WebBase User s Guide

Changing the Way
the World Uses the Internet

Version 4.10, Build 56
June 1997

f/"Exper Telligence

Limited Warranty on Media and Materials

If you discover physical defects in the media on which the software is distributed or in the manuals distributed with the
software, ExperTelligence will replace the media or manuals at no charge to you, provided you return the item to be replaced
with proof of purchase to ExperTelligence or an authorized ExperTelligence dealer during the 90-day period after you
purchased the software. In some countries the replacement period may be different; check with your authorized
ExperTelligence dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA AND MANUAL, INCLUDING IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO
NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though ExperTelligence has tested the software and reviewed the documentation, ExperTelligence MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
SOFTWARE, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS SOFTWARE IS SOLD "AS IS,” AND YOU THE PURCHASER ASSUME THE
ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE.

IN NO EVENT WILL EXPERTELLIGENCE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, ExperTelligence shall have no
liability for any programs or data stored in or used with ExperTelligence products, including the costs of recovering such
programs or data.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR IMPLIED. No ExperTelligence dealer agent, or employee is authorized to make
any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential
damages, so the above limitation or exclusion may not apply to you. Thiswarranty gives you specific legal rights, and you
may also have other rights which vary from state to state.

Copyright: This manual and the software described in it are copyrighted with al rights reserved. Under the copyright laws,
this manual or the software may not be copied, in whole or part, without written consent of ExperTelligence, except in the
normal use of the software or to make a backup copy. The same proprietary and copyright notices must be affixed to any
permitted copies as were affixed to the original. This exception does not allow copies to be made for others, whether or not
sold, but all of the material purchased (with all backup copies) may be sold, given, or loaned to ancther person. Under the
law, copying includes translating into another language or format.

Y ou may use the software on any single computer owned by you. For some products, a multi-use license may be purchased
to allow the software to be used on more than one computer owned by the purchaser, including a shared-disk system.
(Contact your authorized ExperTelligence dealer for information on multi-use licenses.)

© 1995-7 ExperTelligence, Inc. 203 Chapala St. Santa Barbara, CA 93101 (805) 962-2558
WebBase, ExperTelligence, and the WebBase and ExperTelligence logos are trademarks of ExperTelligence, Inc. Other

brand and product names are trademarks or registered trademarks of their respective holders. Brand and product names are
mentioned for reference purposes only.

WebBase User’s Guide

WEB
N

|$| g

i.r'-El;prTmigml

Table of Contents

TADIE OF CONLENES.ee ettt ettt ettt et e bt b et sh e e e sa bt e sa b e e et e e e ebee e eabe e sabe e ambe e e bee e anbeesmbeesabeeabeeeanneas iii
Chapter 1: What is WebBase? 1
1.1 WebBase Features and BENEFITS.........o.uoi i 1
1.2 WEDBASE VS. CGl ..ottt sttt sttt bt b e he bbbt ke e b e e bt b e e ab e b e e bt e b e e abeebesbeebe e b e sbesbeennenbeseas 3
Chapter 2: Introduction 5
A ST ol = 10 1T 0] Lo o VAU 5
2.2 A WEDBESE EXBIMPI...... ittt ettt ettt ettt b e e b e e e s hee e sabe e s ab e e e abe e e be e e ebbeesabeesabeeenbeeennes 7
2.3 USING the WEDBESE LANQUAGEeeeieeieieiee ittt ettt ettt et et et e e s abe e e be e e abe e e sase e sabeesmbeesnbeeannes 9
2.4 WeDBESE SEIVEN VS HT TP SEIVEL ...ttt ettt et e e sae e e sabe e sbe e e nbe e e saee s 10
Chapter 3: Installation 11
3.1 SYSIEM REGUITEIMENESeeeeiteieieieeeteeeteeeetee e stte e bt e s bt e e abee e sateesabeaaabeeaabeeeeabeesabeesabeeabeeeaaeeesabeesabeeenbeeeaaneas 11
3.2 INSEAIlING WEDBESE ...ttt b et h b e st e e st et e be e e eaee e sabe e sabeeeabeeeaaneas 12
WEDBESE FIlES ONThE CD ...ttt ettt et e e rbe e e sae e e sabe e s beeenees 12
WebBase FilES 0N ThE WED ...t et eees 12
WebBase Files Generated DUuring INSEAlELION.coueiiiiiiiieee e 13
3.3 Standard WebBase INSEAELIONcocuiiaiiieiee ettt sb e sbe e saee s 14
Parameter DEFINITIONottt ettt et e bt e she e e sa b e e s abe e s be e e be e e sbeeesabeesmbeesnreeenees 18
Completing the TNSEAHBLIONo.uei ettt sae e sabe et e s be e e sbee e saeeesnbeens 19
3.4 Custom WebBase INStall@lioN..........cooiiiiiieiee ettt e nbe e eaee s 21
3.5 UPAating WEDBASE. ...ttt ettt bttt ettt eb et e s hb e e sab e e s abe e e be e e eateesnbeeeabeeeabeeeaaeeas 23
3.6 Testing the WebBase INSEAlIEHIONcoiiiiiieeiie ettt sb e nbe e saee s 24
Possible INstallation ProblemMSoo et 25
Testing WebBase COMMUNICALIONScouueiiieriieeeitee e st e steesbeeestee e saeeessbeesbeessbeeasbeeesaeeesabeesbeesabeeesnneas 26
BUITE-IN COMIMANGS......eeiiiitit ettt ettt e bt e bt e e sae e e sabe e sabe e s abeeebeeesbeeesabeesmbeaanbeeentes 26
3.7 INSLAIIING ODBC DIIVEIS. ... et iieieeiieietee ettt ettt ee e aee e s be e s bt e e abee e sabeesabeesabeeaabeeeaaseesnbeesabeeeabeeeaaneas 27
(O] =T O B 1< RO URURRRI 27
INSLAlliNG thE ODBC DIIVEIS......eeiiieiie ettt ettt ettt ettt et e e e sbe e e saee e sabe e sbe e e bee e sbseesnbeesnreeentes 28
SEtiNG the ODBC SOUICESueieiuieeiteeatetesteeeatte e bt e abeeasbeeeaaeeesabeaaabeeabeeaabeeaaaseessbeesabeesbeeaabeeeaaseesnseans 28
3.8 Installing WebBase as a WiNAOWS NT SEIVICE.......coiiiiiiiiaiee ettt nbe e saee s 31
INSEAHALTION GBS @ SEIVICE.ee ittt ettt ettt a et e e bt e e sbe e e saee e sabe e sabeeebe e e aabeesmbeesnbeeentes 32
WebBase as a Service and ODBC CONfIQUIELTIONoooitiiiiiieiiee et eees 32
SEATING the SEIVICE ... ettt bttt a et e e ettt e sbe e e sbee e sabe e sabeeebeeesbeeesaeeesnreans 32
SEOPPING TNE SEIVICE.eee ettt ettt ettt ettt ettt b et s b et sh b e e s be e ebe e e abee e eaee e sabeesabeeebeeaabeeesnneesnreans 32
ReMOVING the SENVICE BNEIY ...t bbb et e b eees 33
Upgrading t0 WINAOWS-NT ...ttt sttt rae e e sab e s be e s be e s be e e sbe e e sabe e smbeesnbeeenees 33
RS NN oo 7= S SRS T o] oo A TSRO OPR 34

WebBase User’s Guide iii

Table of Contents

Chapter 4: Initialization 35
A1 PAIBIMELEISeieee ettt e ettt e ettt e e et et e e s asbee e e s b ee e e e aa b et e e o a b e e e e o b ee e e e aab e e a2 e aREee e e e R Ee e e e eabEe e e e anEeeeeanbeeeeanreeeeanres 35
WiINAOWS NT SEIVICE PalaMELErS.......cciueiiiiiiitii et eiee ettt st et et e e sbe e sabe e sabe e s beeesbee e saeeesnbeesnneeennes 38
Editing WeEDBASE PalraiMELErS.coiuuieiieeiieieitie ettt ettt et ettt sbe e saee e sabe e sabeesbeeabeeesbeeesabeesnbeesnbeeenees 38

A 1 o] TP TOPR 39
o i g To l == 1 o] TR PPR 41

B 1= =TSP 42
o] (] g To I N = S =TT STRRPR 42

4.4 MUIIPIE DOMAINSeeiiteieitie ettt ettt s bt e bt e ettt e sbe e e aaee e sabe e eabe e e be e e beeeeaeeesabeesmbeeabeeeabeeesaneas 43
Creating and Editing MUltipl@ DOMEINS.........coiuiaiiiiiiii ettt sbe et e be e sbee e saeeesnreaans 44
Chapter 5: WebBase Windows 47
5.1 Late Breaking NEWS WINTOWoiiiiiiiiieiieeiee ettt ettt et sae e sabe e be e s sbe e e saee e sabeasabeeenbeeesaneas 47
1< U @ o1]0] o R USTRRPR 48

5.2 WEDBESE SEIVEN WINTOWooeiieiiietie ettt ettt ettt ettt e st e sbe e sat e e sabe e s abe e e be e e sateesmbeesabeeeabeeeaaneas 49
WebBase Server WIinAOW MeENU Bar.........oouei ittt 50
WEDSEIVES IMENU OPLIONS.cetieiieeitee ettt ettt ettt e et e sate e s be e st e e e abe e e saeeesabe e sabeeebeeasbeeesnneas 50

Lo 1Y L= 0 TU @] o 1] L SRR 53

OPLIONS MENU OPLIONS.......eiitiieitieeieiee et rtee ettt et e et et sbee e saee e sabeesbeeeabeeesabeesabeesabeeaabeeesaneesnneans 54

HEID IMENU OPLIONS ...ttt ettt ettt e et e bt e e bt e e she e e sabe e s ab e e et e e e sbee e saee e smbeesnbeeenees 57
WebBase Server WIiNAOW SEEEUS LINE......couiiiiiiiieeie ettt ettt e sae e sabe e ne e eees 57
WebBase Server Window TeXt DiSPIaYeeeieieiieaiieeeiie ettt saee e s e eees 58

5.3 WebBase Transactions SErViCe WINTOWooiieiiieiaiiie ettt ettt saae s s s b e e sbeeesaee s 58
WebBase TransaCtioNS MENU Barooiiiiiiiie ettt ees 59
WebBase TransaCtions TEXE WINCOWc.eiiiiiiiiieiiie ittt ettt be e sae e saee e sabe e sneeeees 62

5.4 WebBase TOtal VIEW WINAOWoiiiiiiiieiiee ettt ettt et e sbe e e saee e sabe e smbe e e nbeeesaee s 62
WebBase TOtal VIEW MENU BA.........ooiiiii ettt e sbe et e e s reeeees 63
WEDBaSE TOLAl VIEW OPLIONS.coiuiiiiiiietie ettt ettt ettt ettt e et e st e saee e sabe e s be e e sbee e saeeesnbeesnneeenees 64
WebBase Total VIiew TeXt WINOOWooiiiiiiiieiieeiee ettt ettt be e sbe e saee e sabe e sneeenees 64

5.5 WebBase Heartheat WINAOWoooiiiiiiie ettt 65
WebBase Heartbeat WIndow MenU Bar ... 66
WebBase Heartbeat TeXt WINAOW ..o 69
Chapter 6: ODBC & SQL 71
6.1 Open DataDase CONMECHIVITYeeiueiitieeitie ettt ettt ettt sbe e s bt e e sbe e e shee e sabeesbeeabeeesaseesnbeesabeeeabeeesaneas 71
6.2 StruCtured QUENY LANQUAGEee teeetieeiteeeaiteerteaeteeeetee e sttt e sabeasbeeaabeeeeabeasabeasabeeaabeeeaaeeesabeesabeeeabeeesaneas 72
S I O TSSOSO 72
SELECT -- GENEIal USAQE.eiiiueieiuieeiiee ettt ettt e ste e stee e sate e sabe e sbe e e sbee e sateesabeesabeeaabeeesaseesnneaaa 72
SELECT - WEDBESE USBOEceeeueeterte sttt sttt st sbe et b e bbb b e e nne e 74
SELECT — JOIN SEBEEMIENES......cciueieieteeiieeaitee e sttt siieesteesbeeesteeesaseesabeasbeeesbeeesaeeasabessbesaabeeesaseesnsessns 74

LN IS o TP U TR PRUUPR 75
INSERT - GENEIAl USBOE ... ittt ettt ettt ettt e e be e sae e e sabe e s mbeesbeeeabeeesnneas 75

INSERT -- WEDBESE USAJE.....c.viiteiiieie ettt sttt sttt st s sb e st sb e as et b e sbe e s e sbesbeseeenenre 76

UPD ATE. ..ttt ettt bttt b bt e bt bt h e et e s b e E e e R e e b oo bt eh e e ae e e R e e Rt ehe e b e e Ee b e eReenbeeReereenn e e e 76
UPDATE — GENEFal USBOR ... eeiiiii ettt ettt ettt ettt sttt she e sate e s mbe e et e e e nbe e e saee e sabeeenbeeenees 76
UPDATE — WEDBESE USAJE......cvi ettt sttt sttt sttt sttt st bbb bbb s ae e e e b sbe e e e e 77
DELETE ... ettt ettt bbb btk e st e s b e E e e Re e b e AR e S b £ e ae e e R e e R e e he e R e Ee b e e Re e b e R Reenn e e e 77
DELETE — GENEIal USAQE. ... cciteiitiieitiee ittt ettt ettt sttt sttt saee e sabe e s mbe e s be e nbe e e sate e snbeesnbeeenees 77
DELETE —WEDBASE USAGE......cuiitiiiiiiiiieite ettt sttt sttt bbb bbb b e e e 77

iv WebBase User’s Guide

Chapter 7: .htf Files 79

8 = LT o I L T = SR UPR TP 79
7.2 RequESHING INPUL ON 8Oeiiiiietie ettt b e ab et e e s be e e sbe e e saee e sabeesabeeenbeeesaneas 80
7.3 Processing INPUL FrOM @O ...ttt e et e e sae e e sabe e sbe e e nbe e e sane s 81
Chapter 8: Macros 83
8.1 Overview Of WEDBESE IMACIOS.......ccueiiiiiiieiiiie ittt r e sne s 83
8.2 TNEWEDBESE IMBEIOS. ... ettt stttk ettt se et s e et e et en e e an e ean e e an e e aneenne s 84
(= L TR e TSR U PR PRTPRURURURN 84
{call <path> <@rgS>} {/CalIT .o 84
{case <exp>} {match <mArg>} {Otherwise} {/Case}.......ccociiiiiiiiiiii e 88
{COMMENLE} {/COMIMIBNLYottt h et e e st e e et et e sb e e e sate e sabe e sabeeebeeeanneas 89
{ensure} {ONEXIT} {/ENSUIE}ooiiiieii ettt b e saee e sabe e s be e e be e e sane s 89
{errorProtect} {ONEIror} {/ErrOrPrOIEC}eei e 90
{ESCAPE IADEIST ..ttt b et b e e abe e sabe e e be e e be e e nane s 90
S R 01> SRR R OTR 91
R = o > SRR 92
= > O PUPUUR PR 92
{forIndex <indexCtr> <args>} {/fOrINAEX]Tccooiiiiiiiiie e 92
{forRow <currentRow> <optional Args>} {/TOrROW}oo i 93
L IR 211 TRV PUUUPTPRURURURN 9%
{1 <EXPS} {EISE} {/IT} oo e e e b e ne e 95
{INSErT SFIIBNAIMEST ...ttt h ettt e bt e et et e sb e e e sabe e sabe e s beeebeeesane s 95
{OULPUL <@rgS>} {JOULPUL] ..ottt ettt et a ettt e et e e e sbe e e sate e sabe e s beeebeeesaneas 96
{parallel} {/Parall€l} ..o e e b eenre 97
S DT = o A U 11 D SR UPTOPR 97
{reDirect2 <arg>} {/IEDITECEZ} ...ttt ettt ettt b e eaee e st e e s be e e be e naee s 98
{rEMOVE SVAINGIMESS} ...ttt ettt et e e sh e e e s abe e s abe e e be e e ebee e eaee e snbeesabeeebeeesaneas 98
{remMOVEATT SVBINEBIMESS] ...ttt h et e e st e et e e e sb e e e sate e sabe e sbeeebeeeaaneas 99
{remOVECOOKI @ SVBINBIMESS] ..ottt et h et st e bt e et et e sbee e sabe e sabeesbeeebeeesaneas 99
{removeGIohal KVANGIMESS} ...ttt ettt et e e e bt e sbee e sabe e sabeeeees 100
{removeHeader SVAINEBIMESS]c.uiiiiiiiii ettt sb et e st e e et e e e sbee e sabe e snbeeeees 100
{remOoVELOCEl SVAINGIMESS} ..ottt sttt et bb e e s be e st e e e be e e sbe e e sabe e sabeeeaees 100
{remOVEUSEr SVAINGIMESS} ...ttt ettt e bt sh e e e s et e e st e e e be e e sbee e sabeesnbeeeaees 100
{PELUIN QUAISS] .ttt ettt eh et s a b e e e bt e e be e e ehe e e sabe e sab e e e be e e abee e smbeesmbeeennes 101
s o0 0 IR o o] o< TP RRR TN 101
{SEL QUAI™ QVBIST ettt et sttt e bt e s bt e e s et e e et e e e be e e shee e sabe e nareeenes 103
{SELCOOKIE SVAI QUAIST ...ttt ettt et et sa b e e sa b e e st e e e be e e sbbe e sabeesnbeeeaees 104
{SEGIODAl VA SVBIS} ittt ettt a et st e et e e e b e e e sbee e sabe e sbeeeees 104
{SEtHEAEr SVAI> SVEIS} ...ttt st e b e et e she e e b e abeeeees 104
{SEILOCE QU SVBIST ...ttt sttt ettt b et h et e s et e e st e e et e e e shee e sabe e nabeeenes 105
{setString <var> <optionNS>} {/SELSIING] ...eoiveiiiie e e 105
{SEIUSEr QUS> SVBISE ..ottt ettt e bt e sh b e e s et e e st e e et e e e sbee e sabe e nnbeeeaees 106
{SIGNAlEITOr <Error tEXE SIHNGSY ..ttt e bbb e s abe e sabeeeees 106
S oI 0 s A o | TSP 107
{timer id <idVal> <argS>} {JHIMEIT ..o abe e 110
{while <Kexp>} {WhITE}ooee e b bbb b e 111
{WIth QUEIST {IWITN} Lo bbb bbb b ne s 112
{writeFile <file> <optional Args>} {WIITEFTIE}coeeii e 113
WebBase User’s Guide Y

Table of Contents

Chapter 9: Variables 115
.1 FIElO VAITADIES ...t bbbt b e bt bt et e b bt et et b sbe e e e b e 116
.2 LOCEI VAITADIES ...ttt ettt b e e bt bbbt ettt r e 118

