Strengthening UML Collaboration Diagrams by
State Transformations*

Reiko Heckel and Stefan Sauer

University of Paderborn, Dept. of Mathematics and Computer Science
D-33095 Paderborn, Germany
reiko|sauer@uni-paderborn.de

Abstract. Collaboration diagrams as described in the official UML doc-
uments specify patterns of system structure and interaction. In this pa-
per, we propose their use for specifying, in addition, pre/postconditions
and state transformations of operations and scenarios. This conceptual
idea is formalized by means of graph transformation systems and graph
process, thereby integrating the state transformation with the structural
and the interaction aspect.

Keywords: UML collaboration diagrams, pre/postconditions, graph transfor-
mation, graph process

1 Introduction

The Unified Modeling Language (UML) [24] provides a collection of loosely cou-
pled diagram languages for specifying models of software systems on all levels of
abstraction, ranging from high-level requirement specifications over analysis and
design models to visual programs. On each level, several kinds of diagrams are
available to specify different aspects of the system, like the structural, functional,
or interaction aspect. But even diagrams of the same kind may have different
interpretations when used on different levels, while several aspects of the same
level may be expressed within a single diagram.

For example, interaction diagrams in UML, like sequence or collaboration
diagrams, often represent sample communication scenarios, e.g., as refinement
of a use case, or they may be used in order to give a complete specification of
the protocol which governs the communication. Collaboration diagrams allow,
in addition, to represent individual snapshots of the system as well as structural
patterns.

If such multi-purpose diagrammatic notations shall be employed successfully,
a precise understanding of their different aspects and abstraction levels is re-
quired, as well as a careful analysis of their mutual relations. This understanding,
once suitably formalized, can be the basis for tool support of process models,
e.g., in the form of consistency checks or refinement rules.

* Research partially supported by the ESPRIT Working Group APPLIGRAPH.

In this paper, we address these issues for UML collaboration diagrams. These
diagrams are used on two different levels, the instance and the specification
level, both related to a class diagram for typing (cf. Fig. 1). A specification-level
diagram provides a pattern which may occur at the instance level.!

role ecification

pattern
type
Type
type

occurrence

extension Instance

Fig. 1. Two levels of collaboration diagrams and their typing

In addition, in the UML specification [24] two aspects of collaboration dia-
grams are identified: the structural aspect given by the graph of the collaboration,
and the interaction aspect represented by the flow of messages. These aspects
are orthogonal to the dimensions in Fig. 1: A specification-level diagram may
provide a structural pattern as well as a pattern of interaction. At the instance
level, a collaboration diagram may represent a snapshot of the system or a sample
interaction scenario. Moreover, both aspects are typed over the class diagram,
and the pattern-occurrence relation should respect this typing.

One way to make precise the relationships between different diagrams and
abstraction levels is the approach of meta modeling used in the UML specifica-
tion [24]. It allows to specify the syntactic relation between different diagrams
(or different uses of the same diagram) by representing the entire model by a
single abstract syntax graph where dependencies between different diagrams can
be expressed by means of additional links, subject to structural constraints spec-
ifying consistency. This approach provides a convenient and powerful language
for integrating diagram languages, i.e., it contributes to the question, how the in-
tegration can be specified. However, it provides no guidelines, what the intended
relationships between different diagrams should be.

Therefore, in this paper, we take the alternative approach of translating the
diagrams of interest into a formal method which is conceptually close enough
in order to provide us with the required semantic intuition to answer the what
question. Once this is sufficiently understood, the next step is to formulate these
results in the language of the UML meta model.

Our formal method of choice are graph transformation systems of the so-
called algebraic double-pushout (DPO) approach [10] (see [5] for a recent survey).

! The use of collaboration diagrams for role modeling is not captured by this pic-
ture. A role model provides a refinement of a class diagram where roles restrict the
features of classes to those relevant to a particular interaction. A collaboration dia-
gram representing a role model can be seen as a second level of typing for instance
(and specification-level) diagrams which itself is typed over the class diagram. For
simplicity, herein we restrict ourselves to a single level of typing.

