
Application of Graph Transformation

to Visual Languages

- State of the Art and Further Ideas -

Roswitha Bardohl

Technical University Berlin

Sekr. FR 6{1, Franklinstr. 28, D{10587 Berlin

E-mail: rosi@cs.tu{berlin.de

Technical Report 97 { 10

March, 1997

Contents

1 Introduction 2

2 Visual Programming 4

2.1 [Shu86]: Visual Environments and Visual Languages 4

2.2 [Men95]: Visual Programming Systems . 5

2.3 Graph Transformation based Visual Language and Visual Environment . . 7

3 Graph Transformation and Visual Languages 9

3.1 Scheme Evolution in Object-Oriented Models - A Graph Transformation

Approach . 10

3.2 DiaGen - A Generator for Diagram Editors based on a Hypergraph Model 12

3.3 Graph Rewrite Systems and Visual Database Languages 14

3.4 How to represent a Visual Program ? . 15

4 Further Ideas 18

4.1 Diagrammatic and Graph Representation 18

4.2 Conceptual Ideas for Tool Support . 20

4.3 Reconsideration of Section 3 . 22

5 Conclusion 24

A References 25

1

1 Introduction

Within the last years more and more graphical software tools and environments came

into the foreground supporting several tasks. One well known example are CASE tools

supporting software development by diagrammatic techniques, like class diagrams used to

model static aspects of a software system, or e.g. state transition diagrams used to model

dynamic aspects. Common to all graphical software tools is the fact, that they o�er mainly

a visual language instead of a textual one.

We are looking towards an environment supporting the de�nition as well as the use of

visual languages. The di�erence to common CASE tools is based on the use of formal

speci�cation techniques, especially graph grammars and graph transformation systems.

We want to concentrate on graph grammars for the de�nition of a visual language, and

graph transformation systems allowing the manipulation of sentences over the de�ned

visual language by application of rules corresponding to the given grammar. Such a visual

language can de�ne a certain diagram class as e.g. given by the object model notation in

[RBP+91]. Furthermore, it is conceivable to get a prototype from the formal speci�cation.

Within section 3 of this paper we present the state of the art concerning the application

of graph transformation to visual languages.

Graph Grammars and Graph Transformation

Sentences of visual languages, i.e. diagrams, may often be regarded as collection of pictorial

objects like circles, arrows or strings with spatial relations like above or includes between

them, i.e. their underlying structure is a kind of directed graph. This is the reason why

graph grammars are a natural means for de�ning the abstract syntax of visual languages.

Furthermore, graph grammars can be used as single formalism to describe on the one hand

the structure of visual sentences, and on the other hand to describe all kinds of operations

on them. The application of such operations is called graph transformation, providing rule-

based manipulation on graphs. Furthermore, graph transformation is a formally de�ned

calculus based on set theory, algebra or category theory, and generalizes the notion of

graph grammars.

More precisely, graph transformation is described by the application of graph productions

modeling the permitted actions on graphs which can e.g. represent states of a software

system or model data structures. Moreover, graph transformation de�nes a relation on

graphs which can be iterated arbitrarily yielding the transformation process. In this way

a set of productions gets an operational semantics.

Tools based on Graph Transformation

A tool based on graph transformation (also called graph transformation machine) contains

usually a graph editor and an interpreter. The graph editor allows the de�nition of graph

productions, which consist of a left and a right hand side, respectively, where both sides

are represented by graphs. The interpreter than interprets the graph productions such that

the user is able to manipulate the actual working graph.

An editor usually supports the graphical representation of graph productions and a (work-

2

ing) graph, mouse/menu-driven interfaces, and di�erent views on graphs, like di�erent

sections of a graph, or di�erent levels of abstraction as in the AGG-System ([LB93]).

The interpretation of graph productions can be regarded as simulation by test. If the

simulation works well it is conceivable to generate a prototype from the de�ned graph

productions.

In section 4 of this paper we present some further ideas going beyond the state of the

art presented in section 3. Our further ideas aim at the development of a generator for

diagram editors, where the generator as well as the diagram editors are part of a graph

transformation based environment. Therefore it is not only necessary to support the rule-

based de�nition of graph grammar productions de�ning the abstract syntax of a visual

language, but additionally to support the rule-based de�nition and generation of graphics,

i.e. diagram elements corresponding to a certain diagram class. Such a de�nition forms

the basis for the generation of diagram editors where syntax directed diagram drawing is

supported by application of the grammar rules.

Further aspects have to be considered with respect to the generation of diagram editors,

like mouse/menu driven user interfaces, the support of view de�nitions, layout, etc.

Organization of this paper

Within section 2 visual programming is discussed in general, following two di�erent works.

The �rst work is given by [Shu86], which is concerned with visual environments and visual

languages (see section 2.1). Within section 2.2, [Men95] is shortly presented which is

concerned with visual programming systems in general, and furthermore, which is based

on [Shu86]. On the one hand both works provide an overview about the complexity of

the topic, and on the other hand this overview cleari�es the application area we want to

consider. Because a lot of items are used, which we cannot adapt for our work without

some di�culties, we o�er some de�nitions within section 2.3.

In section 3 we give a brief overview of some already existing graph transformation based

approaches, which forms the basis for our further ideas, presented in section 4. There, some

ideas are presented towards a graph transformation based visual environment for visual

languages. Concluding remarks are given in section 5.

3

2 Visual Programming

The item Visual Programming in general means the usage of graphical techniques in con-

nection with programming. But what does it mean exactly?

Within the work of Shu in [Shu86] Visual Programming is decomposed into the parts Vi-

sual Environment where graphical techniques and selections e.g. by mouse click are used

for program development, debugging, information retrieval, etc., and Visual Languages

where languages are developed to manage picture informations as well as to support vi-

sual interaction and to program with visual expressions. In the following these items are

explained.

2.1 [Shu86]: Visual Environments and Visual Languages

A Visual Environment supports the program development, provides debug facilities, makes

it possible to ask for information and to represent them, and supports software development

and its understanding. It includes the following:

Visualization of the system development. This includes the visualization of requirements,

speci�cations, design decisions, etc. which is necessary if a program should be

changed or maintained. This kind of visualization can include several documents,

e.g. diagrams, programs, textual documents, etc., each of them can be hierarchical

combined. The user can select one document to reach the next level of detail.

Visualization of a program and its behavior. Several user views on a program are possible

including several levels of detail. The visualization then consists on e.g. Nassi-

Shneiderman diagrams, Module-Interconnection diagrams, data type diagrams, ex-

pression trees,
ow graphs, etc.

