
Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm

Leasing

Prashant Jain & Michael Kircher

{Prashant.Jain,Michael.Kircher}@mchp.siemens.de

Siemens AG, 

Munich, Germany

Permission to copy for PLoP 2000 conference. All other rights reserved.



2

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm



28.07.2000 Leasing.fm

Leasing 3

Copyright © 2000, Prashant Jain and Michael Kircher

Leasing

The leasing pattern simplifies resource management by specifying how
resource users can get access to a resource from a resource provider for a
pre-defined period of time.

Example Consider a system consisting of several distributed objects implemented
using CORBA [OMG]. To allow clients to access these distributed objects,
the server containing these objects typically publishes the references of
these objects in a Lookup Service [LOOKUP] such as a CORBA Name
Service [NS]. Clients can then query the Lookup Service to obtain
references to these objects. For example, consider a distributed Quoter
service object registered with the CORBA Name Service. The Quoter
service would provide stock quotes to any clients that connect to it. A
client would typically query the Name Service, obtain a reference to the
Quoter service, and then communicate directly with the Quoter service to
obtain stock quotes. 

Consider what would happen if the server containing the Quoter service
were to crash and never come back up. The Quoter service would no
longer be available but its reference would never get removed from the
Name Service. This can create two problems. Firstly, clients would still be
able to obtain a reference to the Quoter service from the Name Service.
However, the reference would be invalid and therefore any requests sent
by the clients would typically result in an exception being thrown.

Client
Quoternetwork

Lookup
Service

Service

query
object

reference

publish
object

reference



4

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm

Secondly, lacking any explicit means to remove the invalid object
reference, over a period of time unused resources such as invalid object
references would continue to build up at the Lookup service.

Context Systems where resource usage needs to be controlled to allow timely
release of unused resources. 

Problem Efficient resource management is one of the key requirements in
implementing highly robust and scalable systems. A resource can be of
many types including local as well as distributed services, database
sessions and security tokens. In a typical use case, a user retrieves the
interface of a resource provider and then requests the provider for one or
more resources. Assuming the provider grants the resource, the user can
then start using the resources. However, over a period of time, the user
may no longer require some of these resources. Unless the user explicitly
terminates its relationship with the provider and releases the resources, the
unused resources would continue to be needlessly consumed. This in turn
can have a degrading effect on performance of both the user and the
provider. In addition, it can also affect resource availability for other users.

In systems where the resource user and the resource provider are
distributed, it is also possible that over a period of time the provider
machine may crash or that the provider may no longer offer some of its
resources. Unless the user is explicitly informed about these resources
becoming unavailable, the user may continue to hold invalid resources.

The net result of all of this is a build up of resources on the user side that
may never get freed. One solution to this problem is to use some kind of a
monitoring tool that could periodically check a user’s resource usage as
well as the state of the resources used by the user. The tool could then
recommend to the user possible resources that can be freed. However, this
solution is both tedious and error-prone. In addition, a monitoring tool
may also hinder performance. To solve this problem in an effective and
efficient manner requires resolution of the following forces:

• Responsibility: a user holding resources that it no longer needs should
not have to explicitly release the resources.

• Availability: resources not used by a user should be freed as soon as
possible to make them available to new users.

• Optimality: the system load caused by unused resources must be
minimized.



28.07.2000 Leasing.fm

Leasing 5

Copyright © 2000, Prashant Jain and Michael Kircher

• Actuality: a user should not use an obsolete version of a resource 

• a new version becomes available.

Solution Introduce a lease for every resource that is held by a user. A lease is
granted by a grantor and is obtained by a holder. A lease grantor is
typically the resource provider while a lease holder is typically the
resource user.

A lease specifies a time duration for which the user can use the resource.
Once the time duration elapses, the lease is said to have expired and the
corresponding resource is freed from the user. While a lease is active, the
lease holder can cancel the lease in which case the corresponding resource
is also freed from the user. Before a lease expires, the lease holder can try
to renew the lease from the lease grantor. If the lease is renewed, the
corresponding resource continues to be available.