LOCAl INPUE VAITADIES.......eeieeee ettt ettt et sbe e e sabe e s abe e e be e e abeeesaneesnbeeans 118
SELLOCE VAITADIES ...t sb et e e nr e e nre e 120
Header LOCal Variahl @Sooiiiieeieeeee e e e 121
COoOKIie LOCE VaTADIESccveeiieitieiteestee ettt b e bt b sb e s b nr e e sr e e s b e e sreenreenreen 121
CrEatiNg COOKIES.oeeieietee ittt ettt ettt ettt ettt eehe e e ehte e sabe e s beeeabe e e aaee e sabeesabeesabeeanbeeeaaeeesnseesareans 122
RECEIVING COOKIES......eeiiiiiiiee ettt ettt ettt et h et e s be e s be e e abe e e sbee e sabeesabeeaabeeesaseesaneans 123
WEDBESEID VarTaDI@.....ceeeeeeeiie ettt bbb e n b e ne e 123

0.3 GlODAl VAITADIES.......eoeieteeie ettt b e bt bbbt e r e n e e 124
Editing Global VarialES..........ooiiiiiieieie e e 125

9.4 DYNAMIC VATADIES.......eeeeieeieie ettt b e bbbt e e r e e n e e neeane s 126
OpErational ValiallES.........coeiiiieiieiie et b e r e bt st e e e e r e nreenre e 147
SPECIAl VAITAIDIES. ... et sr e bbb r e reenree 148

9.5 Displaying VarialIES.........ccuooiiiiieeee e e 155

Chapter 10: User Variables 158
LO. L USEN VaAADIES. ...ttt bbbt b e bt st b e e b e e he e b e sbe s b e e e e e besb e e be et e sbesbesnnebeneas 158
10.2 USEr Variahle DIiClIONGITES.......ciueiiueerieiiieeiiee sttt enne s 159

SPECIAl USEN VArTADIES.......eeieeeieee ettt sttt b e b b s b nr e e b e e st e e sreenreenreen 159
User Variable Dictionary MaiNteNaNCe..........couveiuieirierieeite ettt ettt ettt ne e s 160
10.3 Using User VariableS in WEDBESEcoieiiiiiiiiie ittt 160
OIS s A ol L= B = Lo U RTOPRRURRPPI 161
USEr Variable EXAMPIE.......cooiieeie ettt ettt ettt b e sabe e s be e st e e e abe e e saee e sarean 161
Creating USEr VariallESottt sttt e sab e e be e st e e bee e enneas 162
Persistent USEr VAl DI ES.......cviiiiieiieieee e e e 163

Chapter 11: Expressions 164
11.1 WebBase EXPression COMPONENTS.ieiuiaiieeiieeeaiee ettt e sseeesbeesseeasaeessseeesaeeesaseessesssseessssessssessnsessas 164
11,2 RPN NOBIION....ccutiiteiteeiiete sttt sttt b et b e b e ae e be bt s ae et e sbesb e e heeebeebe s b e e asesbesbeebeenbesbesbeennebeneas 165

Building Compound StatementS in RPNooiiiiiiiie e be e saee e 167
10,2 GENEIAl OPEIALIONS.eieiuteeiuteeateeateeeateeesite e st eeabeeaabeeeabeeesaeeesabeesabeeabeeaaseeesabeesabeesnbeeaabeeeaseeesneeasnrenn 169
General INSEANCE OPEIELIONS..... .. ueieteieitieeiieeaiee et eeestee e s bt e s beeasbe e e rbeeesaeeesabeeabeeaabeeesaseesnbeesabeeanbeeesnneas 169
LL B NUMEES. ..ottt h et a e s et s a et s e et s e b e e e bt sa et e bt e an e e an e enne e nre s 171
NUMDEr INSLANCE OPEFELIONSeeieiiee ittt ettt ettt ettt e sabe e sabe e s beeesbeeesbeeessbeesabeeabeeaabeeesaneasnrean 171
B 1 01 = o T £ T TP UUPTPPTP 175
INteger INSLANCE OPEIELIONS.eiitiie ittt ettt ettt e et e et e et e e e sbee e saeeesabeessbeeebeeeabeeessbeesnbeesnbeeentes 175
INEEJEY ClasS OPEILIONSeeeiteieitiie ittt et et e st et saee e s be e s be e e abe e e abee e saeeesabeesabeeaabeeaabeeesnneesnbeesnbeeannes 177
T [£SO ST TP 177
Float INStANCE OPEIELIONS.........cuoiuiiiiii i e s e 177
Float ClasS OPEIaliONS........cciuiiiiiiiiiie i s e s s s e s s s s n e 177
I =T 1o TP TP P PR 178
Fraction INSLANCE OPEIELIONS.ie ettt ettt ee et et et sat e e sabe e s be e e abe e e sbeeesabeesabeeabeeeabeeesaneasnbeean 178
Fraction Class OPEIaLiONS.oiuuia et etee et re et ee et e stee e saee e sabeesbeeeabeeaabeeeasbeesabesabeeaabeeesaseasnrenns 178
L1 7 POINES ..ttt sttt bttt b ekttt e b e e he e b e e Rt SR £ 2R e e e R e AR e SR £ oA e e SR e SR £ SR e e eEe ARt eRe e Rt e e ReeReeRe e beeRenbeenn e renras 178
POINt INSLANCE OPEIALTONS.eieieiieiiee ettt ettt et e e sab e e s abe e s be e e sbe e e abee e sabe e sabeeabeeaabeeesaneasnbean 178
POINE ClaSS OPEIEIIONS ... eeiitie ettt e ettt et ettt eebe e e sate e sabe e s beeabeeeabeeessbeesabesanbeeeabeeesnseasnbeans 180

vi WebBase User’s Guide

11.8 General CollECtion OPEIaLIONS........c.uieiueieiieeiieeatee et ettt et e st e e sbe e e sbeeesaeeesabeesabeeaabeeesaeeesseeesnreeaas 181

General Collection INStANCE OPEIAiONS.oeiveiiitiieiie e e eiee et e e rtee e te et e bt e e sbee e saee e sabessbeeesbeeesaneas 181
General Collection Class OPEraHIONSooitieiieietie ettt e e et e rtee e sabe e sbe e sbe e e sbee e sabeesnbessbeeanbeeesaeeas 185
R N = Y SO TP PP UUPRP PP 185
I O 1 0 LT TR OUPRUPRRI 185
SErNG INSANCE OPEIBLIONS ... eiiiiiietie ettt tee ettt ettt e s bt e e be e e rbee e sate e sabeesbe e e abeeesaseesnbessabeeanbaeessneas 186
SENG ClaSS OPEIELIONS.......eeeiutieiteeaitee ettt e ete e teeasteeesteeessbeasbeeabeeaabeeeaaeeasabeeabeeaabeeeaaseesnbessabeeanbeeessneas 196
LLLT SYMBOIS. ettt r e e nne e re s 196
11.12 Ordered COlECHIONS.c.ueiiteiitiiieeeiie ettt an e an e eaneeanesnreenne s 197
Ordered Collection INStANCE OPEIALIONSoeiiiieiiiaitie e e riee et et seee et esbe e sbee e saee e sabessbeeanbeeesneeas 197
Ordered ColleCtion Class OPEraliONS.cciuieiieiaiie ettt e see et e e stee e sabe e sbeesbe e e sbee e saeeessbessbeeasseeesaeeas 201
R @ (o= =0 I (TP T RS RPR TP 201
11.14 SOIEA COlIECIONSc.eeeveiteiieee ettt e et an e e e ean e sar e snneenne s 201
L1115 SOMEA LISES ..uveiteeieeiteesiee st st ettt sttt ettt h e st a e e st s st st s et e s b e e ean e ean e e nneenn e 201
SOrted LiSt Class OPEraliOnS.........c.euaueieieeeiieeeieearteeesteeesteesbe e s sbe e e sbee e sabeesabeesbeesabeeessseesnbessabeeanbeeesaneas 202
L1116 ASSOCIBLIONSeeuveeteeseeesteesteesteeste e st e sbe s s e she e s s e sb e s be e sh et e he e sh e e s a et e ae e ea e e ee e e e e et eab e e an e ea bt ear e e an e ean e e nn e enneenn e 202
ASSOCIali 0N INSEANCE OPEIELIONS.eieeiieieieeetee ettt ettt et et e sbe e sbee e sate e sabeesbeeabeeesbeeesabeesabeesnbeeennes 202
ASSOCIatiON ClaSS OPEIEHIONSceiieeieitieeiiee e tee ettt ettt ee et et e sbe e sbee e sabe e sabeeabeeebeeasbeeesabeesabeeanbeeenees 203
i o oo = =TT TP U R PR UP TP 203
Dictionary INStanCe OPEIaliONS...........eeiteiiiterartie et e rteeeteeestee e saeeesabe e s beeaabeeeabeeessbeesabeesbeeaabeeesaseasnseasns 203
DictioNary Class OPEraIiONS.ueaiteeiteeetee ettt et ee et eeasteeesaeeasabeasbeeaabeeaaseeessbeesnbeeanbeeaaseeesnseasnseasns 205
R I O = o1 = = T TP TP TR TP 206
R =TT == g TP TP TR 208
B B - = T TR TP TR TP 209
Date INSLANCE OPEIBLIONS.veeeieieeeiieeeteeeiteeeetee et e bt e et e e e sbee e saeeesabeesabeeaabeeeabeeessbeesabeeanbeeaabeeesaeeasnrenns 209
Date ClasS OPEIaLIONSueeiteeeitieeriteeateeeiteeestee ettt e et e e e beeaabeeesaeeasabeesbeeaabeeeabeeesabeesabeeabeeaabeeesaseasnrenns 212
2t R 10 1 TP TR P PR TP 215
TiME INSLANCE OPEIELIONS.ceiteeeitieeieteeetee et stte ettt e st e e e sbe e stee e sabeesbeeabeeesaeeesabeesnbeeebeeesbeeesabeesnbeeeanes 215
TIME ClaSS OPEIGLIONSceuteieteie it iiee bt ettt st et ettt e st et e sbe e e sbee e sabe e sabeeebe e e saeeesabeeaabeeabeeeabeeesabeesnbeeennes 216
11,22 UNIVEISSl TIMIES ...veiiteiitieitee sttt ettt s st s e sh e st s s s ae e s a e s et s ae e eae e ea bt ea bt e b e enneeaneeaneenne s 217
Universal Time INStANCE OPEIaLIONS.ccoiteiaitiieriea e eieeasteeeseteesbe e s beeesbeeesaeeesseeesbeesbeeasseeesaeeasnseaans 217
UNiversal Time Class OPEIratioNSc.eieieiaiiiaiieaiteaaieeasteeesiteasbeessbeeasbeeasbeeessbeesbessbeeasseessaseasnseasns 222
I B @ o oo I 10 015 = 0 1] o TR OUPRUPRRI 222
I e 1 TSRS P RPN 224
File INSLANCE OPEIALIONS.ceiteieieiee ittt ettt ettt et e et e e sabe e s s be e s be e e abeeesbee e sabeesabeeabeeaabeeesnneasnbeen 224
Fil© ClasS OPEIELIONSc.cuueiiteeeitiee et e etee ettt ettt e bt e e be e e abee e saeeasabeeaabeeabeeeabeeessbeesabeeanbeeeabaeesnseasnbenns 225
R B T (= 0] (=T TP PR TP 226
Directory INStANCE OPEIAliONScciuuieiieieiie ettt e rbee ettt e st e e e sabe e sabe e s beeasbeeeabeeesabeesabeaabeeeabeeesaeeasnsenans 226
DireCtOry Class OpPEIaIIONS.coiuuieiuiee ettt ettt et e e e teeasbeeesaeeesabeeabeeaabeeaabeeessbeesabesabeeaabeeesaeeasnsenns 228
T0.26 SITEBIMSveiitiiiitit ettt b s b et s b s bt e s n e e e b e e e e b e e e sR e e e s e e s n e e e e e r e ae e nare e 229
SEream INSANCE OPEIALiONS.ci ittt iee et et be et e et et e rbee e sateesabeesbe e e abeeesabeesnbeesabeeanbeeessneas 229
SErEAM ClaSS OPEIBLIONSeeiuiieiiee ettt et et ettt rtee e be e s be e e be e e abeeesabeesabeeabeeaabeeesaseesnbessabeeabeeesnnens 232
11,27 REA SEIEBIMIS. ...c.veeieeiteeiteestee sttt e sttt etttk h e e et s s e st s e e h e e h et e ae e e ae e ehe e e e b e e ae e e aeeea bt ea b e e an e eaneenn e enneenne s 232
Read Stream INStANCE OPEIaLiONS.......cciuiiiiii ettt e etee ettt e e be e bt e be e e sbe e e sbee e ssbeesbeesbeeasbeeesaeeasnrenans 232
Read Stream Class OPEratioNS............eoiieiaieiaiie et rtee et et saee e sbe e s beeesbeeasbeeessbeesbessbeeaaseeesaseasnseesns 232
2 T L (SRS (=2 TP P PR 232
Write Stream INSLaNCe OPEIAiONS..........coiiir ittt ettt ettt e et be e st e e et e e e saee e sabeesabeesbeeeees 232
WIite SIream ClasS OPEraliONS.ueeiuuieiieeiiee ettt atee e sttt e sbe e st e e e sbe e sbee e sateesabeesbeeasbeeaaaeeesabeesabeesnbeeeases 233

WebBase User’s Guide vii

Table of Contents

11.29 REAO-WIITE SIIEAIMS......c.tiiiteiitieitee sttt sttt an e e b e ab e an e earesnneenne s 233
Read-Write Stream INStaNCE OPEIaLiONScciuuieiieeiieaeiee ettt e rite et e be e e ste e stee e ssbeesbessbeeasbeeesaeeasnreeans 233
Read-Write Stream Class OPEralionS..........ceuauieiieaiieeaieeastee ettt e steesbeeasteeesaeeessbessbessbeeasseeesaseasssessns 233

11,30 FlE SIrEAMIS ...ttt a e h e a e et s e s et s e e e bt ean e n e ar e e nn e 234

11.31 OODCROWODJECESvecueeieite ittt sttt sttt h et st e bt st e e b e s b e e he e s b e sbesbe e e e s besbeebeenbesbesbeennenneneas 234

11.32 O0DCROWHEAOENSeeviiitieitee ittt ettt es e s et n e e s r e e areeaneeaneenneenne s 238

11.33 REQISLration Dal@haSe.ueeiiiiiiie ettt ettt ettt et e sh e e sat e be e s be e s bt e e aaee e sareenareea 239
Registration Database INStaNCe OPEIatioNScoueeiieriiiiaitie et esiee s iee et e e siee e sbe e sbe e be e seee e saeeasnreeans 239
Registration Database Class OPEraliONS.couieiueaiieraieearieeesteesteesbeeesieeasreeesseessbesssbeeassesessseassessns 241

IR o 110 @0 402 F=T0 Lo [P UURTOUPR TP 242

11.35 DAtBDASEINTO ...t b e bbb e b b he bbb ae e ne e 247

Chapter 12: Features 250

200 R I o o] o TR TR OUPRUPRTRI 250
Common Log File Format (LOgFOrMEaE=3)......ccoueieiiieiie ettt sttt sb e nbe e saee s 251
Extended Common Log File Format (LOgFOrMEE=2)eiiiiiieiieeiiee et 252
Extended Combined Log File Format (LOGFOIMEI=4)coouieiiiaiieiiieeeniee et 252
Original WebBase (EMWACS) Log File Format (LogFormat=0)cccereuerrnerinieieniee e siee e 253
Extended Original WebBase (EMWACS) Log File Format (LogFormat=1)...........ccceccerrrerrnirerieeaniienns 254

A - o 4 11 oo TR O RTOUPRUPRTRI 255
BrOWSEr=-SIAE CaChING ... ettt ettt et e bt e e sbe e e ebee e sabe e sabeeebeeeabeeesaneasnbean 255
FOMS CaCNING.......coviiiiii e e s s s 256
ODBC ConNECtion CACIINGcoiiiiiii ettt et sabe e sabe e sb e e e nbeeesneeas 257

12.3 WHERE Clause & Variable Name SUFFIXES........cccuiiiiiiiieiee e 258

L2.4 ISMAP FEALUIES ...ttt ittt sttt ettt b ettt h e et e st e e bt s he e e e e b e e b e e Re e ke ebesbeeae e s besbesbeenbesbenbeennebeneas 260

Chapter 13: Security 262

13.1 BasiC AULNENTICALIONcoveiieiiiteeieee ettt ear e s sre s 262

A B (= oi (o VA = 0TS T o o U TOUPROUPRR 265

L33 FHFEWAIIS ..ttt e n e e n e re s 265

Chapter 14: Database Issues 268

14.1 ODBC Driver/Database ENQINE EITOIScoiuiiiiiiaiiiaitie st sieesiee st stee e et esbeessaee s saeessneessnreeaas 268

14.2 Database AAMINISIIAIIONoiueiiiiieiieeie ettt ean e saresareenre s 269
ClEaITNG CACNES ... ittt ettt bt e b et e s abe e sa b e e st et e ebe e e sabe e smbeesabeeebeeesnneas 269
SQL Protect using Global VariablESooiiiiiii e e 270

14.3 SQL SElECES & TIMING ...uutieiiiieitiietie ettt ettt ettt e sae e e be e s be e e abe e e sbe e e sateesabeesmbeeabeeeabeeesneeasnreeas 271

14.4 Microsoft ACCESS DAADASE ISSUES.........eiiueirieiiiieiiee sttt 271
ODBC Driver BUG/WOFKAIOUNGcoiiuiieiieeiiee ettt ettt ettt e be e sbee e sabe e smbe e smbeeenaeeesnneas 271
TOO MaNY CHENE TASKS ENTONeetiiitieiteeitee sttt sb bbb be e b e b e b e saeesneenneesnnenneas 274

14.5 Microsoft EXCEl Dal@haSe ISSUES.cc.eiieiiiiiiieiiei ittt 276

14.6 FOXPrO DEtaDASE ISSUEScueiieiiiieiiieitee ittt sttt b e nesan e saneenne s 276

Chapter 15: WebBase Q&A 278
Chapter 16: E-Merge 282

L R o]y o 18] = 1o o DT TR TSR PR TP 282

E-MEIrgE ParaMELErS.........cveiiiiiiiiiie ettt e e 282

viii WebBase User’s Guide

I 0 (=11Y =L o USSR 283

SULEING DOWN WEDBESE.teeitiieiee ettt ettt ettt ettt et e b e sabe e s e be e eabe e e abe e e sabe e smbeesabeeabeeesnneas 283

16.2 E-MENQE WINTOWS. ... ittt ettt ettt e st e et e e sbe e e s hee e sate e s abe e e be e e abe e e saee e smbeesmbeeabeeeabeeesnseasnreeas 283
WebBase Mail SErVICe WINUOW.c..eiieiriiiiiiiieie st 283

