Theevolving role of software engineering in the production
of multimedia applications

Timothy Arndt

Department of Computer and Information Science,
Cleveland State University, Cleveland, Ohio, USA,;
arndt@cis.csuohio.edu

Abstract

The traditional approach to software
engineering is based on the waterfall model or some
variation of this model. It is well known, however, that
this approach is not particularly well suited to the
production of one-of-a-kind or experimental systems
due to fuzzy user requirements - users are not sure
what can be accomplished. Since most multimedia
applications are currently of this type, we must search
for alternative approaches. One such alternative is
based on rapid prototyping in which we quickly
generate a working system that we use to validate user
requirements. For distributed multimedia applications,
we have experimented with a prototyping environment
based on grammar formalisms and utilizing web
technologies such as HTML/XML to generate a
working prototype. Such an approach seems to be
promising and we are currently pursuing this line of
research. For the future, researchers working at the
interface of software engineering and multimedia
systems may identify high-level abstractions common
to such applications which will permit the traditional
approach to software engineering, backed up with
appropriate CASE tools, to be used.

1. Introduction

Multimedia applications are becoming
increasingly important in areas such as education
(digital libraries, training, presentation, distance
learning), healthcare (telemedicine, health information
management, medical image systems), entertainment
(video-on-demand, music databases, interactive TV),
information dissemination (news-on-demand,
advertising, TV broadcasting), and manufacturing
(distributed manufacturing, distributed collaborative
authoring)[1]. As such applications move from the
realm of research prototypes to production systems, the
need to apply software engineering techniques to the

and how traditional approaches need to be modified for
the special needs of multimedia.

2. Traditional Software Engineering

Traditional software engineering emerged
around 30 years ago as software projects became
increasingly ambitious leading to missed deadlines,
cost overruns, and difficulties in software project
management. One of the major accomplishmentsin the
field of software engineering was the recognition of
the software lifecycle. The waterfall model of software
engineering views the production of software as being
divided into a number of distinct phases. problem
definition; requirements analysis; program
specification; coding; testing; and maintenance. Each
phase of the lifecycle results in the production of one
or more deliverables. These deliverables give visibility
to the software lifecycle and allow managers to better
plan and control software projects[15].

Problem
CASE Tool

definition [— i i
! ! Support

! i

‘ !

‘ !

!

!

!

Requirements -

analysis T
1

'
Systemand [

software design
y

Implementation [

and unit testing
1 1
A 4

Integration and

system testing
A
A 4

Operation and
maintenance

Figure 1 — Traditional Software Engineering

An organization may have a standard set of
techniques to be applied to each one of these phases
based on such concepts as structured analysis and
programming, object-oriented analysis, design and

production of these applications becomes more
pressing. In this paper, | will examine the role that
traditional software engineering can play in the
production of multimedia applications as well as where

programming, etc. The organization then follows a
certain pre-defined software process model. For
maximum productivity, the various components of a
software process model should be supported by a set of

Computer Aided Software Engineering (CASE) Tooals.
Case tools are usually based on such well-known
software engineering abstractions as data flow
diagrams, the entity-relationship model, and objects.

Figure 2 — A Typical CASE Tool

While the approach described above works
well for many software projects (in particular for
traditional EDP projects), it is well known that one of a
kind or experimental systems present particular
problems for such an approach. The principal problem
associated with one of a kind or experimental systems
is the difficulty of establishing requirements before
production has commenced. Users have difficulties
stating requirements for types of systems for which
they are not familiar, and developers have difficulties
understanding what can be accomplished given time
and budget constraints. Another complicating factor
may be the unavailability of CASE tools capable of
supporting the project.

For critical components of software systems,
an approach based on formal specification is often
indicated [13]. Formal specifications allow for a
greater degree of certainty concerning the behavior of
the component being specified to be obtained. Since
the component is represented by a mathematical
formalism, properties of the component can be proved
and the representation can be manipulated
mathematically. Formal specifications also hold out
the promise of being able to transform the specification
into a working program, although this is not yet a
widespread reality outside of research labs. Due to the

difficulty of composing formal specifications, their use
has been limited to critical components of real-time
systems

3. Modifications to the Software Lifecycle for
M ultimedia Applications

For systems in which it is difficult for the user
to precisely state a set of requirements that can be used
to guide the rest of the lifecycle, an approach based on
prototyping is often indicated. The prototyping
approach starts with a minimal set of requirements
and/or a problem definition and uses this information
to quickly produce a running system which can be
used by the user to more clearly define the
requirements for the project. A running prototype
allows the user to experiment with the system and to
see which parts of the system need to be reworked. It is
not necessary to have a completely functional
prototype in order to elicit requirements, performance
considerations may be put off until the actual system is
implemented. In a typical prototyping approach, the
prototype may need to be reworked several times,
based on user feedback, in order to come up with a
complete set of requirements.

