ready made) tool box for processing the multimedia data of “any” type, with the property that the performance is optimized with respect to Quality of Service (QoS); which is denoted by the processing time here.

Definition 8. Multimedia Tool Box of Type 2: A multimedia tool box of type 2 (mtb2) is some black box (ready made) tool box for processing the multimedia data of “any” type, with the property that the performance is optimized with respect to Quality of Data (QoD); which is denoted by the quality of the multimedia objects that belongs to the output stream.

Definition 9. Mathematical terms/variables/Notation:

· Let S be a schema, which is a set of streams and multimedia streams S:{Si}

· Each stream Si consists of a set of attributes, each is of a certain predefined type Ti, where the type could be any traditional data type (such as number, string, Boolean, timestamp, etc) or any multimedia data type (Micon), such as: icon, earcon, vicon, etc. Formally:
Si = {Xi | 0(i (n and Xi is of Type Ti}
· A multimedia continuous query (m-CQ) is a computational structure/network/graph, that consists of edges, operators, and at least one input multimedia stream, and exactly one output stream.
m-CQ: (S1, S2, … Sk) (Snew

Where m-CQ = G(V,E); that is the m-CQ is basically a DAG (Directed Graph), where V (the set of vertices) denotes the operators, and E (the set of edges) define the flow of data. The set V must contain at least one multimedia operator (conversion (σ-operator) or fusion operator ((‑operator)).
· Let Ci = Cost (m-CQi) denotes the total cost in terms of CPU time consumed to process a single tuple through all operators of m-CQi.
· Let Si = Selectivity (m-CQi) denotes the selectivity of m-CQi. Where selectivity is defined as the probability of producing one output tuple for processing one input tuple. This is usually less than one, since each tuple is typically matched against some predicates in each operator. However, some special operators (such as Join operators) have selectivity greater than one.
· Let ri denotes the average response time of tuples produced by m-CQi where the response time is defined as the time span between when the input tuple was first available for processing in the input buffers, and when the corresponding tuple was available for dissemination in the output buffers.
· Let Ri denotes the output rate of producing output tuples of m-CQi
Now, we are ready to formulate our problem.
3.2) Problem Formalization:

Given a set of streams, with stream Si a certain multimedia stream of a certain schema {Xi}, with Xmi of a Micon type, that is Tmi= Micon, and given a Computational Network which constitutes the optimized query execution plan for a set of CQs and m-CQs, this Computational Network is composed of both data processing operators (selection, projection, and join) and the special multimedia operators (σ-operator & (‑operator), it is required to compute a lower bound on the quality of service provided, measured by the average output rate Ri of each query.
3.3) Performance Bounds:

Typically, there is a tradeoff between QoS and QoD metrics. Hence, we assume an adaptive processing algorithm that given a certain QoS threshold (tqos) and a certain QoD threshold (tqod), the algorithm then starts utilizing mtb1, and when the QoD gets below tqod, the processing switches automatically to mtb2. Then as QoS gets below tqos, the algorithm switches back to mbt1, where mtb1 and mtb2 are as defined above.
Thus, we need to calculate the following bounds

1- Assuming a certain total cost of a given computation network (C), what are the bounds of the output rate, as a QoS.

2- Assuming a desired minimum QoS (output rate) for a given computation network, what is the bound on the number of data streams (maximum possible number of streams to be supported).

3- Similarly, and complementary, given a desired minimum QoS, and a given set of registered multimedia data streams, what is the bound on the complexity of the computation network (i.e. the cost C).

3.3.a) Output Rate Bound:
Given a computational network of cost C, what would be the output rate? Assuming that the filters of the query has selectivity S, then the computational network (the optimized continuous queries plan) generates an output tuple with probability S every C time units. guaranteed output rate is simply

[image: image2.wmf]C

S

R

=

…(1)
Where S is calculated as the multiplication of the individual operators’ selectivity along the path of a single tuple, that is:

[image: image3.wmf]Õ

=

operator

an

is

i

i

s

S

…(2)
Where si is the selectivity of operator i. And C is the expected cost. Assume that our QoS/QoD adaptive algorithm uses mtb1 at q of the time, while it uses mtb2 (1-q) of the time. And the cost of mtb1 and mtb2 at operator i are ci1 and ci2 respectively. Then the expected cost C is calculated as the cost of the first operator plus the cost of the second operator if it made it through the first operator and so on. Thus, the total cost could be written as follows:

[image: image4.wmf](

)

(

)

å

Õ

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

-

+

=

-

=

i

i

j

j

i

i

s

c

c

q

q

C

1

1

2

1

.