Structure The following participants form the structure of the Leasing pattern:

A resource provides some type of functionality or service. 

A lease provides a notion of time that can be associated with the
availability of a resource. 

A grantor grants a lease on a resource.

A holder obtains a lease on a resource and then uses the resource.

The following CRC cards describe the responsibilities and collaborations
of the participants.1

1. Class-Responsibility-Collaborators (CRC) cards [BRJ98] help to identify and specify
objects or the components of an application in an informal way, especially in the early phases
of software development. A CRC-card describes a component, an object, or a class of
objects. The card consists of three fields that describe the name of the component, its
responsibilities, and the names of other collaborating components.



6

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm

Implementation There are four steps involved in implementing the Leasing pattern.

1 Determine resources to associate leases with. A lease should be
associated with any resource whose availability is time-based. This
includes resources which are short-lived, resources which are not used
continuously by users, and resources which get updated frequently with
newer versions.

2 Determine lease creation policies. A lease is created by the lease
grantor for every resource used by a user. If a resource can be shared by
multiple users, multiple leases will be created for the resource. A lease
can be created by the lease grantor using a Factory [GOF]. Lease
creation requires specification of the duration for which the lease is to
be granted. The duration may depend upon the type of resource, the
requested duration and the policies of the lease grantor. The lease
requestor and the lease grantor may negotiate the duration for which the
lease should be granted. 

Class
Grantor

Responsibility
• Grants a lease on a re-

source to the holder

Collaborator
• Holder
• Lease

Class
Holder

Responsibility
• Obtains and maintains a 

lease
• Uses a resource
• (Optionally) renews the 

lease

Collaborator
• Resource
• Lease
• Grantor

Class
Resource

Responsibility
• Provides application 

functionality

Collaborator Class
Lease

Responsibility
• Specifies a time period 

for which a resource is 
available

• Informs the grantor on 
lease expiration

Collaborator
• Grantor



28.07.2000 Leasing.fm

Leasing 7

Copyright © 2000, Prashant Jain and Michael Kircher

A user of a resource may want to pass the resource along with the
associated lease to another user. The lease creation policies can be used
to specify whether this is supported or not. If a resource along with its
corresponding leases can be passed to other users, then the lease needs
to provide operations allowing its ownership to be changed.

Once a lease has been created, the grantor needs to maintain a mapping
between the lease, the corresponding resource and the user. This allows
the grantor to keep track of the user(s) of a resource as well as the
duration of time for which the resource is being used. In addition, it
allows the grantor to determine which resources are still available for
which new leases can be granted.

3 Determine lease responsibility. If a lease can be renewed, it needs to be
determined who is responsible for renewing it. A lease may
automatically renew itself or the renewal process may require re-
negotiation between the grantor and the holder. A re-negotiation of the
lease may result in new policies for the lease including the duration for
which the lease is renewed.

4 Determine lease expiration policies: Once a lease expires and is not
renewed, the resource assoicated with it needs to be released. This can
be done automatically or may require some intervention on part of the
user. Similarly, the lease grantor needs to remove the mapping between
the lease, the resource and the user. Typically, the lease contains some
kind of an Asynchronous Completion Token [POSA2] with
information about the holder which it uses to allow proper cleanup in
the grantor when the lease expires. 

Example Resolved Consider the example where a distributed Quoter service object needs to
be available to CORBA clients. The server containing the Quoter service
object would typically register the object with a CORBA Name Service.
The Name Service would therefore be a resource provider while the
resource will be the registration of the service object reference. The server
containing the Quoter service object would be the user of the resource. The
server and the Name Service would negotiate the lease details including
the duration for which the Quoter service object reference needs to be
registered as well as policies regarding renewal of the lease. Once the
negotiations are completed, the Name Service would register the Quoter
service object reference with it and create a lease for the agreed-upon



8

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm

duration of time. The Name Service will be the lease grantor while the
server will be the lease holder.

