
35

Chapter 4

Syntax: Multimedia Languages

Visual languages, which let users customize iconic sentences, can be
extended to accommodate multimedia objects, letting users access media
dynamically. Teleaction objects, or multimedia objects with knowledge
structures, can be designed using visual languages to automatically respond
to events and perform tasks like “find related books” in virtual library
Bookman.

Languages that let users create custom icons and iconic sentences are
receiving increased attention, as multimedia applications become more
prevalent. Visual language systems let the user introduce new icons, and
create iconic sentences with different meanings and the ability to exhibit
dynamic behavior. With a graphical user interface, the user must generally
compose commands with predefined icons, which limits the range of
commands and makes dynamic composition rather difficult. It is also
awkward to customize such commands without cluttering the screen. These
limitations are significant in multimedia applications because the user must
often access multimedia information dynamically with very few icons.

At the University of Pittsburgh and Knowledge Systems Institute, we
have developed a formal framework for visual language semantics that is
based on the notion of icon algebra and have designed several visual
languages for the speech impaired. In Chapter 3 we described the underlying
grammar for a visual language. We have since extended the framework to
include the design of multidimensional languages — languages that capture
the dynamic nature of multimedia objects through icons, earcons (sound),
micons (motion icons), and vicons (video icons). The user can create a
multimedia message by combining these icons and have direct access to
multimedia information, including animation.

36 Chapter 4

We have successfully implemented this framework in developing
Bookman, an interface to a virtual library used by the students and faculty of
the Knowledge Systems Institute. As part of this work, we extended the
visual language concepts to develop teleaction objects, objects that
automatically respond to some events or messages to perform certain tasks
[ChangH95b]. We are continuing work on extensions to the visual interface
in the context of emergency management, where the information system
must react to flood warnings, fire warnings, and so on, to present multimedia
information and to take actions [Khali96].

Figure 1. The BookMan interface to a virtual library lets the user select different search
modes.

Figure 1 shows the search and query flexibility possible with the
Bookman interface. In addition, users can perform a range of tasks,
including finding related books, finding books containing documents similar
to documents contained in the current book, receiving alert messages when
related books or books containing similar documents have been prefetched
by BookMan, finding other users with similar interests or receiving alert
messages about such users (the last function requires mutual consent among
the users) etc. In developing the interface, our goal was to give users the

4. Syntax: multimedia languages 37

same range of freedom they might experience in a real library. Much of this
power stems from the use of TAOs.

1. WHAT TELEACTION OBJECTS DO

To create a TAO, we attached knowledge about events to the structure of
each multimedia object — a complex object that comprises some
combination of text, image, graphics, video, and audio objects. TAOs are
extremely valuable because they greatly improve the selective access and
presentation of relevant multimedia information. In BookMan, for example,
each book or multimedia document is a TAO because the user can not only
access the book, browse its table of contents, read its abstract, and decide
whether to check it out, but also be informed about related books, or find out
who has a similar interest in this subject. The user can indicate an intention
by incrementally modifying the physical appearance of the book, usually
with just a few clicks of the mouse.

TAOs can accommodate an almost limitless range of functions. For
example, when the user clicks on a particular book, it can automatically
access information about related books and create a multimedia presentation
from all the books.

The drawback of TAOs is that they are complex objects and therefore the
end user can not easily manipulate them with traditional define, insert,
delete, modify, and update commands. Instead, TAOs require direct
manipulation, which we provided through a multidimensional language.

The physical appearance of a TAO is described by a multidimensional
sentence. The syntactic structure derived from this multidimensional
sentence controls its dynamic multimedia presentation. The TAO also has a
knowledge structure called the active index that controls its event-driven or
message-driven behavior. The multidimensional sentence may be location-
sensitive, time-sensitive or content-sensitive. Thus, an incremental change in
the TAO’s external appearance is an event that causes the active index to
react. As I describe later, the active index itself can be designed using a
visual-language approach.