In particular, their typed variant [4] has built in most of the aspects discussed
above, including the distinction between pattern, instance, and typing, the struc-
tural aspect and (by way of the partial order semantics of graph processes [4]) a
truly concurrent model for the interaction aspect. The latter is in line with the
recent proposal for UML action semantics [1] which identifies a semantic domain
for the UML based on a concurrent data flow model.

The direct interpretation of class and collaboration diagrams as graphs and
of their interrelations as graph homomorphisms limits somewhat the scope of
the formalization. In particular, we deliberately neglect inheritance, ordered or
qualified associations, aggregation, and composition in class diagrams as well as
multi-objects in collaboration diagrams. This oversimplification for presentation
purpose does not imply a general limitation of the approach as we could easily
extend the graph model in order to accommodate these features, e.g., using a
meta model-based approach like in [21].

Along with the semantic intuition gained through the interpretation of collab-
oration diagrams in terms of graph transformation comes a conceptual improve-
ment: the use of collaboration diagrams as a visual query and update language
for object structures. In fact, in addition to system structure and interaction,
we propose the use of collaboration diagrams for specifying the state transfor-
mation aspect of the system. So far, this aspect has been largely neglected in
the standard documents [24], although collaboration diagrams are used already
in the CATALYSIS approach [6] and the FUSION method [3] for describing pre-
and postconditions of operations and scenarios.

Beside a variety of theoretical studies, in particular in the area of concur-
rency and distributed systems [9], application-oriented graph transformation ap-
proaches like PROGRES [29] or FUJABA [14] provide a rich background in using
rule-based graph transformation for system modeling as well as for testing, code
generation, and rapid prototyping of models (see [7] for a collection of survey
articles on this subject). Recently, graph transformations have been applied to
UML meta modeling, e.g., in [16,2, 11].

Therefore, we believe that our approach not only provides a clarification, but
also a conceptual improvement of the basic concepts of collaboration diagrams.

Two approaches which share the overall motivation of this work remain to
be discussed, although we do not formally relate them herein. Overgaard [26]
uses sequences in order to describe the semantics of interactions, including no-
tions of refinement and the relation with use cases. The semantic intuition comes
from trace-based interleaving models which are popular, e.g., in process algebra.
Knapp [22] provides a formalization of interactions using temporal logic and the
pomset (partially ordered multi-set) model of concurrency [27]. In particular,
the pomset model provides a semantic framework which has much similarity
with graph processes, only that pomsets are essentially set-based while graph
processes are about graphs, i.e., the structural aspect is already built in. Be-
sides technical and methodological differences with the cited approaches, the
main additional objective of this work is to strengthen collaboration diagrams by
incorporating graph transformation concepts.

The presentation is structured according to the three aspects of collaboration
diagrams. After introducing the basic concepts and a running example in Sect. 2,
Sect. 3 deals with the structural and the transformation aspect, while Sect. 4 is
concerned with interactions. Section 5 concludes the paper.

A preliminary sketch of the ideas of this paper has been presented in [20].

2 UML Collaboration Diagrams: A Motivating Example

In this section, we introduce a running example to motivate and illustrate the
concepts in this paper. First, we sketch the use of collaboration diagrams as
suggested in the UML specification [24]. Then, we present an improved version
of the same example exploiting the state transformation aspect.

Figure 2 shows the class diagram of a sample application where a Company
object is related to zero or more Store, Order, and Delivery objects. Order objects
as well as Delivery objects are related to exactly one Customer who plays the role
of the customer placing the order or the receiver of a delivery, respectively. A
Customer can place several instances of Order and receive an unrestricted number
of Delivery objects.

Store

Company 1 * | - products[*]: Integer
- amounts[*]: Integer

store

+ processOrder (0:Order)

+ deliver(d:Delivery)

1 1 + available(p:Integer, a:Integer): Boolean
Delivery
- pNr: Integer
I - amount: Integer
delivery 9
+ Delivery (o:Order, s:Store)
. *
_ | order 1 |receiver
Order * 1 Customer
- pNr: Integer I
- amount: Integer customer |, charge (d:Delivery)

Fig. 2. A class diagram defining the structure of the example

A typical scenario within that setting is the situation where a customer orders
a product from the company. After the step of refining and combining different
use cases into a method-oriented specification one might end up with a col-
laboration diagram specifying the implementation of operation processOrder as
depicted in the top of Fig. 3. Here, the company first obtains the product num-
ber pNr and the ordered amount using defined access functions. It then checks
all stores to find one that can supply the requested amount of the demanded
product. A delivery is created, and the selected store is called to send it out.
Concurrently, the customer is charged for this delivery. After an order has been
processed, it will be deleted.

