Chapter 8

Pragmatics. Prototyping Multimedia Applications

MICE is a multimedia development environment for the rapid
prototyping of multimedia applications. The traditional "waterfall" software
life cycle model isdepicted in Figure 1.

di;c‘b_lﬁm - CASE Taol
inition
Support
Y PR
Eequrements
analwsis Bl
F 3
¥
Systern and -+
sofharare desin
+ ¥
Implementation""
and it testimg [
Yy ¥
Integration and
system testing j
¥
Operation and
maintenarce

Figure 1. Traditional "waterfall" software life cycle model

This traditional software life cycle is appropriate for traditional
application software development. Multimedia applications, on the other

117

118 Chapter 8

hand, place strong emphasis on evolutionary content development. The rapid
prototyping model is depicted in Figure 2.

Develop Preliminary - Develop Evaluate Specify
Requirements Prototype Prototype Requirements

Figure 2. Rapid prototyping model for software devel opment.

MICE is an application software development environment supporting
rapid prototyping. In this chapter the details of MICE will be explained.

1. HOW TO BUILD A MICE APPLICATION

MICE provides a logical way in building a multimedia application on a
workstation or a PC. From the web site www.cs.pitt.edu/~chang, by
following the links to multimedia software engineering courseware, you will
be led to the following directories that contain the essential components of
MICE:

IC_Builder/ the files you need to run the IC_Builder on PC
IC_Compiler/ thefilesto run the IC_Compiler

IC_Manager/ thefiles needed to compile the IC_Manager
IC_Taoml/ the interpretor to trandate .taoml pagesto .html pages

The seven steps to build a MICE application in a project directory such
as|IC_Work/ are described below:

Step 1. Download the IC_Builder to your PC, unzip and install it under
Windows. Use IC_Builder (see Section 2) to draw each index cell and create
the .in file for each ic. Use capita letters for the *.in files such as XIC.in,
DIC.in, etc. The IC_Builder will also create the ic.dat file. You can also
create *.in and ic.dat manually without using IC_Builder.

Step 2. Provide one action file for each action defined in the ic's. An
action file contains the corresponding C function for each action and should
be copied to the IC_Work/source/ directory.

Step 3. Copy *.in files to IC_Work/ directory and ic.dat file to
IC_Work/source/ directory. Copy all files from IC_Compiler, IC_Manager
and IC_Taoml to IC_Work/source/ directory. If necessary, modify the ic.dat
file. Use IC_Compiler icc to generate the source files. There are six files
generated by IC_Compiler:

actions.c ic func2.c ic func3.c app.h fuzzy.h db_def.h

8. Pragmatics: Prototyping Multimedia Applications 119

Step 4. Use command "make -f makefilemaincgi” to make main.cgi that
isthe cgi program that your application will need. Therefore, you may call it
main.cgi. The IC_Manager becomes part of main.cgi so any messageto anic
will be sent to this main.cgi.

Step 5. Use command "make -f makefileintercgi” to make inter.cgi that
is the cgi program to access a taoml page. main.cgi and inter.cgi should be
copied to application directory 1C_Work/ so that the home page can use
inter.cgi to access a taoml page such as tao_1.taoml. The link has the
following form: <ahref="inter.cgi?tao_name=tao_1.taoml">.

Step 6. Design the home page index.html for the application and put it in
directory IC_Work/. This home page should have a cgi link to ataoml page
such astao_1.taoml. tao_1.taoml and its associated template page tao_1.tpl
should be in the sub-directory IC_Work/TAOML/. Indeed, al taoml pages
and tpl pages should be in the sub-directory IC_Work/TAOML/. To create
the taoml pages, you will use an extended html syntax to specify the TAOs
and how they are structured and activate ic using the cgi program, which is
main.cgi. If you want to refer to your own cgi programs, they can be
mentioned in the tpl pages. To sum up, there are three types of pages:

- html page index.html uses cgi program inter.cgi to link to tao_1.taoml

- taoml page tao_1.taoml uses cgi program main.cgi to activate anictao 1

- tpl page tao_1.tpl uses customized cgi program to do special tasks

Step 7. Now you are ready to run your application. Use a browser to
enter application’s home page IC_Work/index.html.

