
A Role-Based Empirical Process Modeling Environment

Brendan G. Cain
James O. Coplien

AT&T Bell Laboratories

Abstract

Much contemporary development process research is
based on analyses of process steps, their duration, and
the events they propagate. Our initial research in large,
mature telecommunications development processes
concluded that such models do not capture abstractions
that remain stable over time. We turned our attention
instead to empirical role-based models. The basic
abstraction in the model is a ‘‘role,’’ a longstanding,
stable locus of associated responsibilities in a process. A
process model evaluation prototyping environment is used
to visualize the process data in several ways, including
community-of-interest clustering, communication network
clustering, and hierarchical rendering. Analyses of these
models have led to powerful insights both into individual
projects, and into the properties of software development
processes in general.

1: Introduction

There is abundant contemporary interest in improving
the lot of software development by tuning, modernizing,
or redoing a project’s development process [1], [2].
Process improvements include both those that result from
the infusion of new technology, as well as those owing to
changes in organization, methodology, or life cycle. The
work described here investigates process improvements
that might arise from understanding the flow of
information in a development culture. Most solutions
suitable to this viewpoint seem to lie in the areas of
organization, methodology, and life cycle. However, our
current work is focusing on simply understanding what
happens in software development, both for individual
projects and, to the degree possible, for the industry as a
whole. Our goal is that this understanding establish a
basis for software development process improvement,
both in the short term for existing projects, and in the long
term for current projects and projects not yet chartered.

This paper describes our progress in formulating
methodologies and modeling approaches, and in
developing tools to support an overall process evaluation
framework named Pasteur. We felt it important to build a
framework in which processes could be understood,
compared, modeled, and improved. Furthermore, we
have striven to validate that framework against real
development processes in organizations collaborating
with us in this research. The work has gone through
several iterations, culminating in a process modeling
environment that is producing useful results. We still
consider the work to be in its formulative stages; work in
progress and considerations for the future are both
discussed in this paper.

This paper starts with an overview of our initial
models and early work, and explains why we decided to
change modeling techniques. It then describes the role-
based modeling approach and how we gathered data for
our process models, followed by the process manipulation
techniques we found useful. The paper concludes with
some striking results and discusses their ramifications
both for the individual projects we studied, and for
software development in general.

2: Early work

From the outset, we took great pains to ensure that our
models would track the activities of the real-world
organizations and processes they represented. In our first
modeling efforts, we felt that the best way to derive a
model would be by instrumenting primitive process
activities, and building higher order abstractions out of
these low-level tasks. We evaluated using several
‘‘hooks’’ into the development processes, including the
monitoring of electronic mail [3], phone calls, and
detailed developer/machine interactions. We settled on
the latter as a starting point because it was easy to gain
access to them, and because most process activities for the
organizations we were studying involved computer-
resident artifacts.



F I L E read
written
created
deleted

/etc/passwd

S H E L L

cp /etc/passwd /backup

Figure 1: A Simple Process Circuit

We built a modeling environment that allowed us to
draw a picture of a process in terms of primitive objects
such as command invocations, files, programmers, and
machines. Each object had ‘‘handles’’ representing its
externally visible attributes or activities; for example, a
file object had handles for ‘‘written,’’ ‘‘read,’’ ‘‘created,’’
and ‘‘deleted’’ (Figure 1). Objects could be created and
handles wired together using a graphical programming
interface, forming a process ‘‘circuit’’ of primitive
connectors such as logical ANDs, ORs, event latches, and
predicate applicators. Many aspects of the environment
were weakly analogous to what one would expect to find
if using Petri net formalisms [4], as in the Role Interaction
Net (RIN) language [5]. The environment might also be
viewed as a graphical design-by-constraint language
comparable to GRAPPLE [6]. To help the environment
scale up to handle large processes, aggregate abstractions
could easily be created for common groups of objects
(e.g., related collections of files) and entire circuits could
be abstracted into new, user-defined objects to use in
building a process model.

