
71

Chapter 6

Semantics: Teleaction Objects

Teleaction Objects (TAOs) possess private knowledge specific to the
object instances. The user can create and modify the private knowledge of a
Teleaction Object, so that the Teleaction Object will automatically react to
certain events to pre-perform operations for generating timely response,
improving operational efficiency and maintaining consistency. Moreover,
Teleaction Objects also possess a hypergraph structure leading to the
effective presentation and efficient communication of multimedia
information. The Active Multimedia System (AMS) is designed to manage
the Teleaction Objects. In the AMS, the private knowledge of each
Teleaction Object is realized by the index cells of Active Index. The
applications to smart multimedia mail and multimedia information retrieval
are described to illustrate the usefulness of Teleaction Objects.

1. INTRODUCTION

We describe the Teleaction Object (TAO) which is a multimedia object
with associated hypergraph structure and knowledge structure. Recently
distributed multimedia systems have become a common requirement for
more and more applications [Berra90]. Although different media types have
different characteristics in the size, resolution, storage method, transmission
method, compression algorithm, presentation technique, etc., two central
problems are common regardless of the application: presenting multimedia
information effectively and transmitting multimedia information efficiently.
It is therefore desirable to have a common approach for multimedia data
modelling, which can lead to the solution of both problems [Little90a]
[Znati93]. Teleaction Object, with its rich classifications of node types, media

72 Chapter 6

types, and link types in the hypergraph structure, enables us to design
algorithms to decide the priority in both communication and presentation for
multimedia information according to the current environment and
restrictions. With the different levels of knowledge specified by the system
and the end-user, the TAO can react automatically to certain events.

An Active Multimedia System (AMS) is designed based upon the
concept of TAOs [ChangH95b]. The AMS provides mechanisms for
manipulating the TAOs so that the system can gather the private knowledge
from a TAO instance and merge it into the knowledge base. The AMS
provides mechanisms for maintaining the knowledge so that the TAO can
automatically react to certain events to pre-perform operations for generating
timely response, improving operational efficiency and maintaining
consistency. The AMS also provides the tools so that the user can create
his/her own TAO, and implement his/her own applications to handle the
TAO. The Teleaction Object is a conceptual model. In actual
implementation, the Teleaction Object can be implemented as objects in an
object-oriented system. For a Multimedia Mail System, for example, a mail
can be regarded as a Teleaction Object.

The approach of Teleaction Object model can support and improve many
applications. For example, in the global information system such as the
World-Wide Web (WWW) [Berners-Lee92], the user can navigate in the
hyperspace supported by the network. But the major limitation is that the
information-requesting mechanism constrains any transaction between the
user and system to be passive. The Teleaction Object approach can be
incorporated with the WWW browser such as the Mosaic. Therefore, the
knowledge part will support the active actions in network information
systems, such as two-way interaction [Dimit94], or pre-fetching.

Another application domain for Teleaction Object is delayed
conferencing [Hou94]. The objective for delayed conferencing is to allow a
group of participants to exchange information, including existing and newly
created information, in a timely and consistent manner. Such delayed
conferencing is based on the multimedia-based message delivery mechanism
and exchanged information consisting of multimedia objects. Current
multimedia mail systems plus groupware systems [Borenstin92]
[Goldberg92] may support delayed conferencing. However, the limitation is
that the system only executes/takes actions when the message is read by the
recipient, or when the recipient answers certain questions. There are
occasions when it is required to take action even before a message is read, or
the recipient's environment is changed. The user should be allowed to define
the event and the condition for actions to take place. The Teleaction Object
approach can be applied to delayed conferencing because it supports

6. Semantics: Teleaction Objects 73

multimedia information exchange and maintains the knowledge at different
levels to automatically react to the events.

This chapter is structured as follows. The next section gives the
definitions and the motivation of the definitions for a Teleaction Object with
both hypergraph structure and knowledge structure. Section 3 presents a
scenario to explain how the Teleaction Objects work in the Active
Multimedia System. The system architecture of the Active Multimedia
System is described in Section 4. Based on the Active Multimedia System
and the Teleaction Object approach, a working Smart Multimedia Mail
application is illustrated in Section 5. Section 6 discusses application to
multimedia information retrieval where an index cells hierarchy leads to
user-specific pre-fetching of multimedia information. Section 7 discusses
some of the contributions and identifies ongoing and future research.

2. DEFINITION OF TELEACTION OBJECTS

A Teleaction Object can be as simple as a single piece of information
without connection or relation to any other objects. Or we can combine
several TAOs in certain connections into a new complex TAO and/or add
certain knowledge to a TAO. Basically, the TAO is further refined as two
parts (G, K): hypergraph G and knowledge K. For a TAO, the hypergraph G
is used to describe the connections and relations between the sub-TAOs
within it. The knowledge K is used to describe the actions.

The Active Multimedia System AMS is a system that manipulates and
maintains the Teleaction Objects and also provides the basic tools and
methodology such that users can implement their own applications to handle
the TAOs. The AMS is similar to the operating system of a computer, but
instead of allocating and maintaining the resources AMS allocates and
maintains TAOs. Section 4 will give the details of AMS architecture.

2.1 Definition of TAO Hypergraph Part

The hypergraph structure G plays an important part in TAO. Basically G
is a graph structure (N, L), where N is a set of nodes and L is a set of links.
Each node in G represents another Teleaction Object (TAO) and a link
represents a specified relation or connection between these TAOs. By further
refining the types of nodes, media and links, we can utilize this hypergraph
structure for the dual purposes of regulating multimedia communication and
generating multimedia presentations.

74 Chapter 6

(a) Node types

There are essentially two types of nodes in the hypergraph structure G:
basic node and composite node.

A basic node is defined as a terminal node in the hypergraph structure.
The real media data is associated with the basic node and each basic node
contains one and only one media data type. In other words, the basic node is
the smallest unit of a TAO. For example, an image is a basic node. The
media types for the basic node are defined below in (b).

A composite node is defined as a non-terminal node in the hypergraph
structure. It contains a number of basic nodes and/or composite nodes. The
composite node is a group of data instead of a single real media data. For
example, a book chapter is a composite node in the hypergraph structure of a
book because it contains sections, pictures and tables. By using the
composite nodes, we not only can present the hierarchy of the multimedia
object, but also can apply knowledge to a group of multimedia objects.