2. MULTIDIMENSIONAL LANGUAGE

The multidimensional language consists of generalized icons and
operators, and each sentence has a syntactic structure that controls the
dynamics of a multimedia presentation.

38 Chapter 4

2.1 Generalized icons and operators

In Chapter 3 we presented the elements of visual languages and described
the icons and operators in a visual (not multidimensional) language. In a
multidimensional language, we want not only icons that represent objects by
images, but also icons that represent the different types of media. We call
such primitives generalized icons and define them as x = (xm, xp) where xm

is the meaning and xp is the physical appearance. To represent TAOs, we
replace the xp with other expressions that depend on the media type:

• Icon: (xm, xi) where xi is an image
• Earcon: (xm, xe) where xe is sound
• Micon: (xm, xs) where xs is a sequence of icon images (motion icon)
• Ticon: (xm, xt) where xt is text (ticon can be regarded as a

subtype of icon)
• Vicon: (xm, xv) where xv is a video clip (video icon)

The combination of an icon and an earcon/micon/ticon/vicon is a
multidimensional sentence.

For multimedia TAOs, we define operators as

• Icon operator op = (op m, op i), such as ver (vertical composition), hor
(horizontal composition), ovl (overlay), con (connect), surround,
edge_to_edge, etc.

• Earcon operator op = (op m, op e), such as fade_in, fade_out, etc.
• Micon operator op = (op m, op s), such as zoom_in, zoom_out, etc.
• Ticon operator op =(opm, opt), such as text_merge, text_collate,

etc.
• Vicon operator op = (op m, op v), such as montage, cut, etc.

Two classes of operators are possible in constructing a multimedia
object. As described in Chapter 3, spatial operators are operators that
involve spatial relations among image, text or other spatial objects. A
multimedia object can also be constructed using operators that consider the
passage of time. Temporal operators, which apply to earcons, micons, and
vicons, make it possible to define the temporal relation [Allen83] among
generalized icons. For example, if you want to watch a video clip and at the
same time listen to the audio, you can request that the video co_start with
the audio. Temporal operators for earcons, micons, ticons and vicons include
co_start, co_end, overlap, equal, before, meet, and during and are usually
treated as invisible operators because they are not visible in the
multidimensional sentence.

4. Syntax: multimedia languages 39

When you use temporal operators to combine generalized icons, their
types may change. For example, a micon followed in time by another icon is
still a micon, but the temporal composition of micon and earcon yields a
vicon. Media type changes are useful in adaptive multimedia so that one
type of media may be replaced/combined/augmented by another type of
media (or a mixture of media) for people with different sensory capabilities.

We can add still more restrictions to create subsets of rules for icons,
earcons, micons and vicons that involve special operators:

• For earcons, special operators include fade_in, fade_out,
• For micons, special operators include zoom_in, zoom_out,
• For ticons, special operators include text_collate, text_merge,
• For vicons, special operators include montage, cut.

These special operators support the combination of various types of
generalized icons, which means the multidimensional language can fully
reflect all multimedia types.

2.2 Grammar

Multidimensional languages can handle temporal as well as spatial
operators. A visual language has a relational grammar, G, which a compiler
uses to generate sentences:

G = (N, X, OP, s, R)

where N is the set of nonterminals, X is the set of terminals (icons), OP is
the set of spatial relational operators, s is the start symbol, and R is the set of
production rules whose right side must be an expression involving relational
operators.

To describe multidimensional languages, we extended the X and OP
elements of G: X is still the set of terminals but now includes earcons,
micons, ticons, and vicons as well as icons, and the OP set now includes
temporal as well as spatial relational operators.

