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Abstract. We propose a formal framework for database refactoring,
analyzing both the changes to the database schema, and their impact on
queries. The framework defines a logic model of changes, and views the
database refactoring process as an agent based one. The agent tries to
discover and resolve inconsistencies, and it is modeled as a problem solver
capable to perform changes triggered upon the detection of database
schema anomalies. The framework can be considered a first step towards
the automation of the database refactoring process.

1 Introduction

Waterfall methodologies have their weakness in their incapability to cope with
changes, which makes maintenance considerably an expensive process. For this
reason, incremental and iterative methodologies were introduced [12]. They view
system development as a step by step process, with the introduction of new func-
tionalities to meet user needs. The main problem arising in both paradigms is the
complexity in facing the effects of changes. Therefore, an increased automated
support in this task would result in a reduction of efforts and costs, especially
in incremental methodologies, because it would make them more systematic.

Changes are often necessary to reflect the continuous evolution of the real
world, which causes frequent changes in functional requirements. This entails
frequent modifications to the software, yielding a gradual decay of its overall
quality. For this reason, many researchers in this field have developed software
refactoring techniques [15]. Software refactoring is intended as the restructuring
of an existing body of code, aiming to alter its internal structure without chang-
ing its external behavior [5]. It consists of a series of small behavior preserving
transformations, which altogether can produce a significant software structural
change. Moreover, system modifications resulting in changes to the database
structure are also relatively frequent [21]. These changes are particularly criti-
cal, since they affect not only the data, but also the application programs relying
on them [1, 10].



Several disciplines have faced the problem of managing the effects of database
schema changes. In particular, schema modification has faced the problem of
changing the schema of a populated database. In addition to this, schema evo-
lution pursues the same goal, but it tries to avoid loss of data. Alternatively,
schema versioning performs modifications of the schema, but it keeps old ver-
sions to preserve existing queries and application programs running on it. Al-
though schema versioning faces the problem of query and application programs
preservation, it considerably increases the complexity and the overhead of the
underlying DBMS. Finally, database refactoring aims to modify the database
schema, and to change the corresponding application programs accordingly. In
other words, database refactoring is the process of slowly growing a database,
modifying the schema by small steps, and propagating changes to the queries
[1].

So far research on database refactoring has led to the definition of several
methodologies [1]. However, no significative contribution has been provided to-
wards the automation of this process. This is mainly due to the lack of formal
approaches, like those developed for schema versioning and schema evolution
[3,6,11,17,18]. Nevertheless, these approaches use models that do not consider
queries, hence they do not analyze the impact of schema changes on queries and
application programs. In this paper we propose a formal framework for database
refactoring, analyzing both the changes to the database schema and their im-
pact on queries and application programs. The framework defines a logic model
of changes, and views the database refactoring process as an agent based one.
Here, the goal of agents is to discover and resolve inconsistencies. The agent is
modeled as a problem solver capable to perform changes which are triggered
upon the detection of database schema anomalies.

The use of elementary operators can already be found in many other ap-
proaches (see, for example, [3,6,18]), but their application relies on designer
decisions or it is strongly coupled with the model features. By triggering such
operators upon the detection of anomalies, our approach can potentially reduce
the designer effort, providing the basis to automate the database refactoring
process.

The paper is organized as follows. In section 2 we discuss related works, while
section 3 introduces the approach we propose to automate database refactoring.
In the sections 4 and 5 a more detailed discussion about the proposal is provided.
Finally, conclusions and future works are provided in Section 6.

2 Related work

Database refactoring is a relatively new research topic [1], and no formal ap-
proaches have been proposed for dealing with it. On the contrary, many the-
oretical models exist for schema evolution and schema versioning [3,6,11,17,
18].

Nowadays, database researchers agree on the fact that schema evolution and
versioning introduce two main problems: the semantics of changes, and the



change propagation. The former requires determining the effects of changes on
the schema, whereas the second analyzes the consequences of changes on data.
So far two kinds of theoretical models have been proposed: the invariant and
rule model [3,17], and the aziomatic or formal model [6,18].

The invariant and rule model is based on the ORION object-oriented data
model [3,17]. It is structured into three components: a set of properties of the
schema (invariants), a set of schema changes, and a set of rules. The invariants
state the properties of the schema (for example, the classes are arranged in a
lattice structure), whereas rules help detecting the most meaningful way of pre-
serving the invariants when the schema changes. This model of schema evolution
yields two important issues: completeness and soundness of the schema evolu-
tion taxonomy. Both of them have been proved only for a subset of the schema
change operations.

