
185

Chapter 11

Systems: The Specification of Multimedia
Applications

Recent developments in computer technology have enabled large,
distributed multimedia applications to be created in such application areas as
education [Woolf95], health care [Wong97], and process control [Guha95].
These applications are often web-based and involve a large amount of user
interaction. All of these characteristics increase the complexity of designing,
coding and testing. The prototyping of multimedia applications based upon
software engineering principles has not yet been adequately addressed by
the research community although recently research interest in the area of
multimedia and software engineering has increased. An indication of this
increased interest is the convening of the first International Workshop on
Multimedia Software Engineering held in April 1998 as part of the
International Conference on Software Engineering [Hirak98]. In this
chapter, we apply software engineering methodology to the production of
multimedia applications introducing a principled approach to specify, verify,
validate and prototype such applications.

Our approach to multimedia application development is based on a
collection of tools which support the creation of Teleaction Objects (TAOs)
[ChangH95b, Grosk97]. A TAO is a multimedia object with associated
hypergraph structure and knowledge structure. The user can create and
modify the private knowledge of a TAO so that the TAO will react
automatically to certain events. The knowledge structure of a TAO is an
active index (IX) [Chang95a] which consists of a collection of index cells
(ICs). The hypergraph structure supports the effective presentation and
efficient communication of multimedia information. The static aspects of the

 Chapter 11186

hypergraph structure are described by a Multimedia Static Specification
(MSS). TAOs are valuable since they greatly improve the selective access
and presentation of relevant multimedia information. The tools described in
this chapter provide a way to formally specify the TAOs comprising the
application, verify and validate the specification, and rapidly prototype the
application. The formal specification of the system is based on a Symbol
Relation (SR) grammar. Such a multidimensional grammar is particularly
attractive since it can describe the spatial and temporal aspects of the
application. The specification is converted into TAOML, an extension of
HTML.

1. STRUCTURE OF MULTIMEDIA
DEVELOPMENT SYSTEM

The structure of the multimedia application development system is
shown in Figure 1 below. It mainly consists of two tools. The Formal
Specification Tool allows a specification of the MSS to be created. The
specification may be either visual or text-based. The specification is then
validated using an SR grammar for TAOs. If the specification is valid, the
tool generates TAOML and an HTML template for the specified system.
The Prototyping Tool includes an IC Builder to create the index cells
comprising the knowledge structure of the TAOs. A TAOML interpreter
generates HTML code from the TAOML and HTML template and from the
information produced by the IC builder. The application generated can then
be executed from any web browser working with the distributed IC Manager
which controls the active knowledge structure built out of active index cells.

11. Systems: Specification of Multimedia Applications 187

Figure 1. The structure of the multimedia application development environment.

The organization of the rest of this chapter is as follows. The following
section reviews the TAO concepts as presented in references [ChangH95b]
and [Lin96]. The TAOML extension of HTML is then introduced. This
language allows TAO-based systems to be executed from standard web
browsers. Section 3 presents a grammatical approach to the formal
specification of multimedia applications. Existing multidimensional
grammars are analyzed. The Symbol Relation Boundary Grammar (SR
Boundary) is chosen as a sufficiently powerful model. The use of this
grammar to guide a syntax-directed editor to create the MSS is discussed. A
grammar for TAOs is given in section 4. Parsers for this grammar are also
discussed. The limitations which must be imposed on the MSS in order to
have an efficient (non-exponential) grammar are given. An attributed form
of the grammar is introduced in order to associate static knowledge with the
MSS. Discussion and future research are given in section 5. The complete
grammar for TAOs is given in Appendix B, while the attributed form of the
grammar is given in Appendix C.

 Chapter 11188

2. TELEACTION OBJECTS

The use of grammatical formalisms inside of multimedia systems is the
most appropriate way to move from a purely manual approach towards an
automatic approach [Weitz96a]. The advantages to be gained by this
approach include the possibility of introducing a graphical front-end for
TAO construction, automatic grammatical checking for the correctness of
the structure generated, and introduction of a syntax-directed editor. Finally,
the integration of both hypergraph and IX production in a single TAO
construction module that produces the hypergraph with the IX attached.

Teleaction Objects (TAOs) are multimedia objects with an associated
hypergraph representing the structure of the multimedia object and a
knowledge structure. The knowledge structure allows the TAO to
automatically react to certain events [ChangH95b].

From a structural point of view, a TAO can be divided in two parts: a
hypergraph G and knowledge K.

The structure of the hypergraph G is a graph G(N,L), where N is a set of
nodes, and L is a set of links. There are two types of nodes: base nodes and
composite nodes. Each node represents a TAO, and each link represents a
relation among TAOs and there are the following link types: the attachment
link, the annotation link, the reference link, the location link, and the
synchronization link. Base nodes and composite nodes are called bundled
when they are grouped, thus defining them as a single entity. The nodes
which are interior to bundled nodes may not be included in annotation or
reference links unless the link is to the exterior bundled node, and there may
not be spatial/temporal relations between interior nodes and nodes external
to the bundled node.

The knowledge structure K of a TAO is classified in four levels: the
System Knowledge, the Environment Knowledge, the Template Knowledge,
and the Private Knowledge. The knowledge is structured as an active index
(IX), which is a set of index cells (IC) from an index cell base (ICB). The
index cells define the reactions of the TAO to events filtered by the system.
An index cell accepts input messages, performs some action, and sends
output messages to a group of ICs. The messages sent will depend on the
state of the IC and on the input message [Chang96a]. An IC may be seen as
a kind of finite-state machine [Chang95a].

An initial approach to the definition of a multimedia language for TAOs
has been given in [Chang96a]. The physical appearance of a TAO is
described by a multidimensional sentence. The language is generated by a
grammar whose alphabet contains generalized icons and operators.
Formally, a generalized icon is defined as x=(xm,xi) where xm is the
meaning of the icon and xi is the media object. Two functions,

11. Systems: Specification of Multimedia Applications 189

materialization and dematerialization, are associated with every generalized
icon. The first function derives the object from its meaning: MAT(xm)=xi;
the second derives the meaning, or interpretation, from the object:
DMA(xi)=xm.

The generalized icons [Chang87b] are divided into the following
categories:

• Icon: (xm, xi), where xi is an image
• Earcon: (xm, xe), where xe is a sound
• Ticon: (xm, xt), where xt is text (the ticon can also be seen as a subtype

of icon).
• Micon: (xm, xs), where xs is a sequence of image icons (motion icon)
• Vicon: (xm, xv), where xv is a video clip (video icon)
• Multicon: (xm, xc), where xc is a multimedia sentence (composite icon).
The generalized icons are represented by nodes in the hypergraph while

operators are represented by links.

Example 1: Let us consider a kiosk in a train station which presents
tourist information about the surrounding area. The opening screen of the
presentation played by the kiosk displays an informative message inviting
potential users to touch the screen. When a tourist touches the screen a
video begins to play along with some background music. Beneath the video,
a sequence of text messages describing the video is displayed. At the end of
the video, a screen displaying information on local hotels is visualized. After
a short time, the initial message is displayed again and the system waits for
the next tourist. In figure 2, we show the hypergraph part of the TAO.

The ICs are attached to the hypergraph to define the actions of the TAO
as shown in Figure 3. Index cell IC1 is attached to TAO1, Welcome, while
index cell IC2 is attached to TAO2, Display. IC1 is in the state S0 until the
user intervenes with an action by touching the screen. When the message is
filtered by the system, it reaches IC1, which passes into state S1 and sends a
message to IC2. IC2 passes from the dead state to the active state. It remains
in this state until its lifetime is finished or until the user intervenes causing a
stop action. This action will cause IC2 to return to the dead state and a
message to be sent to IC1 which returns to state S0 where it waits for a new
"touch" message.

 Chapter 11190

Figure 2. Kiosk hypergraph.

Figure 3. The ICs of the kiosk TAO.

IC

2.1.1.1

touch

S0=Sde

Screen

touched

stoppstopp

S0

Fetch

S1=Sde

Screen

Screen
touch

Fetch

11. Systems: Specification of Multimedia Applications 191

2.1 TAOML

To prototype a distributed multimedia application, each component of
the application can be realized as an IC associated with a TAO-enhanced
html page. Given a TAO-enhanced html page, we can use an interpreter to
read this page, abstract the necessary TAO data structure and generate the
normal html page for the browser. Therefore no matter which browser is
used, the application program can run if this TAO_HTML interpreter is
installed in advance on the web server. This can give some security
guarantees. The user can also choose a favorite browser. Furthermore, if in
the future HTML is out of fashion, the user need only update the interpreter
to output another language. The other parts of the application will not be
affected. In this section, we describe the TAO enhanced html named
TAOML.

