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Abstract

We present a normalization framework for designing of multimedia database schemas with
reduced manipulation anomalies. To this end we introduce new extended dependencies
involving different types of multimedia data. Such dependencies are based on distance
functions that are used to detect semantic relationships between complex data types.
Based upon these new dependencies, we have defined five multimedia normal forms. Fi-
nally, we have performed a simulation on a large image dataset to analyze the impact
of the proposed framework in the context of content-based retrieval applications and in
e-learning applications.

Index Terms - multimedia database management systems (MMDBMS), anomalies,
data dependencies, content-based retrieval.

1 Introduction

In the last decade multimedia databases have been used in many application fields. The in-

ternet boom has increased this trend, introducing many new interesting issues related to the

storage and management of distributed multimedia data. For these reasons data models and

database management systems (DBMSs) have been extended in order to enable the modeling

and management of complex data types, including multimedia data [29]. In particular, other

than working on the extension of data models, the research community has focused on indexing
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techniques enabling content-based retrieval of multimedia information, query paradigms and

languages, clustering techniques, and support for distributed multimedia information manage-

ment.

Examples of DBMSs extended with functionalities to support multimedia data management

(MMDBMSs) include CORE [47], OVID [30], VODAK [27], QBIC [20], ATLAS [36], MIRROR

[15], DISIMA [32], and so on, each providing enhanced support for one or more media domains

among text, sound, image, and video. At the beginning, many DBMS producers would prefer-

ably rely on the object-oriented data model to face the complexity of modeling multimedia

data, but there have also been examples of MMDBMSs based on the relational data model

and on specific, non-standard data models. However, in order to facilitate the diffusion of

multimedia databases within industrial environments, researchers have been seeking solutions

based on the relational data model, possibly associated to some standard design paradigm,

like those used with traditional relational DBMSs (RDBMSs). Extensible relational DBMSs

have been an attempt in this direction. In the ! last decade DBMS vendors have produced

extended versions of relational DBMSs [35], with added capabilities to manage complex data

types, including multimedia. In particular, these new products extend traditional RDBMSs

with mechanisms for implementing the concept of object/relational universal server. In other

words, they provide means to enable the construction of user defined Data Types (UDT), and

Functions for manipulating them (UDF). New standards for SQL have been created, and SQL3

has become the standard for relational DBMSs extended with object oriented capabilities [16].

The standard includes UDTs, UDFs, LOBs (a variant of Blobs), and type checking on user

defined data types, which are accessed through SQL statements. Early examples of extensible

RDBMSs include Postgres [42], IBM/DB2 version 5 [14], Informix [35], and ORACLE 8 [31].

As MMDBMSs technology has started becoming more mature, the research community has

started focusing on multimedia software engineering issues, with particular emphasis on multi-

media databases. In particular, main efforts have been devoted to multimedia data indexing,

and content-based retrieval [26], which has led to the development of many data indexing and

organization approaches, each specialized on a particular media type, all aiming to guarantee
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an efficient retrieval of multimedia data based on their contents. Thus, we have had many in-

dexing techniques for images and videos, some based on physical characteristics of media types,

and others based on their semantics. However, in spite of these efforts, little attention has been

devoted to multimedia databases and multimedia software engineering methodologies in the

direction of providing paradigms for designing information systems needing to process many

different types of multimedia data together with traditional alphanumeric data. In particular,

multimedia software engineering methodologies should not only embed data indexing issues, but

also techniques for database schema design, with guidelines to construct the schemas, evaluate

their quality, and refactor them. To this end, in this paper we present a generic normalization

framework for multimedia databases, which provides guidelines and normal forms to evaluate

and improve the quality of schemas. The framework applies in a seamless way to images as well

as to other media types. It is based on a new definition of imprecise dependency for multimedia

data, named type-M dependency, which is parameterized upon the distance functions used to

compare multimedia data [6], and it has been exploited to define five new normal forms. The

concept of type-M dependency generalizes similar concepts of imprecise or fuzzy functional de-

pendencies existing in the literature [3, 9, 34], which turned out to be inadequate to capture

important aspects of multimedia data.

Regarding normalization techniques, the ones cited in the literature focus on specific domains

[1, 34, 38, 46], and no general purpose normalization framework for multimedia databases is

provided. In particular, the technique in [38] focuses on the normalization of image databases

by partitioning images so as to enhance search and retrieval operations. To this end it aims to

define dependencies among image features, suggesting the designer how to efficiently map them

into a database schema. While this technique is based on physical characteristics of images,

there are other techniques organizing the multimedia data based on their semantics [7, 19, 23].

However, all these proposals seek adequate index and data organization to provide efficient

content based retrieval. Thus, they are complementary with respect to our framework, and can

be used in conjunction with it in a synergistic way. Finally, the techniques in [1, 46] focus on

the normalization of XML documents.
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In order to explicate the framework, in the paper we use it for normalizing medical mul-

timedia databases. Moreover, extensive experiments have been performed on a large image

dataset in the context of content-based retrieval applications, and on a multimedia database

used in e-learning applications. In the former we aimed to analyze the impact of the proposed

framework on retrieval performances and errors, whereas in the second one we aimed to analyze

the impact of the normalization process on access performances.

The paper is organized as follows. In Section 2 we introduce some background concepts

and preliminary definitions. In Section 3 we present the concept of type-M dependency, and

compare it with similar dependencies from the literature. In Section 4 we propose new normal

forms, whereas experiments for evaluating the framework are presented in Section 5. Finally,

discussion is provided in Section 6.

2 Preliminaries

In this section we introduce some basic concepts of multimedia relational databases and simi-

larity theory [39], which will be useful for describing our normalization framework.

In the relational data model the database is viewed as a set of relations of time-varying

content. A multimedia database is formed by one or more relations of the form R(A1,. . ., An),

where A1,. . .,An are attributes. Each Ai has associated a domain denoted by dom(Ai), which

is the set of possible values for that attribute. The union of two sets of attributes X and Y is

written as XY . An instance of R, that is, its content at a given time, is defined as a subset of

the Cartesian product dom(A1)× . . .×dom(An). This instance can be represented as a relation

having as rows (named tuples) the elements of the subset of dom(A1) × . . .× dom(An), and as

columns the attributes of R. If R = {A1, . . . , An} is a database schema, then we write attr(R)

the set of attributes of R. If t is a tuple of this table (i.e., an element in an instance of R),

then t[A] denotes the value of this tuple in the A-column; t[A] is called the A-value of t. A

schema consists of a set of relations, where each relation is defined by its attribute sets and

some semantic constraints.

Tuples of a relation can be compared by means of a set of relevant features Φ. For instance,
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images can be compared using attributes like color, texture, shape, etc., whereas audio data

can be compared using loudness, pitch, brightness, and bandwidth. The values of each feature

F ∈ Φ belong to a domain D = dom(F ).

The similarity between two attribute values a and b in a tuple is based on distance measures

or, equivalently, on similarity functions, defined on feature spaces. In particular, given two

values a and b belonging to dom(A), we consider distance functions of type d : dom(A)2 → [0, 1],

such that for a, b ∈ dom(A)

1. d(a, a) = 0 (reflexivity)

2. d(a, b) = d(b, a) (symmetry).

Given an attribute A, in what follows we denote with D(A) the set of distance functions

defined on A.

