Remote Communication Manager
Robert Zaremba

An IC system requires that messages be passed between Index Cells that may be separated by a network, thus requiring remote message-passing capability. Due to the fact that all Index Cells must be able to both send and receive messages, all subsystems in a distributed IC system must have server functionality so that messages may be passed asynchronously. Messages that are received from remote Index Cells must be passed by the server to a local message queue from which the IC manager will then transfer the message to the appropriate Index Cell. An important goal is to allow for the components to be configured dynamically; it should be relatively simple to switch between different subsystems that host the same IC subsystems. In order to fulfill these requirements a combination of Java technologies are used.

The primary motivation for using Web services to facilitate the message-passing involved in this project is that they provide the capability to send messages asynchronously. The passing of messages is handled through the invocation of Web services that are implemented with the Java API for XML Web Services (JAX-WS). JAX-WS is the successor to JAX-RPC and is relatively user-friendly, particularly when Web services need to be implemented quickly.

The server that hosts the JAX-WS Web services is the Java System Application Server (JSAS), donated to Project Glassfish by Sun Microsystems and freely available via download. An advantage to using the JSAS is the fact that the Java Messaging Service (JMS) and Java Naming and Directory Service (JNDI) are included with it, and it allows for the easy management of JAX-WS Web services. JMS provides the queue(s) that will hold incoming messages, and the Java Naming and Directory Service stores references to the components of the subsystem.
There are two primary Web services that will be provided by the application server. The RemoteCommunicationInitialization service allows a new user, who has been provided with the URL for this Web service, to provide any necessary authentication information as well as the URL for his own RemoteMessageManager service. In return the user receives an identifier and the URL for the remote system’s RemoteMessageManager service. Security tokens should be passed as well, but have not been implemented at this time. The RemoteMessageManager service handles the actual passing of messages with its two parameters being the sender’s ID and the message that is to be sent, both in string form.

The process of remote communication proceeds in the following manner:
1. One of the parties involved in the communication is provided with the URL of the other party’s RemoteCommunicationInitialization Web service as well as any necessary authentication information.
2. The user’s JSAS server is installed and configured via a script, and the IC Manager provides a listener which implements a callback method to be used when remote messages are received. Access to the JMS queue is provided by the application server on a local port.
3. The user provides the URL for the other party’s RemoteCommunicationInitialization service as well as any necessary authentication information.
4. The remote RemoteCommunicationInitialization’s InitializeCommunication method is invoked, sending the authentication information along with the URL of the user’s RemoteMessageManager service, and returns an ID and the URL for its own RemoteMessageManager service.

5. Having exchanged URLs for their RemoteMessageManager services, both sides store this information in their JNDI so that these services may be invoked when messages need to be passed in the future.
6. When the IC Manager needs to send a message to a remote IC subsystem it looks up the RemoteMessageManager service’s URL in the JNDI of the application server, accessed via a predefined local port, and then invokes the RemoteMessageTransfer method provided by that service. The ID, provided earlier, and the message are both passed as string parameters.
7. The receiver looks up the appropriate JMS queue in the JNDI according to the ID that is received, and then sends the message to that queue.
8. The listener method provided by that party’s IC Manager is triggered and so is alerted to the presence of a new message.