The behavior of a program can be visualized as follows: several generated
ow dia-

grams will be visualized together with an execution stack, where the expression just

in work will be special marked.

Visualization of informations. Data or informations are stored within databases, but they

are represented to the user in graphical form. The environment supports di�erent

operations on the graphics, like zoom, rotate, etc. Furthermore, a direct manipulation

possibility exists for information retrieval using a graphical view of the underlying

database.

At all, visual environments show a new way to deal with software, but they do not supply

new approaches concerning language aspects or program constructs. Visual Languages

allow the processing of visual informations, support visual interactions, and permit the

programming with visual expressions:

4

Processing of visual informations. Picture informations, coming from di�erent applica-

tion areas like biology, physics, chemistry, etc., are represented by logical as well as

physical pictures.

Logical pictures are de�ned by three relational tables, one includes the informations

of the picture objects, another one the picture outlines and the third table the picture

pages, whereas physical pictures are stored within a seperate store. The handling of

logical and physical pictures will be done by an e�ciently working picture informa-

tion system.

Questions to the underlying database must be given textual, only the result will be

visualized which is supported by a corresponding visual language.

Support of visual representation and interaction. Data are stored in a database but

presented to the user in a graphical view. The speci�cation of a view is given textual

by input of size, color, position, attributes, etc. of icons. Interaction is given by

de�ning functions on graphical objects (icons).

Programming with visual expressions. This is equivalent to a so called area of visual

programming languages, where the language has some visual representations as means

for programming. For the assessment of such languages it is to distinguish between

the language level, the scope of the language, i.e. the application area, and the extent

of the visual expressions.

Non-procedural languages (highest level) permit the user to de�ne what a program

has to do and not how it is to do. Procedural languages (lower level) force the user to

de�ne exactly the steps to be executed. The scope of languages ranges from general

and widly applicable to speci�c and narrowly applicable. Visual expressions include

the meaningful visual representations (text, tables, icons, diagrams, graphs, etc.)

used as language components to archieve the purpose of programming.

In his work [Shu86] Shu proposed an analytic approach to assess visual program-

ming languages. This approach is graphically given by the triangle given on the left

hand side of �gure 1. The triangle shows the three dimensions corresponding to the

language level, the scope and the visual extent.

2.2 [Men95]: Visual Programming Systems

The triangle presented in [Shu86] provides a basis for the assessment of visual programming

systems (short VP systems) in [Men95]. A similar triangle is presented showing three

dimensions for the characterization of visual programming systems (see right box of �gure

1). Within this work it is not distinguished between Visual Environment and Visual

Language as given by [Shu86]. The visualization is only concerned with scienti�c data as

e.g. given by biology, whereas Visual Languages are seen to be one kind of executable

speci�ers allowing the user to de�ne new language primitives. Both, the visualization as

well as the speci�cation is part of the item purpose of a VP system.

5

language
level

visual
extent expressions

visual

scope

Measured as the inverse
of the effort required
to perform a particular task

Applicability:
low = specific
high = general

low = text
high = diagram

low = C
high = SQL

Complexity of visual entities:

Specification of

set of basic constructs
syntactical base
semantical base

[Men95]: 3 Dimensions of
Visual Programming SystemsVisual Programming Languages

[Shu86]: 3 Dimensions of

design

text, table, icon, diagram, ...

purpose

Specifiers | Visualisiers

Figure 1: The three dimensions of VPLs and VPSs

Equivalent to [Shu86] are the possible expressions (text, . . . , diagrams), but they are

dependent on the purpose of a VP system and not restricted to programming with visual

expressions. Furthermore, some topics are mentioned concerning the design of VP systems.

In the following we give a brief overview of the three dimensions concerning the design,

the purpose and expressions of visual programming systems:

The design of a visual programming system needs a speci�cation of a semantical base,

a syntactical base, and a set of basic constructs. The syntactical base deals with

the expressions text . . . diagrams, as already mentioned by Shu. The semantical base

includes control-
ow, data-
ow, constraint-based, logic-based and procedural-based

paradigms.

Procedural-based systems convert their diagrams into an underlying programming

language. In a control-
ow system a user manipulates iterations, conditionals and

sequence expressions, which are necessary e.g. to model
ow chart systems. Control

is implicit in data-
ow systems (e.g. Petri-nets) where each expression manipulated

by the user describes a set of data source, perhaps a set of conditions, and actions to

perform when all data sources are available and when the conditions are satis�ed. In

a constraint-based system the user visually speci�es the invariants for each expres-

sion. At runtime a constraint-solver permits manipulations which do not violate the

invariants.

The purpose of a visual programming system may be the visualization of some data, or

the possibility of specifying, perhaps both. Speci�ers are e.g. screen painters as

6

Visual Basic (interactive point and click environment for placing window widgets

on a screen; automatical generation of the layout code for the widgets; semantics and

interactions on the widgets are given by the developer using a textual language) or

design-only tools likeHotDraw (interactive point and click environment for placing

design notation icons/diagrams on a screen). This kind of speci�ers is called non-

executable speci�ers. Executable speci�ers are divided into visual speci�cation shells

(translating e.g. diagrams into the underlying programming language) and visual

languages, allowing the user to specify new languages primitives.

Text, simple forms, tables, icons, diagrams, etc. de�ne the visual expressions within a

visual programming system and are in increasing order corresponding to the purpose

of a system: Table expressions make extensive use of the position of the cells e.g.

a spreadsheet cell can be the sum of the cell above. In icon-based systems users

can click on the icon to access a menu of services. Moving the icon on the screen

can represent the transfer of data or the application of some function to some data.

In diagrammatic systems users create a diagram by linking up visual components

o�ered from a palette. Normally, a visual programming system uses a combination

of many of the expressions mentioned above.

2.3 Graph Transformation based Visual Language and Visual

Environment

Nearly ten years are between the above mentioned articles ([Shu86], [Men95]). A lot of

ideas and notions are presented, but it is di�cult to adapt these notions exactly for our

work. One reason may be that the term programming is placed into the foreground, another

one that a lot of application areas are considered.

At all, we want to concentrate on a graph transformation based environment supporting

the de�nition of visual languages as well as the insertion of visual sentences. I.e., for each

visual-language de�nition an editor is generated, allowing the manipulation of sentences

corresponding to the de�ned visual language by application of graph transformation rules.