The axiomatic model has three basic components: terms, axioms, and changes
[18]. The basic concept underlying this model is the type (analogous to the con-
cept of class in ORION), which is in turn characterized by the terms. Examples
of terms are the lattice of types and the set of type properties. The azioms state
the properties of the terms, like the properties of the lattice of types. Changes on
the schema are performed by means of three basic change operations: add, drop,
and modify. The problem of the semantics of changes is solved by re-computing
the entire lattice using the axioms. The model satisfies the properties of sound-
ness and completeness.

An approach based on the axiomatic model is provided in [6], and it models
schema versioning from a logical and computational point of view. In particu-
lar, it proposes a semantic and formal framework based on Description Logic
[2]. The basic elements of the model are: classes and their attributes, schema
(a set of class definitions), and elementary schema change operators. A basic
concept underlying the framework is the legal database instance, which, infor-
mally represents a database instance satisfying all the constraints. This notion
allows broadening the number of consistencies that are considered as reasoning
problems, according to the style of Description Logic. Finally, all the consistency
problems considered have been proved as decidable.

The approaches based on the two models mentioned above present two main
limitations. The former regards the explosion of rules when facing more general
schema changes, whereas the second regards the fact that they are all suited to
the object-oriented data model. Although a taxonomy of change operations for
the relational model has been proposed [20], it does not represent a complete
model.

The refactoring of relational databases entails facing two important prob-
lems, which cannot be managed through the two models above: the variability
of schema properties, and the propagation of changes into queries. In this paper
we face both these problems.



3 Database refactoring through epistemic logic

Epistemic logic is the logic of knowledge [7, 16]. It deals with the reasoning mech-
anisms of knowledge and with the process of belief revision, i.e., the evolution
of a base of beliefs. In epistemic logic there are three kinds of belief changes:
expansion, revision, and contraction. The first change refers to the addition of
a belief to a base, the second is related to the addition of an inconsistent belief
to a base that causes the deletion of other beliefs, and finally, the third takes
into account the retraction of a belief. Epistemic logic deals with both the for-
mulation of postulates for belief revision and the constructions of the revision
process.

Database refactoring can be seen as a revision process. In fact, an example
of schema change (together with its queries) is the addition of a functional de-
pendency, which might cause the split of a table (revision) in order to keep the
schema in a certain normal form. It is easy to notice that changes in a database
schema depend on the properties holding in it. For instance, the addition of an
attribute might only entail the modification of the table in which it is added,
but it might also require more complex changes. In fact, the new attribute might
alter the degree of normalization of the table if it depends only from a portion
of the primary key, or it might require the introduction of new referential in-
tegrity constraints in case it coincides with the primary key of another table
in the schema. Therefore, the process of database refactoring is not simply a
composition of elementary changes, but it implies more sophisticated reasoning
tasks, like detecting inconsistencies.

If we look at the schema as a knowledge base, the refactoring becomes a pro-
cess of changes in the knowledge, and hence it can be interpreted as an epistemic
process, which can be naturally modeled through Epistemic Logic. Within this
view, it becomes natural to see refactoring as an agent managed process aiming
to operate on the schema in order to perform the required changes, and trying
to preserve original properties in terms of knowledge and queries.

We abide by the Thagard conception [22], which views concepts like data
structures. Since a data structure can be modeled as a signature with axioms
[13], we will see a database schema as a kind of data structure, and will focus
on those changes involving elements in the signature (for instance, the addition
or the deletion of an attribute or a functional dependency). Therefore, we need
to precisely define both the knowledge on which the agent operates, and the
behavior of the agent. In order to do this, we need to define

— the features of the schema,;
— the allowed change requirements;
— the reasoning mechanisms of the agent.

When a change requirement arises, the agent has to decide the actions to per-
form. For example, when the agent receives a request of adding a new attribute,
it might decide to also add one or more new functional dependencies involving
the attribute. Thus, the agent is a kind of problem solver.



4 A formalization of the database refactoring problem
using predicate logic

In this section we formalize the problem of database refactoring using predicate
logic. To this end, in the following we introduce the notations that will be used
throughout the paper.