(b) Media types

Each media type has different characteristics of size, cost, user interface,
storage hardware, interpretation, etc. Since applications choose different
media types under different situations and considerations, knowing the
media type is helpful for the system to optimize its performance. In our
system, we define media types for the basic node in TAO as: text, graphics,
image, moving-graphics, moving-image, audio, video, form and live-demo;
while composition is for a composite node.

• text is coded alphanumeric data. It is the most basic media type for most
multimedia applications.

• graphics is formatted picture data.
• image is pixel formatted picture data.
• moving-graphics, also called animation, is the formatted data of a graphics

sequence.
• moving-image is a sequence of image frames.
• audio is formatted sound data.
• video is a combination of synchronized moving-image and audio.
• form restricts user input, possibly with additional formula to generate the

content automatically.
• live-demo is a program that can be run to provide an interactive demo.
• composition is the media type of a composite node in TAO.

6. Semantics: Teleaction Objects 75

(c) Link types

We represent the specific relations and connections between nodes by
using different types of links: attachment link, annotation link, reference
link, location link and synchronization link.

An attachment link links a composite node A and another node B which
is either a basic node or a composite node. It indicates that node B is a
component of node A. This is the essential relationship between nodes in a
multimedia hypergraph structure.

An annotation link links node A with node B, and both nodes can be
basic node or composite node. This type of link specifies node B is an
annotation associated with node A. The annotation has a different meaning
from that of the attachment because the annotating node is an explanation or
a synopsis of the annotated object, but it is not a necessary component
required to construct the annotated node.

A reference link specifies there should be a navigation path from one
node A to another node B when the user is browsing in the hypergraph
structure G. Node B should be a node with no bundled node (to be explained
later) as its ancestor.

A location link specifies the spatial relationship between nodes for their
presentation. The number of nodes linked by a location link can be more
than two and the type of each node can be basic node or composite node. We
have developed a fuzzy relation language FRL [ChangH95a] to describe the
spatial relationship in both horizontal and vertical directions. For example,
image A and image B are located side by side and touching one another in
the horizontal direction, which can be expressed by the location link with the
relation language such as "X: A] == [B".

A synchronization link specifies the temporal relationship between nodes
for their presentation. The number of nodes linked by a synchronization link
can be more than two and the type of each node can be basic node or
composite node. Similar to location links, we can use the same relation
language to describe the temporal relationship for the synchronization links
[ChangH95a]. For example, 5 seconds after image A is displayed we would
like to play a moving-graphics B and an audio C at the same time, which can
be expressed by the synchronization link with the relation language such as
"T: A] < 5 [B; T: [B == [C".

For the purpose of facilitating multimedia presentation, multimedia
communication, hyperlinking, and replacement, there is a special feature for
nodes known as bundled nodes. A bundled node can be either a basic node
or a composite node. A bundled composite-node serves as a single unit with
all its components bundled together. For a bundled basic-node, its sole
purpose is presentation. Using the bundling concept greatly simplifies the

76 Chapter 6

specification of multimedia presentation. For instance, if a basic node
containing audio is a bundled node, it can only be played from the beginning
to the end, and it cannot be played half way. For another instance, if a
composite node containing three basic components (text, image, and audio)
is a bundled node, we cannot just present anyone of its components without
presenting the other two.

A function a_bundle(N) is defined for node N as follows:

 = nearest bundled ancestor of node N (excluding itself) in G
a_bundle(N) when traversed along attachment or annotation links from N

 = NIL if such node does not exist.

There are two constraints for bundled nodes. The first is regarding the
relation links which are either location link or synchronization link: a
relation link can be established between two nodes N and M only if (1)
a_bundle(N) is the same as a_bundle(M); or (2) one of them is a_bundle of
the other. The second constraint is regarding the reference links: a reference
link should only link to a node N such that a_bundle(N) = NIL.

Figure 1. Example of legal and illegal links in a hyperstructure.

Bundled nodes have three purposes. First, restricting relation links at
some nodes will retain only the meaningful relations expressed by Fuzzy
Relation Language (FRL) Briefly speaking, FRL is used to express

6. Semantics: Teleaction Objects 77

temporal/spatial relations in presentation between nodes. Without bundled
nodes to limit the use of relation links, many cases would occur which do not
make sense. As explained in Figure 1, the double-edged nodes are bundled
nodes, the lighter arcs represent the relation links, and the crosses indicate
where the relation/reference links are illegal.

Second, restricting reference links at some nodes will maintain the
integrity of presentation. As shown in Figure 1, the dotted arrow linking to
the basic node `text3' is illegal because `text3' is one component of the
bundled node `page3'. The presentation system cannot display `text3' without
displaying all other components of `page3'. Thus, the reference link to `text3'
should be moved up to `page3'.

Third, replacement of a bundled node by another representation-
equivalent bundled node becomes possible. We can devise algorithms to
replace a bundled node by another bundled node, as long as the presentation
effects are comparable by some measurements. For example, the animation
of a demo can be replaced by a live demo (actually running the program).
Replacing a video by a still image with dubbed sound track is another
possible replacement.

2.2 Motivation for TAO Hypergraph Part

In a distributed environment, communication and presentation of multimedia
objects is both time consuming and space consuming. We need to transfer
and display multimedia objects efficiently, effectively, and properly. For
example, when the network traffic is high, we may send the main content of
a multimedia object first, transmitting important images in low resolution,
and leaving out the less important parts for later transmission. When we
present multimedia objects, we need to know the order of presentation and
possibly pre-fetch other data. In other words, we need to determine the
priority of the transmission sequence and the presentation order for
multimedia objects. Thus, a rich set of node types, media types and link
types will enable us to use the hypergraph structure G to control
communication and organize presentation. An example is given in Section 3.
The different types of nodes and their structure in G provide useful
information of different relationships between the TAOs. It is feasible to
design algorithms to traverse the hypergraph G and determine the
transmission sequence and the presentation order according to the currently
available communication bandwidth, recipient's environment, link types,
node types, media types and structure in G [Lin94].