Develop preliminary
requirements

Develop
prototype

Evaluate
prototype

Specify

requirements

Figure 3 — Prototyping

The prototyping approach has several
variations. In one variation, the prototype serves
merely to elicit user requirements. This is known as
throw-away prototyping. In evolutionary prototyping
on the other hand, the working prototype is modified
and refined to become the working system [6]. This
requires a more disciplined approach to the production
of the prototype since it will become a part of the
production system.

Prototyping is often supported by specialized
tools such as fourth generation languages (4GLs),

screen generators, report generators, etc. The existence

or lack thereof of such tools can be a determining
factor in the success of prototyping.

Besides the difficulty of producing a set of
requirements, multimedia applications have other
characteristics that affect the software lifecycle. The
traditional DP application is long-lived, therefore a
major part of the effort associated with such
applications is maintenance and upgrade. Multimedia
applications, on the other hand, will probably have a
much shorter lifespan due to the rapidly changing
environment in which they operate. Multimedia
standards, de facto and de jure, as well the networking
infrastructure and operating system support for
multimedia are evolving rapidly. In this situation, few
multimedia applications are likely to be long-lived.

The CASE tools that are used to support the
production of traditional software products are not
useful for the production of multimedia applications
since they are largely based on the manipulation of
alphanumeric data, while continuous media are not
handled. Persistent data is generally assumed to be
stored in a relational database (e.g. entity-relationship
models are translated to tables in a relational database)
while many researchers argue that object-oriented
databases are the way to go for multimedia
applications [12].

The fundamental problem regarding CASE
tools for multimedia application development is that
the underlying abstractions (DFDs, E-R diagrams, etc.)
are best suited to DP applications and are not well
suited for multimedia. A number of researchers have
studied abstractions which might be useful for

multimedia [11]. These abstractions usually focus on
synchronization among various multimedia objects
[10], layout of multimedia objects [16] and user
interactions [9]. None of these abstractions has been
widely adopted, however.

4. The MICE Approach

The Multimedia IC Developer’'s Environment
(MICE) is a set of tools being developed at the
University of Pittsburgh, Cleveland State University,
and the University of Salerno to support the
construction of multimedia applications. The most
important aspects of MICE are the following: a
powerful underlying abstraction for multimedia
applications — the Teleaction Object (TAO); integrated
toolkit based on this abstraction; rapid prototyping
through visual developer’s tools; formal specification
of the media objects interactions; visual language
interface to the formal specification language;
browser-based prototype development using a TAO-
specific extension of HTML.

Formal Specification Tool

Visual Specification Specification Builder

SR Grammar

v
TAOML HTML

Template

1C Builder

Prototyping Tool

TAOML
I nterpretor

Working System

1C Manager

Figure 4 — MICE Application Development

Teleaction Objects complex multimedia
objects with an attached knowledge structure [3,4].
The TAO may consist of a combination of multimedia
objects (audio, video, image, etc.) combined using

spatial, temporal and logical operators. The physical

part of the TAO forms the user’s interface with the

TAO. The aspect which makes TAOs particularly

powerful is the attached knowledge structure which is
structured as an active index [5]. The active index
allows the TAO to react to external events and to adapt
to a changing environment. Several applications have
been developed using TAOs.

The MICE approach then is based on CASE
tools supporting the TAO paradigm. The IC builder
allows the user to graphically construct the knowledge
structure of a TAO while the TAOML builder is a
graphical tool which allows the user to construct the

physical part of a TAO. The TAOML builder is based
on an SR grammar which provides a formal
specification of the physical aspects of the TAO. The
result of parsing the SR grammar is the production of
the physical part of the TAO. In order to allow for
rapid prototyping of distributed multimedia
applications, the TAO is implemented using TAOML,
an extension of HTML. The TAOML Builder
interprets the visual specification and produces
TAOML as output. This output in turn is given as
input to the TAOML interpreter which produces
standard HTML corresponding to the TAO specified
by the user.

Waads Piopaiiied HE
Otgsotlod || Objuct Praviews | Prodwsscsr | et | Dbiciledy | OmciPuwawn || Pradmwwecer | ICDwa |
Bires Fil
5 Db’ PAE S RG0S FEPTLL b I[. " TEE] T poedtMaPTIIZ b
rﬂ' Hemarn I
Tuca lcon
fas 134 KB, (M55 yta] [Enaged
E T cwwet b i el
Faysitior: TH 8 477 e pipe o B vewerg mat
Hiimbed ol Ciodidi: 255
T ga Ma
Dpiipdie Fila BWP
[0k | cones | 3 [o | concs | ?
& b

Haid= Pingieainei

Chjectivka | OeciPwen | Foiwwncss | ICOws | Cbjact ik | Objact Pravaes Foalwarecaz | Kows |
Bty Fla Pingey e g piion
|[='-|-'\-'\-H--'-='-55'5-=l.'-l5| Labui H9
= IC. raumbn- 10 -

ﬂ Hemn 1
Figwwy linilioen
= [Frsped Foober.
Twraasgge ool b i e A | Lt |5
rhe g 0 e v miss
Smm
watte [® [Do peopion
Heagpr IH_ I Civigenad s
[o I Lo | | 3 | [F7inE I Cacel 3
G d

Figure 5 a-d - Tabbed Dialog Showing Node Properties

The TAO is the abstraction that a designer of
a multimedia application needs in order to express his

design of the system in terms which are closer to his
way of thinking about the application than the actual

implementation of the application. In order to make the
TAO abstraction still more useful to the user, a visua
representation of the TAO is used by the TAOML
builder (see figures 5-7). This visual representation is
the crucia point in the success of commercial CASE
tools, and we hope that it will make the MICE
environment useful for multimedia application
designers. Another visual representation is given for
the index cells which represent the knowledge of the
system in the IC Builder tool.