The environment was to have four uses: capture, data
gathering, simulation, and static analysis. Process capture
is just putting the process into machine-readable form.
Each picture would be worth its proverbial thousand
words of corresponding textual descriptions, an aid to
understanding the process and communicating about it.
With the model in place, we could ‘‘teach’’ each of the
abstractions to gather data about its corresponding entity
in the real-world process. That is, a file abstraction could
keep track of how many times its real-world counterpart
was checked out, read, or written, or even keep a more
detailed log of all activities relating to a file. These data
could be used to annotate the process ‘‘circuit’’ model
with stochastic parameters of frequency and duration of
interactions between the primitive objects, and this
stochastic model could be used to run what-if simulations
for a modified development process. Lastly, these same
parameters could be used for simple, static critical path
process analyses that could be used to do what-if
experiments to reduce process interval.

The environment in place, we undertook the modeling
of a software integration process that typically cycled
once every two weeks, and that involved about 40 people
full-time. The effort was an immediate disappointment

for two reasons. First, people had a difficult time
articulating what they did in concrete terms that mapped
onto the abstractions we could express. Rather than
interacting along well-defined data paths, the development
organization viewed itself as a whole whose individuals
moved together in quanta along major stages of progress.
They viewed their individual activities at each of these
states as ‘‘doing what was needed to get the job done.’’
This led to the second problem, that there was little to be
found in the way of repeatable patterns. We held little
hope of developing stochastic models from data which, at
this level, seemed to point to a chaotic process.

We stepped back from the process modeling effort,
conducted some additional interviews, and began to form
a hypothesis that the processes we wanted to study were
not stochastically well-behaved at the level of individual
activities. Individual developers often became blocked
for want of a resource, deliverable or event involving
another process activity or external event, and these losses
of continuity made it difficult for developers to establish
overall cause-and-effect relationships within their process.
That is, while an entire process may cycle with statistical
regularity on long time scales, it seemed impossible to
derive any of the large-scale interval data from data
observable by individuals, or data that could be derived
from our tools. We likened these processes to ant
colonies, which can accomplish observable tasks and
exhibit behaviors as a whole, behaviors that cannot be
extrapolated from analysis of individuals’ activities [7].
We also called it a ‘‘Petri dish model’’ (with due
apologies to Petri nets) because many of these processes
behaved like cultures of organisms that moved en masse
from one dish of agar to another, devouring each in turn.†

We set out to find a new approach. We needed to
break not only with our original approach, but with much
of the tradition of canonical process modeling. The
definition of process in the software engineering
community has converged on ‘‘a set of partially ordered
steps intended to reach a goal,’’ as Curtis et al. cite

__________________

† This led to the current name for our modeling environment, Pasteur,
which is also an obscure acronym of lesser importance.



Collaboration

Class

Subsystem Coordinator

Load Administration

Load Owner

Developer

Collect fixes

Send MR list

Receive MRs

Include carryovers in load

Debug Problems

Responsibilities

Figure 2: CRC Card

Humphrey. [2] The properties of a process lend
themselves to formal analyses when expressed in this
form, and are claimed to be difficult to analyze at all
unless formally constrained. Few of the processes we
study can be characterized as comprising any partial
ordering of steps or events, but are ad hoc in their internal
interaction patterns. Successive iterations of a given
process provide new context, new structure, and new
people that change the orchestration of events in ways that
are difficult to avoid. Processes adapt to move with trends
and to track ever-changing markets. Some new process
designs based on iterative approaches deliberately
maintain an ad hoc flavor, and do not seem well-suited to
the established process modeling approaches in the first
place. We nonetheless knew that many of these processes
were competitive and effective, and that they
demonstrated a consistency of external behavior that
belied the chaos at the level of individuals and internal
events. Many of these processes could adapt to new
environments without major changes in structure. We felt
a need to find stable abstractions on which we could build
models to understand, analyze and evolve these processes.

3: A role-based approach

We decided to pursue a new modeling technique that
would better suit our research goals of formulating
insightful families of process models. We decided that
what needed changing from the Pasteur prototype was not
so much the level of abstraction, but the units of
abstraction. The procedural, data flow abstractions were
not robust in light of change; the interactions between
them, which were even more central to analysis, were
even more likely to change over time.