Given a multimedia hypergraph G, we can apply the following algorithm
to generate its Multimedia Data Schema (MDS) [Lin94], which controls the

78 Chapter 6

synchronization between time-related data streams. The MDS is similar to
the Object Composition Petri Net (OCPN) [Berra90], [Little90a].

1. Let g be the subgraph of the hypergraph G so that nodes in g can be traversed from

 the root of G via 'attachment' and 'annotation' links only.

2. For each node n in g, let level(n) be the level of n in the breadth-first spanning tree

 of g.

3. In g, for each synchronization link, which connects two nodes, say Mi and Mj:

3.1. Let Mk defined as Nearest-Common-Ancestor(Mi, Mj), and let

3.2. k = level(Mk).

3.2. /* CASE 1: Ancestor-Descender relationship */

If level(Mi) ≠ level(Mj) and Mk ∈ {Mi, Mj} /* and assume Mi

 = Mk */ then

3.2.1. Let Mj' = Ancestor(Mj) at level k+1.

3.2.2. Propagate temporal information from Mj up to Mj'; and

create a new synchronization relation between Mi and Mj'.

3.3. /* CASE 2: Cousin-Cousin relationship or */

/* CASE 3: Distant relationship */

If (level(Mi) = level(Mj) and level(Mk) + 1 ≠ level(Mj)) or

(level(Mi) ≠ level(Mj) and Mk ∈ {Mi, Mj}) then

3.3.1. Let Mi' = Ancestor(Mi) at level k+1; and

 Let Mj' = Ancestor(Mj) at level k+1

3.3.2. Propagate temporal information from Mi up to Mi' and

3.3.3. from Mj up to Mj'; and create a new synchronization relation between

Mi' and Mj'.

4. Recursively generate MDS by using Algorithm described in [Lin94].

The transitions in MDS indicate points of synchronization and the places
represent the media presentation processing. In other words, we should
present the multimedia objects in a specified order according to the MDS.
Again there are several considerations to generate an effective presentation
sequence, such as the location and synchronization link relation between the
TAOs, computer hardware, capability to display different media type,
storage size etc. An example for MDS is given in Figure 5 of Section 3.

Given a Multimedia Data Schema (MDS), there is an algorithm to
generate its Multimedia Communication Schema (MCS) [Lin94] for an
efficient transmission sequence. There are several considerations to generate
an efficient transmission sequence, such as the size of the TAOs, the type of
the TAOs, the structure of the TAOs, the link relation between the TAOs,
computer hardware, the capability to display different media type, the

6. Semantics: Teleaction Objects 79

storage size, bandwidth of communication, etc. For example, if we adopt the
progressive transmission technique in the communication schema, the low-
resolution image or the low-quality audio will be sent first if the network
traffic is high. Then we try to transmit the higher quality data if possible. For
those nodes connected by a synchronization link, the multimedia objects will
be transmitted according to the synchronization requirements. Also, the
nodes linked by an attachment link should have higher priority than the
nodes linked by the annotation link and reference link because the user may
want to see the content of top-level TAO first. Or the nodes closer to the
currently viewed node should have higher priority than the nodes farther
away from the currently viewed node in the transmission sequence.

Moreover, given a hypergraph G, we can design an algorithm to decide
the pre-fetch sequence in order to improve the efficiency of multimedia
browsing. Thus, only needed data become available based on the currently
viewed TAOs. The pre-fetch sequence is changed dynamically and
performed in the background and does not require monitoring by the user.

From the above discussion, it can be seen that the sets of node types, link
types, and media types will provide the information needed for: (a)
automatic scheduling of synchronization in communication; (b) automatic
generation of proper presentation for specified spatial and temporal relations
and (c) automatic pre-fetching of potential multimedia objects.

2.3 Definition of TAO Knowledge Part

Without specifying the part of knowledge K in a Teleaction Object, a
TAO is just another hyper-media object. In fact, the simplest media object is
a TAO whose hypergraph part is reduced to a simple node and whose
knowledge part is empty. We can classify the knowledge of TAO into four
levels:

System knowledge is associated with all TAO instances. It handles all
generic operations that are applicable to all TAOs. This knowledge defines
the default intent for each TAO. For example, checking the privilege for
viewing each TAO; or keeping the history log; or pre-fetching other TAOs
from remote servers when these TAOs are within a certain distance from the
TAO currently being viewed in the hypergraph G. This knowledge is created
by the system.

Environment knowledge is associated with all TAO instances belonging
to a special user. A user may want to customize his/her AMS operations. So
the user can add or remove some knowledge to his/her local knowledge base.
For example, user A might add a new knowledge to purge TAOs whenever
the system storage is low. The user can also overwrite some system
knowledge, for example, he/she can change the distance criterion for pre-

80 Chapter 6

fetch. The environment knowledge can be generated by either the system or
the user.

Template knowledge is associated with a group of TAO instances in a
predefined format. For frequently used TAO formats, a hypergraph as well
as the associated knowledge can be provided, such as the time scheduler, the
weekly work report generator, the resume, etc. It can be generated by either
the system or the user.

Private knowledge is associated with one special TAO instance. This is
the most important knowledge for the user because it carries individualized
knowledge, which the user has created for the single TAO instance. It is
generated by the user.

There is a local knowledge base for each user. When a user registers for
the first time, AMS will create a local knowledge base for this user and
initialize it with the system knowledge. After that, the environment
knowledge is merged, withdrawn or overwritten into the local knowledge
base. As time goes by, lots of template knowledge and private knowledge
will be merged into or removed from local knowledge base when the TAOs
become alive/dead. Therefore, the knowledge base is local because after the
initialization, the inclusion of different environment knowledge, template
knowledge and private knowledge leads to different user's local knowledge
base.

For a Teleaction Object TAO instance, as discussed in previous sections,
it is represented by the (G, K) pair. The knowledge part K of a TAO instance
could be either the template knowledge if the TAO is a predefined template
instance, or the private knowledge if the TAO is an individual TAO instance.
When the Teleaction Object (G, K) becomes available, K is merged into the
user's local knowledge base. Similarly, when the TAO becomes unavailable,
the corresponding K should be withdrawn from the user's knowledge base.
When a TAO moves from one user A's local knowledge base to another user
B's local knowledge base, K will be copied into B's local knowledge base.
With a better algorithm, part of the K will be merged into A's local
knowledge base and part of K will move along with the TAO and be merged
into B's local knowledge base.