But, what is a visual language, an environment, graphics, etc.? To avoid confusion we will

clearify now the notions we use within the following sections.

A graphic is built up by graphical primitives, like rectangle, text, circle, line, arrow, etc.

together with corresponding attributes for size, color, etc. and, if possible, graphical

parameters as e.g. given by a rectangle including a graphic. We will use directed

graphs as underlying data structure for the de�nition of graphics, such that e.g. a

rectangle including the number 5 can be represented by rectangle includes 5 .

The display of graphics is called physical layout and is represented on a monitor in a two-

dimensional fashion. This representation is supported by a presentation layer which

7

translates the high-level graphics de�nition into display instructions for a virtual

display.

An icon is represented by a pictogram, which is simply a stylized symbol. Normally, a

user clicks twice on an icon and something will happen, e.g. a window is opened.

Further functions are imaginable: the icon supports a user de�ned operation where

arguments are expected. With the double click a widget will be opened for the users'

input.

A visual language for diagrams is given by two structures. One describes the information

speci�c part of a language, we will call the abstract syntax or logical structure. The

other one is concerned with the graphical part, we will call view or graphical structure.

Both structures are de�ned by directed graphs, and must be partly connected. That

means, the logical structure of language speci�c constructs have to be connected

with graphical structures consisting of graphics as mentioned above. As we will see

in section 3.4 the connection will be supported by a coupled graph grammar.

Furthermore, a visual language on a higher level de�nes a visual environment. It must

support the above mentioned de�nition of a visual language for diagrams as well as

the de�nition of several abstraction levels, and several views for language constructs.

Moreover, this higher level visual language must include mechanisms to de�ne e.g.

user interaction for the diagram editors, which will be automatically generated from

a speci�cation (as mentioned in section 3.2).

A visual programming language is a visual language for diagrams together with a trans-

lation mechanism which translates a visual sentence, i.e. a diagram, into a program-

ming language, e.g. C++, Ei�el, etc. Within this paper we do not concentrate on

this topic.

A visual environment consists on several tools supporting di�erent tasks, and follows the

laws of the higher level visual language as mentioned above. In our sense, it should

provide a possibility for incrementally working, and dynamical changes.

A visual environment we have in mind supports several layers. That means, sev-

eral editors and interpreters are necessary for several depending tasks. As already

mentioned, the graphical structure of language speci�c parts must be de�ned and

connected with these parts, which requires one editor. A further editor supports the

de�nition of a visual language by the graphical means. This de�nition will be sup-

ported by an interpreter which allows only syntax directed editing. From the visual

language' de�nition a diagram editor is generated allowing the input of several dia-

grams, i.e. visual sentences. Within our �rst approach, only syntax directed diagram

editing will be considered which is supported by a suitable interpreter.

8

3 Graph Transformation and Visual Languages

Now we introduce several approaches, all concerned in some way with visual languages in

connection with graph grammars and graph transformation respectively:

1. Cla�en/L�owe/Erdmann in [CLWW94, CL95, EC96, CGL96]:

Scheme Evolution in Object-Oriented Models - A Graph Transformation Approach.

Use of attributed graphs;

modi�cations are described by graph transformation rules;

without considerations wrt. graphical structure.

2. M.Minas/Viehst�adt in [Min93, VM94, MV95, VM95]:

DiaGen - A Generator for Diagram Editors Based on a Hypergraph Model.

Use of attributed hypergraphs;

context free hypergraph replacement (restricts number of diagram classes);

with considerations wrt. graphical structure.

3. M.Andries/G.Engels in [And96, AE97]:

Graph Rewrite Systems and Visual Database Languages.

Use of attributed and labeled graphs (PROGRES [Z�un92, SZW95]);

de�nes syntax and semantics of a visual database language;

without considerations wrt. graphical structure.

4. Rekers/Sch�urr/Engels/Andries in [Rek94, Sch94, RS95b, RS95a, AER96, RS96]:

How to represent a Visual Program ? and

A graph based framework for the implementation of visual environments

Use of attributed and labeled graphs (PROGRES [Z�un92, SZW95]);

de�nes syntax of visual languages, graphical parsing, and a graph based framework;

with considerations wrt. graphical structure.

This is a collection of approaches relevant for our work because they o�er theoretical as

well as implementational aspects. Theoretical in the sense that syntax and semantics of

visual languages are considered, and transformations are discussed with respect to how to

transform the graphical structure of e.g. diagrams to graph structures. Implementational

aspects are concerned wrt. generators, and more detailed it is considered how to de�ne

and implement a visual language using the graph grammar approach. All these approaches

regard diagrams or more general diagrammatic development techniques.

9

3.1 Scheme Evolution in Object-Oriented Models - A Graph

Transformation Approach

Within the �rst article ([CLWW94]) a transformation of the language speci�c part of

an E/R-diagram (which is called object scheme) into an attributed graph signature is

presented. Such a signature can be represented by a graph as given in �gure 2, which

illustrates the abstract syntax of a visual sentence. Instances of an E/R-diagram (called

object structures) are regarded as algebra wrt. the attributed graph signature. Integrity

constraints are transformed into a set of �rst-order formulas. They have to be ful�lled by

application of graph productions allowing the modi�cation of instances, as given by the

insertion of entities or relationships. The result of the transformation process de�nes the

abstract syntax of an E/R-diagram in our sense.

employee

employer Company

name

firm_name

String

Person

Works-for

v1

v2

a1

a2

employeremployee

Works-for *1..*
Person Company

name:String firm_name:String

Figure 2: Graphical and graph representation of an E/R-diagram

[CLWW94] forms the basis for [CL95], where a formal framework for object oriented models

(short 00-models) in general is presented. A model as given by e.g. an E/R-diagram, which

is used in the area of semantic data modeling, or a method of description as given by

Rumbaugh [RBP+91] or Booch [Boo94], used in the area of OO-analysis and OO-design, is

an algebra wrt. the attributed graph signature. Each model provides the language means

(e.g. a graph grammar for the input of E/R-diagrams) corresponding to the meta model,

which is the class of all models, i.e. algebras.

As shown in [CLWW94] the attributed graph signature represents the basic building blocks

of OO-models, which de�nes the abstract syntax in our sense. A
exible way to handle

object models is presented, allowing the simultaneous modi�cation of instances (called

object structures) and object schemes (in our sense this is the abstract syntax graph of a

sentence). Such modi�cations are given by graph productions and represented on the same

level, e.g. class diagrams and instances, to facilitate simultaneous modi�cation of schemes

and object structures as illustrated in �gure 3.