While the lease has not expired, the Name Service will keep the Quoter
service object reference and make it available to any clients that request
for it. Once the lease expires, the server may need to explicitly renew the
lease to indicate a continued interest in making the Quoter service object
reference available to clients. If the server does not renew the lease, the
Name Service will automatically remove the Quoter service object
reference and release any additional resources associated with it.

The C++ code below shows how a server can register a Quoter service
object reference with the Name Service. In the example below, the
LookupService provides a wrapper around the Name Service, so that
the standardized interface of the CORBA Name Service need not be
changed. The LookupService serves as a lease grantor.

// First initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Create a Quoter service
Quoter_Impl *quoterServant = new Quoter_Impl;

// Get the CORBA object reference of it
Quoter_var quoter = quoterServant->_this();

// Get hold of the lookup service which is also
// the lease grantor
CORBA::Object_var obj = orb-> 

resolve_initial_references(“LookupService”);

// Narrow the reference
Lookup::LookupService_var lookupService =

Lookup::LookupService::_narrow(obj);

// Create an object specifying desired lease
// duration 
TimeValue leasing_time (TimeValue::SECONDS, 10);

Lookup::Lease_var lease;

try {
// Register the Quoter object reference with 
// the Lookup service
 lease = lookupService->bind(name,

quoter, 
leasing_time);

} catch (Lookup::Negotiate)



28.07.2000 Leasing.fm

Leasing 9

Copyright © 2000, Prashant Jain and Michael Kircher

{
leasing_time = Lookup::TimeValue

(TimeValue::SECONDS, 5);
// ... try again until you get a lease

}

// .. do other things

// Renew lease if we are still interested in
// publishing the object reference
lease->renew (TimeValue (TimeValue::SECONDS, 30));

The following code shows how the LookupService wraps the CORBA
Name Service. After checking for an acceptable time period and creating
a corresponding lease, the actual binding is delegated to the name service.

class LookupService_impl
: public POA_Lookup::LookupService {
public:

// ...
Lease_ptr bind (const CosNaming::Name &name,

 CORBA::Object_ptr object,
 const TimeValue &time) {

if (this->time_is_acceptable (time)) {
// Create a new lease
Lease_Impl *lease_impl =

new Lease_Impl (time,
this->_this(), name);

// Get the CORBA object reference
LookupService::Lease_var lease =

lease_impl->_this ();

// Add the new lease to our cache
this->add_lease (lease, object);

// Delegate
nameService_->bind (name, object);
return lease->_retn ();

}
else {

// Reject the bind request
throw (Lookup::Negotiate);

}
}

void unbind (const CosNaming::Name &name) {
// Delegate to the NS
nameService_->unbind (name);
// Do any other clean up required 
// including updating the cache



10

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm

// ... code omitted ...
}

TimeValue& renegotiate 
(LookupService::Lease_ptr lease, 
 const TimeValue &time) {

// Renegotiate lease. Code ommitted.
}

// ...
};

The following code shows how a lease could be implemented. Note that
the Reactor pattern [POSA2] is used for the notion of timers. Therefore,
the Lease_impl class implements not only the Lease interface but
also the Reactor::EventHandler interface. This allows the lease to
register itself with the reactor to receive timeouts.

class Lease_impl 
: public POA_Lookup::Lease, Reactor::EventHandler 
{
public:

Lease_impl (const TimeValue &time,
Lookup::LookupService_ptr lookupService,
const CosNaming::Name &name)

: time_ (time)
, lookupService_(lookupService)
, name_ (name)
, reactor_ (Reactor::instance ())
, valid_lease_ (TRUE) {};

// Renew the lease for the given time
void renew (const TimeValue &time) {

// Renegotiate the lease with the grantor
try {

time_ = lookupService_->renegotiate
(this->_this (), time);

// Reschedule timer with the reactor
// for the duration of the lease
reactor_->unregister_timer (this);
reactor_->register_timer

(time, this);
} catch (...) {

// Error Handling
}

}

// Callback method
void on_timer_expire () {



28.07.2000 Leasing.fm

Leasing 11

Copyright © 2000, Prashant Jain and Michael Kircher

lookupService_->unbind (name_);
valid_lease_ = FALSE;

}

// Method called by the lease holder to cancel
// a lease.
void cancel () {

// Cancel timer with the reactor
reactor_->unregister_timer (this);
this->on_timer_expire ();

}
// ..

