
Hypertext

A Case Study of
Formal Object-Oriented
Software Development

Andreas Rüping

Forschungszentrum Informatik (FZI)
Bereich Programmstrukturen
Haid-und-Neu-Straße 10-14

D-76131 Karlsruhe

e-mail: rueping@fzi.de

Abstract

Formal object-oriented software development integrates the techniques of object-
orientation and formal methods and thus combines the advantages of both. This
paper presents a hypertext system as a case study of formal object-oriented
software development.

We describe the development of a hypertext system, beginning with informal steps
towards an object-oriented model and concluding with the application of formal
methods. The case study covers object-oriented analysis and design, formal speci-
fication, consistency proof of the specification, implementation, and correctness
proof of the implementation.

1 Introduction

Object-orientation provides a large set of concepts and mechanisms for software development,
such as classification, object identity, inheritance, and polymorphism. These bring about several
methodological advantages. Object-orientation is considered to support in particular compre-
hensibility, correctness, extensibility, and reusability of software.

However, a sound semantic basis for these mechanisms is required because they can then be used
more precisely (cf. [10]). Formal methods cover various techniques that all exploit the advan-
tages of formal semantics. These techniques include formal specification and verification.
Formal specification allows for the precise description of a program or a part of it. Verification
leads to proofs of certain properties of a program such as consistency or semantically meaningful
class relationships.

In this paper we present a hypertext system as a case study of formal object-oriented software
development. The example was originally presented in [5]. With this case study we demonstrate
how the integration of object-orientation and formal methods combines the advantages of both.

2 Hypertext

We begin the development of the hypertext system with a requirement analysis, followed by
object-oriented modelling and design. Next, we derive a formal specification from the design
model and prove the consistency of the specification. Finally, we give an implementation and
show how to prove its correctness with respect to the specification.

Among several object-oriented design methods, we chooseResponsibility-Driven Design. The
case study demonstrates how this method works. Furthermore, the case study evaluates how well
the design results can be used for setting up a formal specification. Finally, we investigate the
specifics of applyingformal methods toobject-oriented programming.

The paper is organized as follows. Section 2 deals with object-oriented analysis and design. In
Section 3 we discuss how the object-oriented model can be formalized and present a formal
specification. We demonstrate how to prove the consistency of a specification and semantically
meaningful relationships between classes in Section 4. We conclude with some evaluating
remarks on our case study.

2 Analysis and Design

We start with the requirement analysis and modelling of the hypertext system. Throughout these
development stages, we applyResponsibility-Driven Design, the approach introduced by
Rebecca Wirfs-Brock et al. (cf. [1], [15]).

2.1 Requirement Specification

The following is a brief requirement specification of our hypertext system - informal and as
general as possible.

A hypertext system is a collection of information units that are organized not sequen-
tially, but in a graph-like structure. The information units may themselves be structured,
that is, nesting and subdividing is generally possible.

No assumptions are made as to what kind of information is handled. For instance, the
information units can be filled with texts or images.

The information units are stored in the nodes of such a graph. The links of the (hyper-)
graph connect two (or more) information units thus providing the graph-like structure
of the information.

Interaction with a hypertext system is possible. Those parts of the system that the user
is currently interacting with are called the active parts. The links can be used to travel
through the whole structure. Information units can be manipulated by the user who can
change their structure and their contents.

A hypertext system can be displayed, at least partially. Therefore, a textual or graphical
representation of its contents is required.

Figure 1 gives an sketch of the graph-like structure of a hypertext system. Several nodes are
shown that all store some information. Arrows indicate the links between the information units
which allow for navigating through the hypertext. Typically, only a few nodes are active at one
time. In this example only one node (the one printed black) is active and thus considered to be
displayed on the screen.

Andreas Rüping 3

2.2 Modelling the Hypertext System: Classes

Modelling according to Rebecca Wirfs-Brock et al. consists of mainly the following steps:

• finding and recording classes,

• identifying and assigning responsibilities,

• finding and recording collaborations,

• building hierarchies,

• identifying subsystems,

Figure 1 Hypertext

A hypertext consists of several
nodes and links. The nodes
can be provided with one or
more handles.
Links are used to travel
through the hypertext graph.
Formal specifications for
nodes, handles and links
are presented.

class Handle
is

get_position
set_position

...
end

class Link
is

source
destination

...
end

class Node
is
invariant

change
add_handle
remove_handle

...
end

➠

➠

➠

4 Hypertext

• specification and implementation.

A first list of candidate classes can be derived from the requirement specification. Noun phrases
are likely to become items in our model. Thus we obtain the following list from the above
requirement specification.

Some of these candidates can easily be discarded. We apply the following rules from [15].

• “Do not use more than one word for one concept.”

We can therefore discardInformation Unit, Graph-Like Structure, and System, since
Information, Graph, and Hypertext System will do. Furthermore,Hypertext System is
renamed to simplyHypertext.

• “Model the values of attributes of objects, but not the attributes themselves.”

The contents of a node are some sort of information, henceContents is rather an attribute
than a value.Part andActive Part are neither values, they only refer to a subsystem of a
hypertext.

• “Do not model things which are outside the system.”

TheUser is certainly outside the hypertext system and can be omitted.Collection, Graph,
Hypergraph, andStructure refer to data structures that we do not model within our system.

We therefore obtain the following tentative list of classes.

We can now begin to set up a class structure. We can group related classes and we can identify
subclass / superclass relationships.

As with many interactive software systems, grouping the candidate classes into the three
categoriesModel, View, Controller seems appropriate, similar (although not equal) to a
commonly used design pattern (cf. [4]).

• Model: Hypertext, Node, Link, Information, Text, Image

The model includes all classes that provide the real data, in contrast to temporary infor-
mation or data that is merely essential for the representation of the model.

• View: Representation

All classes that deal with the representation of the model are view classes.

• Controller:Interaction

Hypertext System Text Hypergraph Structure

Collection Image Interaction User

Information Unit Node Part Contents

Graph-Like Structure Graph System Representation

Information Link Active Part

Hypertext Text Node Interaction

Information Image Link Representation

Andreas Rüping 5

User interaction and operations that invoke changes on the model belong to the controller.

Furthermore, we are able to identify bothText and Image as possible subclasses of the more
general classInformation.

Rebecca Wirfs-Brock et al. recommend the use of index cards (also called CRC cards) to collect
the information we have obtained on the classes of our hypertext system. Each CRC card is
meant to supply all information for one class. This includes the class name, the super- and
subclasses, and a brief informal description (cf. Figure 2). At later stages of the design we will
add further information, such as responsibilities, collaborations, and the like.

2.3 Modelling the Hypertext System: Responsibilities

In [15], Rebecca Wirfs-Brock et al. state:

Responsibilities are meant to convey a sense of the purpose of an object and its place
in the system. The responsibilities of an object are all the services it provides for all of
the contracts it supports. When we assign responsibilities to a class, we are stating that
each and every instance of that class will have those responsibilities, whether there is
just one instance or many.