Notes:

- For detailed step-by-step instructions, see Section 6, MICE Application

Development Steps.

- Program compilation must be done on the same type of computer

system as the server.

- In IC_Compiler directory, the action template is action.tpl and the

customized action functions are al.c, a2.c, ..., etc. which correspond
totheactions al, a2, ..., etc.

2. IC BUILDER

The IC Builder is a PC-based tool to help the user define active index
cells. Onceanicisdefined, the IC Builder creates aformal specification file
*.in such as icl.in. After al the ic's have been defined, the IC Builder
generates afileic.dat to characterize an application. Thisfileic.dat becomes
the input to the next tool, the IC Compiler.

The ic specification files *.in, on the other hand, become the input to the
customized IC Manager.

120 Chapter 8

The Symbolic IC_Builder Version 2.0 has the following features:

- There is no need to specify the message ID and action ID any more, i.e.
messages and actions are directly represented by symbolic names.

- Theic.dat filewill be automatically generated.

- Simple project management for al the ICs in the project.

The following steps will create the ICsand .in and ic.dat files:

Step 1. Create a project directory, which will contain all the project files
later, such as c:\icb\hw4\

Step 2. In the IC Builder menu bar, find the 'simulation’ menu. Select the
‘options’ menu item. This will bring up a dialog asking you to specify the
executable application file (the customized IC Manager) and the message
input file. For example, if your customized IC Manager is an executable file
called wag.exe, then you first enter:

c:\ich\hwd\wag.exe
and then you enter:

c:\icb\hwd\mag.in
which means the message input file is msg.in. These two inputs are served as
the simulation purpose in IC_Builder. But they are also used to determine
the project directory, which will be subtracted from the executable file path.
This means al the files generated by IC_Builder will be put in this directory.

Step 3. Also in the 'simulation’ menu, select the 'project’ item to define
the project files in the project. You could add or remove the files from the
project. Please use the name of IC file, don't use the .in name. For example,
if your project contains three ics: WAG, BBC, LBC, then the project files
could be:

WAG.graBBC.gra, LBC.gra

Step 4. Use the IC_Builder to create ICs. The input message and output
message specification dialogs are explained later in this section.

Step 5. After you have created al the ICs, click the 'export' button to
export the .infilesand ic.dat. IC_Builder will create .in file for each IC, the
name of .infileissame asits graphicfile.

The key features of the IC_Builder are described below:

2.1. Define a Project

2.1.1 Create a Project Directory as Your Work Space: Create a directory
in the disk, which will contain all the project files later. For example,
c:\icb\hw4\.

2.1.2 Specify Project Files: In the IC Builder menu bar, find the
'simulation’ menu. Select the 'options’ menu item. This will bring up adialog
which ask you to specify the executable file for the customized |C Manager
of the application and the external input message file if necessary. Please be

8. Pragmatics: Prototyping Multimedia Applications 121

sure to specify the complete path of the project directory so that any file
generated by IC_Builder will be put in this directory.

i IC Builder - [C:A\CE\HWAAWAG.GRA | M=l E
File Statez RGN Help
; Simulate ‘ |XI||-| | T
] =] [(=] [
e — O ptionz
Project

Figure 3. How to specify project files.

For example, if your customized 1C Manager is an executable file called
wag.exe, then at the first line input the following:
c:\icb\hwé\wag.exe
and the second line can be something like:
c:\icb\hwd\mag.in
which means the external input message file ismsg.in.

@ Simulation Environment (_ [O] =]

IC Manager: |chicbihwalicm. pif

Message File: |cAicbA\hwdymsg.in

OK CANCEL

Figure 4. How to specify IC Manager and messagefile.