};

When the lease duration expires, the reactor calls back the method
on_timer_expire which in turn cleans up the appropriate resources.

Variants Specific lease creation and expiration policies can yield various variants
to the Leasing pattern. A lease may be created with the policy to
automatically renew itself when its duration expires. In this case the lease
maintains enough information about the holder and the grantor to
automatically renew itself when its duration of time expires. Automatic
renewals with short lease durations are preferrable over a single longer
lease since each lease renewal gives the opportunity for the lease holder to
update the resource it holds if the resource has changed. A further
variation to this could be to limit the number of automatic renewals based
on some negotiation between the lease grantor and the lease holder.

The renewal of a lease need not be done automatically by the lease or by
the lease holder; instead, it can be done by a separate object. This can free
the lease holder from the responsibility of renewing leases when they
expire. 

A lease may be created with no expiration. In this case, the holder must
cancel the lease explicitly when it no longer needs the resource assoicated
with the lease. This variant, however, loses many of the benefits of using
the Leasing pattern but allows integration of legacy systems where the
notion of leasing cannot be introduced easily.

Callbacks can be used to inform lease holders about expiring leases to give
them a chance to renew those leases. This can help lease holders who do
not want to or are not capable of determining when a lease will expire.

The Leasing pattern allows invalid resources such as object references to
be released in a timely manner. The pattern can be extended using
Invalidation [YBS] to allow invalid resources to be released explicitly. If



12

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm

a resource becomes invalid, the resource creator could send an
invalidation signal to the lease grantor which could then propogate the
signal to all the lease holders. The lease holders could then cancel the
leases allowing the resource to be released. Note that Invalidation can
result in additional complexity and dependencies between the resource
creator, the lease grantor and the lease holders. It should therefore only be
used when it is not sufficient to wait for the lease duration to expire and
instead it is necessary to release resources as soon as they become invalid.

Known Uses • Jini - Sun’s Jini technology makes extensive use of the Leasing pattern
by using it in a two-fold way. Firstly, it couples each service with a lease
object that specifies the duration of time for which a client can use that
service. Once the lease expires and the client does not renew the lease,
the service corresponding to the lease object is no longer available to
the client. Secondly, it associates a lease object with each registration
of a service with the Jini Lookup Service. If a lease expires and the
corresponding service does not renew the lease, the service is removed
from the Lookup Service.

• Software licenses - A software license can be regarded as a lease
between the software and the user. A user may obtain a license for using
a particular software. The license itself may be obtained, for example,
from a license server and is usually for a set period of time. Once the
period of time expires, the user must renew the license or else the
software can no longer be used. 

• Magazine/Newspaper subscription - A real world known use of the
Leasing pattern is magazine and newspaper subscriptions. In this case,
the subscription represents the lease which usually expires after a set
period of time. The subscription must be renewed by the subscriber or
else the subscription terminates. In some cases, the subscriber may set
up automatic renewal, for example by providing bank account
information or credit card information.

• Web-based email accounts - Many web-based email accounts, for
example MSN Hotmail, accounts if not used for more than a certain
period of time become inactive automatically. In this case, the duration
of time can be regarded as a lease whose renewal requires use of the
email account.

Consequences There are several benefits of using the Leasing pattern:



28.07.2000 Leasing.fm

Leasing 13

Copyright © 2000, Prashant Jain and Michael Kircher

Resource Management Simplicity: The Leasing pattern simplifies the
management of resources. It frees the user of a resource from the
responsibility of releasing the resource explicitly. Once the lease on a
resource expires and is not renewed by the user, the resource can be
automatically released.