Responsibilities include both the knowledge an object maintains and the publicly available
actions an object can perform. The requirement specification and the list of classes are sources
where we can find possible responsibilities. Verbs in the requirement specification often point to
responsibilities. Furthermore, a class once being identified, at least one responsibility for it will
typically be thought of when the need for this class was recognized.

In the requirement specification of the hypertext system we find the following “interesting” verb
phrases:

• A hypertext systemis a collection of information units ...

• The information units are organized in a graph-like structure.

• The information units can be filled with texts or images.

• The information units are stored in the nodes of such a graph.

• The links of the (hyper) graphconnect two (or more) information units ...

• ... parts of the system that the user is currentlyinteracting with ...

• The links can be used totravel through the whole structure.

• The information units can bemanipulated by the user

• ... who canchange the structure and contents of information units.

• A hypertext system can bedisplayed, at least partially.

We now identify several responsibilities and assign them to classes of our model. We intend to
distribute these responsibilities over the whole system as evenly as possible. This, however, is
hard to achieve and some classes will nevertheless receive more responsibilities than others.

There are several verb phrases in the above list which say that an object is a collection of other
objects or has contents. For all these objects knowledge of their contents is required. For
instance, a hypertext has to know its nodes and links. A node has to know the information it

6 Hypertext

contains and a link has to know its source and destination. Furthermore, not only knowledge of
the contents but also the ability to change the contents is necessary.

Such changes are, however, always invoked by an action performed by a user. An interaction
object has to pass such a user command to the hypertext model. A user can also navigate through
the hypertext. Thus we have to assign to the hypertext representation the responsibility of
knowing which parts of the hypertext currently have to be displayed and how to display them.

Figure 2 CRC cards for the hypertext system

Class: Hypertext

Superclasses: -

Subclasses: -

Group: Model

A hypertext consists of nodes that store information and
links that connect information.
Parts of a hypertext can be displayed; interaction with a
hypertext is possible.

Class: Node

Superclasses: -

Subclasses: -

Group: Model

Nodes store the information inside a hypertext.

Class: Link

Superclasses: -

Subclasses: -

Group: Model

Links connect information units.
Navigation along the links is possible.

Class: Information

Superclasses: -

Subclasses: Text, Image

Group: Model

Information is what is stored in (the nodes of) a hypertext,
for instance texts or images or something else.

Class: Representation

Superclasses: -

Subclasses: -

Group: View

Parts of hypertext can be displayed. Its contents are then
represented textually or graphically on the screen.

Class: Text

Superclasses: Information

Subclasses: -

Group: Model

one particular sort of information ...

Class: Image

Superclasses: Information

Subclasses: -

Group: Model

one particular sort of information ...

Class: Interaction

Superclasses: -

Subclasses: -

Group: Controller

To navigate through a hypertext or to change the contents
of a hypertext, the user can interact with it.

Andreas Rüping 7

Since the classesText andImage are only exemplary specializations ofInformation but do not
provide an essential contribution to the modelling of the hypertext system, we omit these classes
from now on.

2.4 Modelling the Hypertext System: Collaborations

A class can fulfil a responsibility either by performing the necessary operations itself or by
collaborating with other classes. A collaboration is a request from a client to a server to carry out
some task so that the client can fulfil its responsibilities properly.

We can identify collaborations if we look for classes that are not able to fulfil all their responsi-
bilities themselves. For instance,Interaction, as a controller class, does not itself perform user
commands, but invokes methods ofHypertext or Representation which may then change
contents or activate parts of the hypertext. Thus we have a collaboration withInteraction being
the client andHypertext andRepresentation being servers.

An updated version of the CRC cards, now including responsibilities and collaborations, is given
in Figure 3. The responsibilities of each class are listed on the corresponding CRC card. To
record a collaboration, we write the name of the server class on the card of the client class next
to the responsibility which makes the collaboration necessary.

2.5 Modelling the Hypertext System: Hierarchies

An evolutionary development style is one characteristic feature of object-oriented analysis and
design. The present stage of design represents a good time to analyse the model we have created
so far and, if necessary, change parts of it. Changing parts of a model may include adding or
removing classes, responsibilities, collaborations, and the like.

The analysis of the preliminary design includes the search for a reasonable inheritance hierarchy
of our model. Such an inheritance hierarchy is meant to provide us with a meaningful structure
for our model and thus with a more global and precise understanding of our design.

Rebecca Wirfs-Brock et al. (cf. [15]) recommend several tools that are helpful with the analysis
of inheritance relationships:

• hierarchy graphs,

• Venn diagrams,

• contracts,

• collaborations graphs.

In our updated model there are no subclass / superclass relationships between the classes we
have set up. Therefore we have a plain class structure and a hierarchy graph or a Venn diagram
would not make any sense at the moment.

However, the description of our hypertext system is not yet precise enough. This is a point where
a revision can start. Among other things, a link is said to connect information units; but it
remains unclear what exactly a link is supposed to do.

In the requirement specification we stated that information units can be structured. For instance,
if we speak of an information unit, on the one hand we may mean an entire node, on the other
hand just a part of the contents of a node. As a consequence, a link can either be fixed to a node,
representing all its contents, or to single items within the contents of a node.

8 Hypertext

This distinction is essential. For example, if some items within a node are removed, we expect
a link which was fixed to such an item to be removed as well. A link connected to an entire node
should, however, not be automatically removed even if the whole contents of the node are
deleted, unless the node is deleted itself.

The result of this analysis is not yet reflected in our model and thus a revision of our model
becomes necessary. First, we have to introduce a class that describes the items within the
contents of a node to which a link can be fixed. These items are called handles. Second, since a
link can connect both nodes and handles, it is reasonable to introduce another additional class:
a common superclass of bothNode andHandle which represents an abstraction of these. This
class is calledVertex; thus, according to our new terminology, a link connects two vertices.

Due to these additional classes, the class structure of our hypertext model is no longer plain.
Figure 4 shows the hierarchy graph of our revised hypertext model.

We conclude our design with a precise list of all contracts and a collaboration graph. A contract
defines a set of requests that a client can make of a server. The server is guaranteed to respond

Figure 3 CRC cards for the hypertext system

Class: Hypertext

Superclasses: -

Subclasses: -

Group: Model

know its nodes and links

A hypertext consists of nodes that store information and
links that connect information.
Parts of a hypertext can be displayed; interaction with a
hypertext is possible.

change its nodes and links Node, Link

Class: Node

Superclasses: -

Subclasses: -

Group: Model

know the information it contains

Nodes store the information inside a hypertext.

change the information it contains Information

Class: Link

Superclasses: -

Subclasses: -

Group: Model

know its source and destination

Links connect information units.
Navigation along the links is possible.

change its source and destination

Class: Information

Superclasses: -

Subclasses: Text, Image

Group: Model

hold a value

Information is what is stored in (the nodes of) a hypertext,
for instance texts or images or something else.