Collaboration diagrams like this, which specifies the execution of an opera-
tion, may be used for generating method implementations in Java [12], i.e., they

can be seen as visual representations of programs. However, in earlier phases
of development, a higher-level style of specification is desirable which abstracts
from implementation details like the get functions for accessing attributes and
the implementation of queries by search functions on multi-objects.

Therefore, we propose to interpret a collaboration as a visual query which
uses pattern matching on objects, links, and attributes instead of low-level access
and search operations. In fact, leaving out these details, the same operation
can be specified more abstractly by the diagram in the lower left of Fig. 3.
Here, the calls to getPNr and getAmount are replaced by variables p and a for
the corresponding attribute values, and the call of search on the multi-object
is replaced by a boolean function available which constrains the instantiation of
/s:Store. (As specified in the lower right of the same figure, the function returns
true if the Store object matching /s is connected to a Product object with the
required product number p and an amount b greater than a.) The match is
complete if all items in the diagram not marked as {new} are instantiated. Then,
objects marked as {destroyed} are removed from the current state while objects
marked as {new} are created, initializing appropriately the attributes and links.
For example, the new Delivery object inherits its link and attribute values from
the destroyed Order object.

processOrder(o) 3:s:=search(pa) —
:Company I :Store
store

5a: deliver(d) — s
<<local>>|

delivery 1: p:= getPNr() —
ra= —
Delivery [<local>> 2: a:= getAmount() o [“Order
{new} d < <<parameter>>| {destroyed}

4: Delivery(o,s)

:Customer

:Store

5b: charge(d) —
receiver

customer

1:available(p,a) —»
processOrder(/0) 2a:deliver(/d) —»
/c:Company }m{ /s:Store ‘
delivery available(p,a)
Jo:Order /d:Delivery
: P
{destroyed} {new} /s:Store product roduct
pNr=p pNr=p pNr=p
amount=a| |amount=a ¢ 2b:charge(/d) {b>a}| amount=b
customer receiver

Fig. 3. An implementation-oriented collaboration diagram (top), its declarative pre-
sentation (bottom left), and a visual query operation (bottom right)

In the following sections, we show how this more abstract use of collaboration
diagrams can be formalized by means of graph transformation rules and graph
processes.

3 Collaborations as Graph Transformations

A collaboration on specification level is a graph of classifier roles and association
roles which specifies a view of the classes and associations of a class diagram
as well as a pattern for objects and links on the instance level. This triangular
relationship, which instantiates the type-specification-instance pattern of Fig. 1
for the structural aspect, shall be formalized in the first part of this section.
Then, the state transformation aspect shall be described by means of graph
transformations. The interaction aspect is considered in the next section.

Structure. Focusing on the structural aspect first, we use graphs and graph ho-
momorphisms (i.e., structure-compatible mappings between graphs) to describe
the interrelations between class diagrams and collaboration diagrams on the
specification and the instance level.

The relation between class and instance diagrams is formally captured by the
concept of type and instance graphs [4]. By graphs we mean directed unlabeled
graphs G = (Gy, G, src%, tar®) with set of vertices Gy, set of edges G, and
functions src® : Gg — Gy and tar® : Gg — Gy associating to each edge its
source and target vertex, respectively. A graph homomorphism f: G — H is a
pair of functions (fy : Gy — Hy, fg : Gg — Hg) compatible with source and
target, i.e., for all edges e in Gg, fy (src(e)) = sref (fr(e)) and fy (tar(e)) =
tar® (fi(c)).