Instead of modeling steps, we decided to model roles.
Roles are the building blocks of organizational structures,
and are a longstanding abstraction for sociological and
psychological research [8]. Manager, Integration
Tester, and Subsystem Coordinator are examples of
common roles. Interviews with the software integration
team suggested that the roles in place today are much the
same as they were more than a decade ago, even in light
of orders of magnitude of project growth and introduction
of several new generations of product and support
technology. Data gathered on roles was more likely to
have statistical significance than for the procedural model.
Most other models we considered—state machines,
activity-based models, and others—either addressed the
problem at the wrong level of abstraction, or were overly
reminiscent of the disappointing Petri-like model we had
abandoned. From these conjectures, we decided to try the
role-based approach.

The new model was based on CRC Cards [9], a
modeling approach originally designed for system
software architectures exemplifying object-oriented
techniques. ‘‘CRC’’ stands for Classes, Responsibilities,
and Collaborators, which are the fields on the cards
(Figure 2). Responsibilities define what a role offers to its
community; collaborators enumerate stake-holding
relationships between roles.

Though CRC cards were originally designed for
system software architecture formulation, we thought they
would be suitable for capturing the essential and
interesting properties of organizational roles. Later
consultation with Kent Beck confirmed that these cards
have already been used for organizational modeling by
Sam Adams and others [10]. We prefer the use of CRC
cards to more ‘‘formal’’ role modeling tools, such as RIN



or GRAPPLE, because:

• The informality of CRC cards creates opportunities
for better empirical models, allowing people within a
process to develop process models at their own level
and articulate the process on their own terms;

• Most existing formal tools bear vestiges of the Petri
net and constraint-based models which were the
subject of our earlier unfavorable experience.

The cards were created in an exercise using 3 x 5 index
cards to capture information about a project. These cards
are created from a brainstorming exercise that identifies
stable abstractions (or ‘‘classes,’’ which we redesignated
as ‘‘roles’’) in the development process, and then
elaborates their responsibilities and collaborators using
development scenarios. Roles are longstanding jobs
within a process, usually intuitively recognized by its
culture, for which relatively stable job descriptions may
exist. Responsibilities are the tasks and activities for
which role-players are accountable to their peers.
Collaborators are roles to which a given role is tightly
coupled: Roles are collaborators to the degree either
becomes nervous if the other goes on vacation. (One type
of data we collected was the strength of collaborations.)
The focus is not on the scenarios, but rather on the roles
themselves. We would later turn to studying pairwise
interactions between roles, and are currently evaluating
full animation of this model.

We revisited the software integration process and
proceeded to collect CRC card data in a half-day session
with project technical staff. Relevant roles were first
identified using a group brainstorming process, after
which the list of candidate roles was evaluated and
refined. Cards representing specific roles were given to
the individuals playing those roles in the software
integration process. Role players were also assigned for
the parts of the process external to software integration,
but with which software integration interfaces in its work.

CRC card abstraction icons were then added to the
Pasteur prototype. The Pasteur environment holds a
transcription of the CRC cards wrapped in a hypertext
database named Eggs [11], based on the HAM hypertext
system [12]. The existing prototype was used as a base so
that existing graphical interface primitives could be
reused from the prototype. Pasteur allows the
programmer to create a card abstraction on the screen, and
type information into its fields using a modeless editor.
Cards can be resized and moved about the screen. On a
typical color work station monitor, we can easily fit about
40 full-size non-overlapping cards.

Now we had the ability to capture stable development
process abstractions on-line, and the next step was
introducing semantics to support analysis. We decided to

focus on three kinds of manipulation of the CRC card
interface: browsing, clustering, and animation. Browsing
is simply the ability to locate easily a given card and its
collaborators. Other kinds of browsing, such as finding
all cards sharing a given responsibility, were also
considered and are still under consideration for later
implementation. Clustering is the ability to group cards
based on their strength of mutual collaboration or the
sharing of some properties in common. For animation,
each card is represented as a finite state machine that
models the behavior of its real-world role. By placing all
cards in a known state, and introducing a stimulus to the
system, we should be able to determine the next state of
any given card. Most of our current work is focused on
clustering and graphical visualization techniques, with
process animation left to future work.