1

…(3)
3.3.b) Number of Supported Streams Bound:

Assuming a desired minimum QoS (output rate) to be Rmin, for a given data stream management system, what is the bound on the number of data streams (maximum possible number of streams to be supported)? Adding new data stream means accepting new queries to the system, which means an increase in the cost of the computational network. Assuming that the cost of the computation network is a function of the number of streams n, that is
[image: image5.wmf])

(

n

f

C

=

 , then n is governed by the rule:

[image: image6.wmf])

(

:

is

that

min

1

min

min

R

S

n

R

S

C

R

C

S

R

f

-

£

£

³

=

…(4)
However, the relation between C and n (i.e. f) is not a simple one, that it might not be computationally feasible to calculate f-1. So, to work around this problem, one can calculate an average query cost, and thus, one can base the bound based on this average query cost. Say the average query cost is Cavg then

[image: image7.wmf]min

.

R

C

n

S

R

avg

³

=

[image: image8.wmf]min

.

R

C

S

n

avg

£

…(5)
3.3.c) Computation Network Complexity Bound:

Similarly, and complementary, given a desired minimum QoS, and a given set of registered multimedia data streams, what is the bound on the complexity of the computation network (i.e. the cost C)? Trivially this bound is governed by equation (4) above.
3.3.d) A Concrete Example:
Consider the following scheme:
Imagine a stream of video frames captured from a certain security monitoring camera :

Video (frame-number, time-stamp, one-frame-of-video-data, location_id)
The frame-number attribute here becomes the unique identifier of the video frame (a tuple in the stream).

A derived relation can be computed from the above relation, for example,
Aircraft (frame-number, one-frame-of-video-data, type-of-aircraft)
There is a multimedia dependency from video-data to type-of-aircraft. The dependency relations tell us how these streams are related.

A possible m-CQ1 could be:

Notify me every 30 seconds of all video frames within the past 30 seconds that contains a weapon that you receive at Video stream, from the entrance or the exit locations.
Clearly this m-CQ includes the following operations (or manipulations) over the Video multimedia streams:
1) Tumbling Window: a window of size 30 sec, and step 30 sec should be first defined.
2) Over the previous window, there is a filter that filters out the frames not coming from the entrance or exit locations. Or in data base language, a Select operator with predicate set such that the location_id field equals to that of the entrance, or that of the exit sites.

3) For all frames that go through the above 2 operators, some mtb1 or mtb2 should be utilized to detect weapon objects. This is considered a transformation operator (σ-operator).

The corresponding Query Graph G(m-CQ1) (or the Computational structure in other words) is illustrated in Figure 3.

[image: image15.jpg]

Figure 3: Illustration of m-CQ1
Now, assuming the cost of this computational network/structure is C1 then, the MMDSMS can provide the following guarantees:

1) If this is the only stream registered, and this is the only m-CQ registered, then the QoS (output rate) is guaranteed to be:

[image: image9.wmf]C

S

R

1

1

1

=

Where S1 is the selectivity of the m-CQ, and C1 is the cost.
2) Assuming a desired minimum QoS of R1 then the maximum possible number of streams that could be supported is limited by the relation that:

[image: image10.wmf]C

R

S

1

1

1

overhead

-

=

Where the overhead represent the additional cost the additional streams processing might induce.

3) Similarly, assuming this stream to be the only stream, then the maximum number of queries is bounded with the same exact relation above (in bound 2). The difference be in the way this overhead is calculated. In the bound of number of streams, the overhead should reflect the cost of adding support for new streams, while here the overhead is basically the cost of the new operators needed to process the additional m-CQs.
+ + +
Another possible m-CQ2 over the MMDS schema given above, could be:

Notify me every minute of all video frames within the past 10 seconds that contains an aircraft of type “XYZ”.
Clearly this m-CQ includes similar window operator. However, filtering here requires an additional join operator. Here the multimedia dependency plays a role. Since there is a dependency between the video data, and the aircraft type, we can simply use the derived stream, instead of the original stream, and then we can join based on the frame_number attribute to get the rest of the data. The query is illustrated in the figure below.