Let TG be the underlying graph of a class diagram, called type graph. A
legal instance graph over T'G consists of a graph G together with a typing ho-
momorphism g : G — TG associating to each vertex and edge x of G its type
g(z) =t in TG. In UML notation, we write z : . Observe that the compatibility
of g with source and target ensures that, e.g., the class of the source object of
a link is the source class of the link’s association. Constraints like this can be
found in the meta class diagrams and well-formedness rules of the UML meta
model for the meta associations relating classifiers with instances, associations
with links, association ends with link ends, etc. ([24], Sect. 2.9). The typing of
specification-level graphs is described in a similar way ([24], Sect. 2.10).

An interpretation of a graph homomorphism which is conceptually different,
but requires the same notion of structural compatibility, is the occurrence of a
pattern in a graph. For example, a collaboration on the specification level occurs
in a collaboration on the instance level if there exists a mapping from classifier
roles to instances and from association roles to links preserving the connections.
Thus, the existence of a graph homomorphism from a given pattern graph implies
the presence of a corresponding instance level structure. The occurrence has to
be type-compatible, i.e., if a classifier role is mapped to an instance, both have to
be of the same classifier. This compatibility is captured in the notion of a typed
graph homomorphism between typed graphs, i.e., a graph homomorphism which
preserves the typing. In our collaboration diagrams, this concept of graphical
pattern matching is used to express visual queries on object structures.

In summary, class and collaboration diagrams have a homogeneous, graph-
like structure, and their triangular relationship can be expressed by three com-

patible graph homomorphisms. Next, this triangular relation shall be lifted to
the state transformation view.

State Transformation. Collaborations specifying queries and updates of object
structures are formalized as graph transformation rules, while corresponding col-
laborations on the instance level represent individual graph transformations.

A graph transformation rule r = L — R consists of two graphs L, R such that
the union L U R is defined. (This ensures that, e.g., edges which appear in both
L and R are connected to the same vertices in both graphs.) Consider the rule
in the upper part of Fig. 4 representing the collaboration of processOrder in the
lower left of Fig. 3. The precondition L contains all objects and links which have
to be present before the operation, i.e., all elements of the diagram except for
/d:Delivery which is marked as {new}. Analogously, the postcondition R contains
all elements except for /o:Order which is marked as {destroyed}. (The {transient}
constraint does not occur because a graph transformation rule is supposed to be
atomic, i.e., conceptually there are no intermediate states between L and R.)

Ic:Company Ic:Company
delivery
store Ic.processOrder (/o) store /d:Delivery
—
L mep | R
Jo:Order amount = a

pNr=p customer receiver
amount=a | | /cu:Customer
(0]
l ol IR

store

product
pr:Product pr:Product
ce.processOrder (or)
G pNr =13 _— pNr =13 H
amount = 42 amount = 14
or/o:Order de/d:Delivery
pNr=13 pNr=13 [delivery
amount = 28 amount = 28
customer receiver
custo/cu:Customer custo/cu:Customer

Fig. 4. A graph transition consisting of a rule L — R specifying the operation process-
Order (top), and its occurrence o in an instance-level transformation (bottom)

A similar diagram on the instance level represents a graph transformation.
Graph transformation rules can be used to specify transformations in two dif-
ferent ways: either operationally by requiring that the rule is applied to a given
graph in order to rewrite part of it, or axiomatically by specifying pre- and
postconditions. In the first interpretation (in fact, the classical one [10], in

set-theoretic formulation), a graph transformation G g H from a pre-state
G to a post-state H using rule r is represented by a graph homomorphism
o:LUR — G U H, called occurrence, such that

1. o(L) € G and o(R) C H (i.e., the left-hand side of the rule is matched by
the pre-state and the right-hand side by the post-state),

2. o(L\R) =G\ H and o(R\ L) = H\ G (i.e., all objects of G are {destroyed }
that match classifier roles of L not belonging to R and, symmetrically, all
objects of H are {new} that match classifier roles in R not belonging to L).

That is, the transformation creates and destroys exactly what is specified by the
rule and the occurrence. As a consequence, the rule together with the occurrence
of the left-hand side L in the given graph G determines, up to renaming, the
derived graph H, i.e., the approach has a clear operational interpretation, which
is well-suited for visual programming.