Effecient Resource Usage: A resource provider can control resource usage
more effeciently through time-based leases. By bounding resource usage
to a time-based lease, the resource provider can ensure that unused
resources do not get wasted and are instead released as soon as possible
allowing them to be granted to new users. This can lead to the overall
system load caused by unused resources to be minimized.

Resource Update Simplicity: The Leasing pattern allows older versions of
resources to be replaced with newer versions with relative ease. The
resource provider can supply the resource user with a new version of a
resource at the time of lease renewal.

Enhanced System Reliability: The Leasing pattern helps to increase
system reliability by reducing the wastage of unused resources and by
ensuring that resource users do not access invalid resources.

There are some liabilities of using the Leasing pattern:

Additional Overhead: The Leasing pattern requires an additional object in
the form of a lease to be created for every resource that is granted by a
provider to a user. Creating a pool of lease objects and re-using them with
different resource allocations can help simplify this problem. In addition,
on lease expiry, the lease grantor may need to send a notification to the
lease adding additional overhead.

Additional Application logic: The Leasing pattern requires the application
logic to support the concept of leases as the glue between the roles of
resource providers and resource users. Application architects therefore
need to design keeping in mind that resources are not unlimited and that
they are not available all the time. 

Timer Watchdog: The resource provider as well as the resource user need
to be able to determine when a lease will expire. This requires support for
some kind of a timer mechanism which may not be available in some
legacy systems. If, however, the legacy systems are event-based
applications then they can be made timer aware with very little overhead.



14

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm

See Also The most common implementation of the Leasing pattern relies on event-
based callbacks to signal lease expiration. An event-based application
typically uses one or more event dispatchers or Reactors [POSA2], such
as the WindowsTM Message Queue, InterViews’ Dispatcher [LC87], or
the ACE Reactor [ACE]. Event dispatchers typically provide an interface
to register event handlers such as timer handlers which get called on timer
expiration.

In applications which do not contain an event loop, the Active Object
[POSA2] design pattern can be used to substitue timer handling. The
Active Object has its own thread of control and can either instrument the
OS or run its event loop to signal leases via callbacks on timer expiration.

To make leasing transparent to the resource user the Proxy
[GHJV95] design pattern can be employed. The resource proxy can
handle lease renewals, policy negotiations, and lease cancellations that
would otherwise normally be done by the user. CORBA Smart Proxies
[SMP] provide the appropriate abstraction in the CORBA world while
Smart Pointers are the pendant to this in traditional C++.

References

[ACE] http://www.cs.wustl.edu/~schmidt/ACE.html

[BRJ98] G. Booch, J. Rumbaugh, I. Jacobsen: The Unified Modeling Language User Guide,
Addison-Wesley, 1998

[OMG] http://www.omg.org

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[JINI] http://www.sun.com/jini

[LC87] M.A. Linton, P.R. Calder: The Design and Implementation of InterViews,
Proceedings of the USENIX C++ Workshop, November 1987

[LOOKUP] P. Jain and M. Kircher, “Lookup Pattern”,Submitted to European Pattern Language
of Programs conference, July 5-9, 2000, Kloster Irsee, Germany

[NS] OMG, Interoperable Naming Service, Document orbos\98-10-11, 2000



28.07.2000 Leasing.fm

Leasing 15

Copyright © 2000, Prashant Jain and Michael Kircher

[POSA2] D. Schmidt, F. Buschmann, H. Rohnert, M. Stal: Pattern-Oriented Software
Architecture—Patterns for Concurrent and Distributed Objects, John Wiley and
Sons, 2000

[SMP] http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TAO/docs/
Smart_Proxies.html 

[YBS] H. Yu, L. Breslau, S. Shenker, “A Scalable Web Cache Consistency Architecture”,
Computer Communication Review, ACM SIGCOMM, volume 29, number 4,
October 1999



16

Copyright © 2000, Prashant Jain and Michael Kircher

28.07.2000 Leasing.fm