Let X be the set of all the attribute symbols, D the set of types, N the set of
names, and V' a set of variables, A = {(n,t)|n € N,t € D} the set of attributes,
R = {(n,a1 X ... X am)| n € N,aq,as,...,a, € X} the set of relations, and
& = {(n,a1 X ... x ap — b)lay,aqe,...,ar,b € X,n € N} the set of functional
dependencies. In order to express the schema properties, we will use the following
functions and predicates: table(R) to state if R is a relation, attr(R) returning
the set of attributes of table R. Queries are non-recursive, function-free, and
Datalog formatted [4], i.e., a query is formed by a head and a body. The head is
a couple (name, X) with X € V"; the body is a conjunction of predicates on X.
The functions body(Q) and var(Q) C V return the body of a query @, and the
set of its variables, respectively. Variables are labeled with the attribute to which
they refer. For instance, x, indicates that x is a variable referring to attribute a.
Moreover, FD(f) is a predicate that is true when f is a functional dependency,
LHS(f) (resp. RHS(f)) is a function returning the set of attributes on the left
(resp. right) hand side of f, and finally, table(f) returns the table to which f
refers to.

Definition 1. A database system K is a quintuple K = (A, T, F,Q, P), where
ACXY TCR,FC® Q isa set of queries, and P is a set of properties
(propositions) involving elements of A, T, and F.

Example 1. Let us consider a database system storing data about employees of
a company, and having a query for retrieving all employees of the Computer
Science personnel department can be represented by K = (A, T, F,Q, P) where

A = {Employee_ 1D, Name, Department_ID, Salary, Address}
T = {R(Employee_ID, Name, Department_ID, Salary, Address)}
F ={f, : Employee_ ID — Name; fo : Employee_ID — Department_ID;
f3 : Employee_ID — Salary, fy : Employee ID — Address}
Q ={q(z,y,w,z) = R(x,y, “CS”,w,z)}
P = {1l)primary_key(R, Employee_ID)
2)¥r € T 3k C Attr(r) such that primary_key(r, k)
3) key_dep(r, k) =Va € (attr(r) — k)
(3f € F such that (LHS(f) =k ARHS(f) = {a})A
(=3f such that (LHS(f) # kA RHS(f) = {a}))
HVr € T (primary_key(r, k) — key_-dep(r,k))}

The properties in P state that every relation has a primary key, and the at-
tributes fully depend on the primary key only.



Definition 2. A database system K = (A, T, F,Q, P) is said to evolve towards
a database system K' = (A", T',F',Q’', P') iff there are four functions

EAttr - ’P(E) — ’P(E)

ETable * P(R) - P(R)

EConstr * ,P(é) - ,P(@)

ep : P(Prop) — P(Prop)
where P is the power set operator and Prop is the set of all propositions on A,
T, F;

and a substitution 0 = (ny «— expry,...,n; «— expry) where n; are names
and expr; are expressions constituted by either single names or their conjunc-
tions, such that

A= EAttr(A)

T" = erapie(T)

F' = 500nst7‘(F)

P’ =ep(P)

Q' =1{d| ¢ = qb with q € Q} i.e., ¢’ is obtained by applying 0 to q.

For sake of brevity, when no confusion occurs, we use symbol €, named “evo-
lution”, to refer to the four functions together with the substitution. We also
write D' = ¢(D).

The semantics of the database systems modeled through logic frameworks is
usually specified by interpretation functions (e.g., [2]). An interpretation I is a
couple (A’,-T) where Al is a domain and - is an interpretation function pro-
viding set theoretic interpretations. For instance, the interpretation of a relation
R having two attributes is Rf C Al x Al.

Given a database system K, a database instance on K, denoted by A(D),
is an interpretation in K. The interpretation of a query ¢ € @ , denoted with
q", is the set of all tuples in the database satisfying ¢. Two queries ¢ and ¢’ are
equivalent in a database instance if and only if they produce the same answers.
The following definition introduces the concept of query equivalence under the
projection operator, which will be used for defining the concept of refactored
systems.

Definition 3. A query q is equivalent to a query ¢’ under the projection operator
7, denoted by q = ¢, if and only if

I I
7T(var(q)ﬁvar(q’))(q ) = Tr(var(q)ﬂvar(q’))(q/ )
where I is an interpretation function.
Now we are ready to introduce a formal definition of refactoring.

Definition 4. A database system K = (A, T, F,Q, P) is said refactored in K' =
(AT, F',Q', P') if and only if

1. Vg€ Q 3¢ € Q' such that ¢ =, ¢
ii. if VA(K) A(K) = P then VA(K') A(K') = P/



Refactoring functions are particular kinds of evolution functions preserving
the results of queries and the properties of the database system. For instance,
if D is in third normal form, then also D’ must be in the same normal form.
Notice that schema evolution is a special case of refactoring. In fact, if Q = Q’
and P = P’ refactoring reduces to schema evolution.

