
101

Chapter 7

Pragmatics: Tools for a Multimedia Development
Environment

In the preceding four chapters we described the syntax of
multidimensional languages to specify the presentation of multimedia
applications, and the semantics of the teleaction objects to specify the
activities performed by multimedia applications. In this chapter we give an
overview to a software engineering environment referred to as the
Multimedia IC Development Environment (MICE), and its associated tools.
The details of the MICE tools will be presented in Chapter 8.

 MICE is to be used as the basis for the study of the visual design process
applied to the development of TAO-based multimedia applications. The
unifying model used in this approach is based on Teleaction Objects
(TAOs). TAOs are multimedia objects with attached knowledge structured
as an active index. TAOs can be described using the TAOML extension of
HTML. This allows for easy prototyping of distributed multimedia
applications using a web browser as the user interface. The TAOML Builder
tool allows the user to visually specify a TAO. The hypergraph is parsed for
correctness using an underlying Boundary Symbol Relation grammar and the
correct TAOML is output. TAOML can be translated into standard HTML
using the TAOML Interpreter. The ICs for the application can be visually
specified using the IC Builder. The IC Compiler produces the IC Manager
that provides the run-time environment for the ICs.

102 Chapter 7

1. THE MICE ENVIRONMENT

Distributed multimedia applications have become increasingly common
in recent years due to the development of the World Wide Web.
Unfortunately, supporting tools and techniques for such applications are not
readily available. The goal of this research is to study the visual software
design process applied to multimedia applications by developing a visual
software engineering environment [Costa95a] for such applications. In
previous chapters, we have described the formal framework that can be used
as the basis for application development. Based on this approach, a set of
tools for the production of multimedia applications has been developed at the
University of Pittsburgh and the University of Salerno. These tools are based
on the Teleaction Object (TAO) paradigm. TAOs are multimedia objects
with attached knowledge in the form of a collection of index cells (ICs)
comprising an active index [Chang95a]. The set of tools comprising the
workbench is referred to as the Multimedia IC Development Environment
(MICE). In the MICE approach to TAO-based multimedia application
development, TAOs are described using TAOML, an extension of HTML.
This allows for easy prototyping of distributed multimedia applications using
a standard web browser as the user interface. The tools comprising MICE
are: TAOML Builder; TAOML Interpreter; IC Builder; IC Compiler and IC
Manager. The Interactions of these tools are shown in Figure 1.

The MICE approach is especially suited for quickly prototyping
complicated distributed multimedia applications, including those interacting
with database management systems. The use of a visual software
engineering environment helps to manage the structural complexity
[Karsa95] of such applications. Due to the fact that the approach uses a
standard web browser as the user interface, as well as the implementation of
the IC Manager in standard C language, the developed application may be
easily ported to the desired environment.

The rest of the chapter is structured as follows. Section 2 contains a brief
review of TAO-based multimedia application development. Sections 3
through 8 contain descriptions of each of the MICE tools.

7. Pragmatics: Tools for a Multimedia Development Environment 103

Figure 1. MICE Tools.

2. TAO-BASED MULTIMEDIA APPLICATIONS

Teleaction Objects (TAOs) are multimedia objects with an associated
hypergraph representing the structure of the multimedia object and a
knowledge structure. The knowledge structure allows the TAO to
automatically react to certain events [ChangH95b].

From a structural point of view, a TAO can be divided into two parts: a
hypergraph G and knowledge K.

The structure of the hypergraph G is a graph G(N,L), where N is a set of
nodes, and L is a set of links. There are two types of nodes: base nodes and
composite nodes. Each node represents a TAO, and each link represents a
relation among TAOs and there are the following link types: the attachment
link, the annotation link, the reference link, the location link, and the
synchronization link. Base nodes and composite nodes are called bundled
when they are grouped, thus defining them as a single entity. The nodes
which are interior to bundled nodes may not be included in annotation or
reference links unless the link is to the exterior bundled node, and there may

104 Chapter 7

not be spatial/temporal relations between interior nodes and nodes external
to the bundled node.

The knowledge structure K of a TAO is classified in four levels: the
System Knowledge, the Environment Knowledge, the Template Knowledge,
and the Private Knowledge. The knowledge is structured as an active index
(IX), which is a set of index cells (IC) from an index cell base (ICB). The
index cells define the reactions of the TAO to events filtered by the system.
An index cell accepts input messages, performs some action, and sends
output messages to a group of ICs. The messages sent will depend on the
state of the IC and on the input messages [Chang96a]. An IC may be seen as
a kind of finite-state machine [Chang95a].