Y 1< LU @ o1 o] R USUTRTUURPTOURRR 284

WEDBESE SEIVEN WINTOW ...ttt n e san e eaneeane s 289

V1< LU @ 1] RSP RTUURTOURRR 289

16.3 WEDBESE MBEIOS.eeveeeeeitee sttt st ae e h st s et bt sa e et ean e eaneenneenne s 289
{mail <ArgS>} {/MAIL} ..eeeeeee e 290

16.4 E-MErge VaTaDIES ...t e 292
DYNAMIC VATADIES. ...ttt ettt et e e be e sbe e e sabe e s abeesbeeeabeeesaeeasnbenans 293
Operational Vari@bIES...........oo ittt ettt bt e bt e b et sab et e e b e e e be e naeeas 293

SPECIAl VAITADIES.......coieii ettt ettt bt h b e e st e e et e e b et e eabe e sabe e eabeeebeeenneeas 293

16.5 E-MErQE OPEIAIONS.....ccuuieiutieatieeateeertteesateesabe e et eeesteeeabeeesseeesabeeaabeeaabeeeabeeesabeesabeesnbeeaabeeeabeeessseasnrenn 294
Y T I TPV UPTPRURORPN 294

Mail LiSt INStANCE OPEIALiONS......cciueieiuieeitee ettt ettt ee e ste e seee et esbe e e sbe e e sbee e sabeesabeesabeeesaseesnneeans 294

17 Lo o= U RTOPRRURRRPRI 295
ENVElOpe INSEANCE OPEIaLIONS........cueieiiee ettt etee et ee et e saee e sebe e s be e e sbe e e sbee e sabeesabeeesbeeesaseesaneaans 295

16.6 E-MErQe EXAIMPIES.eiieiee ittt ettt ettt e e bt e eb e e e sate e sabe e sabe e e be e e abeeesneeennreeaas 295
Appendix A: Software License Agreement 296
Appendix B: Special Configuration Issues 298
IR LG o S Y= = 1= TSR PR 298

FpES = = o) I TP PR PP 298

o (L gTo == 0T (= £ T OO UR USRI 301

XIS ONS. ...ttt b b E bR R R Rt Rt Rt E e R Rt e E e ne e ne e ne e ne e 302

ATBSES .t h R Rt eR Rt R e R an e nr e re s 302

GlODEl VaT@DIES........eeeeeeeeeeet e r e nreenree 303

B.2 Editing the SyStemM REJISIIYcoiiiiiiii ettt ettt sttt et e sbe e e sat e e st e e sbe e e be e e sbee e sateesnreeas 303
ACCESSING the SYStEM REGISITYeieeie ettt e ra e sabe e s abe e s beeeees 303
PAIBIMELEIS ...t e e 304

XIS ONS. ...ttt ettt h e h e E bR R R R R Rt E e Rt Rt Ee e ne e ne e ne e ne e 304

AATBSES . R e Rt e R Rt e an e ane e re s 304
MUITIPIE DOMBINSteeitee ettt ettt ettt sa e s bt e et e e sbe e e eate e sabe e s abeeebe e e abee e sabeesmbeeanbeeeabeeeanneesnbeans 304

GlODEl VaTADIES........eeeeeeeee e bbb bbbt nr e nreenree 304
Appendix C: Header Variables 306
HTTP 1.1 Input Header VariablEScocuei ittt ettt sbe e saee e 306
Appendix D: Obsolete Components 310
D.1 OBDSOIEIE MACTOS ...tttk etttk s et e e st s e s a e s st s st e ae e e st s et s e e s an e e bt e a b e e b e eaneeaneenneenne s 310

D.2 Obsolete dynamiC VariaDIES..........ueiiiiiee ettt ettt b e sae e e sane e sareea 311

D.3 Obsolete variabl@ ParamELEr'S.........coouii ettt sb ettt st be e eae e saee e nreea 312
Index 315

WebBase User’s Guide iX

Table of Contents

X WebBase User’s Guide

WEB
¥4 What i1s WebBase?

€ ExperTalligence
Chapter 1

"l don’t want to teach myself PERL or other CGls," said Matt
McWhinney, technical architect at Ameritech Corp., a regional
Bell operating company in Chicago. "WebBase is something |
can pull out of a box and install myself. Besides, our Web has to
be fast and maintainable. "

-- InfoWorld July 17, 1995

WebBase™ isaWeb database server that alows you to easily integrate information from
Open Database Connectivity (ODBC) databases into your Web site. 1t works in cooperation
with any browser, allowing usersto hypersearch a database as easily asthey navigate
hypertext linksin a Web document. With WebBase, if it's contained in a database you can
display it on a Web page!

WebBase provides solutions ranging from simple access, to areal estate listing, to a complex
catalog ordering application. Y ou can make the contents of your database available to anyone
browsing your site, or limit access to a specific audience that you control through password
protection. In addition, you can make existing databases more powerful by adding hypertext
links into reports. This feature allows users to delve into a report in greater detail, while
maintaining the simplicity of ahigh level view.

1.1 WebBase Features and Benefits

WebBase provides many features for the design and maintenance of Web forms. New
features are also added to each new release of WebBase to improve its functionaity; WebBase
users often suggest these new features. The following list identifies some of the interesting
features offered by WebBase, and how you can benefit from using WebBase.

Features Benefits

WebBase is afull web server. WebBase is al the software you need to
connect your database to the web. No other
software is required.

WebBase is ODBC compliant. WebBase works with any ODBC-compliant
database, including ORACLE, Sybase, SQL
Server, and MS Access.

il

WebBase User’s Guide

Chapter 1: What is WebBase?

Easy automatic install.

Y ou can have aweb server running in
minutes!

WebBase uses dl the features of HTML
(versions 1,2 and 3).

WebBase works with ALL Browsers and
extensions and Internet file types, including
JAVA.

WebBase WebWizardO®

Utilities and tools to help you get started
with WebBase, including setting up
example web sites.

SQL statements of arbitrary complexity can
be embedded anywherein HTML
documents.

No programming of ugly scripts. Y ou can
use SQL to populate pop-ups, fill lists, insert
new data, and embed arbitrary SQL
SELECT, JOIN, UPDATE, INSERT and
DELETE. The possihilities are endless!

A full-featured macro language including
if, case, forRow, forlndex statements as
well as math, logic, comparisons, string
manipulation, dates, and more functions.

No CGI code! Your Web pages are easily
maintainable.

WebBase directly reads datain all Internet
file formats.

You can include JAVA, movies, virtua
HTML, pictures, etc. in your Web pages.

An ‘insert’ facility for easy maintenance.

Re-use of forms saves time and keeps you
better organized.

User defined local and global variables.

Y ou can store temporary state values, store
form fields, and store query results.

Session variables that hold state between
pages.

Y ou can easily do online shopping
applications using user variables.

Dozens of dynamic variablesincluding
%date%o, YobrowserAddress%, %0s%.

Provide access to predefined operating
system routines that are normally difficult to
access and use.

Supports multiple domains on the same
machine.

One WebBase server can support many
domains. For example, one machine can
host 'www.yyyy.com' and 'www.xxxx.com',
each configured to present information
differently.

WebBase can interrogate the capabilities of
the browser.

WebBase can dynamically decide to return
GIF or JPEG or FRAMES or tables or
JAVA, etc.

Password protection

Keep your databases secure with user ID and
password protection...even down to security
on agiven field of a database!

Custom context sensitive database logging
for each search form.

Know who your customers are or who is
visiting your site including keeping track of
what they wanted.

Can customize response by user/server 1P
address- 'Welcome Mr. Jones, you've
visited our page # times

Personalized pages generated on the fly by
WebBase are displayed back to users
browsers.

No CGI -- WebBase is the only database
web server that skips external script

The WebBase server connects directly to the
database. With CGl, your server must

WebBase User’s Guide

applications entirely!

launch a script every time arequest is made,
and then the script will launch a database
query program. Only ASCII text is
returned, not alist of rows. Another script
must be used to massage the results into
HTML.

Use WebBase intranet applications.

WebBase can be used within your
company's network.

Online reference and documentation.

WebBase has its own home page, where you
can get the latest documentation and newest
releases.

WebBase is a 32-bit application

32 hit is the only way to go!

Desktop development

Y ou can develop your WebBase
applications ‘off-line’ -- work on your laptop
at home or anywhere.

Cache ODBC connections

You can directly control caching to provide
very fast database accesses.

Online support forum

Benefit from the experience of existing
WebBase users

Access multiple databases at the same time
anywhere on the net.

Most real business applications use multiple
databases.

WebBase is a multi-threaded application.

WebBase can handle multiple hits at the
same time.

1.2 WebBase vs. CGl

As noted above, no CGI scripts are required in WebBase. Here are some more comparisons

between CGI/PERL and WebBase.

CGI/PERL

WebBase

Very dow

Very fast

Must launch new process every hit

No processes need to get launched

Database connections need to be established
EVERY hit

Database connections are cached by
WebBase

State not retained (‘ shopping basket’ apps
are difficult)

State is retained implicitly by WebBase
(shopping basket’ built in)

Scripts are complicated to maintain

No scripts; HTML files contain the
embedded SQL

Database queries return only text, scripts
massage the text resultsinto HTML

Database queries return row objects,
WebBase dynamically lays out HTML

Browser ‘cooki€ istricky

Browser ‘cooki€' isautomatic

WebBase User’s Guide

w |

Chapter 1: What is WebBase?

4 WebBase User’s Guide

WEB
%% Introduction

€ —ExperTalligance
Chapter 2

This chapter presents introductory material about WebBase, including genera terminology, so
that the user has a better understanding of how WebBase can be used.

2.1 Basic Terminology

Before discussing the specific features of WebBase, it is hecessary to define some specia
terminology. The section that follows identifies terms that are used in this manual. Review
these definitions carefully and try to understand them completely before reading further in this
manual .

Anchor-- A link from a portion of aweb page (e.g., aword or phrase) to another location on
the current web page or atotally different web page.

Browser -- A browser is a client-side program that allows a user to view the pages of
information that others create and offer on the World Wide Web. The user identifies aweb
address to the browser, which then issues a request to the HTTP Server at the web address.
The browser then displays the information returned from the server. Synonym: Web Browser.

CGI script -- The Common Gateway Interface, or CGl, is a standard for external gateway
programs to interface with information servers such asHTTP or Web servers. A plan HTML
document that the Web server retrievesis static, which means it exists in a constant state: a
text file that does not change. A CGI program, or script, is executed in real-time, so that it can
output dynamic information.

Cookie -- Cookies are a general mechanism which server side connections can use to both
store and retrieve information on the client side of the connection. The addition of asimple,
persistent, client-side state significantly extends the capabilities of Web-based client/server
applications. When the server returns requested information to a client system, the server may
also send a piece of state information that the client will store. Included in that state object isa
description of the range of URLs for which that state isvalid. Any future requests made by the
client which fall in that range will include a transmittal of the current value of the state object
from the client back to the server. The state object is called a cookie, for no compelling

reason.

o

WebBase User’s Guide

Chapter 2: Introduction

Database server -- A machine whose primary purpose is to run database software accessed
by many other machines via some form of network connection.

Domains -- Domains are adminstrative entities that provide decentralized management of host
naming and addressing. The Domain Name System (DNY) is arranged as a hierarchy, both
from the perspective of the structure of the names maintained within the DNS, and in terms of
the delegation of naming authorities. At the top of the hierarchy is the root domain (*.’) which
is administered by the Internet Assigned Numbers Authority (IANA). Administration of the
root domain gives the IANA the authority to alocate domains beneath the root. The DNSis
implemented as a collection of inter-communicating nameservers. At any given level of the
DNS hierarchy, a nameserver for adomain has knowledge of al the immediate sub-domains of
that domain. The Network Information Center (NIC) is designated by the Defense
Communications Agency (DCA) to provide registry services for the domain-naming system on
the DDN and DARPA portions of the Internet.

GET and POST requests -- A browser communicates with a server viaeither a GET or
POST request. The string of characters sent to the server begins with the sequence GET or
POST followed by specifics as to the web page being requested, any required parameters, and
various header record information such as the identity of the browser issuing the request. The
initial GET or POST character sequence defines the syntax of the remainder of the request -
specifically the location and encoding of the optional parameters - and whether these optional
parameters are visible to the user at the browser making the request. The author of an HTML
web page has the ability to specify either a GET or POST request for aform while a default
GET request is generated for anchors used in hypertext linking.

htf files -- A file system extension that designates WebBase form files that contain standard
HTML syntax plus WebBase macros and variables. Synonyms: WebBase output forms,
WebBase macro forms.

HTML -- Hypertext Markup Language. Web pages are written in HTML so that the
information they present will be displayed the same way by every browser available (in theory,
at least).

HTTP server -- A computer system with a software package that responds to requests from
browsers and returns the requested data. The data returned is generally a specifically
addressed file that may include data generated real-time via a CGI script or the built-in
capabilities of the server itsalf such as the macro language provided with WebBase. These
software packages are called HTTP servers because their primary purpose is to serve data
using the HTTP protocol. However, Web server is a better term because they often do much
more than just speak a protocol. Synonym: Web server.

Hypertext searching & linking -- Marking portions of a web page with anchors. When a
user selects the anchor, generally by clicking the mouse while over the marked anchor, another
location on the current web page or atotally different web page will be made available to the
user.

Input Forms -- A special type of HTML form. It allows the web page author to request input
from the user via type-in fields, checkboxes, radio buttons, menu selections, buttons, etc.. It
also includes information as to where the collected input is to be directed when the user is
ready to submit his or her input.

IP_Address -- An IP (Internet Protocol) address is a 4-byte number that uniquely identifiesa
host on the IP network. This address consists of a network number, which is always the same
for every host on a network, and a host number, which must be unique for each host on a

6 WebBase User’s Guide

network. 1P addresses are assigned to each computer by appending a unique host number to the
network number. The first byte of an IP address determines the class of the network. IP
addresses are divided into Class A, Class B, and Class C network numbers. Thefirst byte of a
Class A network isin the range of 1-127, and the network address is one byte in length. The
first byte of a Class B network isin the range of 128-191, and the network addressis two
bytesin length. The first byte of a Class C network isin the range of 192-254, and the network
address is three bytesin length. For example, 130.57.x.x is a Class B Internet number because
the network number is two bytes in length, and the value of the first byte is between 128 and
191. When you assign an | P address to a device, you can append any host number that is not
already in use by another device. The host number part of the |P address must be unique on the
IP network. At most sites, a network administrator maintains and assigns | P addresses.

ISMAP Image --An image displayed on an HTML page that has the ISMAP attribute set.
This attribute turns the image into a graphically active element in which the user can select
regions of the image by clicking the mouse on them. Clicking on different regions will cause
the server to take different actions.

ODBC database -- A databaseis ODBC (Open DataBase Connectivity) compliant if it has
an ODBC driver through which one can issue SQL statements. ODBC provides an interface
by which an application program can access any number of different databases viaa common
set of SQL statements. The ODBC driver handles the conversion of the SQL statement to
whatever format statement the specific target database recognizes.

Records -- A collection of fieldsin adatabase. When one queries a database using an SQL
SELECT statement, one expects to have returned zero, one, or more database records that
match the selection parameters in the SELECT statement. Records can be updated using the
SQL UPDATE statement, or deleted using the SQL DELETE statement. A new record is
created using the SQL INSERT statement.

Splash Screen -- When an application starts up, it will frequently display alogo identifying
the name of the product and possibly some copyright or company information. This screenis
called a splash screen.

SQL -- astandardized query language used to access one of a number of databases which of
themselves might have considerable differences in implementation.

URL -- Uniform Resource Laocator. It can be considered a networked extension of the
standard filename concept. Not only can you point to afilein adirectory, but that file and that
directory can exist on any machine on the network, can be served via any of severa different
methods, and might not even be something as smple as afile. URLs can also point to queries,
documents stored deep within databases, or whatever.

Web page -- A document or file written in HTML that provides instructions to browsers on
how to format and display the text and graphics included in the page. A Web page may
include text, pictures, input forms, and anchors. Synonym: Web document.

2.2 A WebBase Example

WebBase allows your readers to interact with your databases from a Web browser. Since
examples speak louder than words, let’s go step-by-step through a simple one. Suppose you
have a Web page with an input form that looks like this:

~|

WebBase User’s Guide

Chapter 2: Introduction

Please enter the name to search for: Denny

When the user enters the desired search name (e.g., ‘ Denny’) and clicks on the * Submit’

button, a GET request is sent from the browser that looks like:
htt p: // <host - URL>: 80/ get nane. ht f ?name=Denny

Thisrequest is sent to the WebBase server at http://<host-URL>/. The server is configured to
accept requests on port 80, so that isincluded as part of the address. The WebBase server
will access the form stored in the file getname.htf, and use the information found following the

‘? as parametersin the processing of the form.
The getname.htf form that is accessed looks like this:

Figure 2.1 The getname.htf form

<HTM.>
<HEAD>
{sgl to answers source "aSrc" user "aUser" password
SELECT * FROM Exanpl es WHERE Nane LI KE ' % nanme sq
{/sal}
{if 0 answers size =}
<TITLE> | ' msorry! </TITLE>

</ HEAD>

<BODY>

<H2> Search results for: {%search%} </ H2>

<HR Sl ZE=8>

<H2> I'msorry, | could not find any records that
dat abase. </ H2>
{else}

<TI TLE> WebBase Denp Results </ Tl TLE>

</ HEAD>

<BODY>

<H2> Search results for: {%search%} </ H2>
{forRow aRow on answers}<HR><PRE>
Name: {Name}</ B>
Conpany: {Company}</ B>
City: {City}
St ate: {State}
Zip Code: {Zip}
Ph: {Phone}</ B>
</ PRE>
{/forRow}
{/if}
</ BODY>
</ HTML>

"aPwd*"
=true}

mat ch

max 25 |}
%

in the

There are three main sectionsin the form. The section between ‘{sql ...}’ and ‘{/sql}’ isthe
WebBase sql macro. When the form is processed, WebBase replaces { name} with ‘Denny’,
and then generates and performs an SQL SELECT statement to retrieve the first 25 records
containing the name ‘Denny’ from the ‘Examples' table. The returned records are stored in the

WebBase variable { answers} .

WebBase User’s Guide

Section 2 on the form starts with ‘{if ...}" and ends with the line above ‘{forRow ...}; thisis
the WebBase if macro. Thefirst line of this section -- {if 0 answers size =} -- tests the size of
the {answers} variable. If there are 0 answers, the HTML immediately following the {if ...}
statement is returned. If thereisat least 1 record returned, the HTML immediately following
the {else} statement is returned.

The WebBase forRow macro starts with ‘{forRow ...} and ends with ‘{/forRow}". It isused
to loop on the answers returned from the SELECT; the variable aRow takes on each of the
returned resultsin turn. The fields from the returned record (e.g., { Name}, { Company}) are
substituted where requested.