Figure 4: Illustration of m-CQ2

4. Extended Dependency Theory

In this section, we extend the Multimedia Dependency Definitions from [4] to generalize to the multimedia streams case. As in [4], in order to evaluate the similarity between multimedia objects of two tuples, we need to use tuple-distance functions. The tuple-distance function summarizes the different distance functions applied to the elements of the 2 tuples under comparison. So, basically, a distance function is applied on corresponding attributes of the two tuples, then a function that takes these distances as input, will produce the final distance between the two tuples is called the tuple-distance function. What about tuples timestamps? Clearly, the notion of sliding windows on data streams can be utilized as follows for distance functions: if the two tuples belong to the same window then they might be considered for similarity, o.w., they may not. This way, we bound the calculations needed. And since the window specifications are set by the user, this way of utilizing the windows for calculating tuples distances does reflects user best interest. We are ready now to give some definitions.
Definition 4.1. MS-Similarity: Let
[image: image11.wmf]v

be a tuple distance function on a relation R, and t be a maximum distance threshold, and x and y be two tuples in R, we then say that x is type MS-similar (Multimedia Stream Similar) to y with respect to
[image: image12.wmf]v

, denoted x (
[image: image13.wmf])

(

t

v

 y iff x and y belongs to the same window, and
[image: image14.wmf]t

y

x

£

)

,

(

v

Definition 4.2. (type-MS functional dependency): Let R be a relation with attribute set U, and X, Y (U. Xg1(t’) (Yg2(t’’) is a type-MS functional dependency (MSFD) relation iff for any two tuples t1 and t2 in R, if t1[X] (g1(t’) t1[X], then t1[Y] (g2(t’’) t2[Y], where t’ and t’’ are similarity thresholds, and ti[X] is the projection of the tuple ti over the set of attributes X, and similarly is ti[Y].
In English, this definition typically says: there is a type-MS functional dependency (MSFD) from set of attributes X (under MS-Similarity g1(t’)) and the set of attributes Y (under MS-Similarity g2(t’’)) if and only if, any two tuples that are MS-similar under g1(t’) this implies that these very two tuples are also MS-Similar under g2(t’’). It reads that the set of attributes Y are type-MS functionally dependent on attributes X.

Using these definitions, the set of inference rules presented in [4] still holds for multimedia data streams case. And similarly the type-M Multi-valued dependency (MMD) can be generalized to the type-MS Multi-Valued dependency (MSMD) and the also the type-M join dependency (MJD) to the type-MS Join dependency (MSJD).
These set of functional dependency can be utilized to normalize the schema at design time.
5. Algorithms for Multimedia Data Streams Continuous Querying

In this section we describe a basic set of functions and algorithms to manipulate and handle multimedia data streams. First, we define the standard multimedia data stream. To do so, we focus our discussion below on Video and Image streams, while generalizing the algorithms to other multimedia data streams, such as audio and hyper text, is trivial.

The standard multimedia data stream, irrespective of the source, will have the following fields

1. Header- denoting start of frame

2. Timestamp

3. SourceID
4. A set of other attributes, and
5. EOF – denoting the end of frame
Note that filed 3 above defines the source, as many sources (hardware) can participate tuples to the same multimedia data stream. Each source produces frames with a certain rate (frame per second) and different format. A video source will have a series of picture frames while a still camera source will have just one picture frame. Thus, the basic algorithm will be the same whether it is dealing with the picture frames or video frames. The second important attribute of the standard multimedia data stream shown above is the timestamp. Each frame will have a unique time stamp for that particular video source. There won’t be a similar timestamp on two frames that belong to the same source but the timestamp can be same for two frames that belong to different sources. Note that this is different from the regular data streams. Thus, the unique tuple identifier here is the compound key: Timestamp and SourceID. This is important when we use the multimedia querying techniques like the transformational and fusion operators.

5.1) Algorithm to Sort/Group The Incoming Multimedia Data:

Below we describe the idea and high level steps of an algorithm to group the incoming multimedia data.