Class: Representation

Superclasses: -

Subclasses: -

Group: View

know the active parts of the hypertext

Parts of hypertext can be displayed. Its contents are then
represented textually or graphically on the screen.

display the active parts

Class: Interaction

Superclasses: -

Subclasses: -

Group: Controller

communicate with the user

To navigate through a hypertext or to change the contents
of a hypertext, the user can interact with it.

pass commands to the model Hypert., Node

pass display changes to the view Representation

Andreas Rüping 9

to these requests (cf. [15]). Contracts are usually based on responsibilities that a class does not
have for itself but that is needed for a collaboration to be fulfilled.

Figure 5 shows the collaboration graph of our hypertext system. Each box represents a class;
nested boxes stand for sub- and superclasses. An arrow between two classes represents a collab-
oration; the arrow ends in a semicircle which represents a contract. A complete list of all
contracts can be found in the final version of our CRC cards presented in Figure 6. All contracts
are numbered; those responsibilities that do not have a number are private responsibilities.

This model is, of course, not the most general one. While taking steps towards a higher degree
of precision, we have made decisions on the structure of our hypertext system, some of them
explicitly and others implicitly.

For instance, we decided that links do connect nodes and handles, but do not connect other links.
Thus, hyperlinks are not supported although they were not excluded by the requirement specifi-
cation. Another example: nodes merely contain information. We do not provide any structuring
mechanism for nodes such as, for instance, several information slots within a node.

Decisions like these naturally occur during the design process. It is necessary to regularly check
the model obtained so far in order to avoid that the design process takes an unwanted direction.
As with other object-oriented design methods, responsibility-driven design is an iterative
process that at every stage allows for revising the results of earlier stages. As to our case study,
however, we now consider the above model final.

2.6 Subsystems, Protocols, and Implementation

Responsibility-driven design includes further steps towards software development which we
omit in our example or deal with in a later section:

• Subsystems

To allow for dealing with large software systems, it is necessary to split up the whole system
into subsytems that can be handled more easily. This does not apply to our hypertext system
which is too small to be divided into subsystems.

• Protocols

Figure 4 Hierarchy graph of the revised hypertext system

Node

Interaction

Representation

Information

Hypertext Link

Handle

Vertex

10 Hypertext

Services supplied by a class are described more precisely. A protocol consists of signatures
for all methods of a class. Specifications of both classes and contracts are written.

Since the emphasis of our case study is on formal object-oriented software development, a
more formal process is required from this point on. Hence, we do not follow the approach
by Rebecca Wirfs-Brock et al. concerning specifications. A formal specification of our
hypertext system is presented in the next section.

• Implementation

Software development concludes with an implementation. In [15], several guidelines are
presented on how to get an implementation from the design model. In contrast to this, we
make an extended use of our formal specification when we give an implementation of the
hypertext system. Details are presented later on in this paper.

2.7 Object-Oriented Design: Summary

At the end of the design stage we have obtained a model for our hypertext system upon which
we can now build our formal specifications. The model consists of the following parts:

Figure 5 Collaboration graph of the hypertext system

Hypertext
1

Interaction

Handle
4

Node

2

3

Link
5

Vertex

Representation
7

Information
6

Andreas Rüping 11

Figure 6 CRC cards for the hypertext system

Class: Hypertext

Superclasses: -

Subclasses: -

Group: Model

know its nodes and links

A hypertext consists of nodes that store information and
links that connect information.
Parts of a hypertext can be displayed; interaction with a
hypertext is possible.

1. change its nodes and links Node (2), (3)

--------------- “ --------------- Link (5)

Class: Node

Superclasses: Vertex

Subclasses: -

Group: Model

know its information and handles

Nodes store the information inside a hypertext.

2. change the information Information (6)

3. change the handles Handle (4)

Class: Link

Superclasses: -

Subclasses: -

Group: Model

know its source and destination

Links connect vertices.
Navigation along the links is possible.

5. change its source and destination

Class: Information

Superclasses: -

Subclasses: Text, Image

Group: Model

6. hold a value

Information is what is stored in (the nodes of) a hypertext,
for instance texts or images or something else.

Class: Representation

Superclasses: -

Subclasses: -

Group: View

know active parts of the hypertext

Parts of hypertext can be displayed. Its contents are then
represented textually or graphically on the screen.

7. display the active parts

Class: Interaction

Superclasses: -

Subclasses: -

Group: Controller

communicate with the user

To navigate through a hypertext or to change the contents
of a hypertext, the user can interact with it.

pass commands to the hypertext Hypertext (1)

pass user commands to a node Node (2), (3)

Class: Vertex

Superclasses: -

Subclasses: Node, Handle

Group: Model

serve as source or destination

Vertex abstracts from Node and Handle.
Both the source and the destination of a link are vertices.

Class: Handle

Superclasses: Vertex

Subclasses: -

Group: Model

4. point to information within a node

Handles describe particular information units within a
node.

pass display changes to the view Represent. (7)

12 Hypertext

• a list of classes, including an informal description of their purposes,

• a list of responsibilities for each class,

• a list of collaborations with contracts specifying which services each class offers,

• a class hierarchy, representing both sub- / superclass relationships and collaborations.

3 Formal Specification

3.1 From an Informal to a Formal Description

We continue our case study with a formal specification of the hypertext system. Later on, we will
give both a consistency proof of the specification and a correctness proof of an implementation
with respect to the specification. To keep the case study brief, we now concentrate on the classes
of the groupModel and do not includeRepresentation andInteraction into the formal specifi-
cation. Furthermore, we assume an appropriate concrete class to be available to be substituted
for Information, and omit the formal specification of the latter, too.

The formal specification is based on the design model that we have obtained in the previous
section. We are able to derive several characteristics of the specification from this model. Doing
this, we apply the following principles:

• Groups

Each group of the design model is represented by a specification module.

• Classes

For each class of the design model a specification class is introduced.

• Private responsibilities

The private responsibilities of a class are represented by attributes or private methods of the
corresponding specification class.

• Contracts

Contracts are specified as public methods that can be invoked from a client class and result
in the server class discharging its responsibilities with regards to the client.

• Hierarchies

The subclass / superclass relationships within the design model are adopted in the specifi-
cation and are expressed by inheritance.

Thus we have to introduce the classesHypertext, Vertex, Node, Handle, andLink into the speci-
fication. Since we concentrate on the groupModel, our specification will only consist of one
module calledHypertext_Model to which all mentioned classes belong.

3.2 Specification Techniques

The specification we give is written in ‘Coffer’ (cf. [9]), a state-based, object-oriented language
which is built upon the following specification techniques.