Hereiswhat is displayed on the user’ s browser when 2 results are returned from the database:

Search results for: nane=Denny

Nane: Denny Bol | ay
Conmpany: ExperTel |l i gence
City: Santa Barbara
State: CA

Zi p Code: 93101

Ph: (805) 962-2558

Name: Denny XXXX

Conpany: Denny's Restaurant
City: Santa Barbara

State: CA

Zi p Code: 93101

Ph: (805) 962- xxxx

2.3 Using the WebBase Language

WebBase can be used as a smple Web server, it can be used to provide easy database
accesses, or it can be used to provide flexible and dynamic presentations to users. When
developing the forms used within WebBase, you will be using the WebBase language that is
made up of variables, macros, expressions and operators. These are described in detail in
subsequent chapters.

The WebBase system has been developed to use object-oriented features. It is not necessary
for users of WebBase to understand object-oriented technology. However, there are a number
of object-oriented terms that are used throughout the remainder of this manual, so they will be
covered here.

Class - atemplate for defining the methods and data variables for a particular type of
object. All objects of agiven class are identical in form and behavior but contain different
datain their variables.

Instance -- an object that belongs to a particular class. For example, ‘abc’ is an instance
of the class String

Message -- asignal from one instance to another that requests the receiver object to carry
out one of its methods. A message consists of three parts: the name of the receiver, the
method it isto carry out, and any parameters (arguments) the method may require to fulfill
its charge.

©|

WebBase User’s Guide

Chapter 2: Introduction

Method -- a procedure or operation that can be performed by an object. 1n some software
environments, it isreferred to as afunction or subroutine.

Object -- a software packet containing a collection of related data and methods for
operating on that data. Object and instance are used interchangeably.

Receiver -- an instance to which amessage is sent. A sender object passes a message to
the receiver abject, which processes the message and then passes back a return vaue.

2.4 \WebBase Server vs. HTTP Server

WebBase executes on a computer as a Web Server in afashion similar to Windows-based
servers such as the Netscape Communications Server or Microsoft Internet Information Server
(11S) with one major difference. Whereas traditional Web Servers are designed to handle
HTML and do not interface with databases, WebBase is designed to interface to databases
without the requirement of developing CGI scripts.

For this reason, many applications developed to take advantage of the database accessing
capabilities of WebBase are, in fact, multiple Web Server applications. They are designed to
use atraditional Web Server to present Home Page screens and top-level introductory
information to the user while directing database queries to the WebBase Server.

WebBase is capable of handling all of the standard HTML features performed by other Web
Servers. Depending on your application and anticipated |oad, you can have a single host
machine configured with asingle WebBase server, or you can have a single host machine with
two servers and two ports, or you can have an extensive collection of hosts, some running
traditional Web Servers and others running WebBase.

10

WebBase User’s Guide

WEB
NS

%5

¢

€ —ExperTalligance
Chapter 3

Installation

This chapter describes the installation procedures for WebBase. The first section describes
the necessary prerequisites that must be met before WebBase can be installed. Subsequent
sections describe the installation of WebBase, the registry parameters required for WebBase
to execute, ODBC installation and configuration, testing the WebBase installation using built-
in commands, the optional configuration of WebBase as a Windows NT service, and how to
get updates and support.

3.1 System Requirements

WebBase requires a computer with:

An Intel processor

One of the following operating systems:

W ndows NT 3.51 or greater

W ndows 95

Wndows 3.1 (with Wn32s?)

W ndows for Workgroups 3.11 (with Wn32s?)

TCP/IP software installed and configured®

At least 16MB of memory (32mb recommended)

A network connection -- typically Ethernet

An ODBC compliant database and appropriate ODBC driver(s). See chapter 6 for
information on ODBC databases.

! WebBase is a 32-hit application primarily designed for 32-hit operating systems such as Windows NT and Windows 95. It will run on 16-bit
systems (Windows 3.1 or Windows for Workgroups 3.11); however, some of the add-on features are not supported under 16-bit systems. All
installation instructions are for 32-bit systems. Instructions for 16-bit systems are found in Appendix B.

2 TCPIIP software is included with Windows NT and Windows-95 systems. For Windows 3.1 and Windows for Workgroup systems, you can get the
Microsoft TCP/IP system files via anonymous ftp to ftp.microsoft.com and change to the softlib\mdifiles directory. The file wfwtcp.exe contains the
updated Microsoft TCP/IP protocol for use with Microsoft Windows for Workgroups version 3.11. The file tcp32b.exeis a 32-bit TCP/IP network
protocol for Windows for Workgroups only.

WebBase User’s Guide

Chapter 3: Installation

3.2 Installing WebBase

Thefilesfor installing WebBase are provided on a CD or on-line on the WebBase Web site at

http://www.expertelligence.com/WebBase/. There are three sets of files provided as part of the
installation:

1. Filestoinstall WebBase
2. Filestoinstal ODBC drivers
3. WebBase documentation files

WebBase Files on the CD

The CD includes asingle top-level directory called WebBase. The files and subdirectories
within this directory on the CD are:

WBSetup.exe — Thisfile isused to install WebBase. After it is executed, al of the
necessary program files are generated. These files are described later in this section.

readme.txt — This file describes the contents of this directory, as well as providing some
genera ingtallation instructions.

docs\ -- This subdirectory contains documentation for both WebBase and WebberActive.

docs\webbase\ -- This subdirectory contains the documentation for WebBase. The
associated readme.txt files describe each of the filesin this directory as well as any

subdirectories. A copy of this manual isincluded in this directory in Word 7.0 format. If
you do not have Word, you can view this document using the Word Viewer program that
is provided on the CD or is available as freeware from Microsoft’ s web site.

MSIE\ -- This subdirectory contains Microsoft Internet Explorer used with WebberActive.

Thefilesin this directory are not required to install or use WebBase.

ODBC\ -- This subdirectory contains the ODBC driver packs for the different operating
systems supported by WebBase. ODBC driver installation is covered later in this chapter.

OFIP\ -- This subdirectory contains files used by the ExperForms add-on product to
WebBase. Thefilesin thisdirectory are not required to install or use WebBase.

WebberA\ -- This subdirectory contains the installation files for the WebberActive
HTML editor provided with WebBase.

WebBase Files on the Web

The installation, documentation and ODBC driver files are also available as downloads from
the WebBase web site at:

http://ww. expertelligence.con WebBase/
Follow the links to the download, documentation or ODBC page and download the appropriate

files. Itisrecommended that users frequently check the web pages for information on new
features, new versions of WebBase or new add-on products.

12

WebBase User’s Guide

WebBase Files Generated during Installation

After WBSetup.exe has been executed, the following files will be generated in the default
WebBase directory.

V32BAS20.dll, V32THK20.dll, V32U202.dll, V32V M20.dIl — DLLsrequired by
WebBase.

V32V M20.exe —the ‘Virtual Machine' code used by WebBase.exe.

WebBase.exe — the WebBase executable application.

WebBase.ico — the WebBase icon

WebBase.bmp — the WebBase splash screen

WebBase.bat — a batch file used to start WebBase on Windows NT 4.0 systems only.
License.wri — the Software License Agreement for using WebBase

Install.log — the results of the ingtallation. Thisfile must be maintained for use by the
WebBase uninstall utility.

WebSvStart.bat — a batch file used to start WebBase as a service under Windows NT.
Thisfileis only created on Windows-NT systems.

WebSvStop.bat — a batch file used to stop WebBase as a service under Windows NT.
Thisfileis only created on Windows-NT systems.

WebSvDel.bat — a batch file used to remove WebBase as a service under Windows NT.
Thisfileis only created on Windows-NT systems.

\Logs -- the subdirectory to contain log files. Thisentry is specified during installation
and is optional.

During the installation process, you will be prompted for the name of the directory that
WebBase will look at for forms, including the WebBase WebWizard forms. The default
value for thisdirectory isHTTP at the top level. The WBSetup.exe installation will place the
following in thisHTTP directory:

\WbWizard — this subdirectory contains the WebBase WebWizard, which providestools
and utilitiesto help users learn about WebBase and speed up their forms devel opment.
The WebBase WebWizard features are described in a separate document.

WebBase User’s Guide 13

Chapter 3: Installation

3.3 Standard WebBase Installation

The WBSetup.exe installation program is designed to install al components of the WebBase
application -- ideal for aninitial installation -- or only those components you select during the
process. This section describes the standard initial installation of WebBase.

It is recommended that you install WebBase into a‘WebBase' directory at the top level on
your system's hard drive. Thisis the default assumed by the WBSetup.exe installation
program and this documentation. If you choose to place the WebBase application into a
different directory, please take thisinto account when reading the following.

The WBSetup.exe program will step you through the WebBase installation process with a
series of dialogs requesting necessary information from you, providing you with suitable
defaults for most installations, and providing Help facilities throughout the process should
guestions arise. At any stage of the installation process you can ‘Abort’ the installation -- the
installer will remove any WebBase and/or temporary installer filesit has already installed.

To start the installation of WebBase, double-click on the WBSetup.exe file. The screen shown
in Fig. 3.1 identifies the current WebBase version and build numbers. A build number is
simply aminor revison number. New builds are generated frequently and made available for
download viathe WebBase web site. The build distributed on the CD or currently available
on the WebBase web site may not match the build number described in these instructions.
Note that the installation process detects the type of computer system you are using and will
occasionally display thisinformation on the screens, asin the example below. The displaysin
this chapter were taken from a Windows-95 system.

Figure 3.1 Installation - Initial Screen

Welcome to WebBaze(TH] I
Thiz program will install the complete

WebBase 4.10 Build 56
application onto your Windows 95 4.0.950 zystem.

WEB
-

\ "' U
w B0y Wisit

hittp: A fenens E wperT eligence. comSswebB aze/
for more information and/or to repart problems

Freszs to beqin the installation.

Fress E xit | b quit this program now.

= 1995-7, ExperT eligence, Inc.. All Rights Rezerved.

After pressing the ‘ Start’ button, awarning screen is displayed as shown in Fig. 3.2. Inan
initial installation of WebBase, this screen can be ignored. Select the ‘ Continue’ button to
proceed with the installation.

14

WebBase User’s Guide

Figure 3.2 WebBase Running Warning

Iz WebBase Currently Running? ;

FLEASE NOTES

It iz highly recommended that you DO NOT install WebB aze components into the
zame directory that a CURBRENTLY EXECUTIMG WebBase application iz executing
from.

IF you have a version of WebB ase cumrently executing and you wizh to install one or
more WebBaze components into the same directory that the current version resides
in, you are STRONGLY URGED to Abort this inztallation process now, stop the

currently executing WebB aze application, then re-execute thiz installation program.

Before WebBase can be ingtalled onto your system, you need to read the WebBase License
Agreement. A copy of this agreement isfound in Appendix A inthismanual. This agreement
isasointhe Licensewri file placed into the directory containing the WebBase application.

Figure 3.3 WebBase License Agreement

WebBaze Licenze Agreement i

w'ebB aze[TM] Software License Agreement ﬂ

Thiz agreement iz a legal contract, Pleaze read it carefully before
inztalling vaur copy of the YWebBaze saftware. Campletion of the
inztallation process indicates acceptance of the terms of thiz
agreement.

dpon acceptance of the terms of thiz agreement, you are hereby
authonized to receve and uze a single copy of the computer
goftware package known az \WebBasze ['the Program'], which
inchudes (1] object code computer zoftware and [2] related
end-uzer documentation. Al right, title, and interest in and to the
Program iz retained by ExperT eligence, nc. ['Company'], and iz
dizclozed bo pou only for use in accordance with the terms of this

agreement. _i
-

Presz 0K if you agree ta these conditions;
presz Abort ko abort the inztallation.

Ahbort I

As noted above, the WBSetup.exe program allows either a standard or ‘easy’ installation, and
acustom installation. The dialog shown in Fig. 3.4 alows the user to identify which type of
installation should be done. The ‘Easy Install’ will install all appropriate files for the given
operating system as well as the WebBase WebWizard. The*Custom Install’ gives you the
ability to select individual componentsto install as well as optionaly installing the WebBase
WebWizard. The Custom Installation is described later in this chapter.

WebBase User’s Guide 15

Chapter 3: Installation

Figure 3.4 Installation Option Dialog

Installation Selection i
Sefect ane of ke insialiaiicn opiianRs Seiow

£3sy Insial .

E azy Install azks the minimum number of questions during the
inztallation process and installs all necessary components for your
Windows 95 environment.

E azy Install iz HIGHLY RECOMMENDED
Eazy Instal for the first ime uzer of WebBase.

Custom fnsial ..

Custom Install allows you to zelect individual components of the
WebBaze application to be installed in your Windows 95
environment.

Thiz process assumes that you are Familiar
with the WebBase application zo az to
know what minimum components are
required for a successful installation.

Help i

Custarn [netall

Y ou are then asked to specify where the software is to be installed on the WebBase Directories
Dialog shownin Fig. 3.5. The recommended defaults are displayed and you have the ahility to
use the ‘Browse' button to locate and specify an appropriate directory if the default is not
suitable.

Figure 3.5 WebBase Directories Dialog

WebBaze Directories
| Pestination {ireciern:.. The WebBasze application files
; will be installed in this
[required] directory.

Browse

I

| Wettirard irectony.. The WebBase WebWizard

i : [example] files will be inztalled
[required] in thiz directory.

| [CAHTTP Browse]

\Hackup Direcion:.. The inztallation will back up

{ any replaced files in this

| ¥ Make backups directory.

| [Cw/ebBasehBACKUP Browse

E

16 WebBase User’s Guide

The ‘Destination Directory’ iswhere all the WebBase application files will be stored. This
includes the executable programs, virtual machine components, and any utility files. Itis
recommended that this be atop-level directory®. All WebBase program components must be
placed into the same directory for the application to execute successfully.

The “WebWizard Directory’ specifies where the subdirectory containing the WebBase
WebWizard forms will be placed. Thisis generdly the same directory where all forms are
placed for access by browsers. It is possible to place the WebBase WebWizard formsinto
another subdirectory under the root forms directory.

If ‘“Make Backups' is checked, the identified directory is used to back up files that would
otherwise be overwritten during the installation process. In aninitial installation of WebBase,
it is not necessary to make backups as there are no files to back up.

Figure 3.6 shows an example of the dialog invoked by the "Browse" button.

Figure 3.6 Example ‘Browse’ Dialog

Destination Directory |

Select the Destination Directory far installing *ebl aze
pragram files.

To change the zelection, uze the browse list below,
Prezs OF toreturn the value displayed,
preszz Cancel to return without a value.

Destination Directary: Help I

C:hwiebB ase

| o willie ;Il

k. I Cancel Ahbort |

The drive selector at the bottom of the dialog and the directory listing in the center can be used
to select an existing directory as the desired selection -- or you can type a directory into the text
editor field above the directory list area. Clicking the ‘OK’ button returns the value in the text
edit field while clicking on the * Cancel’ button returns no value and therefore leaves the calling
diaog's field unchanged.

3 Dueto potential problemsin some Windows-95 environments, this directory must be at the top level for the application to execute under Windows-
95.

WebBase User’s Guide 17

Chapter 3: Installation

Parameter Definition
After the directory information has been entered, the WebBase initialization parameters must
be defined and stored into the System Registry”. Figure 3.7 shows the dialog that prompts for
these parameters and updates the Registry appropriately.

Figure 3.7 WebBase Parameter Registry Values Dialog

WebBase Parameter B egistiy Yalues I
WebB aze requirez the following “Required parameters™
be zet in the Windowsz 95 Regiztry before it will ﬂl
execute.
Hegured paramelers. . PortMo: Im
Directory: |C\HTTP Browse I
License:
fntional paramelers...
erorLogFile: |C:\\webBase\LOGS W ebEmorlog Browze
LogDirectory: |C:\w/ebBaze\LOGS Browse
Default:
Extension:
LicenzedFeatures:
| |Ipdate Fegisty I Don't Update Fegistmy Shbort

The PortNo parameter specifies which port WebBase will use to communicate with a
browser. The default value is set to 80. If you have another Web Server installed and running
on your system, you need to ensure that both WebBase and the other web server(s) have
unique port numbers.

The Directory parameter specifies wherein your local directory structure browsers can access
formsviaWebBase. This directory location corresponds to a browser referencing * http://host-
address”’. Placing a‘default.htf’ or ‘default.htm’ file in this directory will cause WebBase to
return that form if a browser references * http://host-address. If you already have a Web
Server running on your system, you may choose the same directory that server uses to be your
WebBase Directory. It is strongly recommended you not use the ‘ Destination Directory’ into
which you installed your WebBase application files as this makes al these files potentially
available to browsers accessing your system with \WebBase.

The License parameter specifies the value of your license number. This parameter is required
and must be entered here. If you do not have a license number, contact
sale@expertelligence.com.

4 Appendix B describes parameter specification for 16-bit systems.

18 WebBase User’s Guide

The errorLogFile parameter specifies the name of afile that WebBase can create and write
error messages into. These messages can be helpful in diagnosing problems you might
encounter while WebBase executes. The file need not exist at thistime, but the directory
specified must exist before executing WebBase so the file can be created as specified. By
default, the error log file is stored in the directory containing the WebBase log files.

The LogDirectory parameter specifies where in your local directory structure WebBase can
writelog files. WebBase creates alog file each day and records the requests it processes.
These files are written into the directory you specify here. These log files can be used with
web site analysis tools to acquire information about number of hits, location of requests, etc.
Details on logging are presented in Chapter 12. Y ou can specify this Log Directory and till
disable logging via the WebBase Options menu if so desired. Y ou cannot enable logging,
however, if you have not specified a Log Directory here.

The Default parameter specifies the name of afile you wish to have displayed when a browser
references your Directory without specifying afile pathname. Multiple defaults can be
specified by entering filenames separated by a comma as in ‘ default.htf,default.ntm’. When
multiple entries are provided, WebBase will ook for the filesin the order entered. Thisisan
optional parameter. If absent, ‘ default.htf,default.htm’ is assumed. If you enter an empty
string then no default file will be searched for.

The Extension parameter specifies the name of afile extenson you wish WebBase to append
to afilename a browser supplies that does not explicitly supply the extension. Multiple
extensions can be specified by entering them separated by acommaasin ‘htf,htm’. When
multiple entries are provided, WebBase will ook for files with the specified extension
appended in the order entered. Thisisan optional Parameter. If absent, ‘ htf,htm’ is assumed.

The LicensedFeatures parameter is an additional license number that enables WebBase add-
on products. If you have purchased WebBase along with one or more add-on products (e.g.,
ExperForms), then you will aso need to enter your LicensedFeatures number. If not specified,
the add-on features will not be enabled.

At the bottom of the window is a button labeled ‘ Don’'t Update Registry’. This button should
be selected only during an upgrade if you do not want your existing registry parameters
modified. It is strongly recommended that the user alow the installation process to update the
registry parameters during a new installation.

Completing the Installation

After the WebBase parameters are defined, the installation process continues by asking
whether program manager icons should be created. Creating icons will alow you to
conveniently execute these programs. In addition, the installation process will create an
‘Uningtal’ icon in the Program Manager Group you select to allow you to conveniently remove
all the components installed during this process, should that be necessary in the future.