In order to evaluate the similarity between multimedia objects of two tuples we introduce a

tuple distance function, which summarizes the results produced by the different distance func-

tions applied to the elements of the tuples. In particular, given a relation R(A1, . . . , An), if t1 =

(a1, . . . , an) and t2 = (b1, . . . , bn) are two tuples of R, then ̟(t1, t2) = g(d1(a1, b1), . . . , dn(an, bn))

measures the distance between t1 and t2, where di ∈ D(Ai) and g : [0, 1]n → [0, 1] is an aggre-

gation function that combines the n scores to derive an overall score. Aggregation functions

should satisfy the triangular co-norm (t-conorm) properties, that is, the zero identity, mono-

tonicity, commutativity, and associativity. There are several t-conorm aggregation functions

defined in fuzzy logic literature [18, 49], among which the max function is the most commonly

used. Notice that if n = 1 then ̟(t1, t2) = d1(t1, t2). Given a set of attributes X, we denote

with TD(X) the set of tuple distance functions defined on X.

Definition 2.1 Let R(A1, . . . , An), ̟ be a tuple distance function on R, τ be a threshold,

t1 = (a1, . . . , an) and t2 = (b1, . . . , bn) be two tuples in R, we say that t1 is similar within τ to

t2 with respect to ̟, denoted with t1 ∼=(̟,τ) t2, iff ̟(t1, t2) ≤ τ .
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3 Extended Dependencies

A functional dependency on an alphanumeric database is defined as a constraint between two

sets of attributes from the database [11]. In particular, given two sets of attributes X and Y , a

functional dependency between them is denoted by X → Y . The constraint says that for any

two tuples t1 and t2, if t1[X] = t2[X] then t1[Y ] = t2[Y ]. This concept cannot be immediately

applied to multimedia databases, since we do not have similar simple and efficient methods to

compare multimedia attributes.

Extensions to the definition of functional dependency have been produced for fuzzy databases

[10, 34, 40], leading to several definitions of fuzzy functional dependencies (ffds). However, they

have not reached a cogent and largely accepted view, and none of them fits the requirements

of our normalization framework. For this reason, in this paper we introduce a new type of

imprecise dependency, namely Type-M dependency, on which we developed our normalization

framework. In the following subsection, we introduce type-M dependencies and discuss their

properties. Then, we discuss why ffds are inadequate for the multimedia domain, and show

that type-M dependencies generalize them.

3.1 Type-M Functional Dependencies

The following definition introduces the concept of type-M functional dependency.

Definition 3.1 Let R be a relation with attribute set U , and X,Y ⊆ U . X(g1,τ ′) → Y(g2,τ ′′) is

a type-M functional dependency (MFD) relation if and only if for any two tuples t1 and t2 in

R that have t1[X] ∼=(g1,τ ′) t2[X], then t1[Y ] ∼=(g2,τ ′′) t2[Y ], where g1 ∈ TD(X) and g2 ∈ TD(Y ),

whereas τ ′, τ ′′ ∈ [0, 1] are thresholds.

This means that the features used by g2 on Y depend on the features used by g1 on X; or,

alternatively, the values of the features used by g1 on X component imply the range of values

for the features used by g2 on Y component. Notice that given a distance function d1 and a

threshold τ , t1 ∼=(d1,τ) t2 and t2 ∼=(d1,τ) t3 does not imply t1 ∼=(d1,τ) t3. However, we can state

that t1 ∼=(d1,2τ) t3. In general, if Xd1(τ ′) → Yd2(τ ′′) holds then for any two tuples t1 and t2 that
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have t1[X] ∼=(d1,kτ ′) t2[X], then t1[Y ] ∼=(d2,kτ ′′) t2[Y ], with k ∈ ℜ.

As an example, if we define a functional dependency on a medical database between at-

tributes ECG (electrocardiography) and PULSE (heartbeat), and use fractal dimensionality

for comparing ECGs (e.g., [25]), and the similarity measure proposed in [21] for comparing

heart sounds, we would write as follows

ECG(FRACTAL,τ ′) → PULSE(HS,τ ′′) (1)

This constraint says that for any two tuples t1 and t2 such that t1[ECG] is considered similar

within the threshold τ ′ to t2[ECG] by the FRACTAL, then t1[PULSE] is considered similar

within the threshold τ ′′ to t2[PULSE] by the HS.

From definition 3.1 it is clear that XI → Y̟2 is a type-M dependency relation where I is

the identity relation and ̟2 is a tuple distance function. In particular, XI → YI is a type-

M dependency relation. In other words, if we use identity relations as distance functions, we

can regard any dependency relation as a type-M dependency relation. Therefore, some of the

type-M based normal forms we define in this paper will be identical to the usual normal forms,

as long as we use identity relations as distance functions. In the following we omit the tuple

distance function from the MFDs when it corresponds to the identity relation.

As an example, in a multimedia database of dogs, suppose that BREED is an alphanumeric

attribute storing the breed of a dog, and PHOTO is an attribute storing its image. It might

happen that BREED implies the attribute PHOTO, yielding an MFD. Thus, given two tuples

t1 and t2, if the two tuples t1[BREED] and t2[BREED] are equal then also their photos should

be similar according to a tuple distance function ̟1. We write

BREED → PHOTO̟1 (2)

if every time t1[BREED] is equal to t2[BREED] then t1[PHOTO] = t2[PHOTO] are similar

according to ̟1. However, as it can be imagined, the distance function used heavily affects

the functional dependencies. In fact, a distance function might consider two dogs similar only

because they have a similar color peel, which would not imply they have the same breed. This

is why the distance function has to be explicitly represented in the notation.
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3.1.1 Inference Rules

The existence of certain MFDs in a relation implies the existence of others. Inference rules are

means to construct these implicit dependencies. In the following we define and prove inference

rules for MFDs. Given a MFD X(g1,τ1) → Y(g2,τ2), we denote with Dist(g1, X) the sequence

of distance functions applied by g1 on X. Moreover, given two functions g1 ∈ TD(X) and

g2 ∈ TD(Y ) we define g1 •h g2(x, y)= h(g1(x), g2(y)) with h a t-conorm aggregation function.

Theorem 3.1 Given the sets of attributes X, Y ,Z, and W

1. the reflexive rule XY(g1,τ1) → Y(g2,τ2) holds if Dist(g1, Y ) = Dist(g2, Y ) and τ2 ≥ τ1. That

is, the reflexive rule holds if the distance functions used by g1 and g2 on the attributes in

Y are the same, and the threshold for g2 is greater than the one for g1.

2. the augmentation rule {X(g1,τ1) → Y(g2,τ2)} |= XZ(g3,τ3) → Y Z(g4,τ4), holds if Dist(g1, X) =

Dist(g3, X), Dist(g2, Y ) = Dist(g4, Y ), Dist(g3, Z) = Dist(g4, Z), τ3 ≤ τ1 + k and

τ4 = τ2 + k with 0 ≤ k ≤ min{1 − τ1, 1 − τ2}.

3. the transitive rule { X(g1,τ1) → Y(g2,τ2), Y(g2,τ3) → Z(g3,τ4) } |= X(g1,τ5) → Z(g3,τ4), holds if

τ2 ≤ τ3 and τ5 ≤ τ1.

4. the decomposition rule { X(g1,τ1) → Y Z(g2,τ2)} |= X(g1,τ4) → Y(g3,τ3), holds if Dist(g2, Y ) =

Dist(g3, Y ), τ4 ≤ τ1 and τ2 ≤ τ3.