• Modules, Classes, and Instantiation

Andreas Rüping 13

A specification in ‘Coffer’ consists of several modules which all contain one or more
classes. Objects are global within a module; they are, however, not global within a whole
system. This restriction is necessary for both modular consistency proofs and modular
correctness proofs which we will discuss in more detail later on in this paper.

Dif ferent kinds of classes are distinguished. The main distinction is between abstract classes
for the specification and concrete classes for the implementation. For a more detailed
discussion of different kinds of classes see [8] and [14].

Abstract classes specify behaviour, mainly by specification statements. No objects can be
instantiated from an abstract class; however, the behaviour described by an abstract class
can be inherited by other, possibly concrete, classes.

Concrete classes implement the behaviour and the state space of their objects. Objects can
be created as instances of a concrete class.

• Inheritance and Conformance

Inheritance is understood as a syntactic notion to express that one class adopts all features
(attributes, methods, and invariants) from another class.

Conformance is a semantic relationship between classes which is usually to be achieved by
inheritance. A class conforms to its superclass if an object of the superclass can always be
replaced by an object of the subclass. For a more precise definition of subtyping and other
semantic class relationships see [12] and [14].

• Attributes, Methods and Preconditions

For each class the necessary attributes and methods are declared. A method declaration
consists of a header and a body. The header defines the signature of a method and possibly
a precondition (cf. [6]). The body contains specification statements.

• Specification statements

A specification statement is a statement that is not required to be executable. Specification
statements can be used to describe the desired result of a statement, for instance by means
of a logical predicate. Specification statements can be non-deterministic.

• Invariants

An invariant of a class is a logical predicate that is required to hold before and after the
execution of an arbitrary method.

3.3 Object Identities

The objects in our design model are implicitly expected to have identities. This includes pointer
semantics for objects. In the formal model we use, however, object identities have to be made
explicit because otherwise formal reasoning about the specification would be impossible.

A set of objects which more precisely is indeed a set of pointers to several objects is specified as
a mapping from a set of identifiers to a set of object values. This form of specification allows for
a formal semantics of statements that include pointers, and thus enables us to reason formally
about the behaviour of methods that make use of object identities.

As mentioned above, object identities are global within a module. Therefore, we need global
mappings for those classes of a module that have to be provided with object identities (at least
for those classes that are indeed instantiated). These mappings map identifiers to object values.

14 Hypertext

They do so for all objects that have been created so far. For each such class, the name of the
corresponding mapping is the name of the class preceded by a ‘#’. To denote an object value, we
write the identifier followed by a ‘↑’.

Furthermore, each object is implicitly supplied with a read-only attributeself that contains its
own identifier. Thus, an object knows by which identifier it can be referenced.

In Section 4.4 we will discuss the question why objects identities are global only within one
module, but cannot be global within the whole system.

3.4 Formal Specification of the Hypertext System

To reduce the complexity of the specification, we do not introduce object identities for all
classes, but only forVertex, Node and Handle. We do not introduce object identities for
Hypertext since we only deal with one hypertext object here. The objects ofLink are considered
to be mere values. We assume that there are classesVertexId, NodeId, andHandleId providing
identifiers for objects.

The module definition forHypertext_Model is given in Figure 7. From outside the module, only
hypertexts can be created; the creation of vertices, nodes, handles, and links is restricted to
within the module, as the creation export clause says. The formal specifications of the classes
Hypertext, Vertex, Node, Handle, andLink are presented in Figures 8, 9, 10, 11, and 12.

The classes are explained as follows:

• Hypertext

The specification ofHypertext is easily derived from the CRC card. A hypertext is required
to know about its nodes and links and to be able to change them. The former is carried out
by the attributesnodes andlinks and the methodslinks_from andlinks_to. For the latter the
methodsadd_node, remove_node, add_link, andremove_link are introduced.

The invariant says that the environments of both the source and the destination of an
arbitrary link must be nodes of the hypertext. The precondition of the methodadd_link says
that a new link can only be inserted if it respects the invariant.

• Vertex

Vertex is the common superclass of bothNode andHandle. It supplies a methodenv that
always returns the environment of the vertex, which is a node identifier.

• Node

From the CRC card we know that a node has some contents and that it must be able to know
and change its handles. For the former, the attributecontents and the methodchange are
introduced, for the latter there are the methodsadd_handle and remove_handle. The
inherited attributeenvironment holdsself, the identifier of the node itself.

• Handle

A handle has a position which can be accessed viaget_pos andset_pos. The inherited
attributeenvironment points to the node in which the handle is contained; thus a node is the
environment of all its handles. (This is expressed by the second part of the invariant for
Node.)

• Link

Andreas Rüping 15

A link is a pair of twoVertexIds, calledsource and destination, which can be directly
accessed. A link can be considered a traditional record consisting of two components.

Creation of objects with identities is done by the methodnew which returns a new identifier for
the type given tonew as a parameter. Also, the pair consisting of the new identifier and the new
object is inserted into the appropriate module-global mapping. Each time an object is created,
the methodinit of the new object’s class is invoked. Ifnew has an additional parameter, this
additional parameter is passed toinit.

For instance, the methodadd_handle in Node creates a new handle and returns a new identifier
for it. The pair consisting of the new identifier and the new object is inserted into#Handle. The
methodinit is invoked for the new handle and the additional parameterself is passed toinit.

Since we do not create objects of typeVertex, there is no mapping#Vertex declared for the
module Hypertext_Model. Furthermore, no initialization method needs to be provided for
Vertex. We only declare an object of typeVertex in cases where we expect either a node or a
handle.

Therefore, the classesNode andHandle do not only inherit fromVertex. In the specification, they
are also said to conform toVertex. Since conformance cannot be simply declared between two
classes but needs to proven, we have a proof obligation here. We will discuss this sort of proof
obligation in Section 4.5 of this paper.

module Hypertext_Model

include Hypertext, Vertex, Node, Handle, Link
creation export Hypertext

#Node: Mapping [NodeId, Node]
#Handle: Mapping [HandleId, Handle]

end Hypertext_Model

Figure 7 Module ‘Hypertext_Model’

class Vertex

private environment: NodeId

env (): nid: NodeId is nid := environment

end Vertex

Figure 9 Class ‘Vertex’

class Link

source, destination: VertexId

end Link

Figure 12 Class ‘Link’