Conceptually, there is a priority for overriding the existing knowledge as
follows: private knowledge, template knowledge, environment knowledge,
and system knowledge, where the private knowledge has the highest priority
and the system knowledge has the lowest priority.

6. Semantics: Teleaction Objects 81

Figure 2. User A sends a Teleaction Object to user B.

As illustrated in Figure 2, the solid line indicates the transmission of the
TAO from user A to user B, and the dotted lines indicate the sharing of
private knowledge of TAO in both system A and system B. Private
knowledge has the highest priority to override others in the local knowledge
base.

From the object-oriented point of view, each TAO instance and each
knowledge piece has its own class name. The hierarchy class name is
indicated in the hierarchy, such as "root.TAO.mail". Therefore, once a TAO
instance is available in the AMS system, knowledge with the same class
name and super-class name will be attached to it. If the knowledge pieces
have naming conflicts, the system will use the one with the longest class
name inheriting and overriding knowledge at different levels. For example,
once a TAO instance with the class name "root.TAO.mail" is available in the
AMS, the system will attach the knowledge with class name "root",
"root.TAO", and "root.TAO.mail" to it. And if two knowledge pieces have
the same name, "pre-fetching", but with different class names, one being
"root.TAO" and another being the class name "root.TAO.mail", the system
will attach the one with "root.TAO.mail". In other words, it overrides part of
the inherited knowledge.

In our model, the system knowledge in AMS is implemented with class
name "root" and/or "root.TAO". All the instances of TAO will be attached to
it since each TAO instance has a class name beginning with "root.TAO".
Environment knowledge has the ability to modify/add the knowledge piece
with class name "root" and/or "root.TAO", such that the user can customize
his/her own local knowledge base. Template knowledge is used to build up
new knowledge pieces with a nesting class name, such as "root.TAO.mail"
or "root.TAO.mail.resume". Therefore all TAOs with the same class name in

82 Chapter 6

depth, will be attached with this knowledge piece. Finally the private
knowledge is attached to only one single TAO instance. We can implement
the private knowledge piece with the class name ended with the identical
TAO Id number, e.g. "root.TAO.mail.resume.1234". That means only this
single TAO instance belongs to this class. Therefore, the private knowledge
is attached to this TAO instance only.

2.4 Motivation for TAO Knowledge Part

Although we can abstract some useful information from different types of
nodes, media and links of the TAO to improve the communication and
presentation for multimedia data, without the knowledge part the TAO is just
a complex hypermedia object to be used in a passive way. In order to change
the TAO from being passive to active, we add the knowledge part for a
TAO. Therefore, once a TAO becomes available in the AMS, it will add its
own knowledge to the local knowledge base in AMS. And whenever a
specified event occurs, related actions take place according to the
knowledge. In other words, TAO is an active object.

By using the concept of system knowledge level and environment
knowledge level, we can accomplish a customized system for individual
users. After user's AMS is initialized by the system knowledge, it can be
customized by overriding the system knowledge with environment
knowledge. Since both knowledge levels are associated with class name
"root" and/or "root.TAO", these knowledge pieces are applied to all
available TAO instances in the AMS. Basically, these knowledge pieces are
more related to the environment changing, pre-fetching, or pre-processing.

In certain cases, only the user has the best knowledge on how to manage
the object. Therefore, we allow users to specify the knowledge within one
TAO, which means some special knowledge is associated only with this
TAO but not with any other TAO. This is the object's private knowledge. On
the other hand, some TAOs are expected to share the template knowledge.
Both template knowledge level and private knowledge level are for a special
group of TAOs, the only difference is that a single TAO is in the groups of
private knowledge. Basically, the template knowledge is more related to the
application-specific features, such as mail or resume, while the private
knowledge is related to really personal matter for a special single TAO.

From the above discussion, using knowledge in the TAO model will
allow the objects to become active, and using different knowledge levels will
allow the user to customize AMS and to specify private information. These
features enable the Teleaction Object to become an intelligent active object,
and the AMS to be more flexible.

6. Semantics: Teleaction Objects 83

3. A SCENARIO

Let us now present a scenario as an example. A project manager Smith is
preparing a proposal for his boss Kessler and his group members Wang and
Larson. His proposal M1 contains several pages of text, audio and images
and also links to a confidential report M2 for his boss Kessler only. Two
annotations about the image are also included in his proposal. The
hypergraph structure of the proposal is shown in Figure 3.

Figure 3. The hypergraph structure of the proposal.

In Figure 3, the rectangle denotes a basic node and the rounded rectangle
denotes a composite node. The attachment links indicate the composition of
the composite nodes. For example, the proposal M1 is composed of text,
audio and image data; the confidential report M2 is a bundled node
composed of text and video data; and the annotating object "anno1" is
composed of text, audio and animation data. Two annotation links in this
example specify that the image has two annotations on it; one annotation is a
basic node for text data and the other annotation is a composite node. The
reference link indicates there is a navigation path from text of M1 to the
bundled confidential report M2 (in this case, for boss Kessler's eyes only).
Location links specify where the annotations, anno1 and text2, are with
respect to image1 and specify the layout of the confidential report M2. In the
former case, the location links are between parent nodes and child nodes,
while in the latter case, the location link is between sibling nodes and it

84 Chapter 6

specifies that video1 is 20 units above text4. The synchronization link
specifies the temporal ordering in the presentation. In this example, the
synchronization link between animation1 and audio2 specifies that the
audio2 should be delayed 2 seconds after having finished playing the
animation1 while the two synchronization links between image1, audio1 and
text specify they should be started simultaneously for M1.

According to the hypergraph structure, we develop the Multimedia Data
Schema, shown in Figure 4, when any one of the group members decides to
browse the proposal M1. Token flow in a Multimedia Data Schema
illustrates the presentation of multimedia objects, while as token flow in a
Multimedia Communication Schema illustrates the transmission of
multimedia objects.

Figure 4. Multimedia Data Schema.