An initial approach to the definition of a multimedia language for TAOs
has been given in [Chang96a]. The physical appearance of a TAO is
described by a multidimensional sentence. The language is generated by a
grammar whose alphabet contains generalized icons and operators.
Formally, a generalized icon is defined as x=(xm,xi) where xm is the
meaning of the icon and xi is the media object. Two functions,
materialization and dematerialization, are associated with every generalized
icon. The first function derives the object from its meaning: MAT(xm)=xi;
the second derives the meaning, or interpretation, from the object:
DMA(xi)=xm.

The generalized icons [Chang87b] are divided into the following
categories:

• Icon : (xm, xi), where xi is an image
• Earcon : (xm, xe), where xe is a sound
• Ticon : (xm, xt), where xt is text (the ticon can also be seen as a subtype

of icon).
• Micon : (xm, xs), where xs is a sequence of image icons (motion icon)
• Vicon : (xm, xv), where xv is a video clip (video icon)
• Multicon : (xm, xc), where xc is a multimedia sentence (composite

icon).
The generalized icons are represented by nodes in the hypergraph while

operators are represented by links.

2.1 TAOML

In order to more easily prototype a distributed multimedia application
based on the TAO concept, an extended version of HTML called TAOML
has been developed. TAOML can be regarded as a subclass of XML. With
TAOML, each component of the application can be realized as an ic
associated with a TAO-enhanced html page. Given a TAO-enhanced html
page, we can use an interpreter to read this page, abstract the necessary TAO

7. Pragmatics: Tools for a Multimedia Development Environment 105

data structure and generate the normal html page for the browser. Therefore
no matter which browser is used, the application program can run if this
TAO_HTML interpreter is installed in advance. This can give some security
guarantees. The user can also choose a favorite browser. Furthermore if in
the future HTML is out of fashion, the user just needs to update the
interpreter and change it into another language. The other parts of
application will not be affected. In this section, we describe the TAO
enhanced html named TAOML.

In order to use TAO_HTML, or TAOML, to define a TAO, the data
structure of a TAO is extended. A TAO has the following attributes:
tao_name, tao_type, p_part, links, ics and sensitivity.

 • 'tao_name' is the name of the TAO, which is a unique identifier of
each TAO.

 • 'tao_type' is the media type of TAO, such as image, text, audio, motion
graphs, video or mixed.

 • 'p_part' is the physical part of TAO. To implement it in the context of
TAO_HTML, 'p_part' here can be denoted by a template that indicates how
an HTML page looks.

 • 'links' is the link to another TAO.
 • 'ic' is the associated index cell.
 • 'sensitivity' indicates whether this object is location-sensitive, time-

sensitive, content-sensitive or none-sensitive. Then the same object can have
different appearance or different functionality according to the sensitivity.
The detailed meaning of sensitivity should be defined by user according to
the requirement of applications.

 • 'database' specifies the database that this TAO can access and/or
manipulate.

The formal definition of TAO_HTML language can be described in BNF
form:

TAO_HTML ::= <TAO> TAO_BODY </TAO>

TAO_BODY ::= NAME_PART TYPE_PART P_PART LINK_PART
 IC_PART SENSI_PART DATA_PART

NAME_PART ::= <TAO_NAME> "name" </TAO_NAME>

TYPE_PART ::= <TAO_TYPE> TYPE_SET </TAO_TYPE>

TYPE_SET ::= [image, text, audio, motion_graph, video, mixed]

106 Chapter 7

P_PART ::= <TAO_TEMPLATE> "template_name" </TAO_TEMPLATE>

LINK_PART ::= empty | <TAO_LINKS> LINK_BODY </TAO_LINKS>
 LINK_PART

LINK_BODY ::= name = "link_name", type = LINK_TYPE, obj = "link_obj"

LINK_TYPE ::= [spatial, temporal, structural]

IC_PART ::= empty | <TAO_IC> flag=FLAG ic_type="a_string"
 ic_id_list="a_string" cgi_pgm="a_string" message_type="a_string"
 content="a_string" </TAO_IC>