16 Hypertext

4 Verification

class Hypertext

private nodes: Set [NodeId]
private links: Set [Link]

invariant ∀ lnk ∈ links • con (lnk)

private con (lnk: Link) Boolean is
lnk.source↑.env ∈ nodes ∧ lnk.destination↑.env ∈ nodes

add_node () new-nid: NodeId is
new-nid := new (Node); nodes := nodes ∪ {new-nid}

remove_node (old-nid: NodeId) is
nodes := nodes - {old-nid}; links := links - links_from (old-nid) - links_to (old-nid)

add_link (new-lnk: Link) pre con (new-lnk) is
links := links ∪ {new-lnk}

remove_link (old-lnk: Link) is
links := links - {old-lnk}

links_from (nid: NodeId) from: Set (Link) is
from := {lnk ∈ links | lnk.source↑.env = nid}

links_to (nid: NodeId) to: Set (Link) is
to := {lnk ∈ links | lnk.destination↑.env = nid}

init () is
(nodes, links) := ({ }, { })

end Hypertext

Figure 8 Class ‘Hypertext’

class Node

inherit Vertex, conform Vertex

private contents: Information
private handles: Set [HandleId]

invariant environment = self ∧
∀ hid ∈ handles • hid↑.environment = self

change (info: Information) is contents := info

add_handle () new-hid: HandleId is
new-hid := new (Handle, self); handles := handles ∪ {new-hid}

remove_handle (old-hid: HandleId) is handles := handles - {old-hid}

init () is (environment, contents, handles) := (self, { }, { })

end Node

Figure 10 Class ‘Node’

Andreas Rüping 17

4.1 Verification Techniques

This section deals with the verification of our hypertext system. We demonstrate two different
proof techniques when proving the following properties:

• Consistency

Consistency of a specification means that the invariants hold after initialization and before
and after the execution of a method. To prove consistency, we apply a technique based on
weakest preconditions as described in [2], [3], [7], and [11].

For our specification, consistency proofs can only be given module-wise, not class-wise.
This is due to the fact that we have objects that are global within a module. Invariants can
rely on such global objects. Thus, the invariant of a class might be violated by the methods
of another class unless the opposite is proven. (All invariants do indeed belong to the model
and not to a class. They are assigned to classes because there they can be expressed best.)

Our task is therefore to check for all methods of all classes within a module whether or not
they respect all invariants.

• Conformance

Conformance is a semantic relationship between classes. It occurs in two different situa-
tions. First, conformance is the intended relationship if a class inherits from another.
Second, conformance is required between a specification class and its implementation.

We make again use of a verification technique based on weakest preconditions (cf. [2], [3],
[7], [11]). However, the scope of this paper allows us only to outline conformance proofs.

4.2 Techniques for Consistency Proofs

The weakest precondition wp (P, c) of a method P and a postcondition c is intuitively explained
as the weakest condition that we have to assume before the execution of P so that after the
execution of P the postcondition c holds.

To prove the consistency of a module, we have to verify the following two logical expressions
for each invariantInv:

for each initialization methodinit that may be called from outside the module:

class Handle

inherit Vertex, conform Vertex

private position: Position

get_pos () pos is pos := position

set_pos (pos: Position) is position := pos

init (created_by: NodeId) is (environment, position) := (created_by, 0)

end Handle

Figure 11 Class ‘Handle’

18 Hypertext

wp (init, Inv) = true

“The invariant is required to hold after the execution ofinit.”

and

for each non-initialization methodm:

Inv ⇒ wp (m, Inv)

“Provided the invariant holds before the execution ofm, it also holds after the execution
of m.”

We have not yet given a formal semantics for the specification in Section 3, but only explained
the specification informally. In Figure 13 we now present a formal semantics for the statements
used in the specification (and some other), namely in terms of weakest preconditions.

• Rules (1) and (2) say that the weakest precondition of a parametrized methodp (x) and a
postconditionc has to hold for all valid parametersx, possibly restricted to a preconditionb
which has to hold ifp (x) is invoked.

• Rules (3), (4), and (5) give the weakest preconditions for three very simple statements:skip
is the empty statement which causes no changes whatsoever, abort leads to a totally unpre-
dictable state, andmagic fulfils all conditions it is expected to fulfil. (Obviously, magic
cannot be implemented.)

(1) let p (x) = P: wp (p (x), c) = ∀ x • wp (P, c)

(2) let p (x) = pre b P: wp (p (x), c) = ∀ x • b ⇒ wp (P, c)

(3) wp (skip, c) = c

(4) wp (abort, c) = false

(5) wp (magic, c) = true

(6) wp (x := e, c) = c [x:=e]

(7) wp (P; Q, c) = wp (P, wp (Q, c))

(8) wp (if b then P else Q end, c) = (b ⇒ wp (P, c)) ∧ (¬b ⇒ wp (Q, c))

(9) let #T: Mapping [TId, T], let class T have init ():

wp (id := new (T), c) =
wp (id :- id ∉ domain (#T); #T := #T ⊕ (id, ?); id↑.init (), c) =
∀ id • id ∉ domain (#T) ⇒ wp (#T := #T ⊕ (id, ?); id↑.init (), c)

(10) let #T: Mapping [TId, T], let class T have init (u: U):

wp (id := new (T, u), c) =
wp (id :- id ∉ domain (#T); #T := #T ⊕ (id, ?); id↑.init (u), c) =
∀ id • id ∉ domain (#T) ⇒ wp (#T := #T ⊕ (id, ?); id↑.init (u), c)

Figure 13 Rules for the weakest precondition

Andreas Rüping 19

• Rule (6) says that the weakest precondition of an assignmentx := e and a postconditionc is
c with all occurrences ofx replaced by the expressione. Rules (7) and (8) give the weakest
preconditions for sequential composition and alternative.

• Rules (9) and (10) define thenew statement. These rules first give substitutions for wp-
expressions, and then compute the weakest precondition. In detail, rule (9) says the
following: Declaring a new object as an instance of classT means that a yet unused identifier
id for classT is chosen non-deterministicly, the mapping#T is extended with an additional
pair consisting ofid and the new object, and the new object is initialized. Rule (10) says the
same, but for an initialization methodinit that is parametrized.

It is clear now, why only for initialization methods that can be invoked from outside the module
we have to prove that after the execution of an initialization method all invariants hold. Since
instances of classes that do not export creation can only be created by methods inside the
module, the proof that all other initialization methods respect the invariants is covered by the
rules (9) and (10).

4.3 Consistency Proof for the Hypertext System

For our hypertext system, we have to prove that for the methodinit from the classHypertext and
all invariantsInv of the modulewp (init, Inv) = true holds. The proof for the invariant assigned
to the class Hypertext is given in Figure 14. The proofs for both other invariants are omitted here.
They are equally simple because the attributesnodes andlinks are initialized to empty sets while
the invariants scan all existing nodes, links, and handles via an all-quantification.

In all proofs, transformations are annotated with the number of the rule (cf. Figure 13) that is
being applied. Transformations that are not annotated rely on the usual inference rules for logic.

Next we demonstrate several proofs of (non-initialization) methods preserving the invariants.
We choose the invariant assigned to the classHypertext:

∀ lnk ∈ links • lnk.source↑.env∈ nodes∧ lnk.destination↑.env∈ nodes

We concentrate on the most interesting proofs and omit ‘trivial’ proofs in those cases where a
method has no influence on the objects covered by the invariant. This sort of proof can be easily
done applying rule (6) from Figure 13.