2.1.3 Specify IC Types used in the Project: Also in the 'ssmulation’ menu,
select the 'project’ item to define the project files in the project. You could
add or remove the files from the project. Please use the name of IC file, don't
use the .in name. For example, if your project contains three ics: WAG,
BBC, LBC then the project files could be: WAG.gra BBC.gra, LBC.gra.

122 Chapter 8

= Project Files M=l B3
Project Files:
wag.gra
bbc.gra
Ibc.gra
Remowve
New File: | Add |
Ok Cancel |

Figure 5. The project files.

IC Builder [C:MCBADIC.GRA]

Draw a Stats|

Draw a Tmrllﬂg]'rti rn

, (4
Draw Transition with turruﬁ}g points

Delete a Transition
Change the ID of State
Define the transition
Delets a State
‘k-\View all input messages defined in this IC

View all output messages defined in this IC
View all actions defined in this IC

Figure 6. The IC Builder'stool bar.

8. Pragmatics: Prototyping Multimedia Applications 123

2.2. Define IC Types

2.2.1 Draw a State: Click (press left mouse button) the icon in the tool
bar, then point the cursor at the desired position, press left button. The state
will be numbered automatically.

2.2.2 Delete a State: Click (press left mouse button) the Delete_State icon
in the tool bar, then move the cursor within the state which you want to
delete, press left button.

2.2.3 Move a State: Currently, there is no way to move a state to a
different position, you have to delete and draw a new one to achieve the
reposition of the state.

2.2.4 Change the ID number of the State: Click (press left mouse button)
the Change_ID icon in the tool bar, then click on the state you want to
change. A dialog will appear to let you enter the new number of the state.

efins Imput
Mezaage(f function)

Define Output
Message(g function)

Figure 7. How to define atransition.

2.2.5 Draw a Transition: There are two ways to draw atransition between
states. One way is to draw a straight line, the other is to draw a line with
turning points. Either way you should first click the icon, then move the
cursor to the transition start position on one state, then click. Then you can
move the cursor to the next position, click, and so on (if you are not using
the draw straight line icon). Finally you double click the left button to select
the end position of the transition. Be aware that the start and end positions
should always be on the edge of the state. The start position is marked as a
small green rectangle, and the end position is marked as ared rectangle.

124 Chapter 8

2.2.6 Delete a Trangition: Select the Delete_Transition icon in the tool
bar, move the cursor to the start position of the transition, then click the left
button.

2.2.7 Define a Transition: Click the Define Transition icon in the tool
bar, then move the cursor to the start position of one transition, click the | eft
button. A dialog like above will appear on the screen. This dialog lets you to
add as many transitions between two same states as you want. Click the two
buttons on the right of the dialog to further define the input or output
message of one transition between the two states.

Input Message Specification Dialog

Input Message Specification Predicate Specification

Search 0.60 X1

Message Name:

0.6 ‘

Add | Del | Add | Del

Fuzzy Value:

Parameters:

coet_|

Figure 8. How to define the input message.

2.2.7.1 Input Message Specification Dialog: As you click the Define
Input Message button, the Input Message Specification dialog will prompt,
as the figure below. There are two columns in the dialog, the left one is used
to specify input message's name, parameters. The right column is used to
define the predicate for input messages. You can add or delete the input
message and predicate. The format of the input field "Parameters’ will be
explained later in Section 2.3. Notice the message name is case insensitive.

8. Pragmatics: Prototyping Multimedia Applications 125

Actions: Output Messages:

Message Mame: | il

Action Names] al |Broadcast to all I10s i E] Ouiput 1T No; |
A ——
Parameters: | Farameters: im |

[agd | | Del | [aga | | pa |

-

Figure 9. Output message specification.

2.2.7.2 Output Message Specification: There are two columns in this
dialog, the left one is used to define the action for the transition. Two fields
are needed for each action, the action name (case insensitive) and the name
of the file that contains the action. The right column defines the output
messages in the transition. The format of the input field "Parameters' in the
action and output message will be explained later in Section 2.3. There are
six options for the field "Output IC NO.":

- Specify an Existing IC ID: For this option, the user has to specify a
positive integer asthe IC ID.