In order to use TAO_HTML, or TAOML, to define a TAO, the
structure of a TAO is extended. The new form of the TAO has the following
attributes: tao_name, tao_type, p_part, links, ics and sensitivity. These
attributes are described below.

 • 'tao_name' is the name of the TAO, which is a unique identifier of
each TAO.

 • 'tao_type' is the media type of TAO - image, text, audio, motion
graphs, video or mixed.

 • 'p_part' is the physical part of a TAO (see the definition of generalized
icon in [Chang87b]). To implement this in the context of TAO_HTML,
'p_part' here can be denoted by an HTML template which indicates the
appearance of an HTML page. Templates define the fundamental display
element and location arrangement. For example, if the TAO is of image
type, the template will just contain an HTML statement to introduce an
image. If the TAO is of mixed type, the template will define some common
parts and leave some space to insert the elements that are specific to the
TAO.

 • 'links' are the links to another TAO. A link has attributes 'link_type'
and 'link_obj'. 'link_type' is either relational (spatial or temporal) or
structural (COMPOSED OF). In the context of TAO_HTML, a spatial link
describes visible relationship between subobjects inside one mixed object.
For example, a mixed TAO1 contains an image TAO2 and a text TAO3;
then TAO1 has a spatial link with both TAO2 and TAO3. A temporal link
usually refers to an invisible object that is not a display element, but whose
activation time is influenced by the other TAO. A structural link relates one
TAO with another dynamically via user input or external input. For

 Chapter 11192

example, the user clicking a button in TAO1 will invoke another page
TAO2; in this case there is a structural link from TAO1 to TAO2.

 • 'ic' is the associated index cell. The flag is "old" if the ic already
exists, or "new" if the ic is to be created. The ic type, ic_id list, message
type and message content can either be specified, or input at run-time by the
user (indicated by a question mark in the input string). A corresponding
HTML input form will be created so that the user can send the specified
message to the ics. For further details on the meaning of the attributes of the
index cells, see [Chang95a].

 • 'sensitivity' indicates whether this object is location-sensitive, time-
sensitive, content-sensitive or none-sensitive. Then the same object can have
different appearances or different functionalities according to the sensitivity.
For example, if TAO1 is content-sensitive, it is red when being contained in
TAO2 while it is green when being activated by TAO3 via a button. The
detailed meaning of sensitivity should be defined by the user according to
the requirements of an application. In the newest generation of browsers,
sensitivity can be implemented using style sheets.

 • 'database' specifies the database that this TAO can access and/or
manipulate.

2.2 BNF form for TAO_HTML

The formal definition of the TAO_HTML language is given below.

TAO_HTML ::= <TAO> TAO_BODY </TAO>
TAO_BODY ::= NAME_PART TYPE_PART P_PART LINK_PART

IC_PART SENSI_PART DATA_PART
NAME_PART ::= <TAO_NAME> "name" </TAO_NAME>
TYPE_PART ::= <TAO_TYPE> TYPE_SET </TAO_TYPE>
TYPE_SET ::= image | text | audio | motion_graph | video | mixed
P_PART ::= <TAO_TEMPLATE> "template_name"

</TAO_TEMPLATE>
LINK_PART ::= empty | <TAO_LINKS> LINK_BODY </TAO_LINKS>

LINK_PART
LINK_BODY ::= name = "link_name", type = LINK_TYPE, obj =

"link_obj"
LINK_TYPE ::= spatial | temporal | structural
IC_PART ::= empty | <TAO_IC> flag=FLAG ic_type="a_string"

ic_id_list="a_string" cgi_pgm="a_string" message_type="a_string"
content="a_string" </TAO_IC>

FLAG ::= old | new

11. Systems: Specification of Multimedia Applications 193

SENSI_PART ::= empty | <TAO_SENSI> SENSITIVITY </TAO_SENSI>
SENSITIVITY ::= location | content | time
DATA_PART ::= empty | <TAO_DATA> "database_name"

</TAO_DATA>

In the template of a TAO, in addition to the normal HTML tags and
definitions, there is a special TAO tag for a link relation with other TAOs. It
is defined as:

<TAO_REL> "link_name" </TAO_REL>

TAO_HTML Interpreter Algorithm. The TAO_HTML Interpreter
translates the TAOML pages into HTML pages so that the user interface is
easily implemented using a standard web browser. The TAO_HTML
Interpreter is now presented in pseudo-code.

procedure interpreter(string TAOname)
begin
open TAO definition file
while (not end of file) do
 begin
 read one line from the file
 recognize tag
get tag information
 store in data structure TAO_struct
 end
call template_parser(TAO_struct)
 end
procedure template_parser(TAO_structure TAO_struct)
begin
 if (IC_PART is specified) then
output HTML statements to create a form to accept

user's input and
 send message to the ic's through IC_Manager
 if (template file exists) then
 open template file
while (not end of file) do
 begin
 read one line from the file
 if (not <TAO_rel> tag) then
 output html text
 else
 begin

 Chapter 11194

get link_name from the <TAO_rel> tag
search in the TAO_structure for link_name
if (a link structure is found with
 the same link_name) then

begin
get link_type and link_TAO_name
if (link_type=structural) then

 insert <a href..> link in template
 to link with link_TAO_name
 elsif (link_type=spatial) then

/* insert template of link_TAO_name */
 call interpreter(link_TAO_name)

 end /* if */
end /* else */

end /* while */
end /* procedure */

3. FORMAL SPECIFICATION - THE
GRAMMATICAL APPROACH

Formal methods have been proposed as a means for software system
designers to assure that a system’s requirements accurately reflect the users’
requirements and that an implementation is an accurate realization of the
design. For these reasons, formal methods provide added reliability to a
system. Many researchers claim that formal methods also result in reduced
costs since much of the cost of software is a result of imprecision and
ambiguity in requirements analysis which necessitates increased testing and
maintenance [Saied96]. Formal methods allow a software design to be
mathematically modeled and analyzed. A notation for formal specification
of a system is provided which can be used to reason about a system in a
rigorous manner. In spite of the gains to be realized by adopting formal
methods, industrial adoption has been slow. One widely cited impediment to
the adaptation of formal methods is the lack of supporting tools.

Due to the complex nature of multimedia applications, they are prime
candidates for the application of formal methods. In order to best serve the
needs of developers of such applications, we have considered methods
specialized for multimedia applications and have settled on a grammatical
approach for modeling. Such an approach is well suited to model the
hierarchical structure and complex relations of the TAOs composing our

11. Systems: Specification of Multimedia Applications 195

applications. It is also possible to implement tools for the construction,
manipulation and analysis of grammatical structures, in this way
overcoming one of the most serious impediments to the adaptation of formal
methods. These observations are the basis for our selection of a grammatical
approach to formal specification of multimedia applications. Formal
specification stands as one of the foundations of our approach to the design
of multimedia applications, along with the TAO framework and prototyping
tools.

Much research has been conducted on multimedia systems and on the
interaction between multimedia objects and users [Botto96], however few
researchers have used a grammatical approach to specify such systems. One
who has is Wittenburg [Weitz94] who proposed a system based on a
relational grammar that allows the automatic presentation of multimedia
objects. Certain characteristics distinguish his system from ours; in
particular, Wittenburg's system does not permit interaction between media
objects. The user decides the relations between the media objects that are
resolved in a phase of constraint solving. The grammar is used to find the
correct values for the physical attributes of the objects in a system in which
the user may list the relations to derive without giving the values that the
attributes must take. It is not clear, however, how much interaction the user
may specify. Finally, due to how it is used, the grammar is directly tied to
the parser to be used [Witte92]. This limits the generation of multimedia
presentations by the system to those that can be analyzed by the parser.

It is important to make the following observation, which also applies to
Wittenburg's relational grammars [Weitz94, Weitz96a, Weitz96b], on the
relation between visual grammars and parsers. Today many
multidimensional grammars having high generative powers have been
produced. This is in contrast to the limited recognizing powers of parsers
that are penalized by the high computational complexity of
multidimensional grammars. While some researchers see this complexity as
a limit on the practical utility of multidimensional grammars, we believe that
the parser can be avoided by, for example, using syntax-directed editors.
General-purpose editor/browsers offer little assistance to the user, while
editor/browsers that identify errors and give users the possibility to redo the
errors once they have been identified are more useful. Such editors are
syntax-directed and can be used to avoid the complexity of the parser
[Costa97b].