We present the following proofs:

• The consistency proof forlinks_from (classHypertext) is given in Figure 15. It is an
example of a ‘trivial’ proof that is lead by only applying rule (6) once.

• The consistency proof forlinks_to (classHypertext) can be done analogously and is omitted.

wp (init, Inv)

= wp ((nodes, links) := ({ }, { }), Inv)

= (6) ∀ lnk ∈ { } • lnk.source↑.env ∈ { } ∧ lnk.destination↑.env ∈ { }

= true ■

Figure 14 Consistency proof for ‘init’ (class ‘Hypertext’)

20 Hypertext

• The consistency proofs foradd_link andremove_link (classHypertext) are given in Figures
16 and 17.

• The consistency proofs foradd_node and remove_node (classHypertext) are given in
Figures 19 and 18.

• The consistency proofs forenv (classVertex), change, add_handle, remove_handle (class
Node), get_pos, andset_pos (classHandle) are ‘trivial’ and are therefore omitted.

There are two more invariants specified in the moduleHypertext_Model (for which we do not
present the consistency proofs in this paper):

environment = self (in classNode)
and

∀ hid ∈ handles• hid↑.environment = self (in classNode)

The consistency of all methods with respect to these two invariants can be verified in a similar
way as with the other invariant. The proof techniques are essentially the same. Most of the proofs
are trivial; some, however, are not. For instance, to verify thatadd_handle respects the second
of the above invariants requires a proof as difficult as the one in Figure 19. In both cases, the

wp (from := links_from (nid), Inv)

= wp (from := {lnk ∈ links | lnk.source↑.env =nid}, Inv)

= (6) Inv ■

Figure 15 Consistency proof for ‘links_from’

wp (add_link (new-lnk) pre con (new-lnk), Inv)

= (2) ∀ new-lnk • (con (new-lnk) ⇒ wp (links := links ∪ {new-lnk}, Inv))

= (6) ∀ new-lnk • (con (new-lnk) ⇒ ∀ lnk ∈ links ∪ {new-lnk} • con (lnk)

= ∀ new-lnk • (con (new-lnk) ⇒ ∀ lnk ∈ links • con (lnk)

⇐ ∀ new-lnk • ∀ lnk ∈ links • con (lnk)

= ∀ lnk ∈ links • con (lnk)

= Inv ■

Figure 16 Consistency proof for ‘add_link’

wp (remove_link (old-lnk), Inv)

= wp (links := links - {old-lnk}, Inv)

= (6) ∀ lnk ∈ links - {old-lnk} • con (lnk)

⇐ ∀ lnk ∈ links • con (lnk)

= Inv ■

Figure 17 Consistency proof for ‘remove_link’

Andreas Rüping 21

complexity of the proofs is caused by the rather difficult way in which thenew statement must
be handled formally.

4.4 Object Identities (Revisited)

It now becomes obvious why we had to restrict object identities to be global only within a
module. If we had allowed for objects to be referenced by global identifiers from an arbitrary
class within the whole system, we would have had to prove that all methods in all classes
preserve all invariants. Thus, modular verification would have become impossible.

The central point of fixing object identities to modules is that both object identifiers and object
values are always kept in the same module. Objects can be referenced via their identifiers only
in the same module that stores the object values.

As a consequence, cyclic pointer structures are only possible within a module. For instance, a
node contains several handles. Each handle possesses a reference to the node in which it is
contained, namely by the attributeenvironment. This is specified by a cyclic pointer structure
which cannot be distributed over several modules.

However, it is of course possible to create objects of a class outside the module of this class, as
long as both the object identifiers and the object values are defined in the same external module.
For example, the hypertext controller will probably store one or more hypertexts (instances of
the classHypertext) and refer to them via identifiers. This is legal since the classHypertext is
listed in the creation export clause ofHypertext_Model.

wp (remove_node (old-nid), Inv)

= wp (nodes := nodes - {old-nid};
links := links - links_from (old-nid) - links_to (old-nid), Inv)

= (7) wp (nodes := nodes - {old-nid},
wp (links := links - links_from (old-nid) - links_to (old-nid), Inv))

= (6) wp (nodes := nodes - {old-nid},
∀ lnk ∈ links - links_from (old-nid) - links_to (old-nid) •

lnk.source↑.env ∈ dom (nodes) ∧ lnk.destination↑.env ∈ dom (nodes))

= (6) ∀ lnk ∈ links - links_from (old-nid) - links_to (old-nid) •
lnk.source↑.env ∈ nodes - {old-nid} ∧
lnk.destination↑.env ∈ nodes - {old-nid}

= ∀ lnk ∈ links - {lnk ∈ links | lnk.source↑.env = old-nid ∨ lnk.destination↑.env = old-nid} •
lnk.source↑.env ∈ nodes - {old-nid} ∧
lnk.destination↑.env ∈ nodes - {old-nid}

= ∀ lnk ∈ links • (lnk.source↑.env ≠ old-nid ∧ lnk.destination↑.env ≠ old-nid) ⇒
lnk.source↑.env ∈ nodes - {old-nid} ∧
lnk.destination↑.env ∈ nodes - {old-nid}

= ∀ lnk ∈ links • (lnk.source↑.env ≠ old-nid ∧ lnk.destination↑.env ≠ old-nid) ⇒
lnk.source↑.env ∈ nodes ∧
lnk.destination↑.env ∈ nodes

⇐ ∀ lnk ∈ links •
lnk.source↑.env ∈ nodes ∧
lnk.destination↑.env ∈ nodes

= Inv ■

Figure 18 Consistency proof for ‘remove_node’

22 Hypertext

Summarizing, the concept of modules serving as the scope for object identities brings about the
following advantages:

• We are able to use object identities in our specification which is important since object
identities are an essential part of the object-oriented paradigm. Object identities are
necessary to derive a specification from an object-oriented design model.

• We can use object identities within a module to express (even cyclic) pointer structures.

• Making object identities explicit happens at a central place within a module. Thus, the
classes themselves can use object identities without a large notational burden.

wp (new-nid := add_node (), Inv)

= wp (new-nid := new (Node); nodes := nodes ∪ {new-nid}, Inv)

= (7) wp (new-nid := new (Node), wp (nodes := nodes ∪ {new-nid}, Inv))

= (6) wp (new-nid := new (Node),
∀ lnk ∈ links •

lnk.source↑.env ∈ nodes ∪ {new-nid} ∧
lnk.destination↑.env ∈ nodes ∪ {new-nid})

= (9) ∀ new-nid • new-nid ∉ domain (#Node) ⇒
wp (#Node := #Node ⊕ (new-nid, ?); new-nid↑.init (),

∀ lnk ∈ links •
lnk.source↑.env ∈ nodes ∪ {new-nid} ∧
lnk.destination↑.env ∈ nodes ∪ {new-nid})