One object scheme is e.g. given by �gure 2, which is a description in a special model, in

this case it corresponds to a class diagram. The model is represented by an algebra T wrt.

the attributed graph signature together with a type function, the typing of base algebra

elements (e.g. t : Person ! Class as shown in �gure 4).

An object structure is then an instance of a scheme, i.e. concrete objects that conform to

the given object scheme. An object structure wrt. a scheme T is represented by an algebra

10

Person

name:String

Object Modification

by pattern matching

p:Person

lname,fname fname

p:Person

lname

first_name:String
last_name:String

Person
Scheme Transformation

Figure 3: Example scheme/object rule

B, the (untyped) base algebra, together with a type function t : B ! T describing the

typing of base algebra elements. The type function must be compatible with the operations

in the category of all attributed graphs, i.e. it must be a homomorphism in this category.

In [EC96] a class library for the meta model (Alpha) is implemented where each model,

i.e. a description technique is seen as an algebra T wrt. the attributed graph signature.

It is further mentioned that other graphical modeling techniques as OO-notions simply

require a di�erent (model) algebra (as Alpha-algebras) as the basis for typing of corre-

sponding schemes which has to be examined.

[CGL96] extends the work of [CL95] by adding temporal logic to formulate temporal condi-

tions, which arise often in information systems. A suitable graphical notation for temporal

conditions is not given until now.

Within this work some diagrammatic description techniques are interpreted to be algebras

in the category of models corresponding to an algebraic graph signature. This category

de�nes a meta model in the area of algebraic graph theory, which is given by attributed

graph signatures, and corresponding algebras and homomorphisms ([LKW93]). Graph

transformation follows the single pushout approach as de�ned in [L�ow93].

This work o�ers maybe a theoretical background and partly some implementational as-

pects, we could adapt for our work. As already mentioned above, the models de�ne the

abstract syntax of visual sentences, but not a visual language as we require. Furthermore,

we miss the treatment of graphical structures in connection with the language speci�c

parts, although within the implementation design patterns ([GHJV95]) are used serving

the following properties:

� independence of the elements' kind and its depicted form,

� support for people working together

A Scheme can be decomposed into subschemes, which can be treated independently,

11

employee

employer Company

name

firm_name

String

Person

Works-for

v1

v2

a1

a2

value
Attribute

ap1

p2 Data Type

Homomorphism

Homomorphism

(Typing)

An instance

a description in a special model
is an object scheme and

Class

Association

A concrete association

(All possible object instances) is an object structure
that conform to the given scheme

An association-scheme
(e.g. description method of UML)
is one model algebra

(Typing)

Figure 4: Hierarchical levels of Alpha algebras

and

� including mechanisms for the synchronization of views.

Another topic we have to regard is the singe pushout approach used for graph transforma-

tion, but the answer of the question if the double pushout approach is more comprehensive

than the single pushout approach is beyond the scope of this paper.

3.2 DiaGen - A Generator for Diagram Editors based on a Hy-

pergraph Model

The preceding work is [Min93] where a speci�cation of diagram editors based on hyper-

graph grammars is discussed together with automatic layout adjustment. In [VM94] the

speci�cation is extended by event automatas for the description of interaction in graphical

user interfaces. The ideas have been implemented leading to a generator for diagram ed-

itors, which is called DiaGen and �rst presented in [MV95]. An editor is generated from

a user de�ned speci�cation [Min93], which have to include a description for the class of

diagrams (hypergraph grammar and transformations) as well as for the behavior of the

generated editor, i.e. user interactions are described by a textual notation of an event

automata. The description of the behavior includes syntax directed editing, automated

(layout adjustment) but by the user changeable layout, direct manipulation, and execution

respectively animation of diagrams, e.g. special marking of automatas' states, within the

editor.

12

Constituents of the speci�cation are

� a context free hypergraph grammar for a certain diagram class to describe the dia-

gram syntax, as e.g. for Nassi-Shneiderman diagrams (NSD), and suitable transfor-

mation rules (on derived structures),

� layout conditions which are attached to grammar productions (the rules are given by

in-equalities relating attributes of a production),

� layout informations for terminal symbols,

� de�nition of group types to deal with a set of graphical objects which is necessary

e.g. for moving, and

� de�nition of an automata describing interaction in the graphical user interface (key

and mouse events).

From the given speci�cation, e.g. for NSD's, an editor is generated, processing (only syn-

tactical correct) NSD's. The generated editor supports direct manipulation and execution

by special marking if this is speci�ed. The latter one is desirable e.g. for automatas, where

a change from state to state is given by a transition. Figure 5 illustrates the environment

of DiaGen.

Runtime
Library

Generator

Linker
Compiler/

Program Code

Diagram
Editor

DiaGen

Specification

Figure 5: DiaGen - A generator for diagram editors

Until now, the speci�cation must be given textual. It is mentioned that this should be

improved by adding a graph parsing algorithm which supports also graphical input, i.e.

speci�cations can be given graphically. But in the moment it is �rst tried to support

free editing within a generated editor. Further extensions are mentioned concerning a vi-

sual programming environment. That is, generated editors supporting several applications

should be put together to one visual programming environment.

This work shows how diagram editors can be automatically generated. The generator is im-

plemented as a traditional compiler which takes a textual description as input. Formalisms

13

for all necessary activities are provided, but reusability concepts for the speci�cations are

not regarded. Furthermore, it seems to be very di�cult to specify complex analysis or

execution activities. DiaGen uses one hypergraph for all notions, i.e. for the view (graph-

ical structure) as well as for the logical structure of visual sentences, together with its

derivation tree (graph transformation rules). In-equality constraints concerning the layout

of some language constructs are connected with grammar productions of the corresponding

hypergraph grammar. In our opinion the usement of one graph structure for all notions

makes it di�cult to handle dynamical changes of views for one logical structure, i.e. for

language speci�c parts. But this work treats all the other aspects which are necessary for

the generation of diagram editors.

3.3 Graph Rewrite Systems and Visual Database Languages

In [And96] two ways are shown for the usage of graph rewrite systems for de�ning the syntax

as well as the semantics of a visual database language. Several languages are introduced,

one language is concerned with queries which is de�ned using graph rewriting (calledGraph

Oriented Query Language (GOQL)), another one is a language for database manipulations

(called Graph Oriented Database language (GOOD)) which is de�ned as graph rewriting.