5. the union rule { X(g1,τ1) → Y(g2,τ2), X(g1,τ3) → Z(g3,τ4) } |= X(g1,τ5) → Y Z(g4,τ6), holds if

g4 = g2 •h g3, τ5 ≤ τ1, and τ6 ≥ τ4.

6. the pseudotransitive rule { X(g1,τ1) → Y(g2,τ2), WY(g3,τ3) → Z(g4,τ4)} |= WX(g5,τ5)→ Z(g4,τ4),

holds if Dist(g1, X) = Dist(g5, X), Dist(g2, Y ) = Dist(g3, Y ), Dist(g3,W ) = Dist(g5,W ),

τ3 ≥ τ2, and τ5 ≤ τ1.

Proof:

(1) Reflexive rule.

Suppose that there exist two tuples t1 and t2 in a relation instance r of R such that g1(t1[XY ],t2[XY ])
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= g3(t1[X],t2[X]) •h g2(t1[Y ],t2[Y ])≤ τ1 with Dist(g1, X)=Dist(g3, X) and Dist(g1, Y )=Dist(g2,

Y ). Then, g2(t1[Y ], t2[Y ])≤ τ1 since the t-conorm function h satisfies the statement h(a,b)≥max{a,b}.

(2) Augmentation rule.

Suppose that X(g1,τ1) → Y(g2,τ2) holds in a relation instance r of R, but that XZ(g3,τ3) → Y Z(g4,τ4)

does not hold. Then, there must exist two tuples t1 and t2 in r such that g1(t1[X],t2[X]) ≤ τ1,

g2(t1[Y ],t2[Y ]) ≤ τ2, g3(t1[XZ],t2[XZ])≤ τ3 and g4(t1[Y Z],t2[Y Z])>τ4. This is not possible be-

cause g3(t1[XZ],t2[XZ])= g1(t1[X],t2[X]) •h g5(t1[Z],t2[Z]) ≤ τ3 ≤ τ1 + k and g4(t1[Y Z],t2[Y Z])

= g2(t1[Y ],t2[Y ]) •h g5(t1[Z],t2[Z]) = τ2 + k ≤ τ4.

(3) Transitive rule.

Let us assume that X(g1,τ1) → Y(g2,τ2) and Y(g2,τ3) → Z(g3,τ4) hold in a relation instance r of R.

Then, for any two tuples t1 and t2 in r such that g1(t1[X],t2[X]) ≤ τ1 we have g2(t1[Y ],t2[Y ])≤

τ2 ≤ τ3, and hence we also have g3(t1[Z],t2[Z])≤ τ4. This means that also X(g1,τ5) → Z(g3,τ4)

holds with τ5 ≤ τ1.

(4) Decomposition rule.

Let us assume that X(g1,τ1) → Y Z(g2,τ2) holds in a relation instance r of R. Then, Y Z(g2,τ2) →

Y(g3,τ3) holds from (1) with Dist(g2, Y ) = Dist(g3, Y ) and τ3 ≥ τ2. Using (3) X(g1,τ4) → Y(g3,τ3)

holds with τ4 ≤ τ1.

(5) Union rule.

Let us assume that X(g1,τ1) → Y(g2,τ2), X(g1,τ3) → Z(g3,τ4) hold in a relation instance r of R.

Then, X(g1,τ1) → XX(g5,τ7) holds with g5 = g1 •h g1 and τ7 = h(τ1, τ1), and XX(g5,τ8) → XY(g6,τ9)

holds from (2) with g7 = g1 •h g2, Dist(g5, X) = Dist(g6, X), τ8 ≤ τ1 + k and τ9 = τ2 + k

where 0 ≤ k ≤ min{1 − τ1, 1 − τ2}. Moreover, XY(g6,τ10) → Y Z(g4,τ6) holds from (2) with

Dist(g1, X) = Dist(g6, X), Dist(g3, Z) = Dist(g4, Z), Dist(g6, Y ) = Dist(g4, Y ), t10 ≤ τ3 + k

and τ6 = t4 + k where 0 ≤ k ≤ min{1 − τ3, 1 − τ4}. Using (3) X(g1,τ5) → Y Z(g4,τ6) holds with

τ5 ≤ τ1, τ7 ≤ τ8 and τ9 ≤ τ10.

(6) Pseudotransitive rule.

Let us assume that Xg1(τ1) → Y(g2,τ2), WY(g3,τ3) → Z(g4,τ4) hold in a relation instance r of R with

Dist(g2, Y ) = Dist(g3, Y ). Then, WX(g5,τ5) → WY(g3,τ7) holds from (2) with Dist(g5,W ) =
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Dist(g3,W ), τ5 ≤ τ1 + k and τ7 = τ2 + k ≤ τ3 where 0 ≤ k ≤ min{1 − τ1, 1 − τ2}. Using (3)

WX(g5,τ5) → Z(g4,τ4) holds with τ7 ≤ τ3 and τ5 ≤ τ1. ¤

3.1.2 Multivalued and Join Type-M Dependencies

Multivalued dependencies (MVDs) were introduced in traditional relational databases as a gen-

eralization of functional dependencies to capture a significant amount of semantic information

useful for normalization [17]. In the following we extend the notion of MVD to multimedia

databases.

Definition 3.2 Let R be a multimedia relation with attribute set U , and X, Y ⊆ U .

We say that X(g1,τ ′) 7−→ Y(g2,τ ′′)[(g3,τ ′′′)] is a type-M multivalued dependency (MMD) relation if

and only if for any two tuples t1 and t2 in R such that t1[X] ∼=(g1,τ ′) t2[X], there also exist two

tuples t3 and t4 in R with the following properties:

• t3[X], t4[X] ∈ [t1[X]]∼=(g1,τ ′)

• t3[Y ] ∼=(g2,τ ′′) t1[Y ] and t4[Y ] ∼=(g2,τ ′′) t2[Y ]

• t3[R − (XY )] ∼=(g3,τ ′′′) t2[R − (XY )] and t4[R − (XY )] ∼=(g3,τ ′′′) t1[R − (XY )].

where g1 ∈ TD(X), g2 ∈ TD(Y ) and g3 ∈ TD(R − (XY )), whereas τ ′, τ ′′, and τ ′′′ ∈ [0,1] are

thresholds.

Because of the symmetry in the definition, whenever X(g1,τ ′) 7−→ Y(g2,τ ′′)[(g3,τ ′′′)] holds in R,

so does X(g1,τ ′) 7−→ [R − (XY )](g3,τ ′′′)[(g2,τ ′′)].

An MMD X(g1,τ ′) 7−→ Y(g2,τ ′′)[(g3,τ ′′′)] in R is called trivial if (a) Y ⊆ X or (b) X ∪ Y = R.

An MMD that satisfies neither (a) nor (b) is called non trivial.

Similarly to multimedia functional dependencies (MFDs), we can define inference rules for

MMDs.

1. X(g1,τ1) 7−→ Y(g2,τ2)[(g3,τ3)] |= X(g1,τ4) 7−→ [R − (XY )](g3,τ5)[(g2,τ6)], where g1 ∈ TD(X),

g2 ∈ TD(Y ), g3 ∈ TD(R − (XY )), τ4 ≤ τ1, τ5 ≥ τ3, and τ6 ≥ τ2.
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2. If X(g1,τ1) 7−→ Y(g2,τ2)[(g3,τ3)] and W ⊇ Z then WX(g4,τ4) 7−→ Y Z(g5,τ5)[(g6,τ6)] where Dist(g4, Z) =

Dist(g5, Z), Dist(g1, X) = Dist(g4, X), and Dist(g2, Y ) = Dist(g5, Y ), τ4 ≥ τ1, τ5 ≥

τ2 + (τ4 − τ1), and τ6 ≥ τ3.