FLAG ::= [old, new]

SENSI_PART ::= empty | <TAO_SENSI> SENSITIVITY </TAO_SENSI>

SENSITIVITY ::= [location, content, time]

DATA_PART ::= empty | <TAO_DATA> "database_name" </TAO_DATA>

In the template of a TAO, in addition to the normal HTML tags and
definitions, there is a special TAO tag for link relation with other TAOs. It is
defined as:

<TAO_REL> "link_name" </TAO_REL>

3. TAOML BUILDER

The TAOML Builder is a visual tool for MICE application developers. It
allows users to specify the structure of a TAO in the form of a hypergraph
representing the multimedia objects and the relations between these objects.
Once the user has decided on the objects to be contained in a TAO and the
relations to hold between the objects, the tool will automatically generate the
TAOML corresponding to the visually specified TAO. This output is then
used by the TAOML Interpreter tool described in Section 4. The TAOML
Builder is based on an underlying multidimensional grammar (Symbol
Relation grammar [Ferru96]) describing valid TAO structures [Arndt97a].

The TAOML Builder allows the creation of the nodes and links of the
hypergraph of a TAO. The properties of each node of the TAO are collected
in the dialog tab “Obj Info” as shown in Figure 2a. The dialog tab “Obj

7. Pragmatics: Tools for a Multimedia Development Environment 107

Preview” gives a preview of the selected node together with some
information about the file attached to the node (see Figure 2b and Figure 2c).
If the node is a micon the component nodes of the structured icon will be
listed.

Figure 2. Tabbed Dialog Showing Node Properties.

The dialog tab “Preferences” allows the insertion of preferences that will
influence the final presentation (Figure 2d). Information about the IC cells
connected to the selected node can be inserted in the dialog tab “IC Data”. A
property dialog box is also provided for the links.

The tool bar of the TAOML Builder is split into four parts (Figure 3): the
main tool bar which contains commands for printing, cutting, copying, etc.;
the tool bar of the nodes which allows the addition as well as the removal of
the nodes for the construction of the hypergraph of the TAO; the tool bar of
the links which allows the addition and the removal of the links of the
hypergraph. The magnifying glass allows zoom in and zoom out of the
screen in order to have a complete view in one page of the hypergraph.

108 Chapter 7

Figure 3. TAOML Builder Toolbars.

Figure 4. Figure 4 - Hypergraph and Matching TAOML.

The TAOML Builder has been tested on a selected sample of users that
have shown the need to overcome some of the problems of using the
graphical representation. The non-experienced users preferred to use the
graphical representation of the hypergraph, experienced users preferred a
textual representation. By selecting the command “Create TAOML” in the
menu “Tools” TAOML Builder automatically generates the TAOML version

7. Pragmatics: Tools for a Multimedia Development Environment 109

of the hypergraph (Figure 4). This textual representation can then be edited
from within the TAOML Builder. The user, therefore, can switch between
textual and graphical editing of the hypergraph.

4. TAOML INTERPRETER

The TAOML Interpreter is a command line tool that interprets the
TAOML output by the TAOML builder tool and generates valid HTML. The
interpreter uses templates that are independent HTML pages to define the
fundamental display element and location arrangement. For example, if the
TAO is of image type, the template will just contain an HTML statement to
introduce an image. If the TAO is of mixed type, the template will define
some common parts and leave some space to insert the elements that are
specific to this TAO.

The interpreter must also evaluate the link tag of TAOML. A link has
attributes 'link_type', 'link_obj'. 'link_type' is either relational (spatial or
temporal) or structural (COMPOSED OF). In the context of TAOML, a
spatial link describes visible relationship between sub_objects inside one
mixed object. For example, a mixed tao1 contains an image TAO2 and a text
TAO3, then TAO1 has spatial link with both TAO2 and TAO3. A temporal
link usually refers to an invisible object that is not a display element, but its
activation time is influenced by the other. A structural link relates one TAO
with another dynamically via user input or external input. For example, the
user clicks a button in TAO1 will invoke another page TAO2, and then there
is a structural link from TAO1 to TAO2.

For the associated index cell, the flag is "old" if the ic already exists, or
"new" if the ic is to be created. The ic type, ic_id list, message type and
message content can either be specified, or input by the user (indicated by a
question mark in the input string). A corresponding HTML input form will
be created so that the user can send the specified message to the ic's.