The query language considers extended entity-relationship models (short EER), whereas

the manipulation languages considers only E/R-models (short ER). Both kind of languages

only regard the abstract syntax, i.e. the logical structure of visual languages, whereas the

graphical structure is not taken into account.

With respect to the query language GOQL/EER it is said that a query consists on a

collection of concrete database components which is put into a pattern describing the

desired information. The pattern has to match with one database instance to provide

the desired informations which are given by the corresponding attributes. The syntax

of GOQL/EER is de�ned constructive by graph rewrite rules of a graph grammar. The

semantics is de�ned operational by a translation of GOQL/EER queries into the textual

structured query language SQL/EER which is formally de�ned. This will be done by

attribute evaluations within the graph rewrite rules of the graph grammar.

Some graphical queries have limitations if they become more complex than textual queries

e.g. by aggregate functions. Therefore a hybrid query language is de�ned which is syntac-

tically a union of GOQL/EER and SQL/EER. Identi�er of node types in GOQL/EER are

the mechanism to link the textual parts of a hybrid query to the graphical part. The se-

mantics of an HQL/EER query is de�ned by translating it to SQL/EER using an algorithm

presented in [And96].

With respect to the manipulation language GOOD/ER it is said that database manipula-

tions need the ability to structure a number of rules into a program where a program is

given by a graph rewrite system. More concrete, for manipulations some basic operations

are de�ned as for the insertion and deletion of entities and relationships respectively. A

GOOD/ER program is than a sequence of some basic operations. The syntax of GOOD/ER

14

is purely declarative de�ned by adding or update of sentences' parts. The semantics is de-

�ned denotational by an algorithmic description of the resulting instance after application

of same basic operations or a program.

The di�erence between both languages is the expressive power. That is, negative condi-

tions cannot be expressed within a GOQL/EER pattern, while in GOOD/ER negation

is in a sense a \simulation" using deletion. More general, GOQL/EER can only express

conjunctive queries, whereas GOOD/ER is a generically complete language. This stems

from the fact that, while GOOD/ER uses pattern matching combined with the powerful

paradigm of graph rewriting, GOQL/EER uses only pattern matching.

This work shows not only a way to describe the syntax and semantics of visual languages,

i.e. visual database languages, it additionally o�ers a formally de�ned hybrid query lan-

guage, which connects graphical and textual expressions. Furthermore, it illustrates a

rudimentary \life-cycle" for the construction of a graph grammar speci�cation for a visual

language (not discussed here), and provides some open issues for future research mainly

concerned with graph rewriting and visual languages.

3.4 How to represent a Visual Program ?

The earliest work we found was [Rek94], where graph grammars are used to de�ne the log-

ical structure (called abstract syntax) as well as to de�ne the view (called spatial relations)

of diagrammatic expressions. [Sch94] provides triple graph grammars to hold theses two

structures, which is said to de�ne a visual language. Within following articles graphical

(context sensitive) parsing ([RS95b, RS95a]) is regarded, and it is more concrete de�ned

how to represent a visual program ([AER96]) corresponding to the two structures men-

tioned above. Figure 6 illustrates the several representations of a visual program.

Within the last contribution ([RS96]) a graph based framework for the implementation of

visual environments is presented. The aim of this framework is to introduce an architecture

for storing visual sentences within an environment which supports several kinds of editing

(syntax directed, free and layout editing). The architecture of the framework is based on

an abstract syntax graph (ASG) holding the logical structure of a visual sentence, and a

spatial relation graph (SRG) holding the view (graphical structure) of a visual sentence.

Furthermore, the architecture is supported by a coupled graph grammar to de�ne, build

and relate these two structures. Figure 7 illustrates the proposed data structure wrt. a

�nite automata as example.

Usually, a syntax directed graphical editor supports drawing of diagrams by providing

language speci�c editing commands leading to correct diagrams at all time. A more lenient

grammar for the graphical structure can be de�ned to improve the user interface, where

the original grammar is a subset of. Layout editing as e.g. given by move commands

do not change the interpretation (the meaning) of a diagram and must be controlled by

15

layout editing

representation
oriented editing

low level
graphics editing Physical Layout

constraint

solving

graphical

scanning

Spatial Relation Graph
SRG interpretation

syntax directed editing

Meaning

interpretation

Abstract Syntax Graph

ASG

represents

Coupled Graph Grammar

is represented by

create create

Production Applications of a

Figure 6: Representations of a visual program

a constraint solver (the graphical structure graph forms a constraint system). Graphical

scanning is necessary if the graphical editor allows free editing. These facts are re
ected

within the provided visual environments' architecture:

The central components are abstract data types for the graphical structure and logical

structure graphs. These graph data types can be either stored within a graph-oriented

database system or an object-oriented database system with a graph-oriented layer on top

of it. For analysis and execution activities additional graph data types and tools may be

added, which are speci�ed by means of graph grammars. Unparser and parser components

are necessary to keep both structures (graphical and logical structure) in a consistent

state, whenever they are modi�ed. For maintaining the graphical structure's layout in a

consistent state, a constraint solver is needed which combines constraint solving techniques

with standard layout algorithms. Furthermore, a displayer (and a scanner if free editing

should be possible) is necessary for keeping the widgets of a user interface toolkit and the

corresponding graphical structure graph in a consistent state.

Two integration layers are necessary to combine these components. The �rst one controls

the views and the user interface, the second one coordinates any necessary interaction

beween o�ered tools.

Some of the concepts are partially speci�ed within the PROGRES environment where a

single formalism is used to speci�y a class of directed attributed graphs together with all

needed operations for editing, analysis and execution activities. The attributed graphs

represent the abstract syntax graphs, i.e. the logical structure. But the view, i.e. the

graphical structure graph is represented by a Tk-layout graph, and the physical layout

(what a user sees) by Tk/Tcl-widgets. This is the reason why neither speci�c classes

of graphical structure graphs nor tool speci�c editing activities on these graphs can be

speci�ed. Furthermore, until now it exists no support for free editing and parsing.

16

This work o�ers the basis to hold several graph structures, one for the logical structure

and one for several graphical structures (spatial relations) representing visual sentences.