3. {X(g1,τ1) 7−→ Y(g2,τ2)[(g3,τ3)], Y(g2,τ4) 7−→ Z(g45,τ5)[(g5,τ6)]} |= X(g1,τ7) 7−→ (Z − Y )(g6,τ8)[(g7,τ9)]

where Dist(g3, Z − Y ) = Dist(g4, Z − Y ) = Dist(g6, Z − Y ), g7 ∈ TD(R − (Z − Y )),

τ2 ≤ τ4, τ7 ≤ τ1, τ8 ≥ τ5, and τ9 ≥ τ6.

4. X(g1,τ1) → Y(g2,τ2) |= X(g1,τ1) 7−→ Y(g2,τ2)[(g3,1)].

5. If X(g1,τ1) 7−→ Y(g2,tτ2)[(g3,τ3)] and there exists W with the properties that (a) W ∩ Y = ∅ ,

(b) W(g4,τ4) → Z(g5,τ5), and (c) Y ⊇ Z, then X(g1,τ6) → Z(g5,τ7) with τ6 ≤ τ1 and τ7 ≥ τ1.

Given a set D of MFDs and MMDs specified on a relation schema R, we can use the

inference rules to infer the set of all dependencies D+ that will hold in every relation instance

of R satisfying D.

In order to present the notion of multimedia join dependency, we need to introduce the

multimedia operations of projection and join. Given a relation r over a multimedia relation

R(X), a subset Y of X, a tuple distance function g ∈ TD(Y ), and a threshold τ , the multimedia

projection of R on Y respect to (g, τ), denoted with ΠY,(g,τ)(R), is defined by

ΠY,(g,τ)(R) = {v(Y ) | v ∈ r and g(v, w) ≤ τ for each tuple w in u[Y ]}

Note that the duplicate elimination is performed according to the function g, and the associated

threshold τ . Obviously, if τ = 0 then w = v, and the tuple distance function g corresponds to

exact match for the particular features it considers.

Let R(X,Y ) and S(Y, Z) be multimedia relations where X, Y , and Z are disjoint sets of

attributes, g ∈ TD(Y ) be a tuple distance function, and τ be a threshold. The multimedia join

of R and S respect to (g, τ), denoted with R ⋊⋉(g,τ) S, is the relation defined by

R ⋊⋉(g,τ) S = {(x, y, z, k) | (x, y) ∈ R, (y′, z) ∈ S with y ∼=(g,τ) y′, and k = g(y, y′)}

That is, the multimedia join is created by linking tuples of R with tuples of S that have similar

values, within a threshold τ with respect to a function g, for all the attributes that are common
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to the two multimedia relations. The parameter k is introduced in the joined tuples, and

represents a fuzzy value describing their degree of similarity. Obviously, in case R and/or S are

the result of previous join operations, the fuzzy values used to produce them do not concur to

the result of R ⋊⋉(g,τ) S.

Notice that the multimedia join raises many new issues and problems. In fact, we have

higher probability to generate spurious tuples due to false alarms. Moreover, false dismissals

lead to a new type of manipulation anomaly, not existing in traditional alphanumeric databases,

namely the problem of dismissed tuples. These are tuples that should have been generated as a

result of the multimedia join, but indeed they were discarded because a false dismissal occurred.

We empirically analyze these issues in the evaluation section (Section 5), where we describe

how these anomalies manifest under different thresholds. In these experiments conducted on a

large real-world image dataset we have always been able to find a threshold interval where such

anomalies were acceptable.

In the following we give the definition of Type-M join dependency.

Definition 3.3 Let R be a relation on U , and {X1, . . . , Xn} ⊆ U , with the union of Xi’s being

U . If R = ΠX1,(g1,τ1)(R) ⋊⋉(g1,τ1) ΠX2,(g2,τ2)(R) ⋊⋉(g2,τ2) . . . ⋊⋉(gn−1,τn−1) ΠXn,I(R), we say that R

satisfies a Type-M join dependency (MJD), denoted by ⋊⋉[(g1,τ1),...,(gn−1,τn−1)] [X1, . . . , Xn], where

gi ∈ TD(Xi ∩ Xi+1) and τi ∈ [0, 1] for each 1 ≤ i ≤ n − 1.

An MVD is a special case of an MJD. An MVD X(g1,τ1) 7−→ Y(g2,τ2)[(g3,τ3)] for a relation on

R is the MJD ⋊⋉[(g1,τ1)•h(g2,τ2),(g1,τ1)•h(g3,τ3)] (XY,X(R − Y )).

In the following we provide some inference rules to infer MJDs. Let S = {X1, . . . , Xn} and

R = {Yn+1, . . . , Ym}.

1. ∅ |=⋊⋉[(g,τ)] [X], for any finite set of attributes X, and with g ∈ TD(X), τ ∈ [0, 1].

2. ⋊⋉[(g1,τ1),...,(gn−1,τn−1)] [S] |= ⋊⋉[(g1,τ1),...,(gn−1,τn−1),(gn,τn)] [S, Y ] if Y ∈ attr(S) and gn ∈ TD(Y ).

3. ⋊⋉[(g1,τ1),...,(gn−1,τn−1),(gn,τn),(gn+1,τn+1)] [S, Y, Z] |= ⋊⋉[(g1,τ1),...,(gn,τn)•h(gn+1,τn+1)] [S, Y Z].
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4. {⋊⋉[(g1,τ1),...,(gn−1,τn−1),(gn,τn)] [S, Y ], ⋊⋉[(gn+1,τn+1),...,(gm−1,τm−1)] [R]} |=

⋊⋉[(g1,τ1),...,(gn−1,τn−1),(gn,τn),(gn+1,τn+1),...,(gm−1,τm−1)] [S,R] if Y = attr(R).

5. ⋊⋉[(g1,τ1),(g2,τ2)] [S, Y A] |= ⋊⋉[(g1,τ1),(g2,τ2)] [S, Y ] if A /∈ attr(S).

3.2 Comparing MFD with other Extended Dependencies

In this section we compare the type-M dependency with other fuzzy functional dependencies

(ffds) [10, 34, 40], which were introduced for fuzzy databases. In particular, we refer to three

among the most relevant ffds, and provide theorems showing that type-M dependency general-

izes them. Moreover, we discuss why ffds are not suitable for normalizing multimedia databases,

motivating the introduction of type-M dependency. These arguments can be easily applied to

other ffds since we do not pose constraints on distance functions and type-M dependencies

thresholds.

For sake of uniformity, we will use the notation used in [4]: RESX(t1[X], t2[X]) is the

resemblance on tuples computed on the subset X of attributes; ⇒RG is the Rescher−Gaines′

implication that is equal to one if the value on the left-hand side is less or equal than that on

the right-hand side, otherwise it is equal to zero; ⇒G denotes the Gödel implication, whose

result is one if the left-hand side value is less or equal to the right-hand side one, otherwise it

is equal to the value on the right-hand side.

Proposition 3.1 If any relation instance r on a schema R satisfies the Raju-Majumdar fuzzy

functional dependency X → Y [34], then it also satisfies a type-M functional dependency

X(g1,τ ′) → Y(g2,τ ′′).