= ∀ new-nid • new-nid ∉ domain (#Node) ⇒
wp (#Node := #Node ⊕ (new-nid, ?);

new-nid↑.environment := new-nid↑.self;
new-nid↑.contents := { };
new-nid↑.handles := { },
∀ lnk ∈ links •

lnk.source↑.env ∈ nodes ∪ {new-nid} ∧
lnk.destination↑.env ∈ nodes ∪ {new-nid})

= (6), (7) ∀ new-nid • new-nid ∉ domain (#Node) ⇒
∀ lnk ∈ links •

lnk.source↑.env ∈ nodes ∪ {new-nid} ∧
lnk.destination↑.env ∈ nodes ∪ { new-nid}

⇐ ∀ new-nid • ∀ lnk ∈ links •
lnk.source↑.env ∈ nodes ∪ {new-nid} ∧
lnk.destination↑.env ∈ nodes ∪ { new-nid}

⇐ ∀ new-nid • ∀ lnk ∈ links •
lnk.source.env ∈ nodes ∧
lnk.destination.env ∈ nodes

= ∀ lnk ∈ links •
lnk.source.env ∈ dom (nodes) ∧
lnk.destination.env ∈ dom (nodes)

= Inv ■

Figure 19 Consistency proof for ‘add_node’

Andreas Rüping 23

• Modular verification is possible. Although verification cannot be done class-wise, it can
indeed be done module-wise. This is an important advantage for incremental software
development, for instance if program parts (modules in our case) have to verified before
they are added to a software library.

4.5 Conformance Proofs (Outline)

As mentioned before, the intuitive understanding of conformance is that if one class conforms
to another, objects of the former can in an arbitrary situation be substituted for objects of the
latter. Thus, to each method of the more abstract class there must be a corresponding and
possibly more deterministic method in the conforming class. Also, the conforming class may
have additional methods.

There are two different situations in which a class conforms to another. First, conformance can
be declared (and then needs to be proven) between two classes of the specification, in particular,
if one class inherits from another. For instance, bothNode and Handle conform toVertex.
Second, an implementation is required to conform to its specification.

Although these two situations are totally different from the modelling point of view, the under-
lying logic is the same in both cases. Thus, the same verification techniques are applied to prove
conformance in both situations.

The proof that a (sub-) classS with state space X conforms to a classC with state space Y
requires the verification of the following:

There is a mapping f: (S, X)→ (T, Y) mapping the methods of class S to methods of
class T and state space X to state space Y, so that the following two conditions hold:

InvS (x) ⇒ InvT (f (x))

“The invariant ofS is not weaker than the invariant ofC.”

and

for all postconditionsC, an arbitrary methodmS in S, the corresponding methodmT

in T, and all statesx, y:

InvS (x) ⇒ (y = f (x) ∧ wp (mT, C (y))⇒ wp (mS, C (f (x))))
“Restricted to all states in which the invariant for classS holds, the weakest
precondition for a methodmS in T and an arbitrary postcondition implies the
weakest precondition for the corresponding methodmT and the corresponding
postcondition inS.”

The meaning of the second condition can be explained with the commuting diagram presented
in Figure 20. We assume that there is an objectx of classS (which respects the invariant ofS).
Via mappingf, we obtain the corresponding objecty of classT. ApplyingmT to y yields a certain
result described byC (y), as long aswp (mT, C (y)) holds. Conformance says that in this case
wp (mS, C (f (x))) also holds which means that applyingmS to x does indeed lead to a corre-
sponding resultC (f (x)).

In the specification of our hypertext system,Node andHandle conform toVertex. Although we
do not give a formal proof, we can explain why conformance holds using the above criteria.

In our case, the mappingf from Node to Vertex is very simple. Since no redefinitions are made
in Node, the mappingf maps the inherited methodenv and the inherited attributeenvironment to
their originals inVertex. All other methods are mapped toskip. Obviously, the invariant ofVertex

24 Hypertext

(which is true as it is not defined) is strengthened inNode. The above diagram commutes
becauseenvironment is never changed in bothVertex andNode. Therefore, a node can be used
whenever a vertex is expected. The same holds for handles and vertices.

To demonstrate implementational conformance, we present implementation classes for
Hypertext, Vertex, Node, andHandle in Figures 21, 22, 23, and 24.

Figure 20 Conformance

ff

T: mT

S: mS

x

y C (y)

class Vertex_Implementation

private environment: NodeId

anc, succ: Set [VertexId]

env (): nid: NodeId is nid := environment

end Vertex

Figure 22 Implementation class ‘Vertex_Implementation’

class Node_Implementation

inherit Vertex_Implementation, conform Vertex_implementation

...

Figure 23 Implementation class ‘Node_Implementation’

class Handle_Implementation

inherit Vertex_Implementation, conform Vertex_implementation

...

Figure 24 Implementation class ‘Handle_Implementation’

Andreas Rüping 25

The implementation of the moduleHypertext_Model includes a change of representation. The
classHypertext_Implementation does not supply an attributelinks. Instead, each vertex is
provided with two attributes,anc andsucc, that refer to their ancestors and successors with
respect to the link structure. Thus, keeping all links of the hypertext together in a set of links is
now redundant. The classesNode_Implementation andHandle_Implementation are the same as
their specifications, with the exception that they inherit fromVertex_Implementation and not
from Vertex. The classLink needs no implementation.

In this case, it is impossible to prove for a single class that the implementation conforms to the
specification. Since the change of representation affects several classes, the proof obligation is
to show that the implementation of the whole moduleHypertext_Model conforms to its specifi-
cation.

class Hypertext_Implementation

private nodes: Set [NodeId]

invariant ∀ vid • vid↑.anc↑.environment ∈ nodes ∧ vid↑.succ↑.environment ∈ nodes ∧
∀ vid1, vid2 • vid1↑.anc = vid2 ⇔ vid2↑.succ = vid1

add_node () new-nid: NodeId is
new-nid := new (Node_Implementation); nodes := nodes ∪ {new-nid}

remove_node (old-nid: NodeId) is
nodes := nodes - {old-nid};
for all vid in old-nid↑.anc do vid↑.succ := vid↑.succ - {old-nid} end;
for all vid in old-nid↑.succ do vid↑.anc := vid↑.anc - {old-nid} end;
for all hid in old-nid↑.handles do

for all vid in hid↑.anc do vid↑.succ := vid↑.succ - {hid} end;
for all vid in hid↑.succ do vid↑.anc := vid↑.anc - {hid} end end

add_link (new-lnk: Link)
pre new-lnk.source↑.environment ∈ nodes

new-lnk.destination↑.environment ∈ nodes is
new-lnk.source↑.succ := new-lnk.source↑.succ ∪ {new-lnk.destination};
new-lnk.destination↑.anc := new-lnk.destination↑.anc ∪ {new-lnk.source}

remove_link (old-lnk: Link) is
new-lnk.source↑.succ := new-lnk.source↑.succ - {new-lnk.destination};
new-lnk.destination↑.anc := new-lnk.destination↑.anc - {new-lnk.source}

links_from (nid: NodeId) from: Set (Link) is
for all vid in nid↑.succ do from := from ∪ {(nid, vid)} end;
for all hid in nid↑.handles do

for all vid in hid↑.succ do from := from ∪ {(hid, vid)} end end

links_to (nid: NodeId) to: Set (Link) is
for all vid in nid↑.anc do to := to ∪ {(nid, vid)} end;
for all hid in nid↑.handles do

for all vid in hid↑.anc do to := to ∪ {(hid, vid)} end end

init () is nodes := { }

end Hypertext_Implementation

Figure 21 Implementation class ‘Hypertext_Implementation’

26 Hypertext

It is beyond the scope of this paper to give the complete proof. We only give the mapping from
the implementation classes to the specification classes which is not as simple as the one before,
due to the change of representation.