4: Gathering the data

Data in hand from the software integration process,
we proceeded to some simple analyses. One obvious
analysis was to illuminate all the roles having a strong
coupling to a chosen role to determine the centrality of
that role in the process. A role was considered central to
the process to the degree it had strong coupling with
remaining roles in the process. One curiosity we
discovered early on was that the Developer role had
strong coupling with most of the internals of the software
integration process. On its face, this was a surprise, as the
developer is supposedly isolated from the details of
software integration.

Further data-gathering and analysis exercises
confirmed our faith in the CRC modeling approach. In
debriefings held with the development organizations to
review our pictures of their processes, developers reported
that our models matched their intuition of how their
processes worked. Somewhat paradoxically, most
developers felt they could not have drawn the pictures
from their model of how their processes worked: that the
data-gathering exercise itself had changed how they
viewed the process.

We received some instructive subjective feedback on
the state of development processes during data-gathering
exercises with development organizations. To approach
these organizations, we introduced ourselves as
researchers who wanted to collect data about their
process, and to gain a better understanding of how
processes work in general. Most groups we interviewed
had already developed specifications of their processes to
support training and ongoing development. We were
aware of these specifications, but most reflected the kind
of event-and-task perspective we had found difficult to
analyze in our early work. In introducing ourselves to
these groups, we often needed to motivate people with our



PDI

Integration

Execution Environment

Machine Resources

EES - IHLPW owner

Load Administration

Carrier Load EES

Minilab

Private Environments

Management

Load Owner

Load Builder

PAG

Fixpack

Help desk

ODD Engineer

ODA

PCC

SSE

Developer

SSC

Load Scheduling

Bringup

Mini-Bringup

Figure 3: A Mature Development Process

need to collect process data from a ‘‘different
perspective’’ than was present in their own pre-existing
models. We were politely tolerated in anticipation of
what, after all, would only be a one-time, three-hour data
gathering exercise.

Then, in the middle of the CRC scenarios, a wonderful
thing would happen. One or more of the participants in
the exercise, unprompted, would interject something to
the effect that: ‘‘We take back everything we told you
about how well we understand our process!’’ The
analytical role-playing in front of an external audience—
us—caused the participants to see major aspects of their
process interactions they had never perceived before.
After this occurred several times, we started using the
phenomenon as a selling point to gain entry to new
organizations and convince them to spend three hours of
their time to support our research—and to better
understand their own process.

5: Manipulating processes

We soon were able to build a library of development
processes for organizations both at our location and other
AT&T locations, as well as a small number of
organizations doing related work outside AT&T. The
next set of challenges that arose was how best to
manipulate the models we had gathered to further our
insight into the issue of software development process in
general, and to better support those giving us data
(because good support for them meant continued high-
quality data from them).

It was about this time that we added clustering
facilities to our modeling tool: the ability to draw a
picture of an organization where closely coupled roles
were placed close to each other on the display. Several
approaches were evaluated. The approach most
commonly used, and which most often generates intuitive
results, is a force-based approach. Each role is modeled
as a charged particle, such that all roles repel each other
with a certain strength. This repulsion is balanced by
attraction proportional to the strength of collaboration
between given pairs of roles (the strength of each
collaboration is gathered in the interviewing process). A
simple relaxation algorithm is used to converge on a
stable picture of the process where cliques, strong patterns
of coupling, and outlying roles are visually obvious.

The coupling between individual roles can be depicted
by connecting them with lines (Figure 3). The width and
color of each line is derived from the strength of the
coupling between the roles it joins. Though our model
has the flexibility to express semantics of directed
interactions, for the purposes of this paper the interactions
may be thought of as undirected mutual collaborations.
Making these lines visible helps to highlight patterns of
interaction in the process under study.