After Smith creates a Teleaction Object M1 with the hypergraph structure
shown in Figure 3, he may want to accomplish several tasks just for this
special proposal M1 only. The tasks are: (pic.a) the boss Kessler and the two
group members should read this proposal in two days and send back their
responses; (pic.b) the responses from Kessler and at least one of the two
group members are needed in order to proceed to the next step in proposal
preparation; and (pic.c) this proposal should become obsolete after one
week. In this case, Smith will include the private knowledge with the TAO.

In our example, there are four local knowledge bases for the four users:
Smith, Kessler, Wang and Larson, respectively. When these four users first
join the AMS, all have the same local knowledge bases that are initialized
with the system knowledge. For example it may include the following
system knowledge: (sic.a) If the user has read part of a multimedia object,
pre-fetch all the information within two hypergraph links from the object
being viewed, in the associated hypergraph structure; (sic.b) If the user
intends to read a part of the multimedia object, check whether the user has

6. Semantics: Teleaction Objects 85

the privilege or not; (sic.c) If any annotation part is added, do the version
control and history checking; and (sic.d) If any multimedia object is
obsolete, remove it.

After each user has the initial local knowledge base, the three other kinds
of knowledge will be merged into, overwritten on, or removed from the local
knowledge base. For example, the following environment knowledge is
added for Smith: (eic.a) If any new TAO contains the keyword "FYI", make
a copy to folder "FYI-1994"; and (eic.b) If the user has read part of a
multimedia object, pre-fetch all the information within three hypergraph
links from the object being viewed, in the associated hypergraph structure
(perhaps because Smith has a larger storage allocation in his system).

The environment knowledge eic.a is merged into the user Smith's local
knowledge base, while the environment knowledge eic.b overwrites the
system knowledge sic.a. Therefore, all the TAO instances available in
Smith's local system are different from that of the other three users because
when a new "FYI" TAO becomes available, Smith's local knowledge base
will have a backup copy in a folder while other's local knowledge base will
not; and TAOs are pre-fetched within three links distance instead of two
links distance in Smith's local system.

Returning to Smith's proposal M1, he creates the private knowledge for
M1 and sends it to the other three users. Part of the private knowledge may
go with the message while some knowledge may still be kept in the
knowledge creator's local knowledge base. In our example, the two private
knowledge, pic.a and pic.b, will be sent along with the M1 to the recipient's
local knowledge base. In other words, these two private knowledge pieces
will be merged into Kessler's, Wang's, and Larson's local knowledge bases.
As for the last private knowledge pic.c of proposal M1, it is not sent along
with M1, instead it is merged into Smith's local knowledge base. The
concept is also illustrated in Figure 3.

Also in this example, we can expect that the private knowledge pic.c will
override the system knowledge sic.d. If this proposal M1 is expired, all
information of M1 is stored instead of being removed.

4. THE AMS ARCHITECTURE

We have discussed the two important components of a TAO: the
hypergraph structure G and the knowledge K. In this section, we describe the
AMS architecture that handles and maintains all the TAOs.

86 Chapter 6

Figure 5. The architecture of AMS.

The AMS consists of two subsystems: a domain-specific part and a
system-specific part as shown in Figure 6. The system-specific part
performs the generic functions. The application programmers can use the
tools and the generic functions to implement his/her own application with
TAOs. After the TAOs have been generated by this application and passed to
the AMS core, they will be translated, maintained and operated by the
system-specific part.

The AMS provides the basic tools upon which users can implement their
own applications. A browsing tool is provided for the user to browse the
hypergraph G of a TAO. An editor tool is also provided for the user to edit
the hypergraph G of a TAO. Other tools allow users to change the system
knowledge and build up their own environment knowledge. The template
knowledge and private knowledge of TAOs are generated by application-
specific tools. For example, we can implement a Smart Multimedia Mail
application, which is like a mail system but deals with multimedia mail and
also can be associated with private knowledge. In other words, the Smart
Multimedia Mail System generates and handles the TAO as a mail object,
and all the TAOs generated by this mail system are maintained by AMS,
similar to the way files are maintained by an operating system's file manager.
The only difference is that AMS will maintain the TAOs as active objects.
Another example is a simple multimedia calendar. In this case, the
hypergraph part G is not so important, but we can set alarm and a list of
tasks to be performed at appropriate times. For example, instead of only
beeping, a TAO generated by this calendar can also automatically invoke
specified operations.

6. Semantics: Teleaction Objects 87

Figure 6. Relation between the AMS application and the AMS Core.

Each AMS tool or user implemented application has the basic
components and the relation with the AMS core, as shown in Figure 6. In
the above diagram, the line separates the architecture into two subsystems
according to the dependence on domain knowledge. The left-hand side is an
application-dependent subsystem, including tools provided by AMS and
applications developed by programmers. Rectangles represent processes
while ellipses represent formatted data. Solid arrows represent knowledge
flow while dashed arrows represent event flow. The application-specific
Application Handler allows the user to create special purpose TAOs and the
Knowledge Generator transforms the knowledge part of these TAOs to the
Formatted Knowledge defined in AMS. Therefore, in the right-hand side, the
application-independent subsystem AMS itself, when a TAO becomes alive
in AMS the Interpreter obtains the formatted knowledge and converts or
merges it into the Local Knowledge Base. The local knowledge base is
modelled by the Active Index that is a collection of index cells (ICs)
[Chang95a] in AMS. At each local AMS system, the Event Filter will
monitor the environment, user behavior, specified events, and internal
messages, then generate the corresponding messages to the Smart Engine,
while the Smart Engine distributes the messages to corresponding ICs in the
local knowledge base to invoke the corresponding actions.

4.1 The Local Knowledge Base

The basic concept of AMS is to respond to the environmental changes
and take corresponding actions according to user defined knowledge, and to

88 Chapter 6

provide a way such that each TAO has it own private knowledge. In other
words, "active" and "private" are the two key ingredients of AMS.