In the more liberal, axiomatic interpretation, requirement 2 is weakened to

2. o(L\R) C G\ H and o(R\ L) C H\ G (i.e., at least the objects of G
are {destroyed} that match classifier roles of L not belonging to R and,
symmetrically, at least the objects of H are {new} that match classifier roles
in R not belonging to L).

These so-called graph transitions [19] allow side effects not specified by the rule,
like in the example of Fig. 4 where the amount of product pr changes without
being explicitly rewritten by the rule. This is important for high-level modeling
where specifications of behavior are often incomplete.

In both cases, instance transformations as well as specification-level rules are
typed over the same type graph, and the occurrence homomorphism respects
these types. This completes the instantiation of the type-specification-instance
pattern for the aspect of state transformation.

Summarizing, a collaboration on the specification level represents a pattern
for state transformations on the instance level, and the occurrence of this pattern
requires, beside the structural match of the pre- and postconditions, (at least)
the realization of the described effects. Graph transformations provide a formal
model for the state transformation aspect which allows to describe the overall
effect of a complex interaction. However, the interaction itself, which decomposes
the global steps into more basic actions, is not modeled. In the next section, this
finer structure shall be described in terms of the model of concurrency for graph
transformation systems [4].

4 Interactions as Graph Processes

In this section, we shall extend the triangular type-specification-instance pattern
to the interaction part. First, we describe the formalization of the individual
concepts and then the typing and occurrence relations.

Class diagrams. A class diagram is represented as a graph transformation sys-
tem, briefly GTS, G = (T'G,R) consisting of a type graph TG and a set of
transformation rules R. The type graph captures the structural aspect of the
class diagram, like the classes, associations, and attributes, as well as the types
of call and return messages that are sent when an operation is invoked. For the
fragment of the class diagram consisting of the classes Order, Customer, and De-
livery, the customer association?, and the attributes and operations of the first
two classes, the type graph is shown in Fig. 5. Classes are as usually shown as
rectangular, data types as oval shapes. Call and return messages are depicted
like UML action states, i.e., nodes with convex borders at the two sides. Return
messages are marked by overlined labels. Links from call message nodes rep-
resent the input parameters of the operation, while links from return message
nodes point to output parameters (if any). The self link points to the object
executing the operation. The rules of the GTS in Fig. 5 model different kinds of
basic actions that are implicitly declared within the class diagram. Among them
are state transformation actions like destroy o, control actions like send charge,
and actions representing the execution of an operation like cu.charge(d).

R

R
" destroy o
0:Order > %)

send charge,
- E—— self|
.
self cu.charge(d)

Fig. 5. Graph transformation system for a fragment of the class diagram in Fig. 2

Interactions. An interaction consists of a set of messages, linked by control and
data flow, that stimulate actions like access to attributes, invocation of opera-
tions, creation and deletion of objects, etc. While the control flow is explicitly
given by sequence numbers specifying a partial order over messages, data flow
information is only implicitly present, e.g., in the parameters of operations and
in their implementation, as far as it is given. However, it is important that con-
trol and data flow are compatible, i.e., they must not create cyclic dependencies.

2 More precisely, in UML terms this is an unnamed association in which class Customer
plays the role customer.

Such constraints are captured by the concept of a graph process which provides
a partial order semantics for graph transformation systems.

The general idea of process semantics, which have their origin in the theory
of Petri nets [28], is to abstract, in an individual run, from the ordering of actions
that are not causally dependent, i.e., which appear in this order only by accident
or because of the strategy of a particular scheduler. If actions are represented
by graph transformation rules specifying their behavior in a pre/postcondition
style, these causal dependencies can be derived by analyzing the intersections of
rules in the common context provided by the overall collaboration.

product

available

processOrder

order

start

available g

lo lo

store | PNr=p PNr=p
s amount = a amount = a
I I
custome customer

deliver deliver deliver
e

self delivery

self

vailable charge —
charge charge
ﬁ

receiver
leu leu leu

destroy /o
]| —> o new link destrtoynnk new link
_— S customer
receiver ——

receiver,
delivery
new /d d
2 —> [pNr=p d
amount = a

Fig. 6. Graph process for the collaboration diagram of operation processOrder. The
three rules in the upper left section represent the operations, those in the upper right
realize the control flow between these operations, and the five rules in the lower part
are responsible for state transformations (note that attribute values a and p of /d can
be instantiated by new /d since all the rules of the graph process act in a common
context given by the collaboration)

The graph process for the collaboration diagram in the lower left of Fig. 3
is shown in Fig. 6. It consists of a set of rules representing the internal actions,
placed in a common name space. That means, e.g., the available node created
by the rule start in the top right is the same as the one deleted by the rule
available in the top left. Because of this causal dependency, available has to be
performed after start. Thus, the causality of actions in a process is represented
by the overlapping of the left- and right-hand sides of the rules.