More advanced facilities were added as well. Many of
our development colleagues wanted to depict what their
processes would look like if a certain role or collaboration
relationship were omitted. We added editing facilities to
temporarily exclude selected roles and interactions from
clustering analysis. One exotic facility we added was the
ability to merge multiple processes into one. Using this



System Lab Architect

ODD Engineer

PCC

ECD Engineer

Feature Data Engineer

SDE Tool Provider

ODA

PSS SA

Login Admin

PLI (BU and MBU)

5ESS Doc Provider

Lab Hardware Planner

EES PS Admin

EES ATS Coordinator

EES Document Admin

EES Planner

EES Accountant

EES Developer

EES Support Engineer

EES Tools Provider

EES Engineer

Site Planner (HVS)

Global Lab Planner

Test Equip Planner

Product Test Architect

Project Management

Model Shop

AT&T Factory
Front End Planning

Feature Manager

Purchasing

System Engineer

Hardware Vendors TE Impl Coordinator

Facility/Space Planning

Supervision

Action Central

Retrofit

Plant Support

Field Support

Verification Tester

Labtime Scheduler

Firmware Providers

5ESS Installer
Integration

LSP SA

Lab Engineer Operations Engineer

Symmap Engineer

Course Instructor

Course Owner

Course Coordinator

5ESS Developer

DSS Administrator

Feature Tester

Load Scheduler

Figure 4: A ‘‘Messy’’ Process

capability, we could foresee how proposed process
mergers might ‘‘look’’ if they followed the natural
patterns of coupling present in the component processes.
We were able to provide some of these merged models to
organizations before their actual merger, giving them
insight on what their core roles might be.

6: Process observations

In addition to supporting short-term development
needs, our process work also proved satisfying in meeting
our research goals of understanding the essence of aspects
of software development. We observed common patterns
in most of the processes we studied, patterns that were not
anticipated and that still evidence the need of further
study. We actively solicit the input of the reading
audience to help develop theories for these observations,
as well as to inform us whether they are ‘‘universal’’ or
just peculiar to the mature, large system developments we
studied.

6.1: Process typing

As anticipated, we first found that a development
community has several different types of processes.
‘‘Type’’ in this context might be translated ‘‘rough
shape,’’ the general appearance of the clustered process
picture. Many were spoked-wheels with fat hubs; that is,
they had a center of activity with more loosely coupled,
surrounding support roles. Most other processes had a

fairly even distribution of strong interactions between
roles at all locations on the picture. These, we classified
into two subcategories: ‘‘messes,’’ and ‘‘mature
processes.’’

To distinguish a mess from a mature process might be
possible from the picture alone to a discerning reader, but
was equally supported by our own first-hand knowledge
of the process characteristics. In a mature process, one
that has evolved over a decade in a relatively constant
domain, load balancing takes place. Information flow is
broadly distributed across process roles (Figure 3). The
network of communication between roles is not fully
distributed, but the total distance between two roles is
rarely more than two hops, and there is a good mapping
between direct, strong coupling and ‘‘need-to-know’’
relationships. We also know that these processes have
largely distributed decision-making loci and are not
centrally orchestrated. In fact, the Manager role in these
processes is usually at the outer edge, with tighter
coupling to resource organizations (e.g., the computer
center) than to the principals in the process! There is
likewise no centralized decision making in a ‘‘mess,’’ and
managers are likewise at the periphery of the process.
However, a ‘‘mess’’ process tends to be a more fully
connected graph than a ‘‘mature’’ process, indicating that
the communication overhead on each role is unfocused
and intense (Figure 4).

Another kind of process pattern looks like a collection
of galaxies orbiting about each other. Some processes



Fix Developer

SSC

Functional Experts

System Engineer

CDOC

Lab Support

EES

IMR Coordinator Merged With SubSys Help Desk

Fix Dev Supv

Field Support Engr

Function/Module Owner

Load Builder

SU Tester

PCC

Figure 5: A Hub-Spoke-And-Wheel Process

form natural clusters, or cliques, that are self-organizing
communities of interest (Figure 5). Such taxonomies can
usually be explained in terms of particularly well-defined
separations of concern within a process, and were not a
surprise to us. They do make some of the most
aesthetically pleasing pictures.