Furthermore, it includes remarkable items wrt. graphical parsing and more important, a

graph-based system architecture. Many of these ideas we will adapt and try to integrate

them with our further ideas as well as with the other works presented in this section.

arrow circle arrow circle

stringstringstring circle

string

contains

a b1

2

Meaning

graphical

scanning

constraint

solving

1

a
b

2

2ba 1

endsin

startsin

labels contains labels contains

startsin endsin

SRG

Automata
(Physical Layout)

Transition State Transition
from Final State

consistsconsists

ASG

Automata

to
from

to

Figure 7: The proposed data structure: ASG + SRG

17

4 Further Ideas

Within the next sections we will discuss some issues that go beyond the state of the art

presented above. One of the topics is concerned with the description of (semiformal)

diagrammatic elements by graph structures, which is given in section 4.1.

Di�erent diagrams of a certain diagram class can be seen as several visual sentences corre-

sponding to one visual language. The de�nition of a visual language should be supported

by a tool. Corresponding ideas are presented within section 4.2. Furthermore, preceding

from a visual-language de�nition we consider the generation of graphic editors supporting

diagram drawing.

Because a lot of work is already done, where some of them are mentioned in section 3, we

will use and connect them within our work. That is, on one hand the generation of dia-

gram editors (see section 3.2), and on the other hand the possibility to de�ne several views

(see section 3.4). A further topic is to embed this work into the area of algebraic graph

theory (see section 3.1), and to o�er syntax and semantics of de�ned visual languages

(see section 3.3).

4.1 Diagrammatic and Graph Representation

The question arised what kind of diagrams or diagram classes respectively, are used for

software design and how to model them by graph structures. Within this section we con-

sider mainly the language speci�c parts of a visual language, i.e. the logical structure, and

the physical layout, i.e. that what a user sees.

With respect to di�erent modeling techniques several diagram classes exists. One well

known kind of modeling technique is that of data structure de�nition where e.g. Entity-

Relationship diagrams are used within the area of semantic data modeling, or class dia-

grams for object oriented design. We are sure that these and further di�erent diagram

classes can be modeled by graph structures.

Figure 8 illustrates how an E/R-diagram, shown in the left hand side, can be modeled by

a directed attributed graph, which is by itself graphically represented. The entity types

E1 and E2 correspond to nodes which are represented as circles, including the node

attributes. Several possibilities exist concerning the relationships. Once it is possible to

translate the relationship of an E/R-diagram into a directed edge, graphically represented

by an arrow (shown within the middle of �gure 8), and marked with the relation name as

edge attribute. Another possibility is to model the relation of the E/R-diagram as node,

where the relation name is the node attribute (right hand side of �gure 8).

Corresponding to algebraic graph theory, the graph structure given in the middle o�ers

implicitly the source and target function of the edge, whereas the graph structure within

the right hand side shows explicitely these functions.

Using E/R-diagrams or class diagrams several levels must be considered, a user has to deal

18

E1 E1E2 E2E1 E2R s tRR

Figure 8: Diagrammatic and graph representations of an E/R-diagram

with. One level is the drawing of diagrams where only the name of an entity type and

relationship type respectively, is given. An extension can be the insertion of attributes

(and maybe the notation of methods which occur within class diagrams of object oriented

design techniques). Such extensions can be seen as di�erent development or re�nement

steps. A further level we have in mind handels with instances of the given E/R-diagram.

Both levels should provide transformation rules the user can apply, e.g. to insert or delete

an entity type, or to insert or delete an instance where additional constraints like integrity

constraints have to be considered.

Figure 9: Diagrammatic and graph representation of a decision unit

A
ow diagram is a further modeling technique including several language constructs, like

the decision units as illustrated in �gure 9. The left hand side shows the graphically

represented decision unit which is modeled by a hypergraph, shown within the right hand

side of �gure 9. The language constructs of
ow diagrams are similar to that of e.g. Nassi-

Shneiderman diagrams but di�erent wrt. the graphical layout. We have in mind, that it

should be possible to build up one logical structure for these language constructs, which

can be connected with several graphical structures.

Another example for a diagrammatic expression is a binary association combined with

an association class which is part of the Uni�ed Modeling Language (short UML), whose

graphical and graph representation is illustrated by �gure 10. The graphical representation

of the underlying graph structure shown in the middle includes edges on edges. This graph

structure can be translated into an directed attributed graph which is given in the right

hand side of �gure 10. Corresponding to algebraic graph theory this graph can be viewed

just as given within the middle of �gure 8 with implicitly source and target functions.

Cl1

A

R Cl2 Cl1 R Cl2

A

Cl1 Cl2

A

R

Figure 10: Diagrammatic and graph representation of a binary association

19

As already mentioned, we are sure that it is possible to transform several diagrammatic

expressions into graph structures. What we need is a meta model, maybe similiar to the

work presented in section 3.1, also based on algebraic graph theory. Furthermore, several

aspects have to be regarded concerning the visual environment we have have in mind.

That is �rst, the development of a visual language consisting of a logical structure, which

is to be connected with a graphical structure. And second, the functionality the generated

diagram editor for these visual language should have.

4.2 Conceptual Ideas for Tool Support

Until now we have concentrated only on diagrams wrt. the design of software. The

question arised, if it is possible to develop a tool based on graph structures, which supports

additionally the generation of executable code. On the one hand, code can be generated for

a tool non-experts of formal speci�cation techniques as given by graph transformation, can

deal with, that is a certain diagram editor. On the other hand, it is conceivable that code

can be generated for a given diagram which can be seen as the semantics of one diagram.

Furthermore, our main question is, whether it is possible to o�er an incremental environ-

ment which is based on graph transformation. Incremental in the sense that we start with

attributed typed graphs as underlying data structure, and some basic functionality we

have to de�ne, but the exact de�nition is out of the scope of this paper. One of the basic

functionality must be the possibility to de�ne graph productions for a visual language.

Therefore, several levels must be regarded, because we would like to de�ne a visual lan-

guage by graphical means. This fact requires a tool allowing the de�nition of a graphical

structure which is to be connected with some language constructs of the visual language'

logical structure. Such a tool maybe consists of a type editor, allowing to de�ne graphical

elements for nodes and edges respectively, and furthermore, to de�ne connections corre-

sponding to the operations of the underlying signature. This fact will be illustrated in

�gure 11, where a type editor and a connection editor is illustrated corresponding to the

automata as presented in �gure 7.

State

Final State

Transition

int int

Type Editor: sort symbol assignments Connection Editor: operation symbol assignments

source and target: attribution:

startsin endsin

Figure 11: Example: Type and connection editor

This tool, we will call graphic box, supports not only the de�nition of the layout, but ad-

ditionally the de�nition of connection points which is supported by the connection editor.

20

From the user de�nition given within the graphic box, a production editor is generated.