The TAO_HTML Interpreter can be presented in the following pseudo-
code:

procedure interpreter(char *TAOname)
{
 open TAO definition file
 call TAO_parser() to construct the
 TAO data structure TAO_struct
 call template_parser(TAO_struct)
 to output HTML file
}
procedure TAO_parser(file_handle, link_type)
{

110 Chapter 7

 while (not end of file)
 {
 read one line from the file
 distinguish tag and get information
 and store in data structure
 }
}
procedure template_parser(TAO_structure)
{
 if IC_PART is specified, output HTML statements
 to create a form to accept user's input and
 send message to the ic's through IC_Manager
 if template file exists
 open template file
 while (not end of file)
 {
 read one line from the file
 if (not <TAO_rel> tag)
 output html text
 else
 {
 get link_name from the <TAO_rel> tag
 search in the TAO_structure with link_name
 if (a link structure is found with the
 same link_name)
 {
get link_type and link_TAO_name
switch (link_type)
 case structural:
 insert <a href..> link in template
 to link with link_TAO_name
 case spatial:
 call procedure interpreter(link_TAO_name)
 to insert template of link_TAO_name

 }
 }
 }
}

5. IC BUILDER

The knowledge of a TAO-based mutimedia application is stored in a set
of active index cells. The index cells can be created either before or after the
TAOML has been created using the two TAOML tools. The IC Builder is a
visual PC-based tool to help the user define active index cells. Once an index
cell is defined, the IC Builder creates a formal specification file *.in (e.g.
ic1.in). After all the index cells have been defined, the IC Builder generates

7. Pragmatics: Tools for a Multimedia Development Environment 111

a file ic.dat to characterize an application. This file ic.dat becomes the input
to the next tool, the IC Compiler. The index cells specification files *.in, on
the other hand, become the input to the customized IC Manager.

The main screen of the IC Builder is shown in Figure 6 of Chapter 8. As
was said in Section 2, an IC may be seen as a kind of Finite State Machine.
The IC Builder allows us to graphically specify the states and transitions of
such a machine. Specifically, the IC Builder allows us to draw a state by
clicking the corresponding icon in the tool bar, pointing the cursor at the
desired position, and pressing the left button. The state will be numbered
automatically. We may also delete a state or change the ID number of a
state. We may draw or delete a transition between states and define a
transition using the dialog shown in Figure 7 of Chapter 8. Clicking the
Define_Transition icon in the tool bar, the user moves the cursor to the start
position of one transition, then clicks the left button. A dialog appears on the
screen. This dialog allows one to add as many transitions between two states
as desired. Clicking the two buttons on the right side of the dialog allows the
user to further define the input or output message of one transition between
the two states. Figure 9 of Chapter 8 shows the dialog for defining an output
message. We see that there are two columns in this dialog, the left one is
used to define the action for the transition. Two fields are needed for each
action, the action name (case insensitive) and the name of the file that
contains the action. The right column defines the output messages in the
transition. There are six options for the field "Output IC NO.".

"Specify an Existing IC ID". For this option, the user has to specify a
positive integer as the IC ID.

"Send to a New IC". For this option, the corresponding output message
will be post to an IC that will be activated when this message comes.

"Broadcast to All Ics". For this option, this message will be broadcast to
all ICs. If the IC type in the field "IC type" is specified, the message will be
broadcast to all ICs of the specified type. If not, the message will broadcast
to all ICs that can receive the message.

"Contended by All Ics". For this option, this message will be contended
by all ICs. If the IC type in the field "IC type" is specified, the message will
be contended by all ICs of the specified type. If not, the message will be
contended by all ICs which can receive the message.

"Broadcast to Selected Ics". For this option, this message will be
broadcast to the selected ICs. The user has to program a function to compute
the selected ICs. If the function needs to know the IC type, the user has to
the IC type in the field "IC type".

"Contended by Selected Ics". For this option, this message will be
contended by the selected ICs. The user has to supply a function to compute
the selected ICs.

112 Chapter 7

The IC diagrams definition need to be transformed to a so-called .in file
when it is used as the input of the IC_Manager. Clicking the Export icon in
the tool bar exports the diagram as a .in file. The export operation will create
all the .in files in the project plus an ic.dat file for the input of the IC
Compiler.