Step 1: identify the video source from the data stream. The data stream will have certain bits at fixed places which will help in identifying the video source. This is the first and the basic step required. Once the video source is identified, the corresponding algorithm will take over. We can have a separate algorithm for each video source.

Step 2: For video source: check the timestamp of the frame. As explained earlier, each frame will have a unique timestamp for the respective video source. We can group a series of frames together based on the particular time stamp. We can define a time stamp t and group all the frames from t to t+10. The next grouping will begin from t+11 which will be the new t and this group will again be till t+10. The grouping is essential in this case since the video frame will have a series of similar pictures and it will be easy to retrieve if they are divided into groups rather than an individual frame.

Step 3: For infra-red camera and other sources: check the time stamp of the frame. Since these sources will consists of only a picture and not a series of continuous pictures, we can group them accordingly based on their source and their time stamp.

If we group them according to their time stamp, the retrieval can be easily managed. For example, if we need to check the pictures at a particular time, we can query it with the time limit T and T+t, and the corresponding query will fetch all the frames available in that particular time slot irrespective of the camera source. We do not need to find the source and then query it in that time slot. On the other hand, if we group them according to their source, we will have to sort them according to their time slot again. This will however, help us manage large chunks of data systematically. But again for retrieval, we need to know the video source first.

5.2) Algorithm for Retrieval:

The transformational and fusion operators can be used to retrieve the query response. The transformational operator is used for content-based retrieval from the incoming multimedia data streams. Again the algorithm depends on the multimedia stream source. The transformational operator requires two arguments:
1. The source of the multimedia data stream
2. Time slot for which the data is required, or in other words, the sliding window specifications.
These two parameters are essential in locating the frame which might contain the desired object. Further, we need to use the feature extraction algorithm not only in order to locate the object, but also its shape, size, color. Content based retrieval (CBR) approach is used to retrieve desired multimedia objects from a large collection on the basis of some features (such as color, texture and shape, etc.), specified within the query statement, that can be automatically extracted from the objects themselves. But major drawback of this method is that it lacks precision. That is why we early proposed the Multimedia Tool Boxes, that is given the tradeoff between precision (QoD) and efficiency (QoS), we assume two sets of algorithms within the tool box, one that optimizes for QoD while the other optimizes for QoS. With a light weight QoS and QoD monitoring, with a user specified thresholds, the system can switch between the two multimedia tool boxes automatically.
5.3) Feature Extraction Algorithm:
As the MMDSMS receives images from the various sources, they will be in digital forms. Every feature will be represented in a stream of 0s and 1s. The essential features needed to execute CBR queries are:

1. Shape of the object- can be used to identify the object

2. Color

3. Size of the object- which will be relative depending upon the location of the camera

The shape and the size of the object will also help identifying if the object in question is a real object or just a barrier. We can have a database of known objects and then compare the incoming data stream with them in order to ‘identify’ the object. Objects which are not in our database can be marked as ‘UO or Unidentified object’. Initially, we will have a large number of objects marked as UO but gradually the system will be able to identify the object based on the user input. Care should be taken to filter out the noise from the incoming data stream. For example, new edge based feature extraction algorithm for video segmentation found at http://www.uco.es/~el1sapee/docs/research/IVCP03-1.pdf
5.4) Algorithm for the querying techniques:
The retrieval will begin with the querying technique. The transformational and fusion operators can be sued for this purpose. A transformational operator is applied to any multi-dimensional source of objects in a specified set of intervals along a dimension. The generalized form of a transformational operator is for locating an object in a time period t1 to t2 from a source will be

(ype (object name) (xyz(*)

((T) T>t1 and T<t2
(media_sources(source name) media_sources)

If we replace the source with some other media source like the video camera, laser radar, etc we can query that source in order to find the required object. The corresponding algorithm for the transformational operator will be

1. locate the media source in the query

2. check the time-slot

3. get the groups of images for that particular time slot from the media source

4. apply the feature extraction algorithm

5. compare the object with the existing objects in the database

6. check the query for additional parameters like color

7. compare it with the objects

8. output the result of the query

Sometimes we may need to compare the results of 2 or more transformational operators. In such a case, we will apply the algorithm to each of the operators independently and then compare the results. We may use the existing SQL operators for this as shown below:

1. UNION: This can be used to combine 2 transformational queries coming from different sources in order to add their results. The syntax can be of the form:

σ motion (moving)

σ (T) (time)

σ media_sources(video)media_sources

UNION

σ type (vehicle)

σ (T) (time)

σ media_sources(laser_radar)media_sources

2. INTERSECT: Similar to UNION but will subtract the results of the 2 queries like

σ motion (moving)

σ (T) (time)

σ media_sources(video)media_sources

INTERSECT

σ type (vehicle)

σ (T) (time)

σ media_sources(laser_radar)media_sources

This query will find the type of the vehicle from the list of moving vehicles

3. EXCEPT: This query will find the ‘type’ of stationary vehicle, if any

 σ type (vehicle)

σ (T) (time)

σ media_sources(laser_radar)media_sources

EXCEPT

σ motion (moving)

σ (T) (time)

σ media_sources(video)media_sources

The fusion operator will perform sensor data fusion from heterogeneous data sources to generate fused objects. Fusion of data from a single sensor in different time periods is also allowed. It will combine the results of the transformational operators. The fusion parameter can have arguments and can be applied with respect to type, position and direction.

Once we have the data from various sources, we can use the existing fusion operator to combine the results of the two or more sources obtained through the transformational operators as

(type,position, direction
((motion(moving) (type(Object)
(xy(*)
((T)T mod 10 = 0 and T>t1 and T <t2
(media_sources (source 1)media_sources
.

.

.

(type(Object) (xyz(*)

((T) T>t1 and T<t2
(media_sources(source n) media_sources)
The generalized algorithm combining the transformational and fusion operators will be

1. Locate the transformational operators in the query

2. Apply the transformational algorithm to each of the transformational operator independently

3. Check the parameters of the fusion operator

4. Apply the fusion operator with respect to the parameter specified to the results of the transformational operators

5. Output the result

6. Illustrative Examples

The examples mentioned below are an extension of the algorithms proposed. They can be used as a practical application of these algorithms. The logical SQL queries used in a database and be used in the multimedia querying techniques.
 Scenario: parking lot (Security system)
Cameras installed: Video, Laser radar

The basic steps in order to find an object or locate an object in a given area according to the algorithms defined, will be
· Query all the cameras situated in the area

· Apply the feature extraction algorithm to find the required object

· Query the result to find the desired object with the required parameters
· Aim: To find a Blue car(s) at a given time interval t1 and t2

Solution:

(type(Car) (xyz(*)

((T) T>t1 and T<t2
(media_sources(Video) media_sources
INTERSECT

(color(blue) (xy(*)
((T)T>t1 and T <t2
(media_sources (Video)media_sources

· Aim: To find a moving car(s) at a given time interval t1 and t2

Solution:

(motion(moving) (type(car)
(xy(*)
((T)T mod 10 = 0 and T>t1 and T <t2
(media_sources (Video)media_sources

· Aim: are there any car(s) in the given location which are not similar to the blue cars for the time period t1 to t2

Solution:

(type(car) (xyz(*)

((T) T>t1 and T<t2
(media_sources(Video) media_sources

NOT IN

(
(type(Car) (xyz(*)

((T) T>t1 and T<t2
(media_sources(Video) media_sources
INTERSECT

(color(blue)
(xy(*)
((T)T>t1 and T <t2
(media_sources (Video)media_sources

)
· Aim: is there any vehicle which is above the specified speed limit in the parking lot for a particular time period?

Solution:

(type(car) (xyz(*)

((T) T>t1 and T<t2
(media_sources(Video) media_sources

where

(parameter(speed)>15

· Aim: To check if there is any WANTED person in the parking lot

Solution:

First of all we will have to get all the objects present in the parking lot, then compare those objects with the existing database of WANTED persons.

(type(object) (xyz(*)

((T) T>t1 and T<t2
(media_sources(Video) media_sources

where

(type(object)= (type(object)database

Scenario: Medical Center (Healthcare System)
Cameras installed: X-ray, Video,
The basic steps in order to find an object or locate an object in a given area according to the algorithms defined will remain the same,

· Query all the cameras situated in the area

· Apply the feature extraction algorithm to find the required object

· Query the result to find the desired object with the required parameters
· Aim: To detect any presence of foreign body inside the patient’s body

Solution:

We can take the images from the X-Ray and compare them with some standard images to detect any anomaly.