The local knowledge base is defined to be a set of ICs connected by
messages [Chang95a]. An IC accepts input messages and performs some
computation. It then activates another group of ICs, and posts the output
message to these output ICs. If some of these output ICs have already been
activated, they may simply accept the output from the current IC. The first
output cell that accepts the output message will remove it from the output list
of the current cell. After its computation, the IC may remain active (live), or
de-activate itself (dead). An IC will also become dead, if it remains inactive
for a certain period of time, i.e., if no other cells (including itself) send
messages to it. An IC consists of a finite number of ICs. When the IC is in
actual computation, it consists of a time-varying collection of ICs in
different states, accepting certain input messages and posting output
messages to the output lists.

Each IC has two functions: f is an acceptance function that determines
when the IC is enabled and ready to fire. Once all the required messages
become available, f will remove the messages from the output lists of the
message-sending ICs and enable the IC. g is a knowledge function that
performs the firing procedure for the IC. Once the f enables the IC, g will
take over the control and fire the IC. According to the messages accepted by
f, the firing procedure will decide (1) the next state of the IC; (2) how to
generate new messages for specific ICs; and most importantly (3) how to
perform a specific action sequence.

The IC is the local knowledge base in AMS. And for each TAO in AMS,
there are corresponding ICs in the AMS

4.2 Formatted Knowledge for TAOs

According to the definition of an IC, g is the knowledge function in each
IC which contains its own finite-state-machine. Basically the g function
accepts the input set of messages, computes the next state, generates any
new message to other ICs, and performs the corresponding action-sequence.
The following BNF definitions show the essential syntax of formatted
knowledge used in AMS. By using the hierarchy class name in the < Class
Name > of < IC Def > production, we can decide which class of TAO the
knowledge function g should be applied to.

< Formatted Knowledge > ::= < Message Def > < Action Def > < IC Set Def >
< Message Def > ::= {EVENT < Event Name > = < Event Expr. > }*
< Action Def > ::= {ACTION < Action Name > { < Parameter List > } }*
< Parameter List > ::= (< Parameter > {, < Parameter > }*)

6. Semantics: Teleaction Objects 89

< IC Set Def > ::= < IC Def > { ; < IC Def > }*
< IC Def > ::= IC < Type > < ID > < Class Name > < Max Life Time >
 < FSM >
< FSM > ::= FSM: < Number of State > < State Trans List >
< State Trans List > ::= < State trans > { , < State trans > }* ;
< State trans > ::= (< Current_State > , < Next State > , < Input > , < Output > ,
 < Action >) | NIL
< Input > ::= (< Message List >)
< Output > ::= ({ < IC-Message > }*)
< IC-Message > ::= (< IC Set > ; < Message List >)
< IC Set > ::= < IC > { , < IC > }*
< Message List > ::= < Message > { , < Message > }*
< Action > ::= (< Action-process List >)

4.3 The Application Handler and Knowledge Generator

For each application, we need an application-specific Application
Handler for the end user to work on, and also to provide an easy way to
collect the special knowledge given by the end user and this application.
After the application creates the TAO, the Knowledge Generator transforms
the knowledge gathered from the user to a format suitable for the Interpreter
in AMS.

Generally speaking, we can use the multimedia editor tool provided by
the AMS to generate the hypergraph structure of a TAO. The knowledge part
of a TAO is more application-specific. For example, in a multimedia mail
system, the knowledge is about reading, replying, editing, forwarding a mail,
etc. While in a medical image system, the knowledge is about diagnosis
studies, different image modalities for diagnosis studies, image processing,
etc.

4.4 The Interpreter

For each newly created TAO, the Interpreter will transfer the knowledge
part K from formatted form to ICs and merge into the local knowledge base.
Since the rule set is in a well-defined format, the interpreter can easily
generate customized IC dynamically in AMS. In other words, we can use the
AMS interpreter to generate a new knowledge function g in an IC
dynamically, if necessary.

90 Chapter 6

4.5 The Event Filter

There are numerous events occurring in the system, but for different
applications only some events are meaningful while others are not.
Therefore, we can use an event filter to filter out events and that can be
ignored and allow only meaningful events to enter the AMS.

4.6 The Smart Engine

The Smart Engine maintains the current ICs according to the messages.
Since the message is generated by some events, the AMS system is event-
driven and can respond to the environmental changes automatically. The
message is generated either internally, a result from ICs, or externally, a
result from the event filter. The Smart Engine operates as follows: it takes
messages and distributes to specific ICs, then checks the corresponding
acceptance functions f. If the acceptance function is satisfied, it removes the
messages and invokes knowledge function g to fire the IC and performs the
action sequence.

When the TAO is not available, it indicates that the corresponding IC is
in a dead state, so the Smart Engine needs to remove the IC from the Active
Index, and that IC is then withdrawn from the local knowledge base.

5. APPLICATION TO MULTIMEDIA MAIL

Based upon the AMS, we can implement different applications, e.g.
smart medical image system, home shopping system, real-estate survey
system, etc. In this section, we describe a Smart Multimedia Mail system
(SMM) which is based on both AMS and e-mail system.

In SMM, each multimedia mail is a Teleaction Object. SMM provides a
simple user interface so that the end user can create his/her private
knowledge for individual mail messages. For example, the user can set
alarms for his/her important mail (illustrated by the example described in
Section 3); collect statistical information; re-route the mail to other
recipients; or determine the schedule for a group. The user can also define
template mail with associated template knowledge, such as a weekly report,
sign-up sheet, etc.

The SMM is implemented in four functional blocks as shown in Figure
7. The Mail-Editing and Mail-Browsing blocks can be implemented using
the AMS Editor and AMS Browser tools respectively. Just two blocks are
left for the application designer: Mail-Handling and Mail-Knowledge-
Editing.

6. Semantics: Teleaction Objects 91

Figure 7. Function diagram of the Smart Multimedia Mail system SMM.

5.1 User Interface of SMM

The SMM begins with an ordinary mail-board. The user
can view and
create a multimedia message. When receiving a SMM mail, SMM will pass
the private knowledge associated with this mail to AMS and merge it into
the reader's local knowledge base. Therefore, whenever an event
corresponding to the mail occurs, the IC in AMS will trigger and perform the
related actions. When the user views a mail, SMM uses the browsing tool
provided by AMS for display and browsing of the mail (a TAO) by the
hypergraph layout window and zoom-in windows for detailed browsing, as
shown in Figure 8. When the user wants to create a new multimedia mail,
SMM also uses an editing tool provided by AMS which supports several
ways to get the media data: from file, from database or from live sources.