3.1 Multidimensional Grammar

After reviewing the existing grammars, we have excluded the more strict
context-free grammar models, like Positional Context-Free and Constraint

 Chapter 11196

Multiset Context-Free, because of their limited generative power. In fact,
these grammars cannot generate graph languages. Multimedia applications
require the handling of complex structures during the parsing phase,
therefore a more powerful generative grammar model has to be chosen.
However, it is also necessary to avoid increasing the complexity of the
parser.

Concerning the complexity of the grammars, a limit on the complexity of
parsers of graph grammars has been given by Brandenburg [Brand88] for
graph grammars in the confluence property. For multidimensional
languages, some grammatical derivations that may appear context-free are
not since changing the rewrite order of the nonterminals in the derivation
can change the final result [Ferru96]. Guaranteeing that the result of all
grammatical derivations in a language is independent of the rewrite order of
the nonterminals guarantees, by definition, the confluence [Brand88]. This
property is indispensable for efficient parsers since any order of application
of the rules must result in the recognition of the sentences belonging to the
language. If the language is not confluent, any parser must evaluate multiple
orderings in order to recognize a sentence.

Then we have turned our attention to multidimensional grammars such as
Context-Free Positional Grammars [Costa95b], Constraint Multiset
Grammars [Marri96], and Picture Layout Grammars [Golin90]. These
grammars use attributes as an essential part of the parsing algorithm since
the values of the attributes are crucial for syntactic analysis.

On the other hand, the role of the attributes in the formal structure of a
multimedia presentation is primarily to attach semantic knowledge to the
grammar model. The knowledge we need to attach may contain information
dependent on the application domain as well as information about semantic
actions to be triggered. Such knowledge requires a variety of attributes
which should also contribute to semantic analysis. This motivation leads us
to SR Grammars [Ferru96].

3.2 Symbol Relation Grammars

A common grammatical approach for the description of
multidimensional languages uses rewriting mechanisms to generate
sentences in the language (e.g. Constraint Multiset Grammars [Marri96],
and Picture Layout Grammars [Golin90]). The SR Grammar is one of these
grammars. In the SR Grammar formalism [Ferru96], a sentence is viewed as
a set of symbol occurrence (s-items) and a set of relation items over symbol
occurrences (r-items).

The main feature of SR grammars is that the derivation of a sentence is
performed by rewriting both symbol occurrences and relation items by

11. Systems: Specification of Multimedia Applications 197

means of simple context-free style rules. More precisely, during a derivation
step a symbol occurrence X0 in a sentence S1 is replaced by a sentence S2,
according to a rewriting rule of the form X0→S2, called an s-item
production (s-production). After X0 has been rewritten, the replacement of
the set of r-items involving X0 is performed through r-item rewriting rules
(r-productions) of the form r(X0,Y1)→R, where R is a set of r-items relating
Y1 to s-items in S2.

In [Ferru96] it has been shown how the notion of attribute context-free
grammars may be applied to SR Grammars to implement semantic actions in
the language and a boundary version of the SR grammar has been proposed.
The Boundary SR Grammar has the confluence property and thus a lower
computational complexity. An efficient parser has been given [Ferru96] for
confluent languages, which have the connection and limited degree
properties, where this last property means that the number of relations that
tie one object to another is limited.

4. A BOUNDARY SR GRAMMAR FOR THE TAO
HYPERGRAPH STRUCTURE

In this section we describe a Boundary SR Grammar (BSRG) capable of
generating the hypergraph structure of the TAO. The grammar is
completely general since it does not identify a specific set of relations to be
used to construct the TAO. Rather, it permits the instantiation of an arbitrary
number of relations since the grammar is defined on base relation types. We
identify the following base relation types: spatial; temporal; annotation;
reference to the external environment; reference from the external
environment. This permits us to use the grammar in various ways, for
example, as a module which drives a syntax-directed editor with phases for
link creation, assignment of a name to a link, and assignment of a semantic
meaning to a link. The grammar is easily specialized for a group of relations
for a particular domain. This is possible due to the rewriting of the relations.
We exploit this mechanism by having relations represented by non-
terminals, which are rewritten with terminal relations only when both
terminal nodes involved are reached.

In the subsequent phase of semantic analysis it will be necessary to
consider the meaning of the relations, and therefore we introduce an
attributed form of the BSRG in which extra information is encapsulated in
the attributes attached to the relation.

 Chapter 11198

4.1 A Boundary SR Grammar

The complete version of the BSRG which generates a language that is
the set of legal hypergraphs of a TAO is given in Appendix B. The most
important rules for the construction of a TAO are briefly described in the
following. In order to describe, in a sinthetic way, the productions of the
grammar, we will use the symbols z, x to represent, respectively, the
elements of the following sets:

z∈{icon, earcon, vicon, ticon, micon}
x∈{icon, vicon, ticon, micon}
• the initial production either directly produces a terminal node or a

composite node and a non-terminal node connected by the attachment
relation. The only attachment relations derivable are between a multicon (i.e.
a composite node) and its children:

1: S0 → <{multicon1, A1}{attach(multicon1, A1)}>
17: S0 → <{x1} {∅}> x ∈{icon, vicon, ticon, micon}
• it is possible to derive a reference link to and from the external

environment i.e.
18: S0 → <{x1, EXT1}{reference(x1, EXT1)}>
where z ∈{icon, earcon, vicon, ticon, micon} and EXT represents the

external environment. Productions 2-16, 18-24, 58-67 describe the external
reference to the TAO.

• The annotation relations have as a parent node any base or composite
node, but must have as child node the composite node of a new TAO
annotating the preceding node, i.e.:

43: A0 → <{x1, A1, S1}{rel (x1, A1) annotation(x1, S1)}>
See productions 43-47, 51-57 and 64-67.

• The spatial and temporal relations are derived via the rel relation which
is rewritten when a terminal is involved. Productions 25-26, 29, 35-36, 39,
43-44, 47, 53-54, 56-57 produce the rel relation; i.e:

29: A0 → <{x1, A1}{rel (x1, A1) rel (A1, x1)}>
which can be rewritten by using the following rewriting rules:
R64: rel (x0, A0) → [25,26,27,28,29,43,44,45,46,47] {y(x0, x1)}
R65: rel (A0, x0) → [25,26,27,28,29,43,44,45,46,47] {y(x1, x0)}
where x ∈{icon, vicon, ticon, micon, multicon} and y ∈

{synchronization, location}
• For the earcon, rewritings with spatial relations are forbidden (see

productions 30-34, 48-52); i.e.:
34: A0 → <{earcon1, A1}{synchronization (earcon1, A1) synchronization

(A1, earcon1)}>
R66: rel (x0, A0) → [30,31,32,33,34,48,49,50,51,52] {synchronization(x0,

earcon1)}

11. Systems: Specification of Multimedia Applications 199

R67: rel (A0, x0) → [30,31,32,33,34,48,49,50,51,52]
{synchronization(earcon1, x0)}

• the spatial, temporal and reference relations are derived at a high level
of derivation. These may be duplicated, rewritten and located in any point of
a TAO except when we wish to derive a bundled node. In the case of a
bundled node we use productions 40-41:

40: A0 → <{B1} {∅}>
 41: B0 → <{A1} {∅}>

There are no rewriting rules for the relations after the application of the
above productions. As a consequence, the sentential forms of the language
which we obain do not have reference links, location links, or
synchronization links which involve nodes both external to and internal to
the bundle.

The sequence of derivations steps used to generate the TAO of example
1, is shown in Appendix A. In the example the nonterminal symbols of each
derivation step, which need to be rewritten later, are shown in bold. The
relations which involve these symbols and therefore have not yet been
rewritten, are also in bold. At each step of the derivation, next to the
⇒ symbol, we indicate the s-production and the r-production(s) which have
been involved in the derivation step.

4.2 Parsing

As stated in Section 3.1, the confluence property is important for
multidimensional languages since if the language satisfies this property an
efficient parser for the language can be produced. A Boundary SR grammar
must satisfy two constraints in order to be confluent - the graphs generated
by the language must be connected and each node must have a limited
degree (i.e. the number of links from each node must be less than or equal to
some constant).

The hypergraphs generated by the Boundary SR grammar for TAOs
given in Appendix B are connected since the hypergraph is uniquely given
by the derivation tree with root S, the start symbol. If we have two TAOs,
these TAOs may be connected by a reference link. This reference link is the
point of connectivity between the two TAOs.