(type(object) (xyz(*)

(media_sources(X-ray) media_sources

where

(type(object)= (type(object)database

· Aim: To monitor a person’s behavior

Solution:

Compare the images from the video camera, from different time periods.

 (type(object) (xyz(*)
((T) T>t1 and T<t2
(media_sources(video) media_sources

where

(type(object)= (

(type(object) (xyz(*)
((T) T>t3 and T<t4
(media_sources(video) media_sources)

7. Related Work

To the best knowledge of the authors of this paper, this is the first work that tries to model multimedia data streams. However, there is a lot of research done on both multimedia databases, and on data streams separately and orthogonally.
For multimedia databases, the work [4] is the inspiring work of this paper, as in [4] the dependency theory was generalized for multimedia databases, and a normalization framework was proposed. Other work in content-based retrieval and algorithms has also been proposed in the multimedia database literature.
The literature of data streams is focused on performance fine tuning; minimizing response time, as a QoS metric, or improving freshness, as a QoD metric [7]. Also, scaling with burst arrivals of data, and peak loads gained some attention (Load Shedding) [6]. Also, some work was proposed for Mining Data Streams [12].
8. Conclusions

In this paper we presented a novel model to model multimedia data streams as a potential tool for many useful applications such as security and health systems as described in the motivating examples earlier. Based on the proposed model, we provided guaranteed bounds of the output rate, maximum number of supported streams, and the maximum number possible queries. We generalized the multimedia dependency theory to include those involved in multimedia data streams and provided some algorithms of how to intelligently query multimedia data streams, along with illustrative examples. We believe this should act as the surge for a new research dimension in the database and the multimedia communities.
References:
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. C etintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,N. Tatbul, Y.Xing, and S. B. Zdonik. The design of the borealis stream processing engine. In CIDR, pages 277–289, 2005.

[2] Daniel J. Abadi, Don Carney, Ugur C¸ etintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model and architecture for data stream management. The VLDB Journal, 12(2):120–139, 2003.

[3] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom. Stream: The stanford stream data manager (demonstration description). In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, New York, NY, USA, 2003.

[4] S.K. Chang, V. Deufemia, and G. Polese. A Normalization Framework for Multimedia Databases. IEEE Transactions on Knowledge and Data Engineering, v. 19, issue 12, Dec 2007.
[5] http://www.cs.cmu.edu/~biglou/research.html, 2008
[6] N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data streams. In Proc. of VLDB Conference, 2006.

[7] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs. Algorithms and Metrics for Processing Multiple Heterogeneous Continuous Queries. ACM Transactions in Database Systems (TODS), March 2008.

[8] S.K. Chang, Gennaro Costagliola, Erland Jungert and Karin Camara. Intelligent Querying Techniques for Sensor Data Fusion. Chapter from the book Intelligent Techniques for Warehousing and Mining Data Streams.

[9] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: a scalable continuous query system for internet databases. In SIGMOD ’00: Proceedings of the 2000 ACMSIGMOD international conference on Management of data, pages 379–390.ACM, 2000.
[10] http://www.coral8.com/, 2004.
[11] http://www.streambase.com, 2006.

[12] M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: a review. SIGMOD Record, 34(2), 2005.
0101000101011011101011011101111010001110000001111110101010100111000000101101010101001011110001

Multimedia Data Stream Management System

(frame # 10016, ts: 2008-03-31:21:24, , location: store-entrance)

a tuple instance

a set of CQs

Stream 1

Stream 2

Stream N

Dissemination module

results

Users

CQs

CQ Optimization

Buffer Manager

Run-time environment (Query Processor and tuples routing)

Limited Memory

To archiving system

Load shedder

Scheduler

W(30, 30)

σp

σ

Video stream

Window Operator

Traditional select operator

Multimedia transformation operator

m-CQ

results

W(60, 10)

σp

(

Video stream

Window operator

Traditional select operator

Join operator

m-CQ

results

(

Aircraft

stream

Multimedia fusion operator

_1269884775.unknown

_1269885676.unknown

_1269885908.unknown

_1269886473.unknown

_1269886517.unknown

_1269885687.unknown

_1269885474.unknown

_1269883553.unknown

_1269884056.unknown

_1268516909.unknown

_1269877823.unknown

_1268516510.unknown