2.3 Syntax

Informally, a multidimensional language is a set of multidimensional
sentences, each of which is the spatial/temporal composition of generalized
icons. Figure 2 without the dialog box illustrates a simple visual sentence,
which describes the physical appearance of a multimedia object retrieved by
BookMan. With the dialogue box, the figure becomes a multidimensional

40 Chapter 4

sentence used by BookMan to generate “The children drive to school in the
morning.” in synthesized speech. The multidimensional sentence has the
syntactic structure

 (DIALOG_BOX co_start SPEECH) ver (((CHILDREN hor CAR) hor
 SCHOOL_HOUSE) hor SUNRISE)

Figure 2. A multidimensional sentence whose meaning changes when the icons change their
positions and is therefore a location-sensitive sentence. This sentence has the meaning “The

children drive to school in the morning.”

Figure 3 is a hypergraph of the syntactic structure. The syntactic structure
is essentially a tree, but it has additional temporal operators (such as
co_start) and spatial operators (such as hor and ver) indicated by dotted
lines. Some operators may have more than two operands (for example, the
co_start of audio, image, and text), which is why the structure is called a
hypergraph. The syntactic structure controls the multimedia presentation of
the TAO.

4. Syntax: multimedia languages 41

Figure 3. The syntactic structure of the multidimensional sentence shown in Figure 2. This
structure is a hypergraph because some relational operators may correspond to lines with

more than two end points.

Multidimensional languages must also account for multimedia dynamics
because many media types vary with time. This means that a dynamic
multidimensional sentence changes over time.

We defined rules for spatial and temporal operators that let us transform
the hypergraph in Figure 3 to a Petri net that controls the multimedia
presentation. Figure 4 represents the Petri net of the sentence in Figure 2. As
such, it also a representation of the dynamics of the multidimensional
sentence in Figure 2. The multimedia presentation manager can execute this
Petri net dynamically to create a multimedia presentation [Lin96]. For
example, the presentation manager will produce the visual sentence in Figure
2 as well as the synthesized speech.

42 Chapter 4

Figure 4. A time-sensitive visual sentence for the Petri net controlling the presentation of the
multidimensional sentence shown in Figure 2.

3. KNOWLEDGE STRUCTURE

An index cell is the fundamental building block of the active index,
which is the key element of a TAO [Chang95a]. Without the active index, a
TAO would not be able to react to events or messages, and the dynamic
visual language would lose its power.

3.1 Cell communication

An index cell accepts input messages, performs some action, and posts an
output message to a group of output index cells. Depending on its internal
state and the input messages, the index cell can post different messages to
different groups of output index cells. Therefore the connection between an
index cell and its output cells is dynamic. For example, if a Bookman user
wants to know about new books on nuclear winter, he modifies the visual
sentence, causing TAO to send a message to activate a new index cell that
will collect information on nuclear winter.

An index cell can be either live or dead, depending on its internal state.
The cell is live if the internal state is anything but the dead state. If the
internal state is the dead state, the cell is dead. The entire collection of index

4. Syntax: multimedia languages 43

cells, either live or dead, forms the index cell base. The set of live cells in the
index cell base forms the active index.

Each cell has a built-in timer that tells it to wait a certain time before
deactivating (dead internal state). The timer is re-initialized each time the
cell receives a new message and once again becomes active (live). When an
index cell posts an output message to a group of output index cells, the
output index cells become active. If an output index cell is in a dead state,
the posting of the message will change it to the initial state, making it a live
cell, and will initialize its timer. On the other hand, if the output index cell is
already a live cell, the posting of the message will not affect its current state
but will only re-initialize its timer.

Active output index cells may or may not accept the posted message. The
first output index cell that accepts the output message will remove this
message from the output list of the current cell. (In a race, the outcome is
nondeterministic.) If no output index cell accepts the posted output message,
the message will stay indefinitely in the output list of the current cell. For
example, if no index cells can provide the BookMan user with information
about nuclear winter, the requesting message from the nuclear winter index
cell will still be with this cell indefinitely.

After its computation, the index cell may remain active (live) or
deactivate (die). An index cell may also die if no other index cells (including
itself) post messages to it. Thus the nuclear winter index cell in BookMan
will die if not used for a long time, but will be re-initialized if someone
actually wants such information and sends a message to it.