Proof: If the Raju - Majumdar ffd X → Y holds in a relation instance r, then for all tuples

tl and t2 of r we have RESX(t1[X], t2[X]) ⇒RG RESY (t1[Y ], t2[Y ]), where RESX(t1, t2) =

mini∈X{µ
i
EQ(t1[Ai], t2[Ai])}, with µi

EQ similarity functions over attributes.

From the definition it follows that 1 − RESX(t1[X], t2[X]) ≥ 1 − RESY (t1[Y ], t2[Y ]).

Thus, by setting

g1(t1[X], t2[X]) = 1 − RESX(t1[X], t2[X]),

g2(t1[Y ], t2[Y ]) = 1 − RESY (t1[Y ], t2[Y ])
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we have that the tuple distance functions g1 and g2 are composed of a t-conorm aggregation

function, plus reflexive and symmetric distance functions, then

g1(t1[X], t2[X]) ≤ τ ′ implies g2(t1[Y ], t2[Y ]) ≤ τ ′′ with τ ′ ≤ τ ′′.

Therefore, the MFD X(g1,τ ′) → Y(g2,τ ′′) also holds. ¤

Thus, a Raju-Majumdar ffd can always be rewritten as a Type-M functional dependency.

Vice versa, a Type-M functional dependency cannot always be rewritten as a Raju-Majumdar

ffd. In fact, if the first threshold τ ′ is greater than the second one τ ′′, and g1(t1[X], t2[X]) ≤ τ ′

implies g2(t1[Y ], t2[Y ]) ≤ τ ′′, then it could result that g1(t1[X], t2[X]) ≥ g2(t1[Y ], t2[Y ]).

In other words, type-M functional dependencies allows a similarity between Y-representations

to be weaker than a similarity between X-representations.

Proposition 3.2 If any relation instance r on a schema R satisfies a Chen fuzzy functional

dependency X →q Y [10], then it also satisfies a MFD X(g1,τ ′) → Y(g2,τ ′′).

Proof: Recall that a Chen fuzzy functional dependency X →q Y with q ∈ [0, 1] is valid in r iff

∀t1, t2 ∈ r if t1[X] = t2[X] then t1[Y ] = t2[Y ] else I(RESX(t1[X], t2[X]), RESY (t1[Y ], t2[Y ])) ≥

q, where I denotes the Gödel implication, (I(a, b) = 1 if a ≤ b, b otherwise).

The interpretation of this FFD is: when two tuples have the same value (or representation)

on X, then they should have the same value (or representation) on Y due to the if part of the

definition.

If q = 1, then the Chen ffd reduces to the Raju and Majumdar ffd [34], and the proposition

holds.

If q < 1, then RESX(t1[X], t2[X]) > RESY (t1[Y ], t2[Y ]), and

I(RESX(t1[X], t2[X]), RESY (t1[Y ], t2[Y ])) = RESY (t1[Y ], t2[Y ]). Thus, we obtain

RESX(t1[X], t2[X]) > RESY (t1[Y ], t2[Y ]) ≥ q ∀t1, t2 ∈ R, and,

1 − RESX(t1[X], t2[X]) ≤ 1 − RESY (t1[Y ], t2[Y ]) ≤ 1 − q.

By setting

g1(t1[X], t2[X]) = 1 − RESX(t1[X], t2[X]),

g2(t1[Y ], t2[Y ]) = 1 − RESY (t1[Y ], t2[Y ]), and

14



we have that the tuple distance functions g1 and g2 are composed of a t-conorm aggregation

function, plus reflexive and symmetric distance functions, then

g1(t1[X], t2[X]) ≤ τ ′ implies g2(t1[Y ], t2[Y ]) ≤ τ ′′ holds for τ ′ = 1 − q and τ ′′ ≥ τ ′, and the

proposition holds. ¤

Proposition 3.3 If any relation instance r on a schema R satisfies a Sözat and Yazici fuzzy

functional dependency X
θ
→F Y [40], then it also satisfies a MFD X(g1,τ ′) → Y(g2,τ ′′).

Proof: If the Sözat and Yazici ffd X
θ
→F Y holds in a relation instance r, where θ is a real

number in [0, 1] describing the linguistic strength, then C(t1[Y ], t2[Y ]) ≥ min(θ, C(t1[X], t2[X]))

for every pair of tuples t1 and t2 in r.

By setting

g1(t1[X], t2[X]) = 1 − C(t1[X], t2[X]) and g2(t1[Y ], t2[Y ]) = 1 − C(t1[Y ], t2[Y ])

we have that the tuple distance functions g1 and g2 are composed of a t-conorm aggregation func-

tion. Moreover, if g1(t1[X], t2[X]) ≤ τ ′, then 1−C(t1[X], t2[X]) ≤ τ ′. Since 1−C(t1[Y ], t2[Y ]) ≤

1 − min(θ, C(t1[X], t2[X])) it follows that:

1. if C(t1[X], t2[X]) < θ then g2(t1[Y ], t2[Y ]) ≤ 1 − C(t1[X], t2[X]) ≤ τ ′

2. if C(t1[X], t2[X]) ≥ θ then g2(t1[Y ], t2[Y ]) = 1 − C(t1[Y ], t2[Y ]) ≤ 1 − θ

Hence, g1(t1[X], t2[X]) ≤ τ ′ implies g2(t1[Y ], t2[Y ]) ≤ τ ′′ for τ ′ = 1− θ and τ ′ ≥ τ ′′, and the

proposition holds. ¤

The ffds analyzed here are not able to capture some cases of dependency [13], because

of the strong relations between the similarity on the input values and that on the output

values [10, 34, 40]. For instance, it is forbidden the existence of an ffd between two sets

of attributes where on the first one there is a similarity function stronger than the second

one. On the contrary, multimedia databases call for many kinds of dependencies involving

both alphanumeric and multimedia attributes and whose relation between the two resemblance

values cannot be determined in advance. As an example, we would not be able to define an

MFD like ECG(FRACTAL,τ ′) → PULSE(HS,τ ′′), where τ ′′ > τ ′.
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4 Normal Forms in Multimedia Databases

In traditional alphanumeric databases, normal forms are used to derive database schemas pre-

venting manipulation anomalies [16]. Similar anomalies can arise in multimedia databases.

Thus, a multimedia database designer should take all the precautions at database design time

to avoid such anomalies.

As an example, let us consider a database of viral lung diseases. Important data in med-

ical databases are those related to health state changes and causes of diseases. According to

Thagard [45], the representation of state changes is multimodal, and it involves both multi-

media data - like the breathing and cough sound, the health state of the lungs (presence of

pneumonia), detected by bronchoscopy and/or X-ray images - and alphanumerical ones, like

the temperature. Furthermore, the causes of diseases are also represented by multimedia data

[43, 44, 45]: information about the virus structure; information about the mechanisms that

cause the disease. Mechanisms are, for example, those related to the phases of the virus at-

tack (attachment, entry, assembly, replication, release) or to the relationship between the cell

damage and the symptoms, or between the immune response and the symptoms.

In what follows, we show a simplified portion of the database schema for viral lung diseases,

on which we highlight some relevant MFDs associated to its attributes:

Health State Changes 

Viruses

mfd1

mfd2 mfd3

Bronchoscopy X-Ray BloodTest
Breath

Sound 

Sputum 

Gram 
Temperature 

VirusID Type 
Genome 

Diagram 
Replication 

Cell

Death
Pathway

A tuple in the first relation represents a particular health status. The latter is identified

through a combination of a Bronchoscopy, X-Ray, and BloodTest. The Bronchoscopy is a

video, whereas X-Ray is an image. For sake of simplicity, also the BloodTest is represented

as an image, since it is a compound document possibly containing both alphanumeric and
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diagrammatic information. Notice that these are multimedia attributes, hence their values are

representative samples. In other words, for a given health status we can choose the values for

the attributes of its key among many similar candidates. BreathSound is a sound, SputumGram

is an image, and Temperature is an alphanumeric string.