- Send to a New IC: For this option, the corresponding output message
will be post to an IC which will be activated when this message
comes. Please notice you must specify the IC type in the field "IC
type".

- Broadcast to All ICs: For this option, this message will be broadcast to
al ICs. If the IC typein the field "IC type" is specified, the message
will be broadcast to all ICs of the specified type. If not, the message
will broadcast to all ICs that can receive the message.

- Contended by All ICs: For this option, this message will be contended
by al ICs. If the IC type in the field "IC type" is specified, the
message will be contended by all I1Cs of the specified type. If not, the
message will be contended by all 1Cs which can receive the message.

- Broadcast to Selected ICs:. For this option, this message will be
broadcast to the selected 1Cs. The user has to program a function to
compute the selected ICs. If the function needs to know the IC type,
the user hasto the IC typein thefield "I C type".

- Contended by Selected ICs: For this option, this message will be
contended by the selected ICs. The user has to program a function to

126 Chapter 8

compute the selected ICs. If the function needs to know the IC type,
the user hasto the IC typein thefield "I C type".

2.2.8 Export the IC diagram: The IC diagrams definition need to be
transformed to so caled .in file when it is used as the input of the
IC_Manager. Click the Export icon in the tool bar to export the diagram as a
infile. The export operation will create al the .in filesin the project plus an
ic.dat filefor the input of 1C compiler.

2.3. The format of the parameter in the Message Definition Dialog is
given below in BNF syntax:

<para list> ::= <para_list>"|<item>

<para_list> ::= <item>

<item> ::= <const> | <var> | <func>

<const> ::= I<integer> | F<float> | S<string>

<var> ;= X<digit> | Y<digit> | Z<digit>

<func> ::= G<digit>'('<func_para list>")' | H<digit>'('<func_para list>")'

<func_para list>::= <f_para list>| NULL

<f_para list>::=<f_para list>','<item>

<f_para list> ::= <item>

<digit>::='0"..'9'

For example, X1|Y1|G7(X2, Y2) in the field parameters means that X1
and Y1 are variable parameters and G7 is a function parameter which has
two variable parameters X2 and Y 2. 125|F1.2|Sfire means that there are three
constant parameters: an integer 25, afloating point 1.2 and a string "fire".

2.4. A sample.infileisgiven below:

0 I/ current state

0 /I next state

1 /I 1 input message(s)

10:0,Y 1|Y 0 // message start_prefetch with 2 parameters
0 I no. predicate

0 /I 0 output ic(s)

0 I/ 0 output message(s)

3 /I 3 action(s)

11 /I action "issue_proc"

12 /l action "set_pid"

14,Y 1|Shelp|HO(Y Q) // action "compute_schedule" with 3 parameters
0 /I current state

0 /I next state

1 /I 1 input message(s)

8. Pragmatics: Prototyping Multimedia Applications 127

11:0 // message "end_prefetch”
0 /I no. predicate

0 /I 0 output ic(s)

0 /1 0 output message(s)

1 Il 1 action(s)

15 Il action "set_pid_null"

0 /I current state

-1 /I next state

1 /I 1 input message(s)

12:0 // message "kill_prefetch”
0 I/ no. predicate

0 /I 0 output ic(s)

0 /1 0 output message(s)

1 /I 1 action(s)

13 Il action "kill_proc"

3. IC COMPILER

The IC Compiler accepts an input file that characterizes an application
and generates the customized source code of the IC Manager. The default
input file is ic.dat produced by the IC Builder. The IC Compiler icc can be
recompiled using the make file "makefile.icc".

Usage: icc [-d] input_file

The flag -d generate source codes with embedded debugging messages

Input of icc: Theinput_file specifies the characteristics of the application.
The default input_fileisic.dat.

Output of icc: app.h, fuzzy.h, db_def.h, actions.c, ic func2.c, and
ic_func3.c.