We map an object ofHypertext_Implementation to an object ofHypertext as follows:

f (hypertext_imp) = (hypertext_imp.nodes,
{(vid.in, vid) | vid ∈ hypertext_imp.nodes∨

∃ nid∈ hypertext_imp.nodes• vid ∈ nid.handles})

Each implementation method is mapped to the specification method with the same name.

In this case, the diagram in Figure 20 commutes. The informal understanding is the following.
We assume that there is an abstract hypertext object according to the specification and a concrete
hypertext object instantiated by the implementation class. If applying a method of the specifi-
cation method to the abstract object yields a certain result, then we can ensure that applying the
corresponding implementation method to the concrete object yields the same result. (The result
is described by a predicate on the state space of the specification.)

Thus we can use a concrete hypertext object when an object as described by the specification
classHypertext is expected. For instance, classes from the moduleHypertext_Controller will
probably expect hypertexts according to their specification. In this case, concreteHypertext
objects will do.

5 Concluding Remarks

The aim of this case study was to demonstrate formal object-oriented software development. We
have applied Responsibility-Driven Design to the development of a hypertext system, we have
derived a formal object-oriented specification from the design model, and we have demonstrated
the verification of both the consistency of the specification and the correctness of an implemen-
tation with respect to the specification.

We can draw several conclusions from this case study.

• Responsibility Driven Design is an excellent method for object-oriented modelling with
regard to formal object-oriented software development. The method provides techniques to
discover classes, responsibilities, and collaborations. Introducing responsibilities into the
design allows for precise interfaces classes. Contracts of the design turn out to be public
methods in the specification. Thus, a model according to Responsibility-Driven Design can
be appropriately transformed into a formal specification.

• An even closer integration of design techniques and specification techniques is a good
starting point for future work. A more precise understanding of different class relationships
at the design stage (based on their semantics in the specification) is worth further investi-
gation.

• The specifics of object-oriented programming can cause problems when formal methods are
applied to them. In particular, object identities are not easy to deal with. However, the
concept of introducing modules to provide the global scope for object identifiers makes the
situation manageable. Objects can be referenced via their identifiers, which is typical of
object-orientation, and modular verification is nevertheless possible.

Andreas Rüping 27

• Consistency proofs are comparatively easy to handle. The proof techniques we have applied
in the case study provide an appropriate means to perform such proofs. However,
conformance proofs require a much larger effort, particularly if conformance between
whole modules needs to be proven. Proofs of such an extent typically require machine
support.

• Modules play an important role in the specification. First, they are necessary to deal with
object identities and second, conformance often holds only between modules and not
between single classes. Furthermore, invariants often refer to objects of different classes and
are thus better kept in a module than in a class (cf. [13]). Future work will also include the
development of a more precise understanding of modules, their interfaces, and relationships
between modules.

Acknowledgements

Several colleagues made valuable contributions to this paper. Thanks are due to Eduardo Casais,
Claus Lewerentz, Thomas Lindner, and Franz Weber for fruitful discussions, and particularly to
Emil Sekerinski whose ideas and suggestions had a considerable and profitable influence on the
development of this paper.

This work has been supported by the German Ministry of Research and Technology (BMFT),
grant number ITS 9002 M, project KorSo.

References

[1] Timothy Budd.An Introduction to Object-Oriented Programming. Addison Wesley, 1991.

[2] C.A.R. Hoare.Proof of Correctness of Data Representations, in Acta Informatica No. 1,
pp. 270-281. Springer Verlag, 1972.

[3] E. W. Dijkstra (Ed.).Formal Development of Programs and Proofs. Addison-Wesley, 1990.

[4] A. Goldberg, D. Robson.Smalltalk-80 The Language and its Implementation. Addison
Wesley, 1983.

[5] Danny B. Lange.A Formal Approach to Hypertext Using Post-Prototype Formal Specifi-
cation, in D. Bjørner, C.A.R. Hoare, H. Langmaack (Eds.),VDM ‘90 - VDM and Z - Formal
Methods in Software Development, pp. 99-119. Lecture Notes in Computer Science
(LNCS) No. 428. Springer Verlag, 1990.

[6] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[7] Carroll Morgan.Programming from Specifications. Prentice Hall, 1990.

[8] Andreas Rüping, Franz Weber, Walter Zimmer. Demonstrating Coherent Design - A Data
Structure Catalogue, in Proceedings ofTOOLS USA ‘93 - Technology of Object-Oriented
Languages and Systems. Prentice Hall. To appear.

[9] Andreas Rüping.Coffer: Methodology and Language. Technical Report, Forschungs-
zentrum Informatik Karlsruhe. To appear.

28 Hypertext

[10] Markku Sakkinen. Disciplined Inheritance, in Stephen Cook (Ed.), ECOOP ‘89 -
European Conference on Object-Oriented Programming, pp. 39-56. British Computer
Society Workshop Series. Cambridge University Press, 1989.

[11] Emil Sekerinski. A Calculus for Predicative Programming, in R. S. Bird, C. C. Morgan, J.
C. P. Woodcock (Eds.), Mathematics of Program Construction. Lecture Notes in Computer
Science (LNCS) No. 669. Springer Verlag, 1993.

[12] Emil Sekerinski. A Behavioral View of Object Types. Technical Report 7-93, Forschungs-
zentrum Informatik Karlsruhe, 1992.

[13] Clemens A. Szyperski. Import Is not Inheritance - Why We Need Both: Modules and
Classes, in Ole Lehrmann Madsen (Ed.), ECOOP ‘92 - European Conference on Object-
Oriented Programming, pp. 19-32. Lecture Notes in Computer Science (LNCS) No. 615.
Springer Verlag, 1992.

[14] Franz Weber. Getting Class Correctness and System Correctness Equivalent - How to Get
Covariance Right, in Raimund Ege, Madhu Singh, Bertrand Meyer (Eds.), TOOLS 8 -
Technology of Object-Oriented Languages and Systems, pp. 199-213. Prentice Hall, 1992.

[15] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. Designing Object-Oriented
Software. Prentice Hall, 1990.