The limited connectivity property is also satisfied, even if we are not able
to give a priori a limit. It is reasonable to assume (since it doesn’t limit the
type of TAOs we wish to generate) that a node is linked only to its
neighbors. Further, there is a constant number of link types. Therefore, even
if a node is connected to its neighbors via all link types there is not a linear

 Chapter 11200

degree of connectivity. This limitation drastically reduces the size of the
language, but it does not disallow the sentences (i.e. TAOs) that we are
interested in.

5. SEMANTIC EXTENSION OF TAO USING
ATTRIBUTE SR GRAMMMARS

Teleaction objects consist of a hypergraph representing the interface of
a multimedia application with an associated knowledge structure. We have
shown how the hypergraph structure can be generated by an SR grammar.
The knowledge structure is an active index and is created by using the IC
builder tool. It is possible to extend the SR grammar for TAOs to include the
associated knowledge as semantic actions associated with the grammar. An
extension of the SR grammar which does this was proposed in [Ferru94].
The extended SR grammar is an Attribute SR Grammar which associates a
set of inherited and/or synthesized attributes with the non-terminal symbols
of VN and with the symbols of the relations of VR, associating evaluation
rules with the s- and r-productions. This permits the use of different
knowledge in different contexts, using the context-sensitive generative
power of the derivations to pass the attributes.

6. ENVIRONMENTAL ADAPTABILITY

Since the grammatical model provides a variety of relations, the
knowledge will provide the correct routines for materialization/interpretation
of these relations. We can give the same names to different routines that
work with diverse media types and, by attribute passing, let the correct
routines reach the terminals. This approach allows compatibility with
diverse multimedia environments in which a relation may have many
meanings.

Knowledge is expressed as references to an area of memory of the
distributed ICs. The correct knowledge base will be loaded in this area of
memory. Since we separate the construction phase of the environment from
the construction phase of a TAO, multiple TAO systems may be constructed
in the same environment. Furthermore, diverse environments may be
supported by loading an environment-specific knowledge base. For this, it is
sufficient to use only inherited attributes [Aho86]. Given the limited nature
of their use, a dependence among the attributes of parents and children only
is assured, thus assuring the acyclic nature of the dependence graph and the

11. Systems: Specification of Multimedia Applications 201

efficiency of the calculations (a top down visit using the hypergaph
attachments is sufficient, or from the generative point of view, a top down
visit of the derivation tree).

The attribute scheme for a TAO is given in [Arndt97b].

Figure 4. Hypergraph structure with attached knowledge.

7. DISCUSSION

We have presented the basis for a principled approach to the production
of distributed multimedia applications. The unifying principle for our
approach is the Teleaction Object. TAOML, an extension of HTML has
been introduced to allow distributed multimedia applications to be

Reference

Synchronizatio

n

TAO 1

Vico

Multicon

1: Display

Multicon
Bo

Vicon
Hote

ls

Micon
Tra

Earco
backgrou

Multico

n 3: Te

Tico

n 1: Tex
Tico

Tex

t2

Tico
Te

I

I

a

a a a

overl

s s

 Chapter 11202

prototyped using standard web browsers as a front-end and the distributed
IC manager to manage the knowledge associated with the application. A
boundary SR grammar has been introduced to allow for the formal
specification of TAOs. The interpreter for TAOML as well as the distributed
IC manager and a graphical front-end for specifying TAOs have been
developed. In the future, we will develop a syntax-directed editor based on
the grammar. This editor will produce TAOML output via semantic actions.
This output will then be fed to the interpreter, providing a unified approach
to application development. We also plan to investigate the use of the formal
specification to prove properties of the application.

11. Systems: Specification of Multimedia Applications 203

APPENDIX A: DERIVATION STEPS OF KIOSK TAO

TAO 1 :

S0

⇒18 <{vicon1, EXT1} {reference(vicon1, EXT1)}>

⇒58,R156 <{vicon1, ext1} {reference(vicon1, ext1)}>

TAO 2:

S0

⇒3 <{multicon1, A1, EXT1} {attach(multicon1, A1) reference(EXT1, multicon1)}>

⇒58,R156 <{multicon1, A1, ext1} {attach(multicon1, A1)} {reference(ext1,

multicon1)}>

⇒ 35,R1 <{multicon1, {multicon2, A2, A3}, ext1} {rel(multicon2, A2)

attach(multicon2, A3) attach(multicon1, A2) attach(multicon1, multicon2)

reference(ext1, multicon1)}>

⇒28,R64,R25 <{multicon1, {multicon2, {vicon2}, A3}, ext1} {rel(multicon2, vicon2)

attach(multicon2, A3) attach(multicon1, vicon2) attach(multicon1, multicon2)

reference(ext1, multicon1)}>

⇒40,R23 <{multicon1, {multicon2, {vicon2}, {B1}}, ext1} {rel(multicon2, vicon2)

attach(multicon2, B1) attach(multicon1, vicon2) attach(multicon1, multicon2)

reference(ext1, multicon1)}>

⇒41,R24 <{multicon1, {multicon2, {vicon2}, {A4}}, ext1} {rel(multicon2, vicon2)

attach(multicon2, A4) attach(multicon1, vicon2) attach(multicon1, multicon2)

reference(ext1, multicon1)}>

⇒36,R1 <{multicon1, {multicon2, {vicon2}, {multicon3, A5, A6}}, ext1} {rel(A5,

multicon3) attach(multicon3, A6) rel(multicon2, vicon2) attach(multicon2, A5)

attach(multicon2, multicon3) attach(multicon1, vicon2) attach(multicon1, multicon2)

reference(ext1, multicon1)}>

⇒42,R61,R19 <{multicon1, {multicon2, {vicon2}, {multicon3, {A7}, A6}}, ext1}

214 Chapter 11

{rel(A7, multicon3) rel(A7, multicon3) attach(multicon3, A6) rel(multicon2, vicon2)

attach(multicon2, A7) attach(multicon2, multicon3) attach(multicon1, vicon2)

attach(multicon1, multicon2) reference(ext1, multicon1)}>

⇒25,R65,R63,R28 <{multicon1, {multicon2, {vicon2}, {multicon3, {micon1, A8},

A6}}, ext1} {rel(micon1, A8) location(micon1, multicon3) rel(A8, multicon3)

attach(multicon3, A6) rel(multicon2, vicon2) attach(multicon2, micon1)

attach(multicon2, A8) attach(multicon2, multicon3) attach(multicon1, vicon2)

attach(multicon1, multicon2) reference(ext1, multicon1)}>

⇒33,R66,R67,R25 <{multicon1, {multicon2, {vicon2}, {multicon3, {micon1,

{earcon1}}, A6}}, ext1} {synchronization(micon1, earcon1) location(micon1,

multicon3) synchronization(earcon1, multicon3) attach(multicon3, A6) rel(multicon2,

vicon2) attach(multicon2, micon1) attach(multicon2, earcon1) attach(multicon2,

multicon3) attach(multicon1, vicon2) attach(multicon1, multicon2) reference(ext1,

multicon1)}>

⇒25,R28 <{multicon1, {multicon2, {vicon2}, {multicon3, {micon1, {earcon1}},

{ticon1, A9}}, ext1} {rel(ticon1, A9) synchronization(micon1, earcon1)

location(micon1, multicon3) synchronization(earcon1, multicon3) attach(multicon3,

ticon1) attach(multicon3, A9) rel(multicon2, vicon2) attach(multicon2, micon1)

attach(multicon2, earcon1) attach(multicon2, multicon3) attach(multicon1, vicon2)

attach(multicon1, multicon2) reference(ext1, multicon1)}>

⇒25,R64,R28 <{multicon1, {multicon2, {vicon2}, {multicon3, {micon1,

{earcon1}}, {ticon1, {ticon2, A10}}}}, ext1} {rel(ticon2, A10) synchronization(ticon1,

ticon2) synchronization(micon1, earcon1) location(micon1, multicon3)

synchronization(earcon1, multicon3) attach(multicon3, ticon1) attach(multicon3,

ticon2) attach(multicon3, A10) rel(multicon2, vicon2) attach(multicon2, micon1)

attach(multicon2, earcon1) attach(multicon2, multicon3) attach(multicon1, vicon2)

attach(multicon1, multicon2) reference(ext1, multicon1)}>

.......