Format of theinput_file: Each definition type header must be prefixed by
"$". All definition lines follow their definition type header without prefixed
by any special character. A definition type must end with "%". A comment
line must begin with "//". A spacelineis allowed.

The IC Compiler supports the following definition types:
(1) Header "$MESSAGE" defines input and output messages of |C with
definition format:

message_name/message_id

128 Chapter 8

This definition type is to generate message definitions in "app.h",
message array msg[] in "fuzzy.h", and function decode msg() in
"ic_func3.c".

(2) Header "$INCLUDE_FILE" alows the user to adds including files to
app.h with definition format:

file_name

(3) Header "$SACTION/AUTO_GEN:YESINO" defines actions of 1C
with definition format:

action_name/action_id[/function_namel[/file_name]]

This definition type is to generate action definitions in "app.h", function
do_actions() and al action functions in "actions.c”. If "actions.c" exists, the
old "actions.c" will be moved to a backup file "actions.b*", for example,
actions.b0, actions.bl....

If AUTO_GEN equals YES, actions.c will be automatically generated by
collecting specified file_names; otherwise, al the file_names will be ignored
and the user has to provide an actions.c by himself.

If AUTO_GEN equals YES but the file_name is not specified, a default
template of the corresponding function will be inserted into the actions.c
instead.

(4) Header "$IC_ID" defines IC_IDs with definition format:

name_of ic_id/number

This definition type is to generate ic_id definitions in "app.h" and
function decode ic() in"ic_func3.c".

Note: ic_id EXTERNAL has been defined as-1in"ic.h".

(5) Header "$MUST_FUNC/AUTO_GEN:YES|NO" defines functions
that are necessary in 1C Manager with definition format:

func_group _name[/file_name]

This definition type is to generate al functions of file "ic_func2.c". If
"ic_func2.c" exists, the old "ic_func2.c" will be moved to a backup file
"ic_func2.b*", for example, ic_func2.b0, ic_func2.bl....

If AUTO_GEN eqguals YES, ic_func2.c will be automatically generated
by collecting all functions in specified file names;, otherwise, al the
file_names will be ignored and the user has to provide an ic_func2.c by
himsef. If AUTO _GEN equals YES but file name is not specified, a
default template of the corresponding functions will be inserted into
ic_func2.cin stead.

(6) *.tpl are the templates for $MUST_FUNC. The templates:
out_msg.tpl, predicat.tpl, inter_mm.tpl, and func var.tpl are default
templates for functional groups FILL_OUTPUT_MSG_GROUP,
PREDICATE_GROUP, INTERNAL_MM_GROUP, and
USER DEFINE_FUNC VAR GROUP, respectively. The customized

8. Pragmatics: Prototyping Multimedia Applications 129

functions should be called out_msg.c, predicat.c, inter_mm.c, and
func_var.c.

A default template for each group contains:
FILL_OUTPUT_MSG_GROUP: fill_content(), fill_itype()
PREDICATE_GROUP: pred_match()

INTERNAL_MM_GROUP: dump_internal_mm(), init_mm(),
save_mm(), restore_mm()

USER_DEFINE_FUNC_VAR_GROUP: userdef_f(), userdef v()

FILL_OUTPUT_IC_GROUP: find_ic()

It is recommended to copy and modify the default template functions for
each function group.

(7) action.tpl is the template for user-supplied action functions, one for
each action. The customized actions are stored in separate files such as al.c,
..., @D.C.

(8) Header "$THRESHOLD" defines thresholds for fuzzy computation
with definition format:

ic_type/fuzzy _number

Two arraysic_type and threshold will be generated in "fuzzy.h".

Note: Definition type "$THRESHOLD" is necessary for fuzzy IC.

(9) Header "DB_ACCESS" defined the access of database with definition
format:

view_name/database/tables/attributes/condition
where tables=table[,table]*
attributes = attribute [, attribute]*
condition is a predicate.