10

Graph processes are formally defined in three steps. A safe graph transforma-
tion system consists of a graph C' (best to be thought of as the graph of the collab-
oration) together with a set of rules 7 such that, for everyrulet =G — H € T
we have G, H C C (that is, C provides a common context for the rules in 7).
Intuitively, the rules in 7 represent transformations, i.e., occurrences of rules. In
order to formalize this intuition, the notion of occurrence graph transformation
system is introduced requiring, in addition, that the transformations in 7 can
be ordered in a sequence. That means, the system has to be acyclic and free
of conflicts, and the causality relation has to be compatible with the graphical
structure. In order to make this precise, we define the causal relation associated
to a safe GTS (C,7). Let t : G — H be one arbitrary transformation in 7 and
e be any edge, node, or attribute in C'. We say that

— t consumes eife € G\ H
— t creates eife € H\ G
— t preserves eifee GNH

The relation < is defined on 7 U C, i.e., it relates both graphical elements and
operations. It is the transitive and reflexive closure of the relation < where

— e < ty if t; consumes e

— t1 < e if t; creates e

— t1 < to if t; creates e and ty preserves e, or
t1 preserves e and t5 consumes e

Now, a safe GTS is called an occurrence graph transformation system if

— the causal relation < is a partial order which respects source and target, i.e.,
ift € 7 is a rule and a vertex v of C' is source (or target) of an edge e, then
e t <vimplies t < e and
e v <t impliese <t
— for all elements = of C, = is consumed by at most one rule in 7, and it is
created by at most one rule in 7.

The objective behind these conditions is to ensure that each occurrence
GTS represents an equivalence class of sequences of transformations “up-to-
rescheduling”, which can be reconstructed as the linearizations of the partial
order <. Vice versa, from each transformation sequence one can build an occur-
rence GTS by taking as context C' the colimit (sum) of all instance graphs in
the sequence [4].

The causal relation between the rules in the occurrence GTS in Fig. 6 is
visualized by the Petri net in the left of Fig. 7. For example, the dependency
between available and start discussed above is represented by the place between
the corresponding transitions. Of these dependencies, which include both control-
and data-flow, in the UML semantics only the control-flow dependencies are
captured by a precedence relation on messages, specified using sequence numbers.
This part is presented by the sub-net in the upper right of Fig. 7. In comparison,
the net in the lower right of Fig. 7 visualizes the control flow if we replace the

11

synchronous call to deliver by an asynchronous one: The call is delegated to
a thread which consumes the return message and terminates afterwards. This
strategy for modeling asynchronous calls might seem a little ad-hoc, but it follows
the implementation of asynchronous calls in Java as well as the formalization of
asynchronous message passing in process calculi [23]. The essential property is
the independence of the deliver and the charge action.

new link deliver

delivery 8 : 8
start available fork return

charge

new /d new link
receiver

deliver

available deliver ignore

return

OO0

destroy link destroy o/ start available fork
customer charge return

Fig. 7. Control flow and data dependencies of the occurrence GTS in Fig. 6 (left),
sub-net for control flow dependencies of occurrence GTS (top right), and control flow
dependencies with asynchronous call of deliver (bottom right)

We have used graph transformation rules for specifying both the overall effect
of an interaction as well as its basic, internal actions. A fundamental fact about
occurrence GTS [4] relates the state transformation with the interaction aspect:
Given an occurrence GTS O = (C,7T) and its partial order <, the sets of minimal
and maximal elements of C' w.r.t. < form two graphs Min(O), Maz(O) C C. This
allows us to view a process p externally as a transformation rule 7(p), called total
rule of p, which combines the effects of all the local rules of 7 in a single, atomic
step. The total rule of the process in Fig. 6 is shown in the top of Fig. 4.