Within this production editor the graphical means are available for the de�nition of sev-

eral grammar productions. These grammar productions serve as the basis to generate a

graphic editor supporting the syntax directed editing of diagrams corresponding to the

given productions.

Figure 12 illustrates some system components we have in mind, and we will concentrate

on in the future.

Connection editor

Algebra

=

S

OP

uses defined icons

Grammar editor
defines

can use

uses

uses

Graphic box

configures

Graphic language

view definition

generates

Graphic editor

Type editor

Production editor

Figure 12: Some system components

Graphic language Graphical objects correspond to simple forms, like Text, Ellipse,

Rectangle, Line, etc. Each object consists of a name and attributes describing their

physical appearance in detail. The composition of graphical objects can be supported

by graph grammar rules de�ning a graphical language. This language should provide

several constructs to connect graphical objects, e.g. a rectangle includes a graphic,

a line is marked by a graphic, a graphic is concatenated with a graphic etc. In this

context we will try to adapt and to extend language concepts of GVT ([Bar96]) which

is already successfully used within the ACT-environment.

Graphic box Within the graphic box, the user assigns a graphic to each sort symbol

of the underlying signature which we interprete as a type, and a connection to each

operation symbol. The given assignments con�gure the target system by generating

corresponding editing rules which can be applied within the grammar editor allowing

the de�nition of a visual language.

A type editor permits the user to de�ne own symbols which consist of a collection of

simple graphical objects. Furthermore, the user should be able to de�ne a function-

ality for each type, which can be e.g. the input of concrete integer values for int.

21

The connection editor supports the de�nition of connections, i.e. the de�nition of

operations. This is mapped onto spatial relations between graphical elements. In

case of the discussed example (see �gure 11) one connection is e.g. that the \circle

includes an integer value".

Further connections must be de�ned for the source and target operation, and the

operations wrt. the data type Nat. In case of an automata the source operation

is mapped onto \the transition starts in a circle", whereas the target operation is

mapped onto \the transition ends in a circle".

Grammar editor The grammar editor supports the graphical input of a graph grammar

de�ning a concrecte visual language, e.g. for graph or automata drawing.

Graphic editor The diagram editor de�nes the real graphic editor. This editor supports

the application of grammar rules, i.e. the drawing of sentences corresponding to the

de�ned visual language. Furthermore, a given diagram can be used by the type editor

for further development steps, e.g. for building hierarchical structures.

4.3 Reconsideration of Section 3

Let us �rst reconsider section 3.4, where a data structure is proposed for the logical struc-

ture (abstract syntax) of a visual language together with its corresponding layout which is

given by a graphical structure (spatial relations).

If we assume to have a graphic language like GVT we are able to construct such expressions

like Circle includes String as used within the example given by �gure 11. Furthermore,

the assignments given within the graphic box, i.e. type and connection editor, support

the connection of terminal symbols with a graphical structure. This is used for de�ning

the abstract syntax of a visual language which automatically builds up the language for

the graphical structure. In this context we are able to handle implicitly both, the logical

structure graph and the corresponding graphical structure graph allowing to draw correct

diagrams within the generated graphic editor. A suitable constraint system supports the

output, i.e. the layout on the screen.

The separation of logical and graphical structure provides the basis for the de�nition of

several views, i.e. one user would like to draw circles, another user favours rectangles. View

de�nitions do not change the logical structure, i.e. the abstract syntax, and therefore the

de�nition of several views should be supported by our tool.

With respect to DiaGen which is mentioned in section 3.2 we additionally want to develop

a generator. The main di�erence between this approach and our ideas is the fact that we

want to provide an incremental approach with the possibility of dynamical change, and not

only to generate one diagram editor. I.e. we want to be able to reuse some given graphics

for further development steps.

What we have not discussed up to now are speci�cation elements which are necessary

for our system, e.g. user interaction like key and mouse events, or layout conditions

which are attached to grammar rules within the DiaGen-approach. These items will be

22

discussed in the future. By the side, as already mentioned before, we are looking towards

a possibility for code generation. E.g. an automata describing user interactions can be

drawn within a generated graphic editor for automatas. The generation of executable code

can be interpreted to be the implementation of the given automata, and furthermore, to

be its semantics.

Concerning section 3.1, we would like to serve a meta model underlying all the tools we have

in mind, too. As already illustrated in the beginning of this section, several diagrammatic

structures can be mapped onto graph structures. We are looking forward that graph

structures can be used as a meta model for our work.

Concerning section 3.3, the syntax of a visual language is de�ned constructively by graph

rewrite rules of a graph grammar. The semantics can be de�ned by a translation of

sentences over the visual language (given within the generated graphic editor) into a spec-

i�cation language which is formally de�ned.

23

5 Conclusion

Within this paper, we presented some approaches concerned with visual languages in gen-

eral and the application of graph transformation to visual languages in particular. The

visual languages based on graph transformation are all restricted to diagrammatic expres-

sions used for the design of software components.

Furthermore, some ideas are discussed for an environment supporting the graphical de�-

nition of visual languages based on graph transformation. We are sure, a tool support for

these ideas would improve graph transformation leading to a better acceptance of formal

speci�cation techniques by practitioners.

But for the improvement of graph transformation the availability of graphical programming

is not su�cient enough. Further extensions like the availability of an animation component

is conceivable. An animation component could be used on the one hand to visualize and

animate several development steps, and on the other hand it could be used to animate

the operational semantics of de�ned functions. The latter one is called simulation which

can be seen as a kind of veri�cation by test, but it could also be used for demonstrational

aspects.

In the future we would like to develop a uniform generator for the development of editors

for visual languages based on graph transformation. This generator, which we will de�ne

conceptually, should serve as a basis for tool support. The supporting tool by itself supplies

a visual language development environment. It should be generic for the adaption to certain

application areas as e.g. given by distributed systems. At all, the concept of a visual graph-

transformation-based development environment should support the de�nition of a visual

language, static consistency checks (we will integrate an existing tool) and the execution

(by an interpreter or compiler). Therefore we want to concentrate on the following issues

� Speci�cation of a concrete visual language using graph grammars.

This visual language is the basis for our start system.

� Conceptual modeling of systems using a visual language which is based on graph

transformation (diagrams, OOA-models, etc.).

This is a visual language, an expert of formal speci�cation techniques has to de�ne,

aiming in the generation of an algebra editor.

� Conceptual programming using a visual language, where the visual program is mapped

into programming / executable code.

This fact may lead to an independent system, non-experts can be used.