⇒25,R64,R28 <{multicon1, {multicon2, {vicon2}, {multicon3, {micon1, {earcon1}},

{ticon1, {ticon2, {.....{ticonn-1, An-1+8}….}, ext1} {rel(ticonn-1, An-1+8) synchroniza-

11. Systems: Specification of Multimedia Applications 203

tion(ticonn-2,

ticonn-1) ……. synchronization(ticon2,

ticon3) synchronization(ticon1,

ticon2) synchronization(micon1, earcon1) location(micon1, multicon3)

synchronization(earcon1, multicon3) attach(multicon3, ticon1) attach(multicon3,

ticon2) ……. attach(multicon3, ticonn-2) attach(multicon3, An-1+8) rel(multicon2,

vicon2) attach(multicon2, micon1) attach(multicon2, earcon1) attach(multicon2,

multicon3) attach(multicon1, vicon2) attach(multicon1, multicon2) reference(ext1,

multicon1)}>

⇒28,R64,R26 <{multicon1, {multicon2, {vicon2}, {multicon3, {micon1, {earcon1}},

{ticon1, {ticon2, {.....{ticonn-1, ticonn}….}, ext1} {rel(ticonn-1, ticonn) synchroniza-

tion(ticonn-2,

ticonn-1) ……. synchronization(ticon2,

ticon3) synchronization(ticon1,

ticon2) synchronization(micon1, earcon1) location(micon1, multicon3)

synchronization(earcon1, multicon3) attach(multicon3, ticon1) attach(multicon3,

ticon2) ……. attach(multicon3, ticonn-2) attach(multicon3, ticonn-1) attach(multicon3,

ticonn) rel(multicon2, vicon2) attach(multicon2, micon1) attach(multicon2, earcon1)

attach(multicon2, multicon3) attach(multicon1, vicon2) attach(multicon1, multicon2)

reference(ext1, multicon1)}>

APPENDIX B: THE BOUNDARY SYMBOL RELATION
GRAMMAR FOR THE TAO

The BSRG G for the TAO is defined as follow. G= (VN, VT, VR, S,
P, R) where S is the start symbol, the set of nonterminals is VN = {S, A, B,
EXT}, the set of terminals is VT = {icon, vicon, earcon, ticon, micon,
multicon, ext} and the set of relations is VR = {rel, attach, annotation,
synchronization, location, reference}. The terminal ext represent the icons
that have an external reference to or from them.

Notation: in order to avoid duplication of productions which differ by
just one terminal symbol, we introduce the symbols x, z, t , y to represent,
respectively, the symbols of the following sets:

x∈{icon, vicon, ticon, micon}
z∈{icon, earcon, vicon, ticon, micon}
t ∈{icon, earcon, vicon, ticon, micon, multicon}
y∈{synchronization, location}
P:

214 Chapter 11

1: S0 → <{multicon1, A1}{attach(multicon1, A1)}>
2: S0 → <{multicon1, A1, EXT1}{attach(multicon1, A1)

reference(multicon1, EXT1)}>
3: S0 → <{multicon1, A1, EXT1}{attach(multicon1, A1) reference(EXT1,

multicon1)}>
4: S0 → <{multicon1, A1, EXT1}{attach(multicon1, A1)

reference(multicon1, EXT1)
reference(EXT1, multicon1)}>

5: S0 → <{multicon1, A1, ext1}{attach(multicon1, A1) reference(A1,
ext1)}>

6: S0 → <{multicon1, A1, EXT1, ext1}{attach(multicon1, A1)
reference(multicon1, EXT1) reference(A1, ext1)}>

7: S0 → <{multicon1, A1, EXT1, ext1}{attach(multicon1, A1)
reference(EXT1, multicon1) reference(A1, ext1)}>

8: S0 → <{multicon1, A1, EXT1, ext1}{attach(multicon1, A1)
reference(multicon1, EXT1)

reference(EXT1, multicon1) reference(A1, ext1)}>
9: S0 → <{multicon1, A1, S1}{attach(multicon1, A1) annotation(multicon1,

S1)}>
10: S0 → <{multicon1, A1, S1, EXT1, ext1}{attach(multicon1, A1)

annotation(multicon1, S1)
reference(multicon1, EXT1)}>

11: S0 → <{multicon1, A1, S1, EXT1, ext1}{attach(multicon1, A1)
annotation(multicon1, S1)

reference(EXT1, multicon1)}>
12: S0 → <{multicon1, A1, S1, EXT1, ext1}{attach(multicon1, A1)

annotation(multicon1, S1)
reference(multicon1, EXT1) reference(EXT1, multicon1)}>

13: S0 → <{multicon1, A1, S1, ext1}{attach(multicon1, A1)
annotation(multicon1, S1) reference(A1, ext1)}>

14: S0 → <{multicon1, A1, S1, EXT1, ext1}{attach(multicon1, A1)
annotation(multicon1, S1)

reference(multicon1, EXT1) reference(A1, ext1)}>
15: S0 → <{multicon1, A1, S1, EXT1, ext1}{attach(multicon1, A1)

annotation(multicon1, S1)
reference(EXT1, multicon1) reference(A1, ext1)}>

16: S0 → <{multicon1, A1, S1, EXT1, ext1}{attach(multicon1, A1)
annotation(multicon1, S1)

reference(multicon1, EXT1) reference(EXT1, multicon1) reference(A1,
ext1)}>

17: S0 → <{x1} {∅}> x ∈{icon, vicon, ticon, micon}
18: S0 → <{x1, EXT1}{reference(x1, EXT1)}>

11. Systems: Specification of Multimedia Applications 203

19: S0 → <{EXT1, x1}{reference(EXT1, x1)}>
20: S0 → <{x1, EXT1}{reference(EXT1, x1) reference(EXT1, x1)}>
21: S0 → <{x1, S1}{annotation(x1, S1)}>
22: S0 → <{x1, S1, EXT1}{annotation(x1, S1) reference(x1, EXT1)}>
23: S0 → <{x1, S1, EXT1}{annotation(x1, S1) reference(EXT1, x1)}>
24: S0 → <{x1, S1, EXT1}{annotation(x1, S1) reference(x1, EXT1)

reference(EXT1, x1)}>
25: A0 → <{x1, A1}{rel (x1, A1)}>
26: A0 → <{x1, A1}{rel (A1, x1)}>
27: A0 → <{x1, A1}{∅}>
28: A0 → <{x1} {∅}>
29: A0 → <{x1, A1}{rel (x1, A1) rel (A1, x1)}>
30: A0 → <{earcon1, A1}{synchronization (earcon1, A1)}>
31: A0 → <{earcon1, A1}{synchronization (A1, earcon1)}>
32: A0 → <{earcon1, A1}{∅}>
33: A0 → <{earcon1} {∅}>
34: A0 → <{earcon1, A1}{synchronization (earcon1, A1) synchronization

(A1, earcon1)}>
35: A0 → <{multicon1, A1, A2}{rel(multicon1, A1) attach(multicon1,

A2)}>
36: A0 → <{multicon1, A1, A2}{rel(A1, multicon1) attach(multicon1,

A2)}>
37: A0 → <{multicon1, A1, A2}{attach(multicon1, A2)}>
38: A0 → <{multicon1, A2}{attach(multicon1, A2)}>
39: A0 → <{multicon1, A1, A2}{rel(multicon1, A1) rel(A1, multicon1)

attach(multicon1, A2)}>

40: A0 → <{B1} {∅}>
41: B0 → <{A1} {∅}> /*The productions 40 and 41 generate the bundled
nodes. In fact, there are not existing r-productions for the relation rel, which
include these productions. As a consequence, the sentential forms of the
language which we obain do not have reference links, location links, or
synchronization links which involve nodes both external to and internal to
the bundle. We have r-productions only for the attachment links.*/
42: A0 → <{A1} {∅}>

43: A0 → <{x1, A1, S1}{rel (x1, A1) annotation(x1, S1)}>
44: A0 → <{x1, A1, S1}{rel (A1, x1) annotation(x1, S1)}>
45: A0 → <{x1, A1, S1}{annotation(x1, S1)}>
46: A0 → <{x1, S1}{annotation(x1, S1)}>
47: A0 → <{x1, A1, S1}{rel (x1, A1) rel (A1, x1) annotation(x1, S1)}>