Besides creating the multimedia mail, the user can also add his/her
private knowledge to the mail. The knowledge is formally defined in Section
4, but the user should not be burdened with this detailed format. Instead, the
user is provided with an application-specific, easy and friendly user
interface. Therefore, SMM needs to provide its own application-specific user
interface for gathering the information, using its generator to create
formatted knowledge for the private knowledge. Later, the AMS interpreter
transfers and merges the knowledge into the local knowledge base.
Therefore, in SMM two windows are provided for knowledge acquisition.
After the user has composed the new mail content, he/she can add his/her
own knowledge to only this mail. Thus, he/she needs to open the knowledge
window first, as shown in Figure 9.

92 Chapter 6

Figure 8. Browsing/Editing in Smart Multimedia Mail system (SMM).

 There are two parts for specifying the private knowledge: event sub-
panel and action sub-panel. The event sub-panel specifies the events, and the
action sub-panel specifies the actions. Each panel can accept more than one
statement in `and' connection. In Figure 9, another dialog window is shown
to gather such information. Basically, we constrain the knowledge solicited
from the user into the following four elements: Who, Doing, To Which
Object, and When. (Currently, 'Who' is restricted to have a single value in
the conjunctive logic clauses for all event statements in the same event sub-
panel.)

The user can use the menu to specify the desired behavior. Moreover, the
user can use the mouse (or cursor) to point at objects to specify what specific
part of the message he/she refers to. This menu-based interface for
specifying the private knowledge of a smart object in SMM is easy to use.
All the user needs to do is to select menu items and to point at the objects
without worrying about the detailed format of the knowledge. Then, SMM
will automatically transform the user's specification into the formatted
knowledge by applying the following algorithm.

6. Semantics: Teleaction Objects 93

Figure 9. Dialog windows for the private knowledge in SMM.

1. Generate EVENT definitions of SMM.
2. Generate ACTION definitions of SMM.
3. Generate the IC Title with the class name "root.TAO.mail" concatenated

with the TAO Id.
/* Assume each sub-panel has one or more statements that are conjunctive */
4. For each statement with "When", use the value of "When" to generate an

alarm and place it into the Sender_ALARM set or Recipient_ALARM set according
to "who".

5. If Sender_ALARM set is not empty, generate the FSM trans:
(State0, State1, (SEND), (NIL), (a list of Set_Alarm for all alarms in the

 Sender_ALARM set))
6. If Recipient_ALARM set is not empty, generate the FSM trans:

(State0, State1, (ARRIVE), (NIL), (a list of Set_Alarm for all alarm in
 the Recipient_ALARM set))

7. If both Sender_ALARM set and Recipient_ALARM set are empty,
generate the FSM trans:

(State0, State1, (NIL), (NIL), (NIL))
8. For each event sub-panel /* private knowledge*/

8.1. For each statement with "When", generate the FSM trans:
 /* setup the alarm & actions*/

(State1, State1, (event in this statement), (NIL), (Cancel_Alarm of
 related alarm))

8.2. For all statements without "When", generate the FSM trans:

94 Chapter 6

 /* setup actions */
(State1, State1, (collection of events in all of these statements and all

 alarms), (NIL),
(all actions in the action sub-panel))

9. generate the final FSM trans:
(State0, Dead, (DEL), (NIL), (NIL))
(State1, Dead, (DEL), (NIL), (Cancel_Alarm of all alarms in all

 sub-panels))

Figure 10. Heuristic algorithm to generate private knowledge in SMM.

5.2 The Knowledge Generator of SMM

After the user fills out the information in the event sub-panel and action
sub-panel, the knowledge generator of SMM will gather all the information
and transform it to the formatted knowledge defined in AMS. Following our
example in Figure 9, the piece of knowledge is: "If the recipient does not
view this mail within 2 days after the mail arrives, then send a message back
to the sender and beep a message to the recipient". By applying the heuristic
algorithm in Figure 10, the corresponding pieces of formatted knowledge
are generated as shown below:

EVENT ARRIVE = ...

EVENT VIEW = ...

EVENT ALARM2 = ...

EVENT DEL = ...

. . .

6. Semantics: Teleaction Objects 95

ACTION Set_Alarm(own_IC_Id, duration, event_label, ...)

 ACTION Cancel_Alarm(IC_Id, event_label, ...)

 ACTION Reply_Message(user_Id, message_no, ...)

ACTION Beep_Message(user_Id, message_no, ...)

. . .

IC M1 #1234 "root.TAO.mail.#1234" INFINITE_TIME

FSM :{State0, State1, Dead}

/* setup alarm when arrival in recipient */

(State0, State1, (ARRIVE), (NIL),

 (Set_Alarm(own_IC_Id(), 2_days, ALARM2, ...))

/*Cancel alarm when recipient views it */

(State1, State1, (VIEW), (NIL), (Cancel_Alarm(own_IC_Id(), ALARM2, ...)))

/* Reply and beep if expired */

(State1, State1, (ALARM2), (NIL), (Reply_Message(sender_Id(), mesg1, ...),

Beep_Message(own_Id(), mesg1, ...)))

(State0, Dead, (DEL), (NIL), (NIL))

(State1, Dead, (DEL), (NIL), (Cancel_Alarm(own_IC_Id(), ALARM2, ...)))

6. APPLICATION TO MULTIMEDIA
INFORMATION RETRIEVAL

To retrieve information in the hyperspace which is represented by a
hyperstructure (i.e. a hypergraph structure), we can associate an IC with
every recently accessed node in this hyperstructure. Thus the IC is a finite
set of recently accessed nodes. The IC can be constructed as follows: It
accepts a query and activates the adjacent ICs, and in turn posts queries to
them. The action performed is to pre-fetch information items satisfying the
query. A further refinement is to pre-fetch information items above a certain
size. The justification is that we need only pre-fetch large information items,
small information items need not be pre-fetched. At the University of
Pittsburgh, we have added the IC to Mosaic, creating a new version called
Mosaic-IC which has pre-fetching capabilities. An example of Mosaic-IC is
illustrated in Figure 6 of Chapter 5, where the background window on the
right displays the trace of executions of the IC, and the action_icons in the
upper-right corner show the actions performed.