One thing we learned from this is that processes need
not be well-clustered to be good performers, even though
they may have head count far above the seven-plus-or-
minus-two figure often cited for optimal communication.
We find that there is a strong correlation between the
maturity of these processes and their ability to find
optimal distributed clusterings. An interesting exercise
would be to determine whether such processes can be
designed to work effectively without having to undergo a
decade-long maturation period. Another exercise would
be to determine whether these clusterings represent local
optimizations that might be outperformed by radical
reorganization of roles and the interactions between them,
without upsetting the external interfaces to that process.
These continue to be important goals of our
ongoing research.

We are formulating further hypotheses at this writing
to support models that explain why some processes
become ‘‘messes,’’ while others apparently remain well-
structured. One theory being discussed is that product-
oriented processes (among which is the process of
Figure 3) tend to have well-defined cycles. The duration
of these cycles is from days to months. Service-oriented
processes (such as that of Figure 4) do not have well-
defined cycles, but are expected to respond within
minutes, hours or at most a couple of days. Processes

with low-latency response times may need higher
coupling to be responsive, just as high-performance
software systems often take advantage of tight coupling to
gain performance. This suggests that so-called ‘‘messy’’
processes may not be bad—just optimized according to
different criteria than for the processes used by product
organizations. Managers should be admonished against
tampering with such processes just because roles have
close mutual coupling [13].

It is our hope to gather enough process data to be able
to classify processes, such that processes within a class
have a uniform correlation to interesting characteristics
such as head count, cycle time, and product size.

6.2: Developer-centric processes

Every process we analyzed contained a role called
Developer, or its analogue: the person who produces
code or other products, and who is often also the person to
do the design. Without exception, every process
clustering we looked at found the developer at the center
of the process! Developers—who live at the bottom of
the food chain, so to speak—are the roles around which
the entire process rotates. It doesn’t matter whether it is a
testing process, a problem tracking process, a support
organization process, or anything else: the developer is
still at the center. The property appears to be independent
of whether the process is a hub-and-spoke, cliqued, or
‘‘mess’’ process. The developer role is not customarily
viewed as the focus of decision-making activity within a
process: most developer interactions are informational or
related to ‘‘problems’’ in execution of the process.



Being at the center, this role bears an unbelievable
overhead. When we first saw this pattern, we whimsically
joked that it was no wonder developers never got anything
done. In fact, later analyses bore out that developers
spend about two-thirds of their time blocked along a given
development thread, waiting for information or input from
other roles. (Because developers work several threads in
parallel, however, they are rarely idle).

This analysis points to major opportunities for process
improvement, and why one might want to focus on
improving the lot of the developer. But it also points out
an unforeseen value: the developer is the perfect person to
pass information from one role in the process to another.

One thing we had expected to find was the
‘‘gatekeeper’’ role described by Allen [14], the one
responsible for most ‘‘scholarly’’ contacts outside the
organization. We expected the gatekeeper role to appear
as a hub of sorts in our clustered process models, but this
appears to be the case only in a single process (the
problem tracking process). We doubt this role is vested
with the developer role, which is usually at the center of
the picture. We conjecture that the gatekeeper role will
appear only in analyses of the interactions between
multiple processes, an analysis which is currently in its
fledgling stages.

One exercise we would like to do is gather and merge
all the processes within a given development community
and observe the role of the developer in that picture. It is
likely that the developer serves as the major
communication channel through which most important
project data travels in the processes we analyzed.

6.3: Whither management?

In most processes, management showed up at the
periphery of the model. One might speculate that
management should be in the center, overseeing most
activities and orchestrating the entire process. While this
may be true in some domains somewhere, we are finding
that it is definitely not the norm in software development.