The second relation contains data of viruses. Each of them is identified through an alphanu-

meric ID representing the technical name of the virus, such as H5N1 for aviary flu, SARS-CoV

for the SARS disease, etc. The Type is an alphanumeric attribute representing virus family,

the GenomeDiagram is an image, the Replication is a video describing all the phases of a virus

attack (attachment, entry, assembly, replication, release), the CellDamage is an image showing

the damages that the virus causes on cells, and the Pathway is an image explaining the virus

activity in terms of biochemical reactions [44].

On the schema we have shown some relevant MFDs, and it is easy to imagine how they

yield manipulation anomalies. In fact, mfd1 reveals that a strict correlation exists between the

BreathSound and the combination of Bronchoscopy and X-Ray test results. This suggests to

put these attributes together on a separate relation, in order to avoid possible manipulation

anomalies. As an example, if we want to insert a new breath sound that is associated to

particular patterns appearing in bronchoscopy and/or X ray, we cannot add a tuple without

first having a sample blood test, since this attribute is part of the key. Mfd2 and mfd3 together

reveal an indirect dependency of the attribute Pathway from the key, which suggests to put

CellDeath and Pathway on a different relation in order to avoid other possible anomalies. In

fact, we might have data redundancy when different viruses share the same cell damage. This

causes not only a waste of disk space, but also problems if we will to update the values of

these two attributes with different images, since we should make this update for all the tuples

containing the same combination of values for these two attributes. Moreover, the deletion of the

last tuple containing a given combination of CellDeath and Pathway causes loss of information

from the database.

In this section we present three normal forms for multimedia databases. They are based

on the type-M dependencies defined above. Therefore, their results depend upon the distance
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functions used to derive dependencies, and can be used to derive multimedia database schemas

with reduced manipulation anomalies.

The first normal form (1MNF) regards the granularity of multimedia attributes. We say

that a multimedia database schema is in first multimedia normal form if each attribute A is

single valued and contains an elementary value. The latter is a relative concept, because a

multimedia object can be elementary for certain application domains, whereas it might require

a further segmentation due to frequent queries on its content. This issue also arises in tradi-

tional alphanumeric databases, where for example a civic address might be modeled by a single

string containing the street name, the civic number, and the ZIP code; such a value might

be elementary for certain application domains, but not for those requiring to inquire on single

address components.

The application of the normalization process is based on a specific segmentation function:

image attributes can be decomposed in a certain number of k image components, which will be

stored as separated attributes; video attributes can be split into several multimedia components.

For instance, the relation Virus shown above is not in 1NF since Replication is a video attribute.

We could normalize the schema by segmenting the video into images representing the various

phases of virus replication. Thus, we obtain the following schema:

VirusID Type 
Genome 

Diagram 

Cell

Damage 

Immune 

Response
Pathway

VirusID ReplicationID
Replication 

Phase

where the obtained images are stored in a separate relation, with a foreign key VirusID on the

original table, since there is a 1 to N relationship between viruses and their replication phase

images. The ReplicationID attribute is used to reconstruct the video sequence starting from

the stored images.

Obviously, the application of these normal forms requires the availability of specific seg-

mentation functions. Moreover, as said above the decomposition of a composite multimedia

attribute may require the storing of additional data structures to enable the reconstruction
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of the original attribute format. In particular, such data structure should store the relations

between the different attribute components.

We say that a multimedia database schema is in second multimedia normal form (2MNF) if

it is in 1MNF, and each non prime attribute A is fully dependent on the primary key. In case

there is a partial dependency of A from a subset {ki, . . . , kj} of key attributes, then the designer

can decide to normalize the schema by splitting the original schema R into two sub-schemas

R1 = R − T and R2 = {ki, . . . , kj} ∪ T , where T = {A} ∪ {Bi|Bi ∈ R, {ki . . . kj}s1 → {Bi}s2}.

For brevity, in the following we omit the threshold from the similarity expressions.

As an example, let us analyze the MFD of relation schema Health State Changes from the

database seen above.

{Bronchoscopy, X-Ray} → Breath Sound is a partial dependency, which leads to the de-

composition of the relation into the following relations, each of which is in 2MNF.

Bronchoscopy X-Ray
Blood

Tests

Sputum 

Gram Temperature Bronchoscopy X-Ray
Breath

Sound 

We say that a multimedia database schema is in third multimedia normal form (3MNF) if

it is in 2MNF, and the non prime attributes are not mutually dependent. Equivalently, we can

say that the schema R is in third normal form if, whenever a MFD Xs1 → As2 holds in R,

either

(a) X is a superkey of R, or

(b) A is a prime attribute of R.

As an example, the dependency mfd3 violates 3MNF because CellDeath is not a superkey

of the relation, and Pathway is not a prime attribute. We can normalize the relation schema by

decomposing it into the following two 3MNF relation schemas. We construct the first relation

by removing the attributes violating 3MNF, namely Pathway, from the original relation, and

placing them with CellDeath into the second relation, as shown in the following relation.

VirusID Type 
Genome 

Diagram 

Cell

Damage 

 Cell 

Damage
Pathway
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Notice that by iteratively transforming a database schema to put it in 1MNFs may cause

the introduction of MMDs. Such undesirable dependencies can be detected by the fourth

multimedia normal form. We say that a multimedia database schema R is in fourth multimedia

normal form (4MNF) with respect to a set of multimedia dependencies D if, for every nontrivial

MMD X(g1,τ1) → Y(g2,τ2)[(g3,τ3)] in D+, X is a superkey for R. In case there is a nontrivial MMD

X(g1,τ1) → Y(g2,τ2)[(g3,τ3)] in D+ with X not superkey for R, then the designer can decide to

normalize the schema by splitting the original schema R into two sub-schemas R1 = (X ∪ Y )

and R2 = (R − Y ).

As an example, let us consider the following simple multimedia relation:

VirusID CellDamage ReplicationPhase 

mmd1

The multivalued dependency mmd1 violates 4MNF because VirusID is not a superkey of

the relation. We can normalize the relation schema by decomposing it into the following two

4MNF relation schemas:

VirusID CellDamage  VirusID ReplicationPhase 

Finally, a multimedia database schema R is said to be in fifth multimedia normal form

(5MNF) if it guarantees the lossless join properties, and prevents the problem of dismissed

tuples. Formally, we say that R is in 5MNF with respect to a set D of MFDs, MMDs, and

MJDs if, for every nontrivial type-M join dependency ⋊⋉[(g1,τ1),...,(gn−1,τn−1)] (X1, . . . , Xn) in D+,

each Xi is a superkey for R.

5 Framework Evaluation

Advantages and drawbacks of normalization have been widely discussed in the relational database

literature [2, 16]. The multimedia database field shares many of the issues and problems dis-

cussed in such literature, but it also provides several new specific aspects to be analyzed. In

particular, as in traditional databases, the multimedia database normalization process entails a

design overhead, and its benefits heavily depend on the characteristics of the specific application
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context. For example, in some application contexts it might happen that a highly fragmented

normalized database schema makes data navigation inefficient. Moreover, since multimedia

databases are mainly targeted to applications involving content-based retrieval of multimedia

data, it becomes crucial to evaluate the impact of normalization over these application do-

mains [26]. In this context, the impreciseness of comparisons involving multimedia attributes

is another important issue to be considered. Thus, the multimedia database designer needs

more sophisticated guidelines and tools to be able to understand the degree of normalization

guaranteeing the right compromise among quality of data organization, correctness of results,

and time performances, for each specific application context.