6. IC COMPILER

The IC Compiler is a command line tool that accepts an input file
characterizing an application and generates the customized source code of
the IC Manager. The default input file is ic.dat produced by the IC Builder
tool. This file consists of a number of definitions with optional comments.
Each definition type header is prefixed with a "$".

The supported definition types are the following. Header "$MESSAGE"
defines input and output messages of an IC as: message_name/message_id.
Header "$INCLUDE_FILE" allows the user to add include files to the
application by giving the file name. Header
"$ACTION/AUTO_GEN:YES|NO" defines actions of an IC as:
action_name/action_id[/function_name[/file_name]]. If AUTO_GEN is
YES, a source code file for actions is automatically generated by gathering
the functions in the given files. Otherwise, the user must supply the file.
Header "$IC_ID" defines IC_IDs as: name_of_ic_id/number. Header
"$MUST_FUNC/ AUTO_GEN:YES|NO" defines functions that are
necessary in IC Manager as: func_group_name[/file_name]. Once again
AUTO_GEN equal to YES will automatically create the needed file from a
given list of files containing functions. The functions are obtained by
specializing system-provided templates. Header "$THRESHOLD" defines
thresholds for fuzzy computation as: ic_type/fuzzy_number. Header
"$DB_ACCESS" defines the access to a database as:
view_name/database/tables /attributes/condition where

tables = table [,table]*
attributes = attribute [,attribute]*
condition is a predicate.

If database is "DEFAULT", it means to access the default database that is
defined in the program. If attributes is "*", it means all attributes of the
specified tables. If condition is "NULL", it means that the generated SQL
has no condition. The definition will cause an SQL command for the
specified database of the following type to be created:

SELECT attributes FROM tables WHERE condition
After execution of the IC Compiler, the active index structure of the

MICE application is ready to be exercised by the IC Manager tool.

7. Pragmatics: Tools for a Multimedia Development Environment 113

7. IC MANAGER

The IC Manager is a run-time tool that receives incoming messages,
activates index cells, performs actions, and handles outgoing messages. Each
message sent from one IC to another passes through the IC Manager.
Another implementation would have each IC as a separate process, however
this would result in high interprocess communication overhead. In order to
avoid this overhead in the prototyped application, the MICE approach avoids
these separate processes.

The IC Manager contains both domain-independent and domain-specific
parts. The domain-specific part contains the user-defined procedures used to
perform predefined actions. The domain-specific part also controls the
external messages sent to the IC Manager. The separation between domain-
independent and domain-specific parts makes implementation of a
multimedia application containing powerful actives indexes easy since only
the domain-specific parts need be given.

Since the IC Manager is written in standard C language, the MICE
workbench can be used to develop applications intended for deployment on
both PC and UNIX based web servers. The IC Manager has been used to
prototype a Smart Image System, Web Browser Monitor [Chang96c], B-Tree,
and Medical Personal Digital Assistant [Chang96b].

8. TAOML TO XML TRANSLATOR

TAOML can be described as a subset of XML [W3C98], the Extensible
Markup Language. Like HTML, XML is based on the Standard Generalized
Markup Language (SGML) [ISO92]. But while HTML is a non-extensible
grammar, XML is designed to be extensible, while at the same time avoiding
some of the complexity of SGML. Microsoft’s proposed Channel Definition
Format for push technologies is an example of an XML application. Using
XML rather than HTML would essentially allow us to avoid the TAOML
interpreter. Also, the flexibility of XML links (including the possibility of
embedding one document inside of another and bidirectional links)
corresponds much more closely to the hypergraph model of TAO.

The major differences between HTML and XML are as follows:

• Hierarchical element structure: XML documents must have a strictly
hierarchical tag structure. Start tags must have corresponding end tags. In
XML vocabulary, a pair of start and end tags is called an element.

114 Chapter 7

• The empty tag requires trailing slash: Empty tags are also allowed as
elements in XML documents. An empty tag is essentially a start and end tag
in one, and is identified by a trailing slash after the tag name.

• Single root element: XML documents allow only one root document. This
restriction makes it easier to verify that the document is complete.

• Quoted attribute values: All attribute values must be within single or double
quotes.

• Case sensitivity: XML tags are case-sensitive.
• Relevant white space: White space in the data between tags is relevant,

because XML is a data format.
• Extensibility: XML can be extended by creating new tags that make sense.