Summarizing, the three corners of our triangle are represented by a GTS
representing the type level, and two occurrence GTS formalizing interactions on
the specification and the instance level, respectively. It remains to define the
relation between these three levels, i.e., the concepts of typing and occurrence.

Typing. In analogy with the typing of graphs, an occurrence GTS O = (C,T)
is typed over a GTS G = (T'G,R) via a homomorphism of graph transformation
systems, briefly GTS morphism. A GTS morphism p : O — G consists of a graph
homomorphism ¢ : C — TG typing the context graph C' over the type graph
TG, and a mapping of rules f : 7 — R such that, for every ¢ € 7, the rules
t and f(t) are equal up to renaming. Such a typed occurrence GTS is called a
graph process [4].

Since all graphs in the rules of Fig. 6 are well-typed over the type graph TG,
their union C is typed over T'G by the union of the typing homomorphisms of its

12

subgraphs. The rules representing basic actions, like operation invocations and
state transformations, can be mapped directly to rules in R. The control flow
rules, which are more complex, are mapped to compound rules derived from the
elementary rules in R.3

Occurrence. The occurrence of a specification-level interaction pattern at the
instance level is described by a plain homomorphism of graph transformation
systems: We want the same granularity of actions on the specification and the
instance level. An example of an instance-level collaboration diagram is given in
Fig. 8. It does not contain additional actions (although this would be permit-

l:available(13,28) —»
2a:deliver(de) —»

co/c:Company‘m{ st/s:Store ‘

processOrder(or)

delivery product
or/o:Order de/d:Delivery pr:Product
{destroyed} {new}
pNr=13
pNr =13 pNr=13 amount = 42
amount = 28 | | amount = 28

¥ 2bicharge(de)

custo/cu:Customer

customer receiver

Fig. 8. Collaboration diagram on the instance level

ted by the definition of occurrence), but the additional context of the Product
instance. In the process in Fig. 6, this would lead to a corresponding extension
of the start rule.

As before, the GTS homomorphisms forming the three sides of the triangle
have to be compatible. That means, an occurrence of a specification-level col-
laboration diagram in an instance-level one has to respect the typing of classes,
associations, and attributes and of operations and basic actions.

This completes the formalization of the type-specification-instance triangle
in the three views of collaboration diagrams of structure, state transformation,
and interaction.

5 Conclusion

In this paper, we have proposed a semantics for collaboration diagrams based
on concepts from the theory of graph transformation. We have identified and
formalized three different aspects of a system model that can be expressed by
collaboration diagrams (i.e., structure, state transformation, and interaction)
and, orthogonally, three levels of abstraction (type, specification, and instance
level). In particular, the idea of collaboration diagrams as state transformations

3 Categorically, this typing of an occurrence GTS can be formalized as a Kleisli mor-
phism mapping elementary rules to derived ones (see, e.g., [18,17] for similar ap-
proaches in graph transformation theory).

13

provides new expressive power which has so far been neglected by the UML
standard. The relationships between the different abstraction levels and aspects
are described in terms of homomorphisms between graphs, rules, and graph
transformation systems.

The next steps in this work consist in transferring the new insights to the
UML specification. On the level of methodology and notation, the state trans-
formation aspect should be discussed as one possible way of using collaboration
diagrams. On the level of abstract syntax (i.e., the meta model) the pattern-
occurrence relation between specification- and instance-level diagrams has to
be made explicit, e.g., by additional meta associations. (In fact, this has been
partly accomplished in the most recent draft of the standard [25].) On the seman-
tic level, a representation of the causal dependencies in a collaboration diagram
is desirable which captures also the data flow between actions.

It remains to state more precisely the relation between collaboration diagrams
as defined by the standard and our extended version. Obviously, although our
collaboration diagrams are syntactically legal, the collaboration diagrams that
are semantically meaningful according to the UML standard form a strict subset
of our high-level diagrams based on graph matching. An implementation of this
matching by explicit navigation (as it is given, for example, in [14] as part of
a code generation in JAVA) provides a translation back to the original low-level
style. The formal properties of this construction have not been investigate yet.