Many are the factors affecting retrieval effectiveness in multimedia databases as opposed to

those of traditional alphanumeric databases. In fact, since alphanumeric databases use exact

match paradigms, errors are mainly caused by inappropriate data organization, which may

cause manipulation anomalies, data redundancy, inconsistencies, accidental data deletion, and

so on. The designer can use normalization to prevent such errors, but only to the extent that

keeps adequate time performances. On the contrary, querying of multimedia databases is typ-

ically accomplished by using approximate match paradigms, which are inherently error-prone.

Thus, errors might not only due to inappropriate data organization, but also to potential fail-

ures of the matching functions. The normalization process presented in the paper can prevent

the formers, but it could introduce additional retrieval errors since it relies itself on approximate

matching functions. The designer can reduce such phenomena by narrowing thresholds used

by such functions. Moreover, by still acting on thresholds, s/he can affect not only retrieval

effectiveness, but also database size and time performances. However, despite complexity and

size of multimedia data, hardly ever database size is a major concern, also due to the low cost

of recent storage devices. On the other hand, time performances and retrieval effectiveness

are both important issues, and often it is difficult achieving them together. To this end, each

application context gives different relevance to these two parameters. There are contexts in

which retrieval effectiveness is so critical that the designer can also tolerate poor time perfor-

mances, whereas in other domains it is more important to gain faster although less accurate
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query responses.

In what follows we describe some experiments to analyze the impact of thresholds on re-

trieval effectiveness and time performances. In particular, we describe the application of our

normalization framework in two domains: content-based retrieval of images from a heteroge-

neous dataset, and an e-learning application context. In the latter we have focused on time

performances, whereas in the former we have mainly focused on retrieval effectiveness.

5.1 Evaluating the framework in an image retrieval context

In the following we analyze the impact of the proposed normalization framework in the context

of a content-based retrieval application. In particular, we performed a simulation through an

application entailing content-based retrieval from a large MPEG-7 image dataset, aiming to

analyze the effect of the normalization process on retrieval effectiveness. The latter is measured

in terms of precision and recall. The image dataset used in this experiment contained about

24k images, and it has been derived by converting the Berkeley’s CalPhotos collection [5] to the

MPEG-7 format. We first describe a relation taken from the database schema of the selected

application, and then describe the normalization process applied to it.

We considered the schema of a database whose data describe the characteristics of the above

mentioned image dataset, including information about semantics of images, authors, etc. In

particular, for describing our experiment we focus on the following significant relation extracted

from the whole database schema:

Photo

Path Icon Features Author Semantics ID Photo Name

The attribute Semantics abstractly represents a set of keywords describing the semantics

of the photo, and their values have been automatically extracted by using the GCap tool [33].

With the attribute Features we abstractly refer to a subset of MPEG-7 features used to index

the images for retrieval purposes [8]. At implementation level we have one attribute for each

type of feature. For our experiment we have used the following three image features: color

22



layout, edge histogram, and scalable color. The attribute Icon is an image characterizing the

category to which each single image belongs. These attributes yield the following M-type

functional dependency:

Features(g,τ ′) → IconI (3)

where g is the composite function g = c1∗d1+c2∗d2+c3∗d3, d1 is the Meehl index [28], computed

on the color layout feature, d2 and d3 are the Pattern difference functions [41], computed on the

edge histogram feature and the scalable color feature, respectively; c1,c2, and c3 are constants

such that c1 + c2 + c3 = 1; I is the Identity function. In our simulation we achieved best

performances with respect to errors by setting c1 = 0.4, c2 = 0.2, c3 = 0.4. The functional

dependency highlighted above reveals that the relation schema Photo is not in 2MNF. The

application of our normalization technique leads to the following relation schemas:

Photo

Path Features Author Semantic ID Photo Name Icon Features

Icon 

It is worth noting that when the database is populated it will be necessary to set the

thresholds because they will affect the way data will be distributed across relations. Thus, we

have produced several versions of the database by populating it through different thresholds.

Then, we have performed twenty-five content-based queries on each version of the database,

and on the non normalized one, by using the Query by Example paradigm on a common set

of query images, randomly selected from the dataset. Effectiveness of results was evaluated by

computing precision and recall measures [37] with a cutoff value of 50 on the ranked list of result

images. We achieved a precision of 78% and a recall of 38% on the non normalized database,

whereas the results for the different versions of the normalized database are plotted in Figure

1. In particular, the figure shows percent values of precision and recall measured on versions of

the database generated by varying the threshold of the M-type functional dependency in the

range 0.09-0.22.

In general, the normalized database trades-off between retrieval errors and errors due to

manipulation anomalies, reducing the latter and increasing the formers. Since in the threshold
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range 0.09-0.18 the retrieval effectiveness of the normalized database is comparable to that of

the non normalized one, we expect that in this interval the benefits of normalization overcome

the drawbacks due to additional retrieval errors. On the other hand, for threshold values above

0.18 the additional retrieval errors induced by the normalization process start becoming more

considerable, hence it will be necessary to evalulate the goals of the specific application context

to decide the extent to which normalization is convenient. Finally, with threshold values below

0.09 there is no considerable variation in the retrieval performances with respect to the non
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Figure 1: Precision and recall of the retrieval results with respect to threshold.

Obviously, the threshold also affects the size of the database and the average response time

of queries, especially when the normalization process yields the splitting of relations. In fact, a

higher threshold yields a lower number of tuples in the relation created by the splitting process.

In our experiment we have used an algorithm for the Disk Cover Problem to select the pivot

features to be inserted as tuples in the relation Icon [48]. Moreover, in order to make join

operations more efficient we have performed them starting from the relation Icon and using a

similarity join algorithm based on the grid-join algorithm proposed in [24]. Figure 2 shows how
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the average query response time changes by varying the threshold. Notice that with higher

thresholds we gain reduced query response times. This is mainly due to the fact that we have

less tuples in the Icon relation, which reduces the comparisons that are necessary to perform

the join operations. Moreover, on the non normalized database we have observed an average

query response time of 19.38 seconds. Thus, the average query response times observed on the

normalized versions of the database in the above mentioned threshold interval 0.09-0.18 are

close to the one of the non normalized database.2 3 . 3 3 2 2 . 6 7 2 2 . 2 6 2 1 . 9 5 2 1 . 6 9 2 1 . 3 8 2 0 . 9 7 2 0 . 5 4 1 9 . 8 7 1 9 . 2 2 1 8 . 1 8 1 7 . 3 7 1 6 . 6 8 1 5 . 7 1
05

1 01 52 02 5

0 . 0 9 0 . 1 0 0 . 1 1 0 . 1 2 0 . 1 3 0 . 1 4 0 . 1 5 0 . 1 6 0 . 1 7 0 . 1 8 0 . 1 9 0 . 2 0 0 . 2 1 0 . 2 2
A verageti me(i nsec .)

T h r e s h o l d
Figure 2: Trend of query response time with respect to threshold.