214 Chapter 11

48: A0 → <{earcon1, A1, S1}{synchronization (earcon1, A1)
annotation(earcon1, S1)}>
49: A0 → <{earcon1, A1, S1}{synchronization (A1, earcon1)
annotation(earcon1, S1)}>
50: A0 → <{earcon1, A1, S1}{annotation(earcon1, S1)}>
51: A0 → <{earcon1, S1}{annotation(earcon1, S1)}>
52: A0 → <{earcon1, A1, S1}{synchronization (earcon1, A1) synchronization
(A1, earcon1)

annotation(earcon1, S1)}>

53: A0 → <{multicon1, A1, A2, S1}{rel(multicon1, A1) attach(multicon1, A2)
annotation(multicon1, S1)}>
54: A0 → <{multicon1, A1, A2, S1}{rel(A1, multicon1) attach(multicon1, A2)
annotation(multicon1, S1)}>
55: A0 → <{multicon1, A1, A2, S1}{attach(multicon1, A2)
annotation(multicon1, S1)}>
56: A0 → <{multicon1, A2, S1}{rel(multicon1, A2) annotation(multicon1,
S1)}>
57: A0 → <{multicon1, A1, A2, S1}{rel(multicon1, A1) rel(A1, multicon1)
attach(multicon1, A2)

annotation(multicon1, S1)}>

58: EXT0→ <{ext1} {∅}>
59: EXT0→ <{EXT1} {∅}>

60: S0→ <{earcon1} {∅}>
61: S0→ <{earcon1, EXT1}{reference(earcon1, EXT1)}>
62: S0→ <{earcon1, EXT1}{reference(EXT1, earcon1)}>
63: S0→ <{earcon1, EXT1}{reference(earcon1, EXT1) reference(EXT1,
earcon1)}>
64: S0→ <{earcon1, S1}{annotation(earcon1, S1)}>
65: S0→ <{earcon1, S1, EXT1}{annotation(earcon1, S1) reference(earcon1,
EXT1)}>
66: S0→ <{earcon1, S1, EXT1}{annotation(earcon1, S1) reference(EXT1,
earcon1)}>
67: S0→ <{earcon1, S1, EXT1}{annotation(earcon1, S1) reference(earcon1,
EXT1) reference(EXT1, earcon1)}>

R:
R1: attach(multicon0, A0) → [35,36,37,39,53,54,55,57] {attach(multicon0,
A1) attach(multicon0, multicon1)}
R2: attach(multicon0, A0) → [35,36,37,39,53,54,55,57] {attach(multicon0,

11. Systems: Specification of Multimedia Applications 203

A1) attach(multicon0, multicon1)
y(multicon1, multicon0)}

R3: attach(multicon0, A0) → [35,36,37,39,53,54,55,57] {attach(multicon0,
A1) attach(multicon0, multicon1)

y(multicon0, multicon1)}
R4: attach(multicon0, A0) → [35,36,37,39,53,54,55,57] {attach(multicon0,
A1) attach(multicon0, multicon1)

y(multicon1, multicon0) y(multicon0, multicon1)}

R5: attach(multicon0, A0) → [35,36,37,39,53,54,55,57] {attach(multicon0,
A1) attach(multicon0, multicon1)

rel(multicon0, A1)}
R6: attach(multicon0, A0) → [35,36,37,39,53,54,55,57] {attach(multicon0,
A1) attach(multicon0, multicon1)

rel(A1, multicon0)}
R7: attach(multicon0, A0) → [35,36,37,39,5354,55,57] {attach(multicon0,

A1) attach(multicon0, multicon1) rel(multicon0, A1) rel(A1, multicon0)}
R8: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]

{attach(multicon0, A1) attach(multicon0, multicon1) y(multicon0,
multicon1) rel(multicon0, A1)}

R9: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]
{attach(multicon0, A1) attach(multicon0, multicon1)

y(multicon0, multicon1) rel(A1, multicon0)}
R10: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]

{attach(multicon0, A1) attach(multicon0, multicon1) y(multicon0,
multicon1) rel(multicon0, A1) rel(A1, multicon0)}

R11: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]
{attach(multicon0, A1) attach(multicon0, multicon1)

y(multicon1, multicon0) rel(multicon0, A1)}
R12: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]

{attach(multicon0, A1) attach(multicon0, multicon1)
y(multicon1, multicon0) rel(A1, multicon0)}

R13: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]
{attach(multicon0, A1) attach(multicon0, multicon1)

y(multicon1, multicon0) rel(multicon0, A1) rel(A1, multicon0)}
R14: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]

{attach(multicon0, A1) attach(multicon0, multicon1)
y(multicon1, multicon0) y(multicon0, multicon1) rel(multicon0, A1)}

R15: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]
{attach(multicon0, A1) attach(multicon0, multicon1) y(multicon1,
multicon0) y(multicon0, multicon1) rel(A1, multicon0)}

214 Chapter 11

R16: attach(multicon0, A0) → [35,36,37,39,53,54,55,57]
{attach(multicon0, A1) attach(multicon0, multicon1) y(multicon1,
multicon0) y(multicon0, multicon1) rel(multicon0, A1)

rel(A1, multicon0)}
R17: attach(multicon0, A0) → [38,56] {attach(multicon0, multicon1)}
R18: attach(multicon0, A0) → [38,56] {attach(multicon0, multicon1)

y(multicon0, multicon1)}
R19: attach(multicon0, A0) → [42] {attach(multicon0, A1)}
R20: attach(multicon0, A0) → [42] {attach(multicon0, A1) rel(multicon0,

A1)}
R21: attach(multicon0, A0) → [42] {attach(multicon0, A1) rel(A1,

multicon0)}
R22: attach(multicon0, A0) → [42] {attach(multicon0, A1) rel(multicon0,

A1) rel(A1, multicon0)}
R23: attach(multicon0, A0) → [40] {attach(multicon0, B1)}
R24: attach(multicon0, B0) → [41] {attach(multicon0, A1)}
R25: attach(multicon0, A0) → [28,33,46,51] {attach(multicon0, z1)}
R26: attach(multicon0, A0) → [28,46] {attach(multicon0, x1)}

y(multicon0, x1)}
R27: attach(multicon0, A0) → [33,51] {attach(multicon0, earcon1)}

synchronization(multicon0, earcon1)}
R28: attach(multicon0, A0) →

[25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] {attach(multicon0, z1)
attach(multicon0, A1)}
R29: attach(multicon0, A0) →

[25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] {attach(multicon0, z1)
attach(multicon0, A1) rel(multicon0, A1)}
R30: attach(multicon0, A0)

→ [25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] {attach(multicon0, z1)
attach(multicon0, A1) rel(A1, multicon0)}
R31: attach(multicon0, A0) →

[25,26,27,29,30,31,32,34,43,44,45,47,48,48,50,52] {attach(multicon0, z1)
attach(multicon0, A1) rel(multicon0, A1) rel(A1, multicon0)}
R32: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1) y(multicon0, x1)}
R33: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1)
y(multicon0, x1) rel(multicon0, A1)}
R34: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1)
y(multicon0, x1) rel(A1, multicon0)}

11. Systems: Specification of Multimedia Applications 203

R35: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]
{attach(multicon0, x1) attach(multicon0, A1)

y(multicon0, x1) rel(multicon0, A1) rel(A1, multicon0)}

R36: attach(multicon0, A0) → [25,26,27,29,43,44,45,47] {attach(multicon0,
x1) attach(multicon0, A1)

y(x1, multicon0)}
R37: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1)
y(x1, multicon0) rel(multicon0, A1)}
R38: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1)
y(x1, multicon0) rel(A1, multicon0)}
R39: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1)
y(x1, multicon0) rel(multicon0, A1) rel(A1, multicon0)}

R40: attach(multicon0, A0) → [25,26,27,29,43,44,45,47] {attach(multicon0,
x1) attach(multicon0, A1)

y(x1, multicon0) y(multicon0, x1)}
R41: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1)
y(x1, multicon0) y(multicon0, x1) rel(multicon0, A1)}
R42: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]

{attach(multicon0, x1) attach(multicon0, A1)
y(x1, multicon0) y(multicon0, x1) rel(A1, multicon0)}

R43: attach(multicon0, A0) → [25,26,27,29,43,44,45,47]
{attach(multicon0, x1) attach(multicon0, A1)

y(x1, multicon0) y(multicon0, x1) rel(multicon0, A1) rel(A1, multicon0)}
R44: attach(multicon0, A0) → [30,31,32,34,48,49,50,52]

{attach(multicon0, earcon1) attach(multicon0, A1)}
R45: attach(multicon0, A0) → [30,31,32,34,48,49,50,52]