S

e
" Edh Wew |ww Opoer [osle Help

2 = |
Di(@| | |o] @)w
— ﬂﬂjl
LT N o
[2|]em)= 2] @&
Ll
LY

Figure 6 - TAOML Builder Toolbars

pergr— i

Figure 7 - Hypergraph and Matching TAOML

5. Future Directions

The output of the TAOML builder is
currently TAOML, an extended form of HTML which
cannot be understood by standard browsers. For this
reason, the TAOML must first be trandlated by the

TAOML interpretor to produce standard HTML. We
are currently investigating the implementation of
TAOML as an XML application. XML is a standard
currently being formulated by the W3C committee
which is used to describe structured documents. XML
alows the contents of documents to be structured in
such away that they can be parsed by XML parsers to
ensure correctness. XML will be implemented in the
next generation of web browsers, thus making
TAOML an XML application will ensure that
applications prototyped with MICE can be run in
standard browsers.

In section 4, | concentrated on showing how

the MICE environment implements CASE tool-like
functionality by supporting the TAO paradigm for
multimedia application development. | believe that the
widespread adoption of TAO or some other abstraction
for multimedia is a necessary prerequisite to the
development of commercial CASE tools which should
leed to much greater efficiency in multimedia
application development. This adoption, along with the
adoption of multimedia standards (for operating
systems and networks) would remove multimedia from
the category of one-of-a-kind systems. At this point,
prototyping would no longer be a necessity since
reguirements would be much easier to concretize. This
process of standards adoption is the reason that |
believe that the role of software engineering in
multimediais still evolving.

Another important aspect of the MICE

environment which was not heavily emphasized in this
paper is that the TAOML Builder is based on a formal
method — the use of a Symbol Relation Grammar to
represent TAOs [2,7]. In the future, we will be
exploring the use of this grammar to prove properties
of the design such as the fulfillment of certain QOS
measures. This seems to be a worthwhile avenue to

explore due to the time-dependent

nature of

multimedia [14].

Bibliography

(1]

(2]

(3]

(4]

Adjeroh DA, Nwosu KC (1997) Multimedia
database management — requirements and issues.
IEEE MultiMedia 4:24-33

Arndt T, Cafiero A, Guercio A (1997) Symbol
Relation Grammars for Teleaction Objects.
Technical Report, Dipartimento di Informatica ed
Applicazioni, University of Salerno

Chang HJ, Hou TY, Hsu A, Chang SK (1995)
The management and application of tele-action
objects. ACM Multimedia Systems J. 3: 204-216
Chang SK (1996) Extending visual languages for
multimedia. IEEE MultiMedia 3:18-26

(5]

(6]
(7]

(8]

(9]

Chang SK (1995) Towards a theory of active
index. Journal of Visual Languages and
Computing 6:101-118

Connell JL, Shafer LB (1989) Structured Rapid
Prototyping. Y ourdon Press.

Ferrucci F, Pacini G, Satta G, Sessa M, Tortora
G, Tucci M, Vitiello G (1996) Symbol relation
grammars. a formalism for graphical languages.
Information and Computation 131:1-46
Hirakawa M Call for papers first international
workshop on multimedia software engineering.
URL: htt p: // ww. hui s. hi roshi na-
u. ac. j p/ ~hi rakawa/ MSE98/ n5€98. ht m
I

Liao W, Li VOK (1998) Synchronization of
distributed multimedia systems with user
interactions. ACM Multimedia Systems J. 6:196-
205

[10]

[11]

[12]

[13]

[14]

[15]

Little TDC (1993) Interval-based conceptual
models for time-dependent multimedia. |EEE
Transactions on Knowledge and Data
Engineering 5:246-260

Muelhaeuser M (1996) Services, frameworks,
and paradigms for distributed multimedia
applications. IEEE MultiMedia 3:48-61

Pazandak P, Srivastava J (1997) Evauating
object DBM Ss for multimedia. IEEE MultiMedia
4:34-49

Saiedian H (1996) An invitation to formal
methods. Computer 29:16-17

Shih TK, Davis RE (1997) IMMPS:. a
multimedia presentation design system. IEEE
MultiMedia 4:67-78

Somerville | (1992) Software Engineering.
Fourth Edition, Addison-Wesley.

[16] Weitzman L, Wittenburg K (1996) Grammar-

based articulation for multimedia document
design. ACM Multimedia Systems J 4:99-111