Ezample 2. Let us consider the database system D introduced in example 1 and
the following evolution functions:
SAttr(A) =A
erabie(T) = (' — {R}) U{R1, R2}
Econstr(F) = FU{ f5: Department_ID — Address}
0= (R — Rl A RQ)
where Ry and Ry have attributes (Employee_ID, Name, Salary, Department_ID)
and (Department_ID, Address), respectively.
By applying € on D we obtain the database system D' = (A", T, F',Q', P")
with
A’ = {Employee_ID, Name, Department_ID, Salary, Address}
T" = {Ry(Employee_I1 D, Name, Salary, Department_ID), Ry(Department_ID,
Address)}
F' ={f1: Employee_ ID — Name; fs : Employee_ID — Department_ID;
fs 1 Employee_ID — Salary, fq : Employee_ID — Address,
f5: Department_ID — Address}
Q' ={q(z,y,w,2) = Ri(x,y,w, “CS”) A R2(“CS”, 2)}
P’ = (P—{primary_key(R, Employee_I1 D) }U{primary_key(Ry, Employee_I D),
primary_key(Ra, Department_1D)}

5 The process of database refactoring

As the refactoring is an agent based process, in order to realize the required
changes, the agent has to operate on the schema in a way that preserves
the properties of the knowledge and of the queries. Two kinds of approaches
can be used to accomplish this task: axiom based and constructive. The former
is based on a set of postulates, known in the literature as postulates for belief
revision [7,14]. The constructive approaches use propositions and programs for
handling changes in the knowledge [8].

In the proposed refactoring process we use the constructive approach and
build the evolution operator € by using propositions, questions, and change op-
erations. A question is denoted with ?p, where p is a proposition.

An example of change operation is the splitting of a table ¢ after the in-
troduction of a new functional dependency f, which could be described in the
following way:

split_table(t,t',t", f) —
(A" = AN
T'= (T —{thu{t',t"} A



F'=F A

Q' = {¢/| var(¢') = var(q), body(q') = p(body(a), ,#' A7)} A
attr(t') = attr(t) — RHS(f) A

attr(t') = LHS(f) U RHS(f))

The database refactoring process is based on the following predicates: Con-
sistent(change-operation), Hold(p), and Resolve(change-operation, p). The for-
mer is true when the set of properties P’ obtained by the application of the
change-operation is consistent. The second is true when proposition p holds. Fi-
nally, the third is true when proposition p holds after the application of change-
operation.

The agent uses the previous predicates to submit questions or to answer
questions according to rules like the following:

—Consistent(change — operation)

?3wResolve(w, p)

—Consistent(change — operation)
?3x —~Hold(x)

ﬁHold(ﬁﬂac.P(x))
?Resolve(add(zx), JxP(z))

—Hold(3x.P(x))
?Resolve(drop(x), Iz P(z))

?Resolve(w, p)

?Consistent(change — operation)

—Resolve(w, p)
73w (W' # w) A Resolve(w', p))

For instance, if an inconsistency on a proposition p arises, the first rule sug-
gests the agent to ask the question “Does there exist a change operation resolving
the inconsistency?”.

In general, the reasoning process of the agent has a question as starting point,
and a change operation as ending point. The process of answering a question like
the previous one is a problem solving process, since it involves the choice of a
change operation. This is made through heuristics, as it usually happens in the
problem solving domain [19].

Ezxample 3. Let us consider the database system of example 1. When the agent
receives a request of adding a functional dependency

f5 : Department_ID — Address



it processes the following questions (answers are visualized in bold):

?Consistent(add(fs)) NO

?3x —~Hold(x) YES © = (LHS(f5) # Employee ID N RHS(f5) = {Address})
?Resolve(drop(fs), P) NO

?Resolve(split_table(R, R',R"), f5) YES

?Consistent(split_table(R, R',R")) NO

6 Conclusions and future works

We have presented a formal framework for database refactoring based on epis-
temic logic. The framework defines a logic model of changes, and uses an agent
to discover and resolve inconsistencies, and to analyze the impact of changes on
queries.

In the future we would like to investigate several important issues. Firstly, it
is necessary to study the system of rules and their properties. We also need the
agent to be capable of making decisions. Thus, we should make the agent more
autonomous and should equip it with problem solving heuristics. Moreover, we
need the agent to be more communicative, in order to base its decisions also
on user suggestions. For example, adding a functional dependency is a serious
decision, and it would be desirable having the agent ask for user support. We
would also like to investigate the possibility to exploit the second generation of
epistemic logic that is based on the erotetic logic [9].

Finally, we would like to investigate the possibility of using visual language
based tools capable of supporting the database refactoring process directly on
the database conceptual or logic schema by means of special gesture operators.
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