{attach(multicon0, earcon1) attach(multicon0, A1)
rel(multicon0, A1)}

R46: attach(multicon0, A0) → [30,31,32,34,48,49,50,52]
{attach(multicon0, earcon1) attach(multicon0, A1)

rel(A1, multicon0)}
R47: attach(multicon0, A0) → [30,31,32,34,48,49,50,52]

{attach(multicon0, earcon1) attach(multicon0, A1)
rel(multicon0, A1) rel(A1, multicon0)}

214 Chapter 11

R48: attach(multicon0, A0) → [30,31,32,34,48,49,50,52]
{attach(multicon0, earcon1) attach(multicon0, A1)

synchronization(multicon0, earcon1)}
R49: attach(multicon0, A0) → [30,31,32,34,48,49,50,52]

{attach(multicon0, earcon1) attach(multicon0, A1)
synchronization(multicon0, earcon1) rel(multicon0, A1)}

R50: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(multicon0, earcon1) rel(A1, multicon0)}
R51: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(multicon0, earcon1) rel(multicon0, A1) rel(A1, multicon0)}

R52: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(earcon1, multicon0)}
R53: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(earcon1, multicon0) rel(multicon0, A1)}
R54: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(earcon1, multicon0) rel(A1, multicon0)}
R55: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(earcon1, multicon0) rel(multicon0, A1) rel(A1, multicon0)}

R56: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(multicon0, earcon1) synchronization(earcon1, multicon0)}
R57: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(multicon0, earcon1) synchronization(earcon1, multicon0)
rel(multicon0, A1)}

R58: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(multicon0, earcon1) synchronization(earcon1, multicon0)
rel(A1, multicon0)}

R59: attach(multicon0, A0) → [30,31,32,34,48,49,50,52] {attach(multicon0,
earcon1) attach(multicon0, A1)

synchronization(multicon0, earcon1) synchronization(earcon1, multicon0)
rel(multicon0, A1) rel(A1, multicon0)}

11. Systems: Specification of Multimedia Applications 203

R60: rel (x0, A0) → [42] {rel (x0, A1) rel (x0, A1)}
R61: rel (A0, x0) → [42] {rel (A1, x0) rel (A1, x0)}

R62: rel (x0, A0) →
[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,54,55,
57]

{rel (x0, A1)}
R63: rel (A0, x0) →
[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,54,55,
57]

{rel (A1, x0)}

R64: rel (x0, A0) → [25,26,27,28,29,43,44,45,46,47] {y(x0, x1)}
R65: rel (A0, x0) → [25,26,27,28,29,43,44,45,46,47] {y(x1, x0)}

R66: rel (x0, A0) → [30,31,32,33,34,48,49,50,51,52] {synchronization(x0,
earcon1)}
R67: rel (A0, x0) → [30,31,32,33,34,48,49,50,51,52]
{synchronization(earcon1, x0)}

R68: rel (x0, A0) → [35,36,37,38,39,53,54,55,56,57] {rel (x0, A2)}
R69: rel (A0, x0) → [35,36,37,38,39,53,54,55,56,57] {rel (A2, x0)}

R70: rel (x0, A0) → [35,36,37,38,39,53,54,55,56,57] {y (x0, multicon1)}
R71: rel (A0, x0) → [35,36,37,38,39,53,54,55,56,57] {y (multicon1, x0)}

R72: rel (x0, A0) → [43,44,45,46,47,53,54,55,56,57] {rel (x0, S1)}
R73: rel (A0, x0) → [43,44,45,46,47,53,54,55,56,57] {rel (S1, x0)}

R74: synchronization (earcon0, A0) →
[25,26,27,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]

{synchronization(earcon0, z1)}
R75: synchronization (A0, earcon0) →
[25,26,27,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]

{synchronization(z1, earcon0)}
R76: synchronization (earcon0, A0) →
[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,

54,55,56,57] {synchronization(earcon0, A1)}
R77: synchronization (A0, earcon0) →
[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45, 47,48,49,50,52,53,

54,55,56,57] {synchronization(A1, earcon0)}

214 Chapter 11

R78: synchronization (earcon0, A0) → [35,36,37,38,39,53,54,55,56,57]
{synchronization(earcon0, A2)}
R79: synchronization (A0, earcon0) → [35,36,37,38,39,53,54,55,56,57]
{synchronization(A2, earcon0)}

R80: synchronization (earcon0, A0) → [48,49,50,51,52,53,54,55,56,57]
{synchronization(earcon0, S1)}

R81: synchronization (A0, earcon0) → [48,49,50,51,52,53,54,55,56,57]
{synchronization(S1, earcon0)}

R82: annotation(multicon0,
S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]{annotation(multicon0,
multicon1)}
R83: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon0, multicon1)}
R84: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon1, multicon0)}
R85: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon0, multicon1) y(multicon1, multicon0)}

R86: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

rel(multicon0, A1)}
R87: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon0, multicon1) rel(multicon0, A1)}
R88: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon1, multicon0) rel(multicon0, A1)}
R89: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon0, multicon1) y(multicon1, multicon0) rel(multicon0, A1)}

R90: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

rel(A1, multicon0)}
R91: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

11. Systems: Specification of Multimedia Applications 203

y(multicon0, multicon1) rel(A1, multicon0)}
R92: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon1, multicon0) rel(A1, multicon0)}
R93: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon0, multicon1) y(multicon1, multicon0) rel(A1, multicon0)}
R94: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

rel(A1, multicon0) rel(multicon0, A1)}
R95: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon0, multicon1) rel(A1, multicon0) rel(multicon0, A1)}
R96: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon1, multicon0) rel(A1, multicon0) rel(multicon0, A1)}
R97: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(multicon0, multicon1)

y(multicon0, multicon1) y(multicon1, multicon0) rel(A1, multicon0)
rel(multicon0, A1)}

R98: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)}
R99: annotation(multicon0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(z0, multicon1)}
R100: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

{annotation(z0, multicon1)
y(multicon1, z0)}

R101: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(z0, multicon1) y(multicon1, z0)}
R102: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1) rel(z0, A1)}
R103: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(z0, multicon1) rel(z0, A1)}
R104: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(multicon1, z0) rel(z0, A1)}
R105: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

214 Chapter 11

y(z0, multicon1) y(multicon1, z0) rel(z0, A1)}

R106: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1) rel(A1, z0)}
R107: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(z0, multicon1) rel(A1, z0)}
R108: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(multicon1, z0) rel(A1, z0)}
R109: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(z0, multicon1) y(multicon1, z0) rel(A1, z0)}

R110: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1) rel(A1, z0)

rel(z0, A1)}
R111: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

{annotation(z0, multicon1)
y(z0, multicon1) rel(A1, z0) rel(z0, A1)}

R112: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
{annotation(z0, multicon1)

y(multicon1, z0) rel(A1, z0) rel(z0, A1)}
R113: annotation(z0, S1) → [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

{annotation(z0, multicon1)
y(z0, multicon1) y(multicon1, z0) rel(A1, z0) rel(z0, A1)}

R114: annotation(multicon0, S1) → [17,18,19,20,21,22,23,24]
{annotation(multicon0, x1)}

R115: annotation(multicon0, S1) → [17,18,19,20,21,22,23,24]
{annotation(multicon0, x1) y(multicon0, x1)}

R116: annotation(multicon0, S1) → [17,18,19,20,21,22,23,24]
{annotation(multicon0, x1) y(x1, multicon0)}

R117: annotation(multicon0, S1) → [17,18,19,20,21,22,23,24]
{annotation(multicon0, x1) y(x1, multicon0)

y(multicon0, x1)}
R118: annotation(multicon0, S1) → [60,61,62,63,64,65,66,67]

{annotation(multicon0, x1)}
R119: annotation(multicon0, S1) → [60,61,62,63,64,65,66,67]

{annotation(multicon0, x1)
synchronization(multicon0, earcon1)}

R120: annotation(multicon0, S1) → [60,61,62,63,64,65,66,67]
{annotation(multicon0, x1)

11. Systems: Specification of Multimedia Applications 203

synchronization(earcon1, multicon0)}
R121: annotation(multicon0, S1) → [60,61,62,63,64,65,66,67]