References

1. Action Semantics Consortium. Precise action semantics for the Unified Modeling
Language, August 2000. http://www.kc.com/as_site/.

2. P. Bottoni, M. Koch, F. Parisi Presicce, and G. Taentzer. Consistency checking
and visualization of OCL constraints. In Evans et al. [13], pages 294-308.

3. D. Coleman, P. Arnold, S. Bodof, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremes.
Object Oriented Development, The Fusion Method. Prentice Hall, 1994.

4. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241-266, 1996.

5. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Lowe. Algebraic
approaches to graph transformation, Part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations, pages 163—245. World Scientific,
1997.

6. D. D’Souza and A. Wills. Components and Frameworks with UML: The Catalysis
Approach. Addison-Wesley, 1998.

7. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

8. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Proc. 6th
Int. Workshop on Theory and Application of Graph Transformation (TAGT’98),
Paderborn, November 1998, volume 1764 of LNCS. Springer-Verlag, 2000.

9. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 3: Concur-
rency and Distribution. World Scientific, 1999.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167—
180. IEEE, 1973.

G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In Evans et al. [13], pages 323-337.

G. Engels, R. Hiicking, St. Sauer, and A. Wagner. UML collaboration diagrams
and their transformation to Java. In France and Rumpe [15], pages 473-488.

A. Evans, S. Kent, and B. Selic, editors. Proc. UML 2000 — Advancing the Standard,
volume 1939 of LNCS. Springer-Verlag, 2000.

T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story diagrams: A new graph
transformation language based on UML and Java. In Ehrig et al. [8].

R. France and B. Rumpe, editors. Proc. UML’99 — Beyond the Standard, volume
1723 of LNCS. Springer-Verlag, 1999.

M. Gogolla. Graph transformations on the UML metamodel. In J. D. P. Rolim
et al., editors, Proc. ICALP Workshops 2000, Geneva, Switzerland, pages 359-371.
Carleton Scientific, 2000.

M. GroBle-Rhode, F. Parisi Presicce, and M. Simeoni. Refinement of graph trans-
formation systems via rule expressions. In Ehrig et al. [8], pages 368-382.

R. Heckel, A. Corradini, H. Ehrig, and M. Léwe. Horizontal and vertical structuring
of typed graph transformation systems. Math. Struc. in Comp. Science, 6(6):613—
648, 1996.

R. Heckel, H. Ehrig, U. Wolter, and A. Corradini. Double-pullback transitions and
coalgebraic loose semantics for graph transformation systems. Applied Categorical
Structures, 9(1), January 2001.

R. Heckel and St. Sauer. Strengthening the semantics of UML collaboration di-
agrams. In G. Reggio, A. Knapp, B. Rumpe, B. Selic, and R. Wieringa, editors,
UML’2000 Workshop on Dynamic Behavior in UML Models: Semantic Questions,
pages 63-69. October 2000. Tech. Report no. 0006, Ludwig-Maximilians-University
Munich, Germany.

R. Heckel and A. Ziindorf. How to specify a graph transformation approach: A
meta model for FUJABA. In H. Ehrig and J. Padberg, editors, Uniform Approaches
to Graphical Process Specification Techniques, satellite workshop of ETAPS 2001,
Genova, Italy, 2001. To appear.

A. Knapp. A formal semantics of UML interactions. In France and Rumpe [15],
pages 116-130.

M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In Proc.
ICALP’98, volume 1443 of LNCS, pages 856—867. Springer-Verlag, 1998.

Object Management Group. UML specification version 1.3, June 1999. http:
//www.omg.org.

Object Management Group. UML specification version 1.4beta R1, November
2000. http://wuw.celigent.com/omg/umlrtf/.

G. Overgaard. A formal approach to collaborations in the Unified Modeling Lan-
guage. In France and Rumpe [15], pages 99-115.

V. Pratt. Modeling concurrency with partial orders. Int. Journal. of Parallel
Programming, 15(1):33-71, February 1986.

W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

A. Schiirr, A.J. Winter, and A. Ziindorf. The PROGRES approach: Language and
environment. In Ehrig et al. [7], pages 487-550.

15