Figure 3.8 Program Manager Icon Creation

Program Manager

Do pou wizh to install Prograrm Manager lcons? Help i

Mo i Abort i

WebBase User’s Guide 19

Chapter 3: Installation

If you select to have Program Manager | cons created, Fig. 3.9 shows the dialog on which can
specify the desired name of the Program Manager Group in which the icon(s) will be created.

Figure 3.9 Program Manager Group Name

Select Program Manager Group

Pleaze zelect the Program Manager Group
that you would like to place the WebBaze
icong into.

You can select from an exizting group or
create a new one.

Group Hame:

[ebBase

Acceszsories

Administrative Tools [Common)
AHDE

Microzoft SAQL Server 6.0
Startup

ok | | abor | Help |

Following the specification of directories, components, WebBase parameters, and Program
Manager information, the appropriate directories will be created as necessary and appropriate
files for the given operating system and above selections will be installed onto the target
computer. All parameters are entered into the System Registry in®:

HTTP_LOCAL_MACHI NE/ SOFTWARE/ Exper Tel | i gence, |nc./\WbBase/ 4. 10/

During this process, the progress bar shown in Fig. 3.10 is updated to show the files currently
being installed and how much installation work remains to be compl eted.

Figure 3.10 Installation Progress Bar

Inztalling

Copying WebBase Application:
C:AwebB aze\wWebB ase. exe

If you selected to have Program Manager Iconsinstalled, you will see awindow created with
the icons displayed within it. The installation window is then displayed over the program

> Prior to build 56, all WebBase entriesin the System Registry werein HTTP_LOCAL_MACHINE/System/CurrentControl Set/ Services/HttpSQL.
Effective with build 56, only the NT service parameters are located in thiskey. For users upgrading to build 56 or later from build 55 or earlier, the
first time that WebBase is started, al information within the “old” WebBase location is copied to the “new” location. Theinformation in the “old”
location is not deleted; this action is |eft to each WebBase user.

20 WebBase User’s Guide

manager window, and Fig. 3.11 shows the window indicating that the installation of WebBase
was completed successfully.

Figure 3.11 Successful Installation Display

Thank Youl |

‘/VEB Thank you for using WehBace_ |
e i s:.,:

/ \-. Fleaze conzult our home page at
(TR n ,
W i O hittp: At E wperT elligence. comAa'ebB ase/

g

far the latest news on the 'WebBaze product
line.

= 1995-7, ExperTeligence, Inc.. All Rights Reserved,

Many of the dialogs in the installation sequence have a‘Help’ button on them. The following is
an example of what one of the Help screens looks like. Each Help screen istailored to the
particular dialog that invoked it and contains information that we hope is helpful in your
understanding of the dialog within the installation process.

Figure 3.12 Example Installation Help Window
Easy Install._. ii

Easy Install will prompt you for the directory you wish to have the WebBase
components installed in and whether pyou wizh to make backups of any files to be
replaced by this procesz. It will then install all WebBase components required for
the Operating System you are running under.

After copping the necessary files to your hard drive, Easy Install will ask you about
zetting up the Parameters Registry [(Windows NT and/or Windows 95] or
‘webBase. IMI file (Windows] and about creating Program Manager icons.

Custom Install.

Custom Install will query pou For the directory into which pou want the WebBasze
components installed az well az whether you wizh to make backups of any files to
be replaced by thiz process. Following this you will he presented with a list of the :_j

3.4 Custom WebBase Installation

When initially installing WebBase, it is strongly recommended that you follow the standard
WebBase installation described in the preceding section. After you have become familiar with
the WebBase application and its components, you may want to perform a custom installation
in which only selected individual components areinstalled. This section covers how to do a
custom WebBase installation.

Asin the standard WebBase ingtallation, it is recommended that you install WebBase into a
‘WebBase' directory at the top level on your system's hard drive. Oncethe ingtallationis
complete, make sureto install ODBC so that WebBase can communication with your

database(s).

WebBase User’s Guide 21

Chapter 3: Installation

To start the custom installation of WebBase, double-click on the WBSetup.exe file. When
you get to the ‘ Installation Selection’ screen, select the * Custom Ingtall’ button. Y ou will be
prompted to enter the directory information for the ‘ Destination Directory’, *WebWizard
Directory’ and ‘Backup Directory’ as described for the standard installation.

After the directory information is entered, the didog shown in Fig. 3.13 is displayed. Note that
by default all components are selected for installation. On Windows-NT systems only, there is
an additional checkbox for ‘Windows NT Service Support’. This option allows the utilities
used to start and stop WebBase as a service to be installed.

Figure 3.13 Custom Installation Component Selection Dialog

WebBaze Components for Windows 95 4.0.950 1

Pleaze dezelect the 'webB aze components pou do MOT want to
inztall an your computer by unchecking the appropriate boxes below.

Prezs OF. to continue,
prezs Cancel to abort the inztallation.

Digk. Space Required: 2732k

Free Space Remaining: 243605 k.
W afebB ase Evecutable 1337 k
v Wirtual Machine 1395 k

Conce_|

In addition to alowing you to select specific program components, the custom installation also
gives you the option of whether the WebBase WebWizard should beinstalled. The didog
shown in Fig. 3.14 gives you the option of whether they should be installed.

Figure 3.14 Custom Install WebWizard Option

Inzstall WebWwizard

The WebWizard[TM] contains a number of WebB aze forms that
might be uzeful in getting you started in creating your own WehBaze
application. In addition. a number of application packages
including WebBaze ExperLink[TM] and WebB aze ExperForms[TM]
are included for the benefit of uzers who acquire the
LicensedFeatures key to activate these components.

All components will be inztalled in the
C:AHT TPAWbWizard subdirectory.

Help
P Imstal WebMizard Skip "WebWWizard J Abart 1

22

WebBase User’s Guide

All the WebBase WebWizard forms and files are installed in the ‘WbWizard' subdirectory
within the directory specified asthe Directory parameter. Details on the WebBase
WebWizard tools and utilities can be found in the WebBase WebWizard User’s Manual.

Another option provided within the custom installation is whether the *Uninstall’ option will be
installed, as shown on the didlog below. This utility can be used to uninstall al of the
WebBase product components.

Figure 3.15 Custom Installation Unlinstaller Option

Inzstall Uninztaller?

Do you wizh to install the Unlnstaller?

Thiz utility will allow pou to uminstall all product
components if you 20 chooze.

No 3 | Cancel g

The remainder of the custom installation is the same as described above starting with the
definition of the WebBase parameters.

3.5 Updating WebBase

From time to time, updated minor releases of WebBase will be made available on the
WebBase Web site. A build number identifies these releases. For example, the release
occurring after build 56 will be build 57. The version number identifies mgjor releases, and
may require afull re-installation of WebBase.

To upgrade your version of WebBase, download the WBUpdate.exe file from the WebBase
Web site. Thisfilewill install the set of application files that contains any improvements to
WebBase. The WBUpdate.exe fileis provided as a smaller file that reduces the amount of
time required for downloading. However, it does just update the WebBase application, and not
any of the associated applications. If changes have been made to any of the tools and utilities
provided within the WebBase WebWizard, afull installation must be performed in order to
install these updated forms.

To start the upgrade process, double-click on the WBUpdate.exe program. Asin theinitial
installation of WebBase, the installation process includes a series of dialogs requesting
necessary information from you, providing you with suitable defaults for most installations,
and providing Help facilities throughout the process should questions arise. At any stage of the
update process you can ‘Abort’ the update -- the installer will remove any WebBase and/or
temporary installer filesit has already installed leaving only the WBUpdate.exe file that you
downl oaded.

The WebBase update installation starts with a welcome screen very similar to that used in the
standard installation, as shown in Fig. 3.16 below.

WebBase User’s Guide 23

Chapter 3: Installation

Figure 3.16 WebBase Upgrade Installation Screen

Welcome to WebBaze[THM] i
Thiz program will update WebB ase by installing
WebBase 4.10 Build 56
onto your Windows 95 4. 0950 syztem.

Fo Only the 'w'eh_Base _applit_:atinn -
‘,’L' Lf‘B executables filez will be installed - it i
A B

azszumed that all other WebBaze
components are already installed.

L A Visit
T http: & v E wperT eligence. comM/ebB aze
for more information and/ar to repart problems

to beqgin the installation.

Preszs E it ! ko quit thiz program notw.

® 19395-7, ExperT eligence, [nc.. &l Rights Rezerved.

Presz |}

Unlike in an initid installation of WebBase, it isimportant to understand the impact of the
update installation on any currently executing version of WebBase. The warning screen that
is displayed right after the welcome dialog (Fig. 3.2) reminds the user of these ramifications.
If you are currently running WebBase, it is strongly recommended that you stop the currently
executing WebBase application, perform the update installation, and then restart WebBase.

After the warning message and license agreement are displayed, you are given the option of
specifying where the updated \WebBase files should be placed. Thisdialogisvery smilar to
the WebBase Directory dialog described as part of the initial installation except that the
WebBase Directory is not specified. Default values are displayed. If the ‘ Destination
Directory’ entered is different than that currently used, the updated WebBase application files
will be copied to the location but an error message will then be displayed indicating that one or
more files required by WebBase cannot be located. If *Make Backups' is checked, the
corresponding directory is used to backup files that would otherwise be overwritten during the
installation process.

After this directory information is entered, the updated files are copied to the appropriate
directories and the update is complete.

3.6 Testing the WebBase Installation

After completing the above installation steps you are ready to test the new or updated
WebBase application. Before you test an initial installation of WebBase, an excellent way to
ensure you have al the necessary TCP/IP communications configuration in place isto install a
copy of abrowser such as Netscape or MSIE. Y ou will need some form of Web browser to
test your WebBase applications, and WebBase requires the same communications support as
does a Netscape or MSIE browser. Being able to install and use a browser can help eliminate
some possible problems with installing WebBase.

24

WebBase User’s Guide

Start the WebBase application using the icon created during installation or using the ‘ Start-
>Program->WebBase' option®. A WebBase splash screen isinitially displayed. If any of the
WebBase required parameters were not entered during installation, then WebBase will shut
down. The PortNo, Directory and License parameters must be entered either during
installation or directly into the System Registry prior to being able to run WebBase.

If WebBase is started successfully, two windows will be displayed. The first window istitled
‘Late breaking news from ExperTelligence’. The second window that is displayed is the
WebBase Server window. Both windows are described in detail in Chapter 5. If the second
window is empty or does not open, review the information in the following section on
installation problems. If the window does open, your WebBase application is up and running.
Y ou should continue to verify that the WebBase installation is correct by following the
instructions in the section below on testing communications.

Error messages may also be displayed in the Late Breaking News window. These error
messages may relate to attempting to access the server at ExperTelligence for news to display,
or they may relate to a configuration problem on your system. Be sureto review this window
for any possible error messages.

To quit WebBase, use the Exit command in the WebServer menu of the WebBase Server
window. You will be prompted to confirm that you want to exit WebBase. If so confirmed,
WebBase will terminate. The ‘Late Breaking News window will automatically be closed
when you quit WebBase.

Possible Installation Problems

Many errors caused by improper installation will cause an error message to be generated and
written to the file specified in the errorLogFile parameter and also echoed in the ‘ Late
Breaking News window as shown below.

' Starting WebBase 4.10 Build 56 Server..."
"ERROR '<error nessage text>'"
"SERVER DI D NOT START SUCCESSFULLY. "

It isvery important that you review the information presented in your ‘Late Breaking News
window to diagnose any installation problems that may have occurred. Below are some
possible installation problems. If you have a problem testing your WebBase installation, check
the following list of symptomsto see if you can identify and correct the problem.

Symptom: The launch executes as described above, but no WebBase Server window
appears. The ‘Late Breaking News window and error log file specified in the
errorLogFile parameter will typically have an entry of the form: "Error: 'Missing <xxxx>
WebBase parameter(s).”.

Possible Solution: The indicated <xxxx> WebBase parameter entry is missing. Review
the information in Chapter 4 about required WebBase parameters. Remember that
parameter names are case sensitive.

Symptom: The launch executes as described above, but the WebBase Server window is
missing the ‘Using port: ##' line and you are immediately presented with the diaog to exit

6 Y ou can also start WebBase by running the WebBase.exe file. However, thisis not the recommended approach. On Windows NT 4.0 systems, the
file WebBase.bat is used to start WebBase. Attempting to start WebBase by double clicking on or executing the program WebBase.exe will result in
errors. It isstrongly recommended that the WebBase icon be used to start the program as this icon references the appropriate file based on operating
system type.

WebBase User’s Guide 25

Chapter 3: Installation

WebBase as shown in Fig. 5.10. The error log file will have an entry of the form: "Error
10048 WSAEADDRINUSE -- The specified address is aready in use".

Possible Solution1: WebBase has determined that the port that it is attempting to
communicate on, the PortNo parameter, is already in use. Assign a different, unique port
number to WebBase and attempt to launch the application again.

Possible Solution2: If you did not explicitly quit the application with the Exit command or
by closing the WebServer window, check the file specified in the errorLogFile parameter
for amessage that may indicate why the application shut down. There may be a copy of
WebBase already up and running in your environment. Check the task list for

V32V M20.exe and, if found, kill this task before trying to launch WebBase again.

Symptom: As soon as WebBase is launched, it quits with an entry of the form: "Error
11003 WSANO_RECOVERY - No recoverable errors, FORMERR, REFUSED,
NOTIMP

Possible Solution: There is a problem with the TCP/IP or name service communications
software. This problem is generally only seen on 16-bit systems and isdueto a TCP/IP
package that is not compatible with WebBase. The 32-bit systems supported by
WebBase include TCP/IP as part of the default operating system, and they do not report
this problem.

Testing WebBase Communications

Now that WebBase is running, you can check that it is communicating as a Web Server using
one of the built-in commands. This can be done before you set up any database interfaces or
begin designing any .htf files. An easy built-in command to use is dateTime. Additional built-in
commands are described in the following section. From a browser, access WebBase by
entering the following URL :

htt p:// <your-host - addr ess>: <your - port - nunber >/ dat eTi ne
where:

<your-host-url> is the IP address of the WebBase server machine. You may also use
127.0.0.1 as the address that points to your local system. If you have set up the hosts file
on your system to assign the name ‘localhost’ to the *127.0.0.1" IP address, you may also
substitute ‘localhost’ as the address.

<your-port-number> is the port number you defined as your PortNo parameter.
dateTime is the built-in WebBase command.

The dateTime query will return your server's current date and time in local format:
Date: Tue, 06 May 1997 09:07:12 PDT

If all appears as described here, your WebBase application isworking! At thispoint, itis
strongly recommended that you visit the WebBase WebWizard to find out about all the
features of WebBase. You'll aso need to review the information presented later in this
chapter about ODBC driver installation.

Built-in Commands

WebBase includes a number of built-in commands that can be sent from a browser. These
commands are listed on the WebServer window that is displayed within WebBase. These
commands are useful for determining whether WebBase is working after an installation.

26 WebBase User’s Guide

The built-in commands are amost equivalent to simple .htf files. For example, one of the
built-in commands is dateTime that displays the current date and time. It would be very
trivial to create a .htf file that performed the same function. However, if a .htf file has been
created with the same name as a built-in command, the .htf file will take precedence over the
built-in command. If auser had created the file dateTime.htf and it was stored in the top-level
forms directory, the file and not the built-in command would be invoked if the user issued a
URL of the form:

http://127.0.0. 1: 80/ dat eTi nme
The following are the WebBase built-in commands and an example of what they display.

build -- e.g., WebBase 4.10 build 56
displays the current WebBase version and build number in bold

buildString -- e.g., WebBase 4.10 build 56
displays the current WebBase version and build number in standard font

dateTime -- eg., Date: Tue, 06 May 1997 09:07:12 PDT
displays the current date and time

elapsedTime -- eg., Elapsed time: 60ms.
displays the amount of time that has elapsed since processing was begun for this command
by the server

gmt -- e.g., Date: Tue, 30 Apr 1996 15:23:43 GMT
displays the current date and time in GMT format

milliseconds -- e.g., 30259110
displays the total number of milliseconds since the previous midnight

seconds -- e.g., 30312
displays the total number of seconds since the previous midnight

title -- eg., WebBase 4.10
displays the current WebBase version number in bold

titleString -- e.g., WebBase 4.10
displays the current WebBase version number in standard font

3.7 Installing ODBC Drivers

It is not required that you install ODBC when WebBase isinstalled. It is possible to install
WebBase, get it up and running, and experiment with some of the forms and examples without
having ODBC installed. However, before you can access a database, you will have to ingtall
ODBC drivers. It isrecommended that you follow this installation procedure, even if you
already have ODBC driversinstalled, to ensure that the latest versions of all necessary ODBC
filesare available.

ODBC Drivers

The ODBC drivers are used by WebBase to communicate with a database application so that
database information can be retrieved, updated or deleted using WebBase forms. The

WebBase User’s Guide 27

Chapter 3: Installation

WebBase CD and WebBase Web site both provide access to ODBC driver packs that include
drivers for the Microsoft database applications (e.g., Access, SQL Server). There are many
databases other than the Microsoft databases that aso have ODBC drivers. These drivers are
generaly available from the database vendor or another third-party company.

The ODBC driver packs are operating system-dependent, not database application version-
dependent. Whileit isgeneraly possible to run the latest version of a database on an older
operating system (e.g., Access 97 on NT 3.51), it is not possible to use the latest ODBC
drivers on an older operating system. ODBC database drivers may be installed onto your
system as part of a database installation. If you are running a newer database version with an
older operating system version, it is critical that you re-install the ODBC drivers for your
operating system version after the database installation. The ODBC drivers are not used by
the actual database application; they are only used by secondary applications such as
WebBase which are indirectly accessing the database.

The ODBC drivers on the WebBase CD are found in directories that specify the particular
operating system (e.g., Win95, NT351). The ODBC driver packs on the WebBase web site
are dso smilarly identified.

It cannot be stressed strongly enough that the proper ODBC drivers for the operating system
verson must be used. The mgjority of problems that users encounter with ODBC and
WebBase are the result of an incorrect match between ODBC database driver and operating
system version.

Installing the ODBC Drivers

The ODBC driver packs included with WebBase include all of the drivers for the standard
Microsoft applications. Beforeinstalling the ODBC Driver Packs, be sure to read the End
User License Agreement distributed with the ODBC Driver packs. This document outlines the
terms and conditions under which you may install and use the ODBC drivers. Installation
instructions are a so provided with each of the ODBC driver packs.

Setting the ODBC Sources

In order for WebBase to access a database, an ODBC source for that database must be
created. An ODBC source assigns a name and optionally a username and password to a
particular database file. This ODBC source name, username and password are then used by
WebBase to access the database.

Once the ODBC drivers are ingtalled, there will be an ODBC icon or program option that is
used to access the ODBC Administrator. For example, on a Windows-95 system, the 32-bit
ODBC Administrator is started via the * Start->Program’ menu. To set up an ODBC source,
start up the ODBC Administrator. A window similar to that shown in Fig. 3.17 is displayed.
The different ODBC driver packs available from Microsoft have each presented this
information in adightly different display format. However, the basic concepts described here
are applicable to any ODBC source setup. The ODBC Administrator screens displayed in this
section are from Microsoft’s ODBC Driver Pack 3.5.