5.2 Evaluating the framework in an e-learning application

In this second experiment we aimed to analyze access performances to a multimedia database

used in e-learning applications. The database stores data on lessons, such as Title, Speaker

name, Speaker’s photo, fingerprint (SFP), and finally the multimedia presentation of the lesson,

which is stored at different levels of resolution. The following was the starting database schema:

#Lesson Title ID_MOB Type Speaker SFP S_Photo Presentation_Low Presentation_Medium Presentation_High 

Lessons

After the application of our framework we derived the following normalized database schema:
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Title ID_MOB #Lesson Type  Lesson ID_Slide Seq_Number 

ID_Slides Slide Comments 

Slides 

Lessons Lessons_Slides 

Then, we performed simulation experiments on an instance of the database containing twelve

lessons, two instructors, and thirty students. We have divided the students into two groups

based on the connection bandwidth they could use: dial up connection (56kbps), and DSL

connection (640kbps). Then, we have performed several simulations by varying the mix of the

two groups of students accessing the multimedia database simultaneously. For each simulation

we have estimated the minimum, average, and maximum time needed by each group of students

to access the lessons. Such parameters have always been computed twice, once on the initial

database schema (whose size is 178 Mb), and once on the normalized schema (whose size is

163 Mb). In particular, the tuple selected from the initial Lessons schema has two types of

presentations: the Presentation Low attribute of 4.35 Mb, and the Presentation High attribute

of 11 Mb, whereas the tuple selected from the normalized schema has an Audio attribute of

1.27 Mb, a Slide attribute of 0.5 Mb, a Video Low attribute of 2.63 Mb, and a Video High

attribute of 9.70 Mb.

The results of the simulation are summarized in Table 1. They show that in this case

normalization enhanced access performances. Moreover, with the non-normalized database we

gained worse average performances by increasing the number of students with high connection

bandwidth. More precisely, we observed that if more than 20 students had DSL connection the

performances of the DBMS decrease, mainly due to the fact that the database had to serve

more requests simultaneously, whereas in other cases requests from slow connections could be

served later. On the other hand, we observed that the normalized database allowed more than

20 fast connections before decreasing performances.

The histogram in Figure 3 shows how the average access time to the multimedia lessons

changed by varying the “mix” of the two groups of students. In this case the normalized

database provided lower average access times and smaller variations across different mix of
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Non-Normalized Database

Student’s group mix Access Times

56kbps 640kbps Min Avr Max
Simulation 1 30 0 6.26 14.75 28.99
Simulation 2 20 10 2.97 8.09 16.89
Simulation 3 10 20 3.27 6.88 21.39
Simulation 4 0 30 4.40 8.45 12.29

Normalized Database

Student’s group mix Access Times

56kbps 640kbps Min Avr Max
Simulation 1 30 0 1.90 5.09 12.84
Simulation 2 20 10 1.09 4.97 9.64
Simulation 3 10 20 1.76 3.98 7.38
Simulation 4 0 30 1.15 3.74 7.78

Table 1: Simulation Results.
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Figure 3: Histogram showing average access performances.

Further, we have observed higher performance gaps with bigger multimedia attributes. To

this end we have performed further simulations to monitor the average access time with bigger

multimedia objects. In particular, we have considered a non-normalized database of 869 Mb,

whose normalized version is of 788Mb. Figure 4 shows performances gained on an entry of

a non-normalized (normalized, resp.) database containing a Presentation High (Video High,

resp.) attribute of 61 Mb (59.7 Mb, resp.).
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Figure 4: Performances comparison on a large multimedia object.

In conclusion, this experiment provides an application context in which it is necessary to

continuously manipulate the multimedia database, hence it is more important to reduce ma-

nipulation anomalies. Moreover, the data reorganization induced by the normalization process

has resulted more suitable for this specific context, because it has led to an improvement of

access performances. Thus, we can conclude that in this application context the benefits of

normalization have been more remarkable.

6 Discussion

In this paper we have proposed a normalization framework for multimedia databases. Our

goal has been to derive proper design guidelines to improve the quality of multimedia database

schemas. The framework provides designers with several means to let them derive the normal-

ized database schema that is more suitable to the specific application domain. It is based on

the concept of type-M dependency, which has been introduced to overcome some limitations

of previous imprecise dependencies. We have also shown that type-M dependency generalizes

previous ffds. The framework has been evaluated in the context of two important domains

using multimedia databases, that is, content-based image retrieval and e-learning, for which we

have provided experimental data to analyze several performance parameters. In particular, in

the first application domain we have shown the threshold interval guaranteeing an appropriate
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compromise among retrieval effectiveness, manipulation anomalies, and time performances.

In practice, the detection of MFDs might not be a simple activity. In fact, by following the

traditional approach of alphanumeric relational databases, the designer could detect type-M

functional dependencies based on his/her knowledge on the application context. Alternatively,

the detection of candidate type-M dependencies could be accomplished by finding feature cor-

relations. The latter is a problem widely analyzed in the literature, and several techniques have

been proposed, such as principal component analysis (PCA) [22], independent component anal-

ysis (ICA) [12], and so on. They are all based on training sets, and aim to identify independent

features for indexing, querying, and retrieving multimedia data based on their contents. Thus,

after performing this type of analysis, the designer knows the features having some correlation,

between which there must exist a bi-directional dependency, valid for a large subset of tuples.

This does not guarantee the existence of a type-M dependency, because the latter should ap-

ply to all tuples. However, the designer can still exploit the statistics collected for identifying

feature correlations, since they provide him/her with a set of candidate type-M dependencies,

but they require further validation.

The proposed approach also enables the designer analyze the impact of feature selection

on database redesign and application development. In particular, when new features are

added, the designer can understand whether they will lead to database redesign. As an ex-

ample, in a multimedia relation R = {photo, name, address}, where the mfd: photo(g1,τ1)

→ {name, address}(g2,τ2) holds, suppose that photo can be in turn characterized by inde-

pendent features such as eye, nose and mouth. In other words, three new features are se-

lected. This can be incorporated into database design as follows. R can be replaced by

R1 = {photo, eye, nose,mouth} and R2 = {eye, nose,mouth, name, address}, on which mfd1:

photo(g1,τ1)→{eye, nose,mouth}(g3,τ3), and mfd2: {eye, nose,mouth}(g3,τ3) →{name, address}(g2,t2)

hold, respectively. If photo and {eye, nose, mouth} are well-behaved in the sense that eye, nose

and mouth are independent features totally characterizing photo, then the above normalization

can always be carried out. Moreover, by looking at the redesigned database schema, the designer

can tell whether the application programs will be affected. In particular, s/he can contrast the
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redesigned schema against class and use-case diagrams of the whole application to precisely

detect the application programs that the normalization step affects. Thus, our approach makes

the design problem more a systematic and integrated multimedia software engineering activity.

The proposed framework is flexible enough to accommodate the requirements of different

applications. In fact, since the multimedia dependencies and multimedia normal forms depend

upon the tuple distance functions, by imposing additional constraints on tuple distance func-

tions we can introduce more restricted multimedia dependencies and multimedia normal forms.

For example, to support gesture languages in a virtual classroom for e-learning applications we

can introduce different tuple distance functions to classify gestures as similar or dissimilar, lead-

ing to different protocols for gesture languages supported by the same underlying multimedia

database.

Another important issue regards the normalization of multimedia databases in adaptive

multimedia applications, where a media data may be replaced/combined/augmented by another

type of media for people with different sensory capabilities. To this end, the normalization

process yields a partitioning of the database that facilitates the management of adaptiveness.
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