If database is"DEFAULT", it means to access the default database that is
defined in the program. If attributesis "*", it is al attributes of the specified
tables. If condition is "NULL", it means that the generated SQL has no
condition. The definition will create a SQL command for the specified
database:

SELECT attributes
FROM tables
WHEN condition
File db_def.h will be generated.
(10) Use makefile.icc to compile the IC Compiler. Usage:
make -f makefileicc
Note: All definition types must always be specified, except $IC_ID.

4. THE IC MANAGER

This directory contains programs to use fuzzy 1C manager.

130 Chapter 8

Make File: The following make files contains paths that need to be
changed, if necessary.
Makefile.maincgi: generate main.cgi that will trigger 1Cs.
Makefile.showcgi: generate show.cgi that will display all ICs.
Makefile.clearcgi: generate clear.cgi that will clear all ICs.

Header Files
I. Core Part: modulesin this part should not be modified
ic.h: header file (constants and data structures) of the ic manager
I1. Application Dependent Part: constants and data structures in the
header filesin this part should be customized according to the application.
app.h: constants and data structures of your application
fuzzy.h: the header file for message codes and thresholds of ic types
It isincluded in fuzzy.c.
mm.h: structures for internal memory of ic's
If you define mm.h, define the including of mm.hinic.dat so that
app.h will include mm.h.

CFiles
I. Core Part: modulesin this part should not be modified
main.c: the web-based driver functions.
ic_manager.c. ic manager
ic_functions.c: functions called by ic manager
util.c: functions to create C structures for f, g functions and messages
to dump the content of various structures.
fuzzy.c: functions to implement fuzzy computation.
clear.c: afunctionto clear al ICs.
show.c: afunction to display al current ICs.

Il. Application Dependent Part: modules in this part should be
customized according to the application. Examples and/or templates are
provided for functions in each module.

driver.c: the text-based driver program

ic_func2.c: application dependent, but necessary functions
ic_func3.c: application dependent decoding functions
ic_state.c: functionsto save and restore states of ic's.
actions.c: action functions

Input Files
*.in: f, g functions of index cell
fuzzy.dat: (not to be modified): fuzzy computation table.
ic.dat: 1C specification for IC Compiler
* tpl: template input file to IC Compiler (user can modify it)

8. Pragmatics: Prototyping Multimedia Applications 131

Manuals
f.g format: f, g function format
output_ic_msg: the usage of "output ic" and "output msg"
in fg function format
ic_prog: manual for ic programming
msg.format: FAKE external message format for the testing of
your active index system

5. TAOML

This directory contains the TAOML interpreter. Makefile.intercgi will
generate an executable "inter.cgi”. Makefile.inter will generate an executable
command "inter".

6. MICE APPLICATION DEVELOPMENT STEPS

The MICE Application Development Steps are as follows:

Step 1. Download 1C_Builder to PC and use it to create *.in, *.gra and
ic.dat files.

Step 2. Upload *.in and ic.dat to your working directory. Create two sub-
directories called "source" and "TAOML". Leave *.in in this directory, and
moveic.dat to "source" directory.

Step 3. Change to source directory and do the following:

Step 3.1. Copy all the files from the three
directories IC_Compiler, IC_Manager and IC_Taoml.
to this "source" directory.
Step 3.2. Moveic.dat and action*.c filesinto the source directory.
Step 3.3. Invoke |C Compiler by typing:
iccic.dat
Step 3.4. Use the makefiles to make main.cgi and inter.cgi:
make makefile.maincgi
make makefile.intercgi
Step 3.5. Move main.cgi and inter.cgi programsto parent directory.
Step 4. Create index.html that is the home page of your application.
It should invoke inter.cgi to go to another taoml page.

Step 5. Change to TAOML directory and do the following.

Step 5.1. create *.taoml pages which should invoke main.cgi to activate
ic's.
Step 5.2. create * .tpl pages which should invoke inter.cgi to access

132 Chapter 8

Another taoml page, or invoke customized cgi to do special
processing.

Step 6. Y ou are now ready to test the application. Use aweb browser
to access your application's home page index.html.