{annotation(multicon0, x1)
synchronization(earcon1, multicon0) synchronization(multicon0,

earcon1)}
R122: annotation(z0, S1) → [17,18,19,20,21,22,23,24] {annotation(z0,

x1)}
R123: annotation(z0, S1) → [17,18,19,20,21,22,23,24] {annotation(z0, x1)

y(x1, z0)}
R124: annotation(z0, S1) → [17,18,19,20,21,22,23,24] {annotation(z0, x1)

y(z0, x1)}
R125: annotation(z0, S1) → [17,18,19,20,21,22,23,24] {annotation(z0, x1)

y(x1, z0) y(z0, x1)}
R126: annotation(z0, S1) → [60,61,62,63,64,65,66,67] {annotation(z0,

earcon1)}
R127: annotation(z0, S1) → [60,61,62,63,64,65,66,67] {annotation(z0,
earcon1) synchronization(earcon1, z0)}
R128: annotation(z0, S1) → [60,61,62,63,64,65,66,67] {annotation(z0,
earcon1) synchronization(z0, earcon1)}
R129: annotation(z0, S1) → [60,61,62,63,64,65,66,67] {annotation(z0,
earcon1) synchronization(earcon1, z0) synchronization(z0, earcon1)}

R130: reference(ext, A0) → [40] {reference(B1, ext)}
R131: reference(B0, ext) → [41] {reference(A1, ext)}

R132: reference(ext, A0) →
[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,54,55,
57]

{reference(ext, A1)}

R133: reference(ext, A0) → [42] {reference(ext, A1) reference(ext, A1)}
R134: reference(ext, A0) →
[25,26,27,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]

{reference(z1, ext)}
R135: reference(ext, A0) →
[25,26,27,28,29,30,31,32,33,34,43,44,45,46,47,48,49,50,51,52]

{reference(ext, z1)}
R136: reference(ext, A0) →
[25,26,27,29,30,31,32,34,43,44,45,47,48,49,50,52] {reference(ext, A1)

reference(z1, ext)}
R137: reference(ext, A0) →
[25,26,27,29,30,31,32,34,43,44,45,47,48,49,50,52] {reference(ext, A1)

214 Chapter 11

reference(ext, z1)}

R138: reference(ext, A0) → [35,36,37,38,39,53,54,55,56,57]
{reference(multicon1, ext)}

R139: reference(ext, A0) → [35,36,37,38,39,53,54,55,56,57]
{reference(ext, multicon1)}

R140: reference(ext, A0) → [35,36,37,39,53,54,55,57] {reference(ext,
A1) reference(multicon1, ext)}

R141: reference(ext, A0) → [35,36,37,39,53,54,55,57] {reference(ext,
A1) reference(ext, multicon1)}

R142: reference(ext, A0) → [35,36,37,38,39,53,54,55,56,57]
{reference(ext, A2) reference(multicon1, ext)}

R143: reference(ext, A0) → [35,36,37,38,39,53,54,55,56,57]
{reference(ext, A2) reference(ext, multicon1)}

R144: reference(ext, A0) → [35,36,37,38,39,53,54,55,56,57]
{reference(ext, A2)}

R145: reference(ext, A0) → [35,36,37,39,53,54,55,56,57] {reference(ext,
A1) reference(ext, A2)}

R146: reference(A0, ext) → [25,26,27,28,29,30,31,32,33,34]
{reference(z1, ext)}

R147: reference(A0, ext) → [42] {reference(A1, ext) reference(A1, ext)}
R148: reference(A0, ext) →

[25,26,27,29,30,31,32,34,35,36,37,39,42,43,44,45,47,48,49,50,52,53,54,55,
57]

{reference(A1, ext)}
R149: reference(A0, ext) →

[25,26,27,29,30,31,32,34,43,44,45,47,48,49,50,52] {reference(A1, ext)
reference(z1, ext)}

R150: reference(A0, ext) → [35,36,37,38,39,53,54,55,56,57]
{reference(multicon1, ext)}

R151: reference(A0, ext) → [35,36,37,38,39,53,54,55,56,57]
{reference(A2, ext)}

R152: reference(A0, ext) → [35,36,37,38,39,53,54,55,56,57]
{reference(multicon1, ext), reference(A2, ext)}

R153: reference(A0, ext) → [35,36,37,39,53,54,55,57]
{reference(multicon1, ext) reference(A1, ext)}

R154: reference(A0, ext) → [35,36,37,39,53,54,55,57]
{reference(multicon1, ext) reference(A1, ext)

reference(A2, ext)}
R155: reference(A0, ext) → [35,36,37,39,53,54,55,57] {reference(A1,

ext) reference(A2, ext)}

11. Systems: Specification of Multimedia Applications 203

R156: reference(t0, EXT0) → [58] {reference(t0, ext
1
)} t

∈{multicon, z}
R157: reference(t0, EXT0) → [59] {reference(t0, EXT1)}
R158: reference(t0, EXT0) → [59] {reference(t0, EXT1) reference(t0,

EXT1)}
R159: reference(EXT0, t0) → [58] {reference(ext1, t0)}
R160: reference(EXT0, t0) → [59] {reference(EXT1, t0)}
R161: reference(EXT0, t0) → [59] {reference(EXT1, t0) reference(EXT1,

t0)}

APPENDIX C: THE ATTRIBUTED BOUNDARY
SYMBOL RELATION GRAMMAR FOR THE TAO

Given the grammar of Appendix B we will add an inherited attribute x.K to
each x terminal in VT and nonterminal in VN to represent the knowledge
associated with each node of the hypergraph; an attribute x.name to each
nonterminal in VN and synchronization and location relation in VR. The
inherited attribute represents a reference to the file that will contain the
nonterminal or the relation descriptions respectively. We also add the
following sets of semantic rules to each of the productions in P.

For production 1 to 8:
multicon1.K := load(system knowledge)
A1.K := load(system knowledge) ∪ S0.K (this semantic rule is not valid

for production 1)
multicon1.name := load(name)

For production 17 to 20:
z1.K := load(system knowledge) ∪ load(private knowledge)
z1.name0 := load(name)

For production 25 to 34:
z1.K := load(private knowledge) ∪ A0.K
A1.K := A0.K (this semantic rule is not valid for production 28 and 33)

For production 35 to 39:
multicon1.K := load(environment knowledge) ∪ A0.K
A1.K := A0.K (this semantic rule is not valid for production 39)
A2.K := load(environment knowledge) ∪ A0.K
multicon1.name0:= load(name)

For production 40:
B1.K := A0.K

For production 41:

214 Chapter 11

A1.K := B0.K

For production 42:
A1.K := A0.K

For production 9 to 16:
multicon1.K := load(system knowledge)
A1.K := load(system knowledge)
multicon1.name0:= load(name)

For production 21 to 24:
z1.K := load(system knowledge) ∪ S0.K ∪load(private knowledge)
z1.name0:= load(name)

For production 44 to 52:
z1.K := load(private knowledge) ∪ A0.K

A1.K := A0.K
z1.K := load(name)

For production 53 to 57:
multicon1.K := load(environment knowledge) ∪ A0.K
A1.K := A0.K
A2.K := load(environment knowledge) ∪ A0.K
multicon1.name0:= load(name)

We will add the attribute synchronization(ai,aj).name and
location(ai,aj).name to the synchronization and location relations to specify
the instance that hold between ai and aj.

We will add the attribute reference(ext,aj).name and
reference(aj,ext).name to the reference relation to specify the name of the
external icon that will be involved in the relation together with aj.

We will add the attribute annotation(ext,aj).name to the annotation
relation to specify the name of the icon that will represent the root of the
TAO annotated to aj.

We also add the following sets of semantic rules to each production in R
that contains the respective r-item:

y(multicon0, multicon1).name:= load(name)
y(multicon1, multicon0).name:= load(name)
y(multicon0, x1).name:= load(name)
y(x1, multicon0).name:= load(name)
synchronization(multicon0, earcon1).name:= load(name)
synchronization(earcon1, multicon0).name:= load(name)
y(x0, x1).name:= load(name)

11. Systems: Specification of Multimedia Applications 203

y(x1, x0).name:= load(name)
synchronization(x0, earcon1).name:= load(name)
synchronization(earcon1, x0).name:= load(name)
synchronization(earcon0, z1).name:= load(name)
synchronization(z1, earcon0).name:= load(name)
reference(z1, ext).name:= load(name)
reference(ext, z1).name:= load(name)
reference(multicon1, ext).name:= load(name)
reference(ext, multicon1).name:= load(name)
annotation(multicon0, multicon1).name:= multicon1.name
annotation (multicon0, z1).name:= z1.name
annotation (z0, multicon1).name:= multicon1.name
annotation (z0, z1).name:= z1.name

214 Chapter 11