Occasionally many index cells may be similar. For example, a user may
want to attach an index cell to a document that upon detecting a certain
feature sends a message to another index cell to prefetch other documents. If
there are 10,000 such documents, there can be ten thousand similar index
cells. The user can group these cells into an index cell type, with the
individual cells as instances of that type. Therefore, although many index
cells may be created, only a few index cell types need to be designed for a
given application, thus simplifying the application designer’s task.

3.2 Cell construction

To aid multimedia application designers in constructing index cells, we
developed a visual-language-based tool, IC Builder, and used it to construct
the index cells for the BookMan interface. Figure 5 shows a prefetch index
cell being built. Prefetch is used with two other index cell types to retrieve
documents [Chang95a]. If the user selects the prefetch mode of the
BookMan interface, the active index will activate the links to access
information about related books. Prefetch is responsible for scheduling

44 Chapter 4

prefetching, initiating (issuing) a prefetching process to prefetch multimedia
objects, and killing the prefetching process when necessary.

Figure 5. The visual specification of the state transitions for an active index cell of the virtual
library's user interface BookMan.

Figure 5 shows the construction of the state-transition diagram. The
prefetch index cell has two states: state 0, the initial and live state, and state -
1, the dead state. The designer draws the state-transition diagram by clicking
on the appropriate icons. In this example, the designer has clicked on the
fourth vertical icon (zigzag line) to draw a transition from state 0 to state 0.
Although the figure shows only two transition lines, the designer can specify
as many transitions as necessary from state 0 to state 0. Each transition
could generate a different output message and invoke different actions. For
example, the designer can represent different prefetching priority levels in
BookMan by drawing different transitions.

The designer wants to specify details about transition2 and so has
highlighted it. Figure 6 shows the result of clicking on the input message
icon (top icon to the right of the State Transition Specification Dialog box.)
IC Builder brings up the Input Message Specification Dialog box so that the
designer can specify the input messages. The designer specifies message 1
(start_prefetch) input message. The designer could also specify a predicate,
and the input message is accepted only if this predicate is evaluated true.
Here there is no predicate, so the input message is always accepted.

4. Syntax: multimedia languages 45

Figure 6. The visual specification of the input message for an active index cell of the virtual
library's user interface BookMan.

Figure 7 shows what happens if the designer clicks on the output message
icon in Figure 5 (bottom icon to the right of the State Transition
Specification Dialog box). IC Builder brings up the Output Message
Specification Dialog box so that the designer can specify actions, output
messages, and output index cells. In this example, the designer has specified
three actions: compute_schedule (determine the priority of prefetching
information), issue_prefetch_proc (initiate a prefetch process), and store_pid
(Once a prefetch process is issued, its process id or pid is saved so that the
process can be killed later if necessary).

46 Chapter 4

Figure 7. The visual specification of the output message and actions for an active index cell of
the virtual library's user interface BookMan.

In the figure, there is no output message, but both input and output
messages can have parameters. The index cell derives the output parameters
from the input parameters.

4. DYNAMIC VISUAL LANGUAGE FOR
QUERYING

When the user makes incremental changes to a multidimensional
sentence, certain events occur and messages are sent to the active index. For
example, suppose the user clicks on a book TAO to change the color
attribute of the book. This is a select event, and the message select is sent to
the active index. If the user creates a new related_info operation icon, this is
a related_info event, and a message prefetch_related_info is sent to the

4. Syntax: multimedia languages 47

active index. The incremental changes to a multidimensional sentence can be
either:

• Location-sensitive. The location attribute of a generalized icon is
changed.

• Time-sensitive. The time attribute of a generalized icon is changed.
• Content-sensitive. An attribute of a generalized icon other than a

location or time attribute is changed or a generalized icon is added or
deleted, or an operator is added or deleted.