28

WebBase User’s Guide

Figure 3.17 ODBC Administrator Screen

("’3 0ODBC Data Source Admimigtrator

User DSN | System DSN | File DSM | ODBC Drivers | Tracing | sbout |

Uzer Data Sources:

Mame i Cirivver i
dBASE Files Microzoft dB aze Driver [*.dbf) Bemove
Encel Files Microzoft Excel Diriver [* =lg]

1l

FosPra Files Microzoft FoxPro Driver [*.dbf] Canfigure...
M5 Access 7.0 Databaze Microzoft Access Driver [F.mdb]
M5 Access 97 Database Microzoft Access Driver [F.mdb)

Paradox Files Microzoft Paradox Driver [F.db]
Tesxt Filez Microzoft Text Driver [F.bat: ® cav)
Vizual FoxPro Databaze Microsoft Visual FosPro Driver
Yizual FoxPro Tables Microzoft Visual FosPro Driver

An ODEC User data source stores information about how to connect to
the indicated data provider. & Uzer data zource iz only wizible bo pou,
and can only be used on the cumrent machine. |

(] i Cancel Smply Help

There are three types of data sources that can be set up:

User DSN — A user data sourceis only visible to the specified user and only on the
specified machine.

System DSN — A system data source is visible to al users on the machine, including NT
services.

File DSN — A file data source allows you to connect to a data provider. File DSNs can be
shared by users who have the same driversinstalled.

For WebBase applications, a System DSN is strongly recommended. If WebBase is to be run
as a service, then any database must be set up using a System DSN. Even if WebBase is not
to be run as a service, databases should be set up as System DSNs. If auser DSN is used,
then only the user who created the DSN will be able to access the database. If another user
starts WebBase and attempts to access a database via a .htf form, errors will result since that
user will not have accessto theinitia user's User DSN.

To demonstrate how to create a System DSN, this section will cover the steps necessary to
create and configure the source used to access the Cars Microsoft Access database used with
the database examples accessed via the WebBase WebWizard’. To create anew System
DSN, pressthe Add button. Figure 3.18 shows the display presented in which you are
prompted to select the ODBC driver to use. Select the appropriate driver and press the

" This data source is automatical ly set up as a System DSN when running the database examplesif not previously set up. Itisused in thiscase asan
example of how the user will configure their own data sources for their databases.

WebBase User’s Guide 29

Chapter 3: Installation

‘Finish’ button. For this example, the Cars database is an Access database, so the Microsoft
Access Driver is selected.

Figure 3.18 ODBC Source Creation — Driver Selection

Create New D ata Source !

Select a driver for which you want to set up a data zource.

| "Yerzion | Compa
[350342300 Micros:
380342800 Micros:
Mizrozaft Excel Diriver [7.xlz] 380342800 Micros:
Microgsoft FosPro Driver [%.dbf) 380342800 Micros:
Microzoft Paradox Dnver (*.db] 350342800 Micros:
kizrozaft Text Driver [*tat; ®oey] 350342800 Micros
Microsoft Wisual FosPro Driver 50000348 Micros:
SOL Server 2E5.0213 bicroz

1] | i

< Black I Finizh I Cancel

After the database driver is selected, it is necessary to specify the name to be assigned to the
source as well as the database file to use. Figure 3.19 shows the screen on which this
information is entered.

Figure 3.19 ODBC Source Name Definition

0ODBC Microzoft Access 97 Setup

Data Source Hame: Imy.-‘i'-.ccess

!i
7~
x|

Dezcription; IWebBase databaze example
Cancel ;
- Database

Databasze: CAHTTPYwWhWizard DEBE «hautoz. mdb Help
4 Create. .. | BEepair... Compact... |

Advanced...

i

-~ System D atabase

&+ Mong
i~ Databaze:

Sustemn atabase

Optians: >

30 WebBase User’s Guide

The data source name used to access the database is required, and is entered on the top line.
An optional description can be entered on the line below the database name. Select the
database file that will be accessed. The WebBase database examples require the data source
name to be ‘myAccess'; this should be entered on the top line asin the display above. The
database to use is Autos.mdb, which is provided as part of the \WWebBase installation. After
thisinformation is entered, press the ‘ Advanced’ button to set up the username and password.
The window shown below is displayed.

Figure 3.20 ODBC Source Advanced Options

Set Advanced Options i

— Default Authorization———————————

Login name: ;flEd I Cancel ;
Paszword: i““ '

- Optiohz
Type Walue
DefaultDir CAHTTPYwWhwizard W DBE =
FIL M5 Access:
| rnplic:itCarmmits ync Tez
M axB ufferSi 512
it 2 =
Walue of DrefaultDir CAHTTPYWWEW izardW\DBEx

For the WebBase database examples, the username should be ‘fred’ and the password is ‘test’.
Note that the password is hidden when it is entered. It is aso important to remember that the
data source name, username and password are case sensitive. When this source name is used
within a WebBase form, it must be explicitly entered as ‘myAccess . If ‘MyAccess is
entered, an error will be returned indicating that thisis not avalid source.

After al the information has been entered, close the Advanced Options window and the Setup
window. Thelist of System DSNsis updated to reflect the data source name just entered. A
data source must be created for each database that you will be accessing using WebBase.
These data sources may use the same driver or different drivers, depending on the type of
database. Simply follow the above steps and give each database a unique data source name.

3.8 Installing WebBase as a Windows NT Service

On aWindows NT system, it is possible to set up WebBase as aservice so that it will start
automatically when the system is booted without requiring user logon or any other user action.
It is strongly recommended that you first install WebBase according to the above instructions,
and verify that it has been successfully installed and is communicating. Following this process
will minimize problemsin setting up WebBase as a service.

WebBase User’s Guide 31

Chapter 3: Installation

Installation as a Service

During the installation of WebBase under Windows NT, the parameters required to run
WebBase as a service are automatically stored into the System Registry under:

HKEY_LOCAL_MACHI NE/ Syst emf Current Control Set/ Servi ces/ H t pSQ-

The two parameters required to run WebBase as a service are AppDirectory and Application.
These are described in Chapter 4. Note that this registry location is different than where all the
other WebBase parameters are stored. Thisis to prevent the loss of WebBase parameters,
global variables, extensions, aiases and/or multiple domain information if the user selectsto
remove WebBase as a service.

Also during installation, WebBase is assigned the service name of ‘httpSQL’™ and is
automatically created as a service that must be started manually®. If you want to have
WebBase start each time your NT system starts up, you must modify the httpSQL service via
the Services Control Panel. that starts when your NT system starts up. By default, the

Loca System account is used which does not require a username/password. In addition, the
option to ‘Allow Service to Interact with Desktop’ is also selected. This option will cause
WebBase to start and also the WebBase Late Breaking News and WebBase Server windows
will be opened. If this option is disabled, the windows will not be opened when WebBase is
started.

WebBase as a Service and ODBC Configuration

When WebBase isinstalled as a service, the ODBC data sources must be specified as System
DSNs. Start up the ODBC Administrator. Select the ‘ System DSN’ option. Verify that all
databases to be accessed using WebBase have been set up as System DSNs and not User
DSNs.

Starting the Service

By default, WebBase is configured to automatically start when the Windows NT system is
started. If it has been stopped or if it has been modified to start manually, WebBase can be
started as a service using the file WebSvStart.bat. Simply execute this batch file and WebBase
will start.

Stopping the Service

WebBase was not designed explicitly as a service application, and uses a Microsoft utility to
run asaservice. Inorder to stop WebBase when it is running as a service, you must use the
WebSvStop.bat file that is provided with the WebBase installation. If you stop the httpSQL

service from the Services Control Panel, only the Microsoft utility used to start WebBase is

stopped — WebBase itself is not stopped. To stop WebBase, smply execute WebSvStop.bat
and WebBase will properly terminate.

8|t WebBase does not come up properly as a service and appears to hang, stop it using WebSvStop.bat. Delete the file WebBase.bmp from the
directory in which the WebBase.exe program resides. Thisfileisthe splash screen displayed when WebBase launches. Under some circumstances,
thisfile can cause WebBase to hang and not respond to communications commands although the Services control panel and task list show it to be
running.

32 WebBase User’s Guide

If your NT system goes down unexpectedly and auto-reboots, you do not have to stop and
restart WebBase asa service. You only need to follow the above procedure if you are taking
WebBase down and bringing it back up with the NT system continuing to run.

Removing the Service Entry

To remove WebBase as a service entry, the WebSvDel.bat fileisused. Thisfilefirst attempts
to stop WebBase and then removes it as a service entry. The WebBase application itself is not
affected, and can be started manually by selecting the WebBase icon. However, if you wish to
have WebBase run as a service in the future, you must do another installation in order to set up
the necessary service batch files.

Upgrading to Windows-NT

If you are aready running WebBase on a non-Windows NT system and upgrade the operating
system to Windows-NT and wish to run WebBase as a service, you must go through the
installation procedure in order to have WebBase properly set up as a service and the necessary
service batch files generated. Note that this only applies when upgrading to a Windows-NT
environment. If you are aready running Windows NT and ssimply upgrade versions of
Windows-NT, it is not necessary to reinstall WebBase.

WebBase User’s Guide 33

Chapter 3: Installation

3.9 WebBase Support

Y ou can get customer support for WebBase in any of these ways:

Review the list of questions and answers at, and post your own questions in the WebBase
Support Forum accessed via the WebBase Web site

Read the latest documentation updates on the \WebBase Web site
Send email to support@expertelligence.com.
Call ExperTelligence at 805/962-2558

When requesting support, please provide the following information:
WebBase version and build numbers
Y our operating system and version
If the question is database related, the database in use

The source for the ODBC you are using (drivers/versions/dates)

34 WebBase User’s Guide

WEB
%% Initialization
Chapter 4

WebBase uses a number of initialization parameters that are described in this chapter, and
were previoudy referred to in the chapter on WebBase installation. In addition to these
initialization parameters, WebBase aso allows the user to define file extensions and their
handling, directory aliases, and multiple domain support. All thisinformation is stored in the
System Registry on a Windows NT or Windows 95 system. On a Windows 3.1 or Windows
for Workgroups system, *.INI files are used. Although the format is different between the
System Registry and the *.INI files, the required entries are the same. This chapter presents
details on how to modify the System Registry using the WebBase WebWizard Registration
Database utility. Appendix B covers how to set up .INI files as well as how to directly modify
entries in the System Registry.

4.1 Parameters

During the installation of WebBase, the default set of WebBase parametersis displayed and
you are given the option of modifying the parameters. All WebBase parameters described in
this section are extracted from the System Registry® when WebBase is launched. Changing the
entry for any parameter will have no effect on a running WebBase application. To effect a
change for any entry, you must stop and restart WebBase after editing the parameter.

The name of each parameter is case sensitive and must be entered exactly as shown below. If
aparameter name is entered incorrectly, WebBase will not be able to useitsvalue. The values
for string input fields are not case sensitive.

The following are the WebBase parameters, whether they are required or optional, and their
default value.

PortNo-- (required) -- the number (in decimal) of the port used by WebBase to
communicate with browsers. This port number must be unique within your environment
(i.e., not assigned to another application). The default for this parameter is 80, which is

9 All WebBase-related information is stored in the System Registry in HKEY_LOCAL_MACHINE/SOFTWARE/ExperTelligence,
Inc./WebBase/4.10. Prior to build 56, this information was stored in HKEY_LOCAL_MACHINE/System/CurrentControl Set/ Services/httpSQL.
Effective with build 56, only the WebBase parameters required to run WebBase as a service on Windows NT are stored in the latter location.

WebBase User’s Guide 35

Chapter 4: Initialization

the default port used by any HTTP Web server. If you will be running multiple web
servers, each must be assigned a unique port number.

Directory -- (required) -- the directory within which the form files are stored. Thefiles
may be within this specific directory, or they may be within subdirectories. During the
WebBase installation, this directory is specified as the *HTTP Root Directory’. This
directory location corresponds to a browser referencing * http://host-address/’ . The default
for this parameter is the device used during installation (e.g., ‘ C:\') and the directory
‘http’.

License -- (required) -- the value of your license number. Thereis no default for this
parameter. The license number must be entered in the format #E-#HHH#EH#. The hyphen
in the center of the number is part of the license. If it is not specified, an error message
will be displayed when you try to start WebBase.

LogDirectory -- (optional) -- the full pathname of a directory into which WebBase will
write log files for each query made of the system. Each day, WebBase will create a new
log file named WByymmdd.log where yy=year, mm=month, and dd=day. For example,
WB970504.10g isthe log file for May 4, 1997. These log fileswill contain one entry for
each query made of WebBase. The format and contents of the file are determined by the
LogFormat parameter described below. If the LogDirectory is not specified, WebBase
will not perform any logging. It is recommended that this parameter always be specified;
logging can then be enabled or disabled via the WebBase Options menu if so desired. Itis
not possible to enable logging if the LogDirectory parameter is not specified. During
installation, the default for this parameter is the directory containing program files (e.g.,
‘C:\WebBase') and the subdirectory ‘Logs .

LogFormat — (optiona) —the type of log format records that will be generated in the log
files. There are 5 types of log formats supported by WebBase. The following shows the
LogFormat parameter (0-4) and the corresponding record format:

4 — Extended Combi ned Log Fil e Format

3 — Comon Log File Format

2 - Extended Common Log Fil e Format

1 - Extended Oiginal WbBase (EMMCS) Log Fil e Format
0 - Oiginal WbBase (EMMCS) Log Fil e Format

If the LogFormat parameter is not specified but the user enables logging, al log records
will be written using the Extended Common Log File Format. Details on logging can be
found in Chapter 12.

errorLogFile -- (optional) —the full pathname of the error log file created and maintained
by WebBase for reporting operational errors. These messages can be helpful in
diagnosing problems you might encounter while WebBase executes. WebBase will create
the file, but the directory specified must exist before executing WebBase. During
installation, the default for this parameter is the directory containing program files (e.g.,
‘C:\WebBase') and ‘\Logs\WebError.log'. If not specified, no error log files will be
generated. It is strongly recommended that an error log file be maintained, as this can be
useful information in determining the source of program and application errors. Thereis
another error file -- error.log -- which may be created in the directory containing the
WebBase.exe application if WebBase crashes due to a program error.

Default -- (optional) -- the name of the default file when a directory is referenced. The
defaults are *default.htf’ and ‘default.htm’ in that order. This parameter can be specified

36

WebBase User’s Guide

asasinglefile name or as a series of files to be searched for in the order presented
(index.htm,index.html) separated by commas. If the parameter is specified with no
filename, then no default file will be used.

Extension -- (optional) -- the default extension (or extensions) to append to afile name
should the user enter what appears to be afile reference without an extension. Default
valueis'htf’,’htm’ in that order. This parameter can be specified as a single extension or
as aseries of file extensions to be searched for in the order presented (htm, html) separated
by commas. If the parameter is specified with no extension, then no default extension will
be appended to the file name to attempt to resolve it for the user.

Note:

Only the extension characters are specified; the period preceding the extension is
not included in this parameter.

HostName — (optional) — the DNS name identifying the default host system. Thisis used
to generate the %fullHostName% and %serverHostName%o variables if the browser does
not provide a Host header variable. The form designer can use these variables to do
redirects using a DNS name instead of an IP address. It isimportant to remember that this
name is NOT being used for name resolution of the host name used within a URL -- that is
done by the TCP/IP configuration where the domain name (and possibly multiple domain
names) are set up outside of WebBase. This HostName parameter is only used so that if
the user wants to do aredirect to a particular domain that the name of the domain can be
used in the URL instead of the IP address.

HostAddress — (optional) — a string containing a dotted |1 P address to which the heartbeat
command is to be sent (the heartbeat function is described in chapter 5). If not present,
WebBase uses *127.0.0.1", which should correspond in most systems to the local host.

StartupForm — (optional) -- a .htf form that WebBase will automatically run each time
the server is started - and before it begins processing any browser commands. WebBase
runs the Startup Form asiif it had been CALLed by the call macro. The only differenceis
that the Startup Form is CALLed by the WebBase Server itself and NOT by another .htf
form. This CALLed Startup Form is CALLed asif wait true were indicated - the server
walits for the form to complete before going on to process other forms - and it accepts any
number of returned parameters passed back from either areturn or exit macro in the
CALLed Startup Form. Since there is no browser involved in the running of this Startup
Form the output returned from this form is displayed in the WebBase WebServer window.
An example of such output is:

Runni ng StartupForm ' Startup.htf'.
01: 'K
StartupForm ' Startup.htf' conplete.

In the above the Startup Form is identified and the 01: 'OK" was the first (and only)
parameter returned by this form. Additional returns would be displayed as 02: ..., 03: ...
etc. If the CALLed Startup Form would have returned text to a browser (if CALLed from
another .htf form initiated by a browser command) that text will be displayed following the
above in the same WebBase WebServer window. This output can be used to visualy
verify that the Startup Form executed as expected. The workaround for Access databases
described in Chapter 14 shows how the startup form can be used.

HTTP_Proxy — (optional) — the name of the proxy host system. This parameter is only
used when the user is behind afirewall and wants to receive the “Late Breaking News”

WebBase User’s Guide 37

Chapter 4: Initialization

from ExperTelligence when WebBase is started. Thisisthe name or IP address of the
firewall system that WebBase is able to access.

HTTP_ProxyPort — (optional) — the port number of the proxy host system. This
parameter is only used when the user is behind a firewall and wantsto receive the “Late
Breaking News’ from ExperTelligence when WebBase is started.

Windows NT Service Parameters

The parameters described in this section are only required on Windows-NT systems when
WebBase isto be set up to run asa service. They are automatically set up as part of the
installation of WebBase on Windows-NT systems.

AppDirectory -- (required) -- the directory in which the application and related virtual
machine and DLL filesreside.

Application -- (required) -- the full pathname of where the WebBase.exe file will be found
when setting up WebBase to run as a service.

Editing WebBase Parameters

Adding new parameters or changing existing parameters is done using the WebBase
WebWizard Registration Database utility. If WebBase will not start due to an incorrect
parameter and it is not possible to use the WebBase WebWizard, or if a parameter isto be
deleted, see Appendix B for details on how to directly edit the System Registry. This appendix
also includes information on setting up the .INI files used on 16-bit systems. To edit
WebBase parameters,

1. Start WebBase and open up the WebBase WebWizard by entering the URL:
http://127.0.0.1: <port #>/wbwi zard/

The <port #> is the PortNo parameter. If port 80 isused, the ‘:<port #>' portion of the
above URL can be dropped.

2. Select the Registration Database anchor.

3. From the pull-down ligt, select ‘HKEY_LOCAL_MACHINE’ and then press the ‘OPEN’
button.

4. Select the'Open’ anchor next to the ' SOFTWARE' key.

5. Select the ‘Open’ anchor next to the ‘ExperTelligence, Inc.” key.

6. Select the ‘Open’ anchor next to the ‘WebBase' key.

7. Select the ‘Open’ anchor next to the version number (e.g., ‘4.10')".

8. Select the ‘Open’ anchor next to the ‘ Parameters’ key. All of the WebBase parameters
currently defined and their values are displayed in the table.