24

A References

References

[AE97] M. Andries and G. Engels. A hybrid query language for the extended entity

relationship model. Journal of Visual Languages and Computing, 8(1), 1997.

Special Issue on Visual Query Systems, to appear.

[AER96] M. Andries, G. Engels, and J. Rekers. How to represent a Visual Program ?

In [TVL96], 1996.

[And96] M. Andries. Graph Rewrite Systems and Visual Database Languages. PhD

thesis, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands,

February 1996.

[Bar96] R. Bardohl. Graphical Support for Prototyping of Algebraic Speci�cations by

GVT - Language Description and Users's Manual. Technical Report 96-11,

Technical University Berlin, Franklinstr. 28/29, D-10587 Berlin, Germany,

April 1996.

[Boo94] G. Booch. Object Oriented Analysis and Design. Benjamin/Cummings, 2nd

edition, 1994.

[CGL96] I. Cla�en, M. Gogolla, and M. L�owe. Dynamics in Information Systems: Speci-

�cation, Construction, and Correctness. Technical Report TR 96-01, Technical

University of Berlin, 1996.

[CL95] I. Cla�en and M. L�owe. Scheme Evolution in Object-Oriented Models - A

Graph Transformation Approach. In ICSE '95 - 17th Workshop on Formal

Methods Application in Software Engineering Practice, Seattle, Washington,

April 1995.

[CLWW94] I. Cla�en, M. L�owe, S. Wa�erroth, and J. Wortmann. Static and Dynamic

Semantics of Entity{Relationship Models Based on Algebraic Methods. In

B. Wol�nger, editor, Innovationen bei Rechen- und Kommunikationssystemen,

pages 2{9. 24. GI-Jahrestagung/13. IFIP Congress, Springer, 1994.

[EC96] S. Erdmann and I. Cla�en. Alpha { A Class Library for a Metamodel based on

Algebraic Graph Theory. In Proc. Fifth International Conference on Algebraic

Methodology and Software Technology, LNCS. Springer, 1996.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-

Wesley, 1995.

25

[LB93] M. L�owe and M. Beyer. AGG - an implementation of algebraic graph rewriting.

In C. Kirchner, editor, Proc. Rewriting Techniques and Applications, volume

690 of LNCS, pages 451{456. Springer, 1993.

[LKW93] M. L�owe, M. Kor�, and A. Wagner. An algebraic framework for the trans-

formation of attributed graphs. In M.R. Sleep, M.J. Plasmeijer, and M.C. van

Eekelen, editors, Term Graph Rewriting: Theory and Practice, pages 185{199.

John Wiley & Sons Ltd.,, 1993.

[L�ow93] M. L�owe. Algebraic approach to single-pushout graph transformation. Theo-

retical Computer Science, 109:181{124, 1993.

[Men95] T. Menzies. Frameworks for Assessing Visual Languages. Technical Report

TR 95-35, Monash University, Dep. of Software Development, December 1995.

[Min93] M. Minas. Spezi�kation von Diagrammeditoren mit automatischer Layoutan-

passung. In H.Reichel, editor, Proc. 23. GI-Jahrestagung, Dresden, Reihe

'Informatik aktuell', pages 334{339. GI, September 1993.

[MV95] M. Minas and G. Viehstaedt. DiaGen: A Generator for Diagram Editors

Providing Direct Manipulatin and Execution of Diagrams. In [VL'95], 1995.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Objekct-

oriented Modeling and Design. Prentice-Hall, 1991.

[Rek94] J. Rekers. On the use of Graph Grammars for de�ning the Syntax of

Graphical Languages. Technical Report tr94-11, Leiden University, Dep. of

Computer Science, 1994. Also available from ftp.wi.leidenuniv.nl:/pub/

cs-techreports/ as tr94-11.ps.gz.

[RS95a] J. Rekers and A. Sch�urr. A Graph Grammar Approach to Graphical Parsing.

In [VL'95], 1995.

[RS95b] J. Rekers and A. Sch�urr. A Parsing Algorithm for Context-Sensitive Graph

Grammars. Technical Report tr95-05, Leiden University, Dep. of Com-

puter Science, 1995. Also available from ftp.wi.leidenuniv.nl:/pub/

cs-techreports/ as tr95-05.ps.gz.

[RS96] J. Rekers and A. Sch�urr. A graph based framework for the implementation of

visual environments. In [VL'96], 1996.

[Sch94] A. Sch�urr. Speci�cation of Graph Translators with Triple Graph Grammars. In

Proc. 20th International Workshop on Graph-Theoretic Concepts in Computer

Science, volume 903 of LNCS, pages 151{163. Springer, 1994.

26

[Shu86] C.N. Shu. Visual Programming Languages: A Perspective and a Dimensional

Analysis. In S.K. Chang, T. Ichikawa, and P.A. Ligomenides, editors, Visual

Languages, pages 11{34. IEEE Computer Society Press, 1986.

[SZW95] A. Sch�urr, A. Z�undorf, and A.Winter. Visual Programming with Graph Rewrit-

ing Systems. In [VL'95], 1995.

[TVL96] Proc. of the AVI'96 Workshop Theory of Visual Languages, Gubbio, Italy, May

30. 1996. Available at URL http://www.cs.monash.edu.au/ berndm/TVL96/

tvl-home.html.

[VL'94] Proc. IEEE Workshop on Visual Languages, St. Louis, Missouri, October, 4-7

1994. IEEE Computer Society Press.

[VL'95] Proc. IEEE Workshop on Visual Languages, Darmstadt, Germany, Septem-

ber, 5-9 1995. IEEE Computer Society Press. Availabe at URL:

http://www.computer.org:80/conferen/vl95/ as TALKHP.html.

[VL'96] Proc. IEEE Workshop on Visual Languages, Boulder, Colorado, September

1996. IEEE Computer Society Press.

[VM94] G. Viehstaedt and M. Minas. Interaction in Really Graphical User Interfaces.

In [VL'94], pages 270{277, 1994.

[VM95] G. Viehstaedt and M. Minas. DiaGen: A Generator for Diagram Editors

Based on a Hypergraph Model. In Proc. 2nd International Workshop on Next

Generation Information Technologies and Systems (NGITS'95), pages 155{

162, Naharia, Israel, June 1995.

[Z�un92] A. Z�undorf. Implementation of the Imperative / Rule Based Language PRO-

GRES. Technical Report AIB 92-38, RWTH Aachen, 1992.

27