AN

Figure 10. A visua diagram for MICE.

7. VISUAL INTERFACE FOR MICE

The visual interface for MICE is intended for the end user, so that the
user does not have to memorize the development steps and the details of
multimedia application development using MICE. As illustrated in Figure
10, VISUAL MICE provides a visual diagram. All the user hasto do isto

8. Pragmatics: Prototyping Multimedia Applications 133

follow the visual diagram and provide the appropriate information at each
step.

8. MICE APPLICATIONS

The MICE design environment can be applied to designing all kinds of
active multimedia information systems. In what follows, we describe a
recent application to active medical information system design [Chang98a,
Chang98b].

To accomplish the retrieval, discovery and fusion of medical information
from diverse sources, an active medical information system capable of
retrieving, processing and filtering medical information, checking for
semantic consistency, and structuring the relevant information for
distribution is needed. We have developed a framework for the human- and
system-directed retrieval, discovery and fusion of medical information,
which is based upon the observation that a significant event often manifests
itself in different media over time. Therefore if we can index such
manifestations and dynamically link them, then we can check for
consistency and discover important and relevant medical information.

| fused knowledge |

t-:,"f"':'-'.'.““ """""""" E‘ """"" :‘"'\: """""" :‘ """""" E’abst:rac'téﬂ

lll?l‘l?“ﬂtl.ltrrllthl """""""" ;' """"" é"': """" """"" E' infqr':rna"ti'o‘:n

[TTTTEI1-7T R A _________E ___________ '.' ________ ________ .I ________ @ ______

myworde ; oo v@ n-

- L R (SR, SS— Meeoeennes (— -------- @ ------ @_}
data niguml ¥iunw lllﬂh | Imngn Lrlllllu4 tllxt -l.t-=l.

mignnl I tmramt|

sQurces

]

Figure 11. A framework for information and knowledge fusion.

This dynamic indexing technique is based upon the theory of active
index. A powerful newly developed artificial neural network is used for the
discovery of significant events. An experimental system was implemented,
and MICE was used as the prototyping environment to prototype AMIS.

134 Chapter 8

eclslon Networ
LAMSTAR

Actlve Index
System AlIS

aacend laval
Indax call

Sourcesg

Camera \f:.fﬁba-xp‘gﬂe Sensor

ndax call Indax call

Figure 12. An active medical information system AMIS.

We will give an example to illustrate information fusion by
horizontal/vertical reasoning. Patient information is abstracted from
different media sources, including imaging devices, signal generators,
instruments, etc. (vertical reasoning). Once abstracted and uniformly
represented, the neural network is invoked to make a tentative diagnosis
(horizontal reasoning). Using the active index, similar patient records are
found by the Recursive Searcher (vertical reasoning). A retrieved patient
record is compared with the target patient record (horizontal reasoning). If
similar records lead to similar diagnosis then the results are consistent and
the patient record (with diagnosis) is accepted and integrated into the
knowledge base. If the diagnosis is different then the results are inconsi stent
and the negative feedback can also help the decision network learn.

In the vertical reasoning phase, in addition to comparing patient data, we
can also compare images to determine whether we have found similar patient
records. Therefore, content-based image similarity retrieval becomes a part
of the vertical reasoning. Depending upon the application domain, image
similarity can be based upon shape, color, volume or other attributes of an
object, spatial relationship among objects, and so on.

This example illustrates the alternating application of horizontal
reasoning (using the LAMSTAR neural network for making predictions) and
vertical reasoning (using dynamically created active index for making
associations). Combined, we have an active information system for medical
information fusion and consistency checking.

8. Pragmatics: Prototyping Multimedia Applications 135

A demo of the active medical information system can be found at:
http: //Amww.cs.pitt.edu/~chang and then click on Active Medical Information
Systems.

MICE has a so been used to prototype an emergency management system
[Khaligg], an intelligent multimedia information retrieval system [Catar98],
a multimedia distance learning system [Chang98c] and other multimedia
applications.

136 Chapter 8