A visual sentence or multidimensional sentence can also be location-
sensitive, time-sensitive, or content-sensitive. Chapter 3 gives examples of
different types of visual sentences. The resulting language is a dynamic
visual language or dynamic multidimensional language.

Figure 8. The BookMan interface to a virtual library lets the user browse the virtual library
and select desired book for further inspection.

A dynamic visual language for virtual reality serves as a new paradigm in
a querying system with multiple paradigms (form-based queries, diagram-
based queries and so on) because it lets the user freely switch paradigms
[Chang94a]. When the user initially browses the virtual library, the VR
query may be more natural; but when the user wants to find out more details,

48 Chapter 4

the form-based query may be more suitable. This freedom to switch back
and forth among query paradigms gives the user the best of all worlds, and
dynamic querying can be accomplished with greater flexibility.

From the viewpoint of dynamic languages, a VR query is a location-
sensitive multidimensional sentence. As Figure 8 shows, BookMan
indicates the physical locations of books by marked icons in a graphical
presentation of the books stacks of the library. What users see is the same
(with some simplification) as what they would experience in a real library.
That is, the user selects a book by picking it from the shelf, inspects its
contents and browses adjacent books on the shelf.

In Figure 1, initially the user is given the choice of query paradigms:
search by title, author, ISBN, or keyword(s). If the user selects the virtual
library search, he can then navigate in the virtual library, and as shown in
Figure 8, the result is a marked object. If the user switches to a form-based
representation by clicking the “DetailedRecord” button, the result is an item
in the form of Figure 9. The user can now use the form to find books of
interest, and switch back to the VR query paradigm by clicking the “VL
location” button in Figure 9.

Essentially, the figure illustrates how the user can switch between a VR
paradigm (such as the virtual library) and a logical paradigm (such as the
form).

There are certain admissibility conditions for this switch. For a query in
the logical paradigm to be admissible to the VR paradigm, the retrieval
target object should also be an object in VR. For example, the virtual reality
in the Bookman library is stacks of books, and an admissible query would be
a query about books, because the result of that query can be indicated by
marked book icons in the virtual library.

Conversely, for a query in the VR paradigm to be admissible to the
logical paradigm, there should be a single marked VR object that is also a
database object, and the marking is achieved by an operation icon such as
similar_to (find objects similar to this object), near (find objects near this
object), above (find objects above this object), below (find objects below this
object), and other spatial operators. For example, in the VR for the virtual
library, a book marked by the operation icon similar_to is admissible and
can be translated into the logical query “find all books similar to this book.”

4. Syntax: multimedia languages 49

Figure 9. The BookMan interface to a virtual library also lets the user switch to a traditional
form-based query mode.

5. DISCUSSION

Visual query systems for multimedia databases, like Bookman, are under
active investigation at many universities as well as industrial laboratories.
These systems are extremely flexible. For example, a user can easily and
quickly ask for any engineering drawing that contains a part that looks like
the part in another drawing and that has a signature in the lower right corner
that looks like John Doe’s signature. In fact, in our work on Bookman, we
plan to build a mechanism that will let users create similarity retrieval
requests that prompt Bookman to look for books similar to the book being
selected.

We have implemented the active index for BookMan to support optional
modes like prefetching. We can also extend BookMan to perform searches
on the World Wide Web using a Web browser enhanced with an active index
[Chang95a].

50 Chapter 4

We have also used our multidimensional language framework to design
user interfaces for personal digital assistants. Chapter 3 described TimeMan,
a personal assistant that performs time-management functions. Just as books
in BookMan are teleaction objects, so are calendars in TimeMan. We used a
multidimensional language to describe the external appearance of a TAO
calendar, and provided an active index to manage to-do items.

In summary, visual languages and multidimensional languages are useful
in specifying the syntactic structure, knowledge structure, and dynamic
behavior of complex multimedia objects such as TAO. As multimedia
applications become widespread, we expect to see more visual query
systems in which multidimensional languages will play an important role,
both as a theoretical foundation and as a means to explore new applications.