The Advantages of using XML are:

• Authors and providers can design their own document types using XML,
instead of being stuck with HTML.

• Information content can be richer and easier to use, because the hypertext
linking abilities of XML are much greater than those of HTML.

• XML can provide more and better facilities for browser presentation and
performance.

• XML removes many of the underlying complexities of SGML in favor of a
more flexible model, so writing programs to handle XML will be much
easier than doing the same for full SGML.

• Information will be more accessible and reusable, because the more flexible
markup of XML can be used by any XML software instead of being
restricted to specific manufacturers as has become the case of HTML.

• Valid XML files can be used outside the Web as well, in an SGML
environment.

The TAOML-to-XML Translator works in the following way:

 procedure TAOML-to-XML translator
 begin
 open TAOML page
 while (not end of file) do
 begin
 read one line from the input file
 recognize tag
 convert into appropriate XML tag
 write into output file
 end
 end

7. Pragmatics: Tools for a Multimedia Development Environment 115

To implement the TAOML-to-XML Translator, we need a DTD
(Document Type Declaration), which is a grammar that describes what tags
and attributes are valid in an XML document, and in what context they are
valid. DTD specifies which tags are allowed within certain other tags, and
which tags and attributes are optional. With regard to a DTD, an XML
document can: 1) refer to a DTD using a URI, or 2) include a DTD inline as
part of the XML document, or 3) omit a DTD altogether.

The DTD for TAOML is as follows:

<!ELEMENT TAO (TAO_NAME, TAO_TYPE, TAO_TEMPLATE,
 (TAO_LINKS)*, (TAO_IC)?, (TAO_SENSI)?, (TAO_DATA)?)>
<!ELEMENT TAO_NAME (#PCDATA)>
<!ELEMENT TAO_TYPE (#PCDATA)>
<!ELEMENT TAO_TEMPLATE (#PCDATA)>
<!ELEMENT TAO_LINKS EMPTY>
<!ATTLIST TAO_LINKS
 name CDATA
 type CDATA
 obj CDATA
>
<!ELEMENT TAO_IC EMPTY>
<!ATTLIST TAO_IC
 flag (old|new)
 ic_type CDATA
 ic_id_list CDATA
 message_type CDATA
 content CDATA
 cgi CDATA
>
<!ELEMENT TAO_SENSI (#PCDATA)>
<!ELEMENT TAO_DATA (#PCDATA)>

The TAOML-to-XML Translator is implemented in PERL. As an
example, the following TAOML is the input:

 <TAO>
 <TAO_NAME> "activate1" </TAO_NAME>
 <TAO_TYPE> mixed </TAO_TYPE>
 <TAO_TEMPLATE> "activate1.tpl" </TAO_TEMPLATE>
 <TAO_IC>
 flag = new
 ic_type = "PR"

116 Chapter 7

 ic_id_list = ""
 message_type = "M0"
 content = ""
 cgi = "corba.cgi"
 </TAO_IC>
 </TAO>

The output XML is as follows:

 <?xml version = "1.0" ?>
<!DOCTYPE TAO SYSTEM "mse.dtd">
<TAO>
<TAO_NAME> "activate1" </TAO_NAME>
 <TAO_TYPE> mixed </TAO_TYPE>
 <TAO_TEMPLATE> "activate1.tpl" </TAO_TEMPLATE>
 <TAO_IC flag =" new" ic_type = "PR" ic_id_list = "" message_type = “M0"
content = "" cgi="corba.cgi" >
</TAO_IC>
</TAO>

9. DISCUSSION

A visual software engineering environment for multimedia applications
has been developed in order to study the visual software development
process. Prototype systems have been developed using the MICE tools.
Preliminary studies have shown that while novice users especially appreciate
the visual environment, expert users prefer to have the option to work
visually as well as textually within the same tool. The MICE approach
allows for powerful applications to be quickly prototyped.

In the future, the tools will be more closely integrated resulting in a
seamless MICE developer’s environment. This environment should provide
a closer linkage between the design of the ICs and the design of the TAOML
as well as automate the transfer of the output of the TAOML Builder and IC
Builder tools to the Web Server where the IC Compiler and TAOML
Interpreter are hosted. In addition, since the TAOML Builder is based on an
underlying Symbol Relation Grammar, a syntax-directed version of the tool
will be built.