Management roles tended to have high coupling to
roles providing services or resources to their process. In a
single testing process, we found a manager at the center.
However, as mentioned above, the developer role was
also at the center, with coupling patterns similar to those
of the manager. We suspect that these manager-centric
processes should best be modeled as hierarchical
processes, using the hierarchical rendering facilities
present in our environment.

6.4: Processes under stress

We like to view processes as organisms with a life of
their own and, like all organisms, they exhibit defense
mechanisms under stress. Using separate network

analysis tools [15], an animation was performed that
confirmed a tradeoff between domain experts’ coupling to
the process, and management coupling to the process.
Management takes over when the process ‘‘gets in
trouble,’’ but seems only to facilitate resource acquisition
and coordination support under normal operation. In
summary, the management team members might be
thought of as the ‘‘antibodies’’ of the process organism.

7: Summary

We have realized satisfying results from a role-based,
empirically rooted program in development process
modeling. The work has proved useful to the
development organizations under study, as well as the
long-range programs of the research organization
conducting the study.

Our tentative conclusions from the studies to date are:

• The developer role, or its analogue, is the primary
channel of communication within (and potentially
between) all processes.

• Service-oriented processes have more intricate
internal structure than product-oriented processes.

• There appears to be a balance between the
involvement of managers and domain experts in a
process, with a high correlation between managers’
involvement and the stress level of the process.

Acknowledgments go to Steve Eick for useful
discussions and for use of his network analysis tools, to
John Puttress for use of his hypertext database, to Larry
Votta for his insights from related work, to Dave Weiss
for his many useful suggestions, and to our many
development collaborators and partners in this program.
Many thanks, too, to the conference referees for their
encouragement and suggestions.

References

1. Kitson, David H., Steve Masters. ‘‘An Analysis of SEI
Software Process Assessment Results: 1987-1991.’’
Carnegie-Mellon University.

2. Curtis, Bill, Marc I. Kellner and Jim Over. ‘‘Process
Modeling.’’ Communications of the ACM 35, 9, September
1992, 75-90.

3. Crowston, K., T. W. Malone and F. Lin. ‘‘Cognitive
Science and Organizational Design: A Case Study of
Computer Conferencing,’’ Human Computer Interaction, 3,
59-85.



4. Peterson, J. L. Petri Net Theory and the Modeling of
Systems. Englewood Cliffs, NJ: Prentice-Hall, 1981.

5. Rein, Gail L. Organization Design Viewed as a Group
Process Using Coordination Technology. MCC Technical
Report Number CT-039-92, February, 1992.

6. Huff, K. E., and V. R. Lessor. ‘‘A Plan-Based Intelligent
Assistant that Supports the Software Development
Process.’’ Software Engineering Notes 13,5, 1989.

7. Hofstadter, Douglas R. Go
. .
del Escher Bach: An Eternal

Golden Braid. 1979.

8. Sarbin, T. R. and V. L. Allen. ‘‘Role Theory.’’ The
Handbook of Social Psychology, 2nd Edition, G. Lindzey
and E. Aronson, eds. Reading, MA: Addison-Wesley,
1968, 488-567.

9. Beck, Kent. ‘‘Think Like An Object.’’ UNIX Review,
September 1991.

10. Personal communications with Kent Beck.

11. Rizk, A., N Streitz, and J. Andre, eds. Hypertext: Concepts,
Systems and Applications (Proceedings of ECHT ’90),
Cambridge University Press, 1990. ‘‘The Toolkit Approach
to Hypermedia,’’ by Puttress, J. and N. Guimaraes, 25-37.

12. Campbell, B., and J. M. Goodman. ‘‘HAM: A General
Purpose Hypertext Abstract Machine.’’ Communications of
the ACM 31,7, (July), 856-861.

13. Deming, W. Edwards. Out Of The Crisis. Cambridge, MA:
MIT Press, 1986, Chapters 7 and 11.

14. Allen, Thomas J. Managing the Flow of Technology,
Boston: MIT Press, 1977, 141-182.

15. Becker, R. A., S. G. Eick, and A. R. Wilks. ‘‘Basics of
Network Visualization,’’ IEEE Computer Graphics and
Applications, May, 1991.