O 1he keys specified in steps 5-8 will exist aslong as the user selected to update the System Registry with the WebBase parameters entered during
installation. If any of these keys are not found, select the * Add New Key' anchor and enter the appropriate key name. Then proceed with the
subsequent steps.

38 WebBase User’s Guide

9. To add anew parameter, select the * Add new entry’ anchor and specify the parameter
name and desired value. Remember that the parameter name is case senditive.

10. To modify a parameter, select the * Edit’ anchor next to the parameter and specify the
changed value.

11. Stop and restart WebBase so that the new/modified parameters will take effect.
4.2 Extensions

The user can specify how WebBase will handle different types of files, based on thefile
extension. There are three options for how afile will be handled by WebBase:

1. Processthefile and return the results to the browser
2. Do not process thefile; just return the file contents to the browser.

3. Returna‘404 File Not Found' error even if thefile truly does exist. Thisisused for
hiding files that one wants to have associated with the files invoking them but ones that
make no sense for a user to try and address directly from a browser.

In addition to specifying whether the file will be processed or just returned by WebBase, the
user also specifiesthe ‘mimetype’. Thisisused to generate the Content-type header variable
returned to the browser; the browser uses this to determine how to deal with the file upon
receipt. For example, ‘ Content-type: text/html’ tells a browser to handle HTML tags within
the document while ‘ Content-type: text/plain’ would cause everything to be displayed; i.e., the
<H1> HTML tags would be printed and not processed.

The default file extensions and their mime types supported in \WWebBase are:

WebBase User’s Guide 39

Chapter 4: Initialization

* 404 np2v vi deo/ x- npeg2

abs audi o/ x- npeg npv2 vi deo/ x- npeg2

ai appl i cation/ postscript np2 audi o/ x- npeg

ai f audi o/ x-ai ff npa audi o/ x- npeg

aifc audio/x-aiff npega audi o/ x- npeg

aiff audio/x-aiff pac application/x-ms-proxy-autoconfi g
as application/x-javascript [pbm ;inmage/x-portable-bitmp
au audi o/ basi c pcd ;i mage/ x- phot o-cd

avi vi deo/ x- nsvi deo pdf application/ pdf

bin application/octet-stream|pgm inmage/x-portabl e-graymap
bmp i mage/ x- M- bnp pl appl i cation/ x-perl

cl ass application/octet-stream|png ;inage/x-png

cpio application/x-cpio pnm ;i mage/ x- portabl e- anymap
csh application/x-sh ppm ;i mage/ x- portabl e- pi xmap
doc application/ msword ps appl i cation/ postscript
dvi appl i cation/ x- dvi qt vi deo/ qui ckti e

eps application/postscript ra audi o/ x-pn-real audi o

exe application/octet-stream|ram audi o/ x-pn-real audi o

fif application/fractals ras inmage/ x/cnu/raster

gif ;image/ gif rgb inmage/ x-rgb

gtar application/x-gtar rtf application/rtf

gz application/x-gzip sh application/x-sh

hgx application/ mac-bi nhex40 |shar application/ x-shar

ht f {text/htm} sit application/x-stuffit
htm {text/htm} snd audi o/ basic

htm {text/htm} tar application/x-tar

ice x-conference/x-cooltalk |tcl application/x-tcl

i ef ;imagel i ef tex application/x-tex

jpe ;imgeljpeg texi application/x-texinfo

j peg ;imagel/jpeg text text/plain

jpg ;imageljpeg tif image/tiff

js application/x-javascript |[tiff image/tiff

| at ex application/x-1 atex txt text/plain

I's application/x-javascript |wav audi o/ x-wav

nocha appl i cation/ x-javascript |xbm i nmage/ x-xbit map

nov vi deo/ qui ckti me Xpm i mage/ x- xpi xmap

npe video/ npeg xwd i mage/ x- xwi ndowdunp

npeg vi deo/ npeg z appl i cati on/ x- conpr ess
npg video/ npeg zip application/x-zip-conpressed

WebBase users can go with the defaults as shown above, totally override them with their own,
or indicate they want to take the defaults but override individual entries - change them, delete
them, and add to them.

To specify how afile extension type is to be handled, the user creates a key in the system
registry identifying the file extension. The vaue of the extension is the mime-type. The
default mime-type for returning an HTML form without WebBase processing would be
‘text/html’.

Any file containing WebBase macros or variables must be set up to be processed by the
WebBase server. By default, WebBase will process any file with an extension of .htf, .htm or
html. To indicate afile extension that WebBase should processed, the mime-type is enclosed
in{ } characters. For example, .htf files have a mime-type of ‘text/html’ but use WebBase
processing, so their mime-type would be defined as ‘{ text/html} .

40

WebBase User’s Guide

To indicate an extension type isto be ignored and that WebBase isto return the 404 File Not
Found error message for such afile, amime-type of ‘404’ is specified.

If no extensions have been defined, all the default extensions listed previoudy are used. If the
user wants to continue to use these system defaults but add or modify some additional file
extensions, afile extension of ‘7?7 whose value is ‘use all system defaults must be specified.
If the user creates one or more extensions but does not include the ‘ 7?7 extension, no default
extensions will be used. If the*???7 entry isfound, the default extensions are first loaded into
the extensions dictionary, and then the registry entries are processed. If thisentry is not found,
only the registry entries are processed.

An extension that has no associated mime-type indicates that it isto be removed from the
dictionary. If the key is not found in the dictionary, no error will result. For example, to ignore
GIF files an extension of ‘gif’ would be created with no value.

The**” extension is used to specify how any extension not found is to be treated. By defaullt,
thiswill return the 404 error for any extension not otherwise encoded in the dictionary.

If logging is enabled, alog record is added for each command processed or returned by
WebBase. Itispossibleto indicate that specific extension types are not to be logged. Thisis
done by preceding the mime-type with a semicolon (;). For example,

ht m
ht f
ht f

;text/htm no WebBase processing, no | oggi ng
;{text/htm} WebBase process, no | ogging
{;text/htnm} WebBase process, no | ogging

Notice that the order of the*;’ and ‘{* characters do not matter. A number of extensions that
return images are set up by default to not generate log records, including .gif and .jpg
extensions.

Editing Extensions

WebBase only reads extensions at startup. If an extension is added, changed or deleted,
WebBase must be stopped and restarted for the change to take effect. To create and/or edit
the WebBase extensions, perform the following steps:

1. Start WebBase and open up the WebBase WebWizard by entering the URL:
http://127.0.0.1: <port #>/wbwi zard/

The <port #> is the PortNo parameter. If port 80 isused, the ‘:<port #>' portion of the
above URL does not have to be used.

2. Select the Registration Database anchor.

3. From the pull-down ligt, select ‘HKEY_LOCAL_MACHINE’' and then press the ‘OPEN’
button.

4. Select the'Open’ anchor next to the ‘' SOFTWARE' key.
5. Select the ‘Open’ anchor next to the ‘ExperTelligence, Inc.” key.
6. Select the ‘Open’ anchor next to the ‘WebBase' key.

7. Select the‘Open’ anchor next to the version number (e.g., ‘4.10').

WebBase User’s Guide 41

Chapter 4: Initialization

8. If thekey ‘Extensions does not exist, create it by selecting the * Add New Key' anchor and
entering ‘ Extensions' asthe key name. Remember that this name is case sengitive.

9. Select the ‘Open’ anchor next to the ‘Extensions’ key. All of the WebBase extensions
currently defined and their mime-type values are displayed in the table.

10. To add a new extension, select the * Add new entry’ anchor and specify the extension name
and desired mime-type value.

11. To modify an extension, select the * Edit’ anchor next to the extension and specify the
changed value.

12. Stop and restart WebBase so that the new/modified extensions will take effect.

4.3 Aliases

WebBase includes the ability to handle directory aliases. When a URL is entered, the node
name immediately following the host name can be an dlias. For example, if the URL
‘www.expertelligence.com/foobar/filename.htf’ was entered, the ‘foobar’ is extracted from the
URL and WebBase checks the Aliases for an entry whose nameis ‘foobar’. If thereisan alias
that has been defined whose name is ‘foobar’ with a value of ‘f:\foo\bar\, then the above URL
would trandate to referencing aform at:

f:\foo\bar\fil enane. htf
and not in the default Directory (generally c:\http).

Note that only the first node of the URL beyond the host name is used to see if it matches an
dlias. The order for matching is:

1. Isthere an aliasfor thisname at this particular |P address?
2. Isthere an dlias for this name?

3. Isthisalegitimate directory name within the default directory path?
Editing Aliases

WebBase only reads aliases, like extensions and parameters, at startup. If an aliasis added,
changed or deleted, WebBase must be stopped and restarted for the change to take effect. To
create and/or edit the WebBase aliases, perform the following steps:

1. Start WebBase and open up the WebBase WebWizard by entering the URL:
http://127.0.0.1: <port #>/wbwi zard/

The <port #> is the PortNo parameter. If port 80 isused, the ‘:<port #>' portion of the
above URL does not have to be used.

2. Select the Registration Database anchor.

3. From the pull-down ligt, select ‘HKEY_LOCAL_MACHINE' and then press the ‘OPEN’
button.

4. Select the'Open’ anchor next to the ‘' SOFTWARE' key.

42

WebBase User’s Guide

5. Select the ‘Open’ anchor next to the ‘ExperTelligence, Inc.” key.
6. Select the ‘Open’ anchor next to the ‘WebBase' key.
7. Select the‘Open’ anchor next to the version number (e.g., ‘4.10’).

8. Ifthekey ‘Aliases does not exist, create it by selecting the * Add New Key' anchor and
entering ‘Aliases’ as the key name. Remember that this name is case sengitive.

9. Select the ‘Open’ anchor next to the *Aliases’ key. All of the WebBase aiases currently
defined and their values are displayed in the table.

10. To add a new dlias, select the * Add new entry’ anchor and specify the aias name and
desired value.

11. To modify an alias, select the * Edit’ anchor next to the extension and specify the changed
value.

12. Stop and restart WebBase so that the new/modified aliases will take effect.
4.4 Multiple Domains

WebBase supports multiple domains. One can set up multiple IP addresses in the TCP
interface to reference the same physical machine™. For example, a single machine may be
configured to support addresses: 1.2.3.1, 1.2.3.2, 1.2.3.3 and 1.2.3.4. The machine may also
be known by 127.0.0.1, which is the default ‘local host’ way of addressing the system, but only
from itself. The WebBase %serverAddress% variable returns the | P address based on how the
server was addressed.

Since different behavior may be desired depending on how the server is addressed, WebBase
allows the user to define different domains. Within each domain, it is possible to define the
desired behavior with respect to parameters, aliases and extensions.

The following parameters can be defined for each domain. If not explicitly specified, the
default value of the parameter as described earlier in this chapter is used.

Directory -- the directory containing various form files, or subdirectories containing forms
files. Thisdirectory isonly relevant to auser coming in at this IP address or domain.

Default -- the name of the default file when adirectory is referenced. The defaults are
default.htf and default.htm in that order. This parameter can be specified asasinglefile
name or as a series of files to be searched for in the order presented (index.htm,index.html)
separated by commas. If the parameter is specified with no filename, then no defaullt file
will be used.

Extension -- the default extension (or extensions) to append to afile name should the user
enter what appearsto be afile reference without an extension. Defaultsis ‘htf,htm’ in that
order. This parameter can be specified as a single extension or as a series of file extensions
to be searched for in the order presented (htm, html) separated by commas. If the

2 Muti ple domain support within the TCP/IP configuration is currently only supported under Windows NT systems. Thisisan operating system
limitation, not a WebBase limitation.

WebBase User’s Guide 43

Chapter 4: Initialization

parameter is specified with no extension, then no default extension will be appended to the
file name to attempt to resolve it for the user.

HostName -- the DNS name identifying the domain. Thisis used to generate the
%fullHostName% and %serverHostName% variables if the browser does not provide a
Host header variable. The form designer can use these variables to do redirectsusing a
DNS name instead of an IP address. It isimportant to remember that this nameis NOT
being used for name resolution of the host name used within aURL -- that is done by the
TCP/IP configuration where the domain name(s) are set up outside of WebBase. This
HostName parameter is only used so that if the user wants to do a redirect to a particular
domain that the name of the domain can be used in the URL instead of the |P address.

Creating and Editing Multiple Domains

Each domain to be serviced by WebBase is created as a separate entry within the System
Registry. Under this key are additional subkeysto specify aiases, extensions and other
parameters. If multiple domain information is modified, WebBase must be stopped and
restarted for the change to take effect. To create and/or edit multiple domainsin WebBase,
perform the following steps:

1.

10.

11.

Start WebBase and open up the WebBase WebWizard by entering the URL:
http://127.0.0.1: <port #>/wbwi zard/

The <port #> is the PortNo parameter. If port 80 isused, the ‘:<port #>' portion of the
above URL does not have to be used.

Select the Registration Database anchor.

From the pull-down ligt, select ‘HKEY_LOCAL_MACHINE' and then press the ‘ OPEN’
button.

Select the *Open’ anchor next to the * SOFTWARE' key.

Select the *Open’ anchor next to the ‘ExperTelligence, Inc.” key.
Select the *Open’ anchor next to the ‘WebBase' key.

Select the *Open’ anchor next to the version number (e.g., ‘4.10').

If the key ‘Domains does not exist, create it by selecting the * Add New Key' anchor and
entering ‘Domains’ as the key name. Remember that this name is case sengtive.

Select the *Open’ anchor next to the ‘Domains key. All of the WebBase multiple
domains are specified as subkeys in the displayed table.

To create a new multiple domain, select the ‘ Add New Key' anchor and enter the IP
address of the domain. This domain must also be set up within the TCP/IP configuration
access ble viathe Network option within the Windows Control Panel.

Select the *Open’ anchor next to the desired multiple domain key. The entries table
indicates whether any parameters have been defined for this domain.

WebBase User’s Guide

12. To add a parameter, select the ‘ Add new entry’ anchor and specify the parameter name
and desired value. Parameters should only be defined to override the default parameter
value.

13. To modify a parameter, select the * Edit’ anchor next to the parameter and specify the
changed value.

14. The subkey table indicates whether any aliases or extensions have been defined for this
domain. To create extensions or aliases, follow steps #3-11 from the preceding sections on
Extensions or Aliases, respectively, to create the subkey within the registry and then define
appropriate extensions or aliases.

15. Stop and restart WebBase so that the new/modified multiple domain information will take
effect.

WebBase User’s Guide 45

Chapter 4: Initialization

46 WebBase User’s Guide

WEB
5% WebBase Windows

€ —ExperTalligance
Chapter 5

There are a number of windows that are displayed on the host system while WebBase is
running. This chapter describes these windows and the menu options available on them. Note
that when WebBase isinstalled as a service under Windows NT, there may not be any
windows displayed.

5.1 Late Breaking News Window

Thefirst window displayed when WebBase is started is the * Late Breaking News Window'.
An example of thiswindow is shown in Fig. 5.1 below.

Figure 5.1 Late Breaking News Window

K5 Late breaking news from ExperTelligence. Inc. M=l E3
Fle Edit Help
Copyright - @ 1995-7 ExperTelligence, Inc. -

Welcome to WebBase 4.10 build 56 from ExperTelligence, Inc. .

Yisit the WebWizard[TM)] - point vour browser to
hitp:ff127.0.0.1/WbWizard
to learn what WebBase can do for you.

Starting Server... WebBase 4.10 build b6 -
| | »

The lines shown above are always displayed, and include the copyright statement, the welcome
statement including the current WebBase version and build numbers, and an indication that the
server is starting. The WebBase WebWizard information is displayed as long as the
directory containing the WebBase WebWizard forms can be found on the server system. The
WebBase WebWizard isingtalled as part of the WebBase installation. Information on the
WebBase WebWizard is provided as readme.txt files with each WebBase WebWizard toal;
additional documentation is available on the WebBase web page. Information on other
WebBase add-on packages can also be found at the WebBase web site.

WebBase User’s Guide 47

Chapter 5: WebBase Windows

Below these linesisthe latest news information that is posted frequently by ExperTelligence.
This may include information on new releases, bug fixes, and documentation updates. If you
do not see the news information when you start WebBase, it may be because:

Y our WebBase server is behind afirewall and cannot access the ‘ Late Breaking News
data. See Chapter 13 for information on firewalls.

You are not on the Internet. Y ou can still use WebBase; you will just not see any newsin
this window.

The ExperTelligence server is unavailable. In this case, the Late Breaking News Window
will display:

News server tenporarily not avail able.
Pl ease request “Current User News” |ater.

Errors that occur while WebBase is starting or running are also displayed in this window.
During the installation and configuration of WebBase, it is suggested that this window be kept
open to detect if any errors have occurred.

Menu Options

All WebBase windows include a menu bar at the top of the window. The‘Late Breaking
News Window’ includes several very smple menu options. Each of the menu options are
described below.

File->Exit -- If this menu option is selected, the ‘ Late Breaking News Window’ is closed.
It is possible to run WebBase without this window open. This window is only necessary
to read the latest news about the product.

Edit->Copy -- This menu option is only active if an area of text in the window has been
highlighted. If this menu option is selected, the highlighted text is copied into the system’s
paste buffer. It can then be placed into another application (e.g., Word, PowerPoint). The
keyboard shortcut <ctrl>-C (press the Ctrl key and the C key down at the same time) can
also be used to perform a copy operation.

Edit->Clear All News -- If this menu option is selected, the news information displayed
below the startup information is cleared. The user may subsequently select to view
updated news by sdlecting the Help>Current User News option. Clearing the news areaiis
also useful to easily see if any errors occur since error information is displayed in this
window.

Edit->Find -- If this menu option is selected, the Find Dialog shown below in Fig. 5.2 is
displayed. The user must specify the string to be found as well as whether the search will
be forwards or backwards from the current location of the cursor. Thisdialog also allows
the user to specify whether a case sensitive or insensitive search will be done. Once the
information to be matched is entered, the user selectsthe ‘Find’ button. If amatchis
found, it is highlighted. 1f no match isfound, a dialog indicating that the search string was
not found is displayed. Note that aforwards search will only go to the end of thefile; it
does not loop around and start over at the beginning of thefile. Likewise, a backwards
search will only go to the beginning of the file; it does not loop around and start over at the
end of thefile. The keyboard shortcut <ctrl>-F (press the Ctrl key and the F key down at
the same time) will aso cause the Find Dialog to be displayed.

48

WebBase User’s Guide

Figure 5.2 Find Dialog

Find |
Find:
[T Caze zensitive Direction
* Forward ¢ Backward
Eind Cancel |

Edit->Find Again -- If no string has been specified on the Find Diaog, the user is
prompted to enter the search string. Using either this string or the string previously
specified on the Find Diaog, the next occurrence of the string is located and highlighted.
Note that if no string was specified on the Find Dialog, the default search direction
(forward) and type (case insensitive) will be used. If a search string was specified on the
Find Dialog, the search parameters specified on the Find Dialog will be used. The
keyboard shortcut <ctrl>-G (press the Ctrl key and the G key down at the same time) can
also be used to invoke the Find Again function.