From the above application examples, it can be seen that the two
important features we introduced in the Active Multimedia System - `active'
and 'private' - are both realized by the Active Index. In AMS, the users can
specify their private knowledge and then combine that with the system's
knowledge, resulting in greater flexibility in AMS's adaptive behavior.

96 Chapter 6

The `private' knowledge means polymorphism - certain objects can
obtain reactions different from reactions to other objects even in the same
environment. For example, in the AMS mail system described in Section 5,
the users can specify their private knowledge such as the importance of
different message classes. Therefore, the sender specifies his/her private
knowledge (the importance of message classes) so that if the recipient
forgets to view a particular message, a reminder will show up on both the
sender's and the recipient's screen. Another interesting example is the
inclusion of different levels of pre-fetching methods in Mosaic-IC, which is
the Mosaic browser equipped with ICs. The AMS will provide two basic
levels of pre-fetching methods. For a particular application, users can add
their own pre-fetching methods based on their special considerations.

Basically, the Active Index maintains the `active' knowledge of AMS. In
order to combine private knowledge with system's knowledge, in the Active
Index we can divide the ICs into groups to form a hierarchy. In this
hierarchy, one class of ICs can share the same methods. Messages sent to
higher level ICs will be handled by the higher level methods. Only when
there is no higher level method, will the message be sent to ICs at lower
levels and handled by lower level methods.

Going back to the previous example of customized pre-fetching methods
in Mosaic-IC, as shown in Figure 11, there are different classes of ICs in the
hierarchy. XIC1 uses the simplest pre-fetching method of sequentially
retrieving objects. XIC2 uses a smarter pre-fetching method by consulting
both the current system profile and the user profile. XICT is designed to
perform catalog searching, and can pre-fetch information from a special
catalog. Therefore, most users using the Mosaic-IC will only need one or
two levels of pre-fetching. But once the users get into the catalog searching
application, they may need one additional level of pre-fetching.

6. Semantics: Teleaction Objects 97

Figure 11. Different prefetching situations.

For different applications, different ICs from the hierarchy can be used.
XIC1 pre-fetches in sequence, XIC2 pre-fetches by user/system profiles,
XICS pre-fetches based upon the result of learning from users' past
behaviors, while XICT pre-fetches by special knowledge in catalog
searching.

Of course it is possible to have more levels of pre-fetching methods. For
example, the AMS can use a learning monitor to observe the Mosaic-IC
users' behavior. Then the AMS can develop a specialized IC at a new
intermediate level with a customized pre-fetching method. For instance,
XICS is for a particular user such as John who checks the technical reports
on multimedia database very often using Mosaic-IC. Then John's normal
navigation in Mosaic-IC will use three levels of pre-fetching methods: XIC1,
XIC2, and XICS, where XICS has the highest preference in `multimedia'.
But when John steps into the catalog searching application, then the pre-
fetching methods may include four levels: XIC1, XIC2, XICS, and XICT.
Combined, the pre-fetching will prefer the current interests in catalog

98 Chapter 6

searching, then in `multimedia' information, and then according to
user/system profiles and finally the sequential accessing of all objects.

In implementation, the message M is sent to the hierarchical group of
ICs, not to an individual in the group. With a tag in the message M, the
message M is either a normal message or a broadcast message. For the
normal message M sent to the hierarchical group, the highest level will catch
this message first. If the highest level cannot handle this message, it is
passed to the next higher level until one IC catches it, and finally to the
lowest level IC. For the broadcast message, it will be passed to the next level
IC whether the current IC catches it or not. But in both cases, the message
passing is in a sequential order, not in a non-deterministic order, as shown in
Figure 12. For example, a KILL message for the hierarchical group of pre-
fetching should be a broadcast message, while the PROFILE_CHANGED
message could be a normal message that is caught only by XIC2.

Figure 122. Message passing through a hierarchy of ICs.

7. DISCUSSION

A desired requirement for multimedia applications is that the user be able
to interact with multimedia objects that are aware of environmental changes
and moreover are able to dynamically incorporate unanticipated information
to better react to environmental changes.

In this chapter we have presented the Teleaction Object model for the
design of an Active Multimedia System. This model emphasizes a unified
approach for the modelling of multimedia applications, presentation and
communication, as a collection of interacting objects. Teleaction Objects are
formally specified as (G, K) pairs. With the types of node, media, and link in

6. Semantics: Teleaction Objects 99

the hypergraph G, we can design algorithms for the efficient communication
and effective presentation of multimedia information. Using multiple levels
of knowledge realized by ICs, the user could customize the AMS and also
apply private knowledge to certain group of TAOs.

Our approach has the following advantages as compared to the traditional
AI approach: (1) The AMS system is not a rule-based system. It is based on
the IC technique that will dynamically modify itself to perform various
operations. (2) The TAO incorporates hypergraph structures that represent
domain knowledge not easily captured by expert system rules. (3) The IC
technique enables the system to localize a small set of rules in its operations.
The AMS system, therefore, is more efficient than a general purpose expert
system. ICs also share some characteristics of intelligent agents [ACM94],
but the fundamental difference is that an IC is a data structure to facilitate
information access and knowledge processing. We can use an IC to realize
B-trees and other conventional data structures efficiently. An Active Index
may have millions of ICs, whereas agent-based systems typically have at
most hundreds of agents.

A prototype Active Multimedia System (AMS) for Smart Multimedia
Mail application (SMM) has been implemented on SUN workstations.
Currently, our implementation effort for AMS is taking a direct approach. It
has been our concern for the standardization regarding the implementation of
AMS. As mentioned in Chapter 2, an ISO standard for programming
environments for the presentation of multimedia objects, called PREMO
[Herman94], has drawn a lot of attention. PREMO addresses the issues of
configuration, extension, and inter-operation of and between PREMO
implementations. From its conceptual framework, PREMO is based on an
object model in which object operations can be synchronous, asynchronous,
or sampled. Besides active objects, events are used as the basic building
block for its event model. Standards like PREMO will eventually provide a
standardized development environment for active multimedia systems such
as AMS.

100 Chapter 6