Help->Current User News -- If this option is selected, the latest news from
ExperTelligence will be retrieved and displayed in the window. Any previous news or
error messages displayed on the window are not cleared. It is recommended that the
Edit>Clear All News option be selected before this option is selected.

5.2 WebBase Server Window

The second window displayed when WebBase is started is the *WebBase Server Window' .
Thetitle of this window aways indicates the version and build of the WebBase server. An
example of thiswindow is shown in Fig. 5.3 below.

WebBase User’s Guide 49

Chapter 5: WebBase Windows

Figure 5.3 WebBase Server Window

5 webBase 4.10 build 56 Server M=l E3
WiebServer Edit Options Help

070 ::Tue 06 May 1997 13:46:49 - Idle

Copyright - @ 1995-7 ExperTelligence, Inc. -
“ebBase 4.10 build 56 Server
License: 822375-2468999

valid: Permanent License
Started: Tuesday, 06-May-1997 13:46:48 GMT
Parameters: 4.10
On host: willnchig.expertelligence.com
Using port: 80
Sockets status: Bunning on Windows 95.
DLL: Microsoft Windows Sockets Yersion 1.1.
Maximum NMumber of Sockets: 256
Size of largest UDP datagram: 65467

Registry Parameters...

AppDirectory = CAWebBase

Application = C\WebBaselWebBase.exe

Directory = CAHTTP

errorLogFile = CA\WebBaselLOGSYWebError.log .J_v_]
4 | ap

There are three components to this window: the menu bar, the status line, and the text area.
Each of these are described in the following sections.

WebBase Server Window Menu Bar
The menu bar provides four sets of menu options. Each set is described below.
WebServer Menu Options

Pause Server -- Thisis atoggle (on/off) option. If the server has been paused, a check
mark is displayed next to the menu option. If the server is not paused, no check mark is
displayed. If thisoption is selected and the server is active, the confirmation dialog shown
in Fig. 5.4 isdisplayed. If the user confirms that the server should be paused, the status
line in the window is redisplayed in red and the remainder of the window is displayed in
blue-green. While the server is paused, it will return a“503 The Server is Too Busy”
status code and message back to any requesting browsers. Although some server
resources are required to handle the incoming requests and return the status, they are very
minimal. If this option is selected and the server is paused, the server will be re-activated
without any confirmation from the user. Pausing the server is useful to administer
databases without having to shut down the server and without having to wrap errorProtect
statements around forms that would otherwise generate errors. Alternative approaches to
database administration are presented in Chapter 14.

50 WebBase User’s Guide

Figure 5.4 Pause Server Confirmation Dialog

Pleaze Confirm i

e Pauszing the Server will cause
* any incomming commandsz to
receive a 'B03 Too Busy"' errar.

Pauge the Server?

Close All Connections -- If this option is selected, the confirmation dialog shown in Fig.
5.5isdisplayed. If the user confirmsthat all connections should be closed, all commands
in progress will be closed and the associated communications sockets will be closed. This
option is aso provided for trouble-shooting. If your server is not responding properly, you
might try this option first to seeif the problem is resolved.

Figure 5.5 Close All Connections Confirmation Dialog

Pleaze Confirm i

@ Clozing All Connections will immediately
L]

cloze all commands in progrezs and cloze
the aszzociated communications sockets.

Cloze All Connections?

Mo i

Clear All Caches -- If this option is selected, the confirmation dialog shown in Fig. 5.6 is
displayed. If the user confirms that the forms and ODBC connection caches should be
closed, the caches are emptied without altering the status of the caching state as set viathe
Options Menu. Thisis equivalent to selecting both the ‘ Clear Forms Cache’ and ‘ Clear
ODBC Cache' menu options.

Figure 5.6 Clear All Caches Confirmation Dialog

Pleaze Confirm i

@ Clearing All Caches will immediately empty the

forms and ODBC caches without altering the status
aof the caching state az zet via the Options menu.

Clear &l Caches?

Remove All User Variables -- If there are no user variables currently defined, an
information window is presented indicating that no action is necessary. If thisoption is
selected and thereis at least one user variable dictionary, the confirmation dialog shown in
Fig. 5.7 isdisplayed. The total number of user variable dictionariesis specified as part of

WebBase User’s Guide 51

Chapter 5: WebBase Windows

Figure 5.7

thedidog. If the user confirmsthat all user variable dictionaries and their contents should
be deleted, the user variable dictionaries are emptied and removed. See Chapter 10 for
additional information on user variables and user variable dictionaries. This option should
be used only during form development and when no users are actively making requests of
the WebBase server. If one or more form applications have been devel oped using user
variables and the user variable dictionaries are emptied and deleted, any user currently
interacting with the server may get unexpected results or errors.

Remove All User Variables Confirmation Dialog

Please Confirm i

q Remaoving All User W ariables
* will immediately remove the
1 UsgerVanable Dictionany

that currently exists.

Remove All Lser Yariables.

] me |

Figure 5.8

Clear Forms Cache -- If this option is selected, the confirmation dialog shown in Fig. 5.8
isdisplayed. If the user confirmsthat all the formsin the cache should be cleared, the
formsare removed. Forms caching is enabled via the Options menu (Enable Cache Read)
or by setting the value of %cacheEnabled% to true (default value). Forms caching can be
disabled via menu option or by setting the value of %cacheEnabled% to false. If forms
caching is disabled, no forms will be in the cache so it is not necessary to clear them. Itis
strongly recommended that forms caching be used. When afileis specified as part of a
URL, WebBase located the file on disk, opens and reads the file, parses the text into
internal structures, and then processes the macros and variables within thefile. The
resulting output stream is returned to the browser. If forms caching is on, the internal
structures built for the file are cached in memory. When the file is subsequently requested,
the interna structures are retrieved from cache. WebBase does not have to find the file,
read it and parseit. This can provide improved throughput and faster response. Itis
possible to clear both the forms cache and the ODBC connection cache using the Clear Al
Caches menu option.

Clear Forms Cache Confirmation Dialog

Pleaze Confirm i

@ Clearing the Forms Cache will remowve

all formz from the cache.

All farmz will be acceszzed fram the file
gugtem and, if caching iz enabled, added
back to the cache when read. The status
af farms caching as 2et in the Options
menu will not be altered.

Clear Forms Cache?

52

WebBase User’s Guide

Figure 5.9

Clear ODBC Cache -- If this option is selected, the confirmation dialog shown in Fig. 5.9
isdisplayed. If the user confirmsthat all the ODBC connections in the ODBC cache
should be cleared, the connections are removed. ODBC connection caching is enabled via
the Options menu (Cache ODBC Connections) or by setting the value of %cacheODBC%
to true (default value). ODBC connection caching can be disabled via menu option or by
setting the value of %cacheODBC% to false. If ODBC connection caching is disabled, no
connections will be in the cache so it is not necessary to clear them. It is strongly
recommended that ODBC connection caching be used. Each sql macro request specifiesa
source hame, user name and password. An ODBC database connection is made using the
source name and user name. |f %cacheODBC% is true, the connection is cached. If a
subsequent sgl macro specifies the same source name and username, the connection in the
cacheis used and a new connection is not created. This can significantly reduce the
amount of time it takes WebBase to process a request for the second and subsequent
reference to the same source and username. See Chapter 12 for more information on
ODBC caching. Clearing the ODBC cache will break any locks that WebBase has on
ODBC databases. Releasing these locks is necessary to perform database maintenance.
See Chapter 14 for more information on database maintenance.

Clear ODBC Cache Confirmation Dialog

Pleaze Confirm i

@ Clearing the ODBC Cache will immediately remove

all ODBC connections without altering the status of
the ODBC caching state as set via the Options menu.

Clear DBC Cache?

Exit -- If thisoption is selected, the confirmation dialog shown in Fig. 5.10 below is
displayed. Thisdiaog isalso displayed if the user selects the close option from the
window bar. If so confirmed, all WebBase windows are closed and WebBase processes
stopped.

Figure 5.10 WebBase Exit Confirmation Dialog

Pleaze Confirm 1

@ Really exit ‘webBaze

Edit Menu Options

Copy -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Find -- this menu option provides the same functionality as described for the Late
Breaking News Window.

WebBase User’s Guide 53

Chapter 5: WebBase Windows

Find Again -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Heartbeat -- If thisoption is selected, a Heartbeat Window is opened. Thiswindow is
described later in this chapter. The keyboard shortcut <ctrl>-H (press the Ctrl key and the
H key down at the same time) can aso be used to open a Heartbeat window.

Total View -- If thisoption is selected, a Total View window is opened. Thiswindow is
described later in this chapter. The keyboard shortcut <ctrl>-T (press the Ctrl key and the
T key down at the same time) can a so be used to open a Total View window.

Options Menu Options

Enable Transactions Pane -- Thisis atoggle (on/off) option. If the status line is enabled
(default), a check mark is displayed next to the menu option. If the statuslineis disabled,
no check mark is displayed. If the user turns the option off, the status line is displayed in
gray and only a copyright statement is displayed within the status line. More information
on the status line is presented later in this chapter.

Open Transactions Window -- If this option is selected, a WebBase Transactions
Service Window is opened. Thiswindow is described later in this chapter. While the
WebBase Transactions Service window is open, a checkmark appears next to this option.
If the option is selected while there is a check mark next to it, the WebBase Transactions
Service window is brought to the front.

Load Global Variables -- If this option is selected, the confirmation dialog shown in Fig.
5.11 isdisplayed. If the user confirms that the global variable values should be updated,
they are read in from the System Registry. The new values of al the global variables are
displayed on the text area of the WebBase Server window. This option is only used when
a change has been made to aglobal variable. See Chapter 9 for more information on global
variables. Each time WebBase starts, it automatically readsin all the parameters, global
variables and other information set up in the System Registry. It isimportant to remember
that only global variables can be reloaded after WebBase has been started. WebBase
parameters, aliases, extensions and multiple domain changes require that WebBase be
stopped and restarted.

Figure 5.11 Load Global Variables Confirmation Dialog

Pleaze Confirm I

@ Thiz will ooernarite the existing Global Yariable definitions.

Load the Global Y anables oy

Enable Cache Read -- Thisisatoggle (on/off) option. If forms caching is enabled
(default), a check mark is displayed next to the menu option. If forms caching is disabled,
no check mark is displayed. If this option is selected, one of the confirmations shown in
Fig. 5.12 isdisplayed. The dialog on the left is displayed if caching is currently enabled;
the dialog on the right is displayed if caching is currently disabled. If caching isenabled,
any form that is referenced is read from the file system, the text is parsed, and the resulting

54 WebBase User’s Guide

information is added to the cache. The advantage of using forms caching is that WebBase
will not have to hit the disk to read the form each time it is accessed and will not have to
parse the text in thefile. If the form is subsequently referenced, it will be retrieved from
the cache. This substantially reduces the amount of time it takes \WebBase to process a
request for the second and subsequent reference to the same Web page. If thisoptionis
turned off, al output forms will be acquired from the file system even if they are in the
cache. If thisoption is disabled, the Enable Cache TimeCheck option isaso disabled. If a
change to caching is made using this menu option, it will stay in effect until WebBase is
stopped. The variable %cacheEnabled% should be set to make any persistent change to
whether forms caching will be used.

Figure 5.12 Enable Cache Read Confirmation Dialogs

Pleaze Confirm 1

Pleaze Confirm 1

e Dizabling Cache Read wil B

\{Q cauze all output farms o be fq Enabling Cache Fiead wil
acquired from the file syztem \{Q |k, far autput farms in cache
even if they are in the cache. and reduce file system access.

Dizable Cache Read? Enable Cache Read?

Enable Cache TimeCheck -- This option is only active if forms caching is enabled. This
is atoggle (on/off) option. If time-check caching is enabled (default), a check mark is
displayed next to the menu option. If time-check caching is disabled, no check mark is
displayed. If this option is selected, one of the confirmations shown in Fig. 5.13is
displayed. The diadog on the left isdisplayed if time-checking is currently enabled; the
diaog on theright is displayed if time-checking is currently disabled. If thisoptionis
enabled, WebBase will check the date of any file in the cache to determine if a more recent
version existsin the file system. If amore recent version is found, the newer version is
displayed and cached. Enabling this feature helps ensure devel opers are aways seeing the
most current form -- they need not be concerned whether the form they are editing has
already been cached or not. If thisoption is disabled, the cached forms will aways be
used even if amore recent form existsin the file system. During production, it is
recommended that this option be turned off, as thiswill enable throughput. If a change to
time-check caching is made using this menu option, it will stay in effect until WebBase is
stopped. The variable %cacheTimeCheck% should be set to make any persistent change
to whether time-check caching will be used.

Figure 5.13 Enable Cache TimeCheck Confirmation Dialogs

Pleaze Confirm 1 Pleaze Confirm 1

@ Dizabling Cache TimeCheck @ Enabling Cache TimeCheck

means cached formz will ahways means a cached farm will be
be uzed, even if a more recent replaced by a mare recent
form exiztz in the file system. form from the file syztem.

Dizable Cache TimeCheck? Enable Cache TimeCheck?

WebBase User’s Guide 55

Chapter 5: WebBase Windows

Cache ODBC Connections -- Thisis atoggle (on/off) option. If ODBC connection
caching is enabled (default), a check mark is displayed next to the menu option. 1f ODBC
connection caching is disabled, no check mark is displayed. If this option is selected, one of
the confirmations shown in Fig. 5.14 is displayed. The dialog on the left is displayed if
connection caching is currently enabled; the dialog on the right is displayed if connection
caching is currently disabled. If this option is enabled, the connection to the ODBC
database is added to the ODBC cache after the first database access. Statements to send
or retrieve data from this source are addressed to the source viathe ODBC connection. By
caching the connection, significant startup and connection operations are avoided on
subsequent queries. If this option is disabled, ODBC connections must be reestablished on
each query. Having ODBC connections cached provides faster accessif there are to be
multiple accesses of the same database with the same user/password combination. If a
change to ODBC connection caching is made using this menu option, it will stay in effect
until WebBase is stopped. The variable %cacheODBC% should be set to make any
persistent change to whether ODBC connection caching will be used.

Figure 5.14 Cache ODBC Connections Confirmation Dialogs

Please Confirm

Please Confirm
B - i) Enabling ODEC Cache will
G, Disabling DDBC Cache wil) . retain ODBLC connections o improve queny speed.
* cauze ODBLC connections to be reestablished every query.

Disable ODEC Cache? Enable DDBC Cache?

Ma !

Enable Log File -- Thisis atoggle (on/off) option. If logging is enabled (default), a check
mark is displayed next to the menu option. If logging is disabled, no check mark is
displayed. If this option is selected, one of the confirmations shown in Fig. 5.15is
displayed. The diadog on the left isdisplayed if logging is currently enabled; the dialog on
theright is displayed if logging is currently disabled. If thisoption is selected, log files
will be generated for each WebBase transaction if a user has aso defined a LogDirectory
as a WebBase parameter. If logging is enabled, alog fileis created each day to record
each query made of WebBase. See Chapter 12 for details on logging and log file formats.
If this option is disabled, log files will not be generated. 1f a change to logging is made
using this menu option, it will stay in effect until WebBase is stopped. The variable

%l ogEnabled% should be set to make any persistent change to whether logging will be
done.

Figure 5.15 Enable Log File Confirmation Dialogs

Pleaze Confirm i Pleaze Confirm i
) Clicking **res" will) Clicking **res" will:
* ztop logging transactiong, and * open a log file, and

cloze the current log file. ztart logging transachions.

Stop logging Tranzactions? Start logging Tranzactions?

Flush Log File -- Thisoption is only active if logging is enabled. Information to be written
into the log file is buffered until sufficient data has been obtained, at which point it is

56

WebBase User’s Guide

written to the log file on disk. If this option is selected, any information in the buffer is
written to disk. This ensures that the information the user viewsin thelog fileis al that
has been generated.

Help Menu Options

Current User News -- this menu option provides the same functionality as described for
the Late Breaking News Window. If the Late Breaking News Windows is not open, it will
automatically be opened and brought to the front.

WebBase Server Window Status Line

The status line displayed benesth the menu bar on the WebBase Server Window provides
information about the current state of the system. The statuslineis normally displayed in
whitewhen it isactive. If the user has turned off the status information by deselecting the
‘Enable Transactions Pane' option in the Options menu, the WebBase copyright statement is
displayed on a gray background. If the server has been paused, the status line hasared
background.

In norma mode, the status line displays a number of important pieces of information. From
left to right, the data displayed is the command counter, the concurrent commands in process,
and the status. The command counter is separated from the concurrent commands in process
by a‘/". The numbers are separated from the statusby a*::’.

command counter -- this value starts at zero when WebBase is launched and is
incremented whenever WebBase processes a command (including the GIFs, JPGs, etc.)

concurrent commands in process -- this value is the number of commands that are either
being processed or are waiting to be processed. On most systems, this value will be either
1or 0. However, if the server isloaded down with a mix of formsincluding heavy SQL
access, this value may be higher.

status -- The status information is either the last command processed or a date/time stamp
with the server’s status. When arequest is made of the WebBase server, the status line
will show the requesting browser’s IP address followed by ‘GET’ or ‘POST’ and the
command. For example, if auser istesting WebBase by sending the dateTime command,
the status line would show

1/ 0 :: 127.0.0.1 CET dateTinme

Once aminute, a status process runs within WebBase to check to seeif any commands are
in process. If there are no commands being processed, the status line is updated to indicate
that the system isidle. The date and time are also displayed, and are updated each minute
s0 the user can verify that WebBase is till responding. The idle status message |ooks
like:

2/ 0 :: Thr 13 Mar 1997 12:54:29 - lIdle

WebBase User’s Guide 57

Chapter 5: WebBase Windows

WebBase Server Window Text Display

The following sets of information are displayed on the WebBase Server window below the
status line.

System Parameters -- The system parameters section starts with the WebBase copyright
statement and identifies the WebBase version and build, the user’ s license number, when
WebBase was started, the type of system in use and other network-related information.

WebBase Parameters -- This section isalist of all the WebBase startup parameters
defined in the System Registry. Many of these parameters are entered during installation.
If any of these parameters needs to be changed, it is necessary to modify the value in the
System Registry and then stop and restart WebBase. All the WebBase parameters are
defined in Chapter 4.

Aliases — This section is only included if the user has defined any aliasesin the System
Registry. If so, each alias and its trandation are displayed in this section. Alias
information and how to define aliasesis found in Chapter 4. If an dias needsto be
changed or added, it is necessary to modify the value in the System Registry and then stop
and restart WebBase.

Domains — This section is only included if the user has defined any domainsin the System
Registry. If so, each domain and its associated parameters are displayed in this section.
Multiple domain support and how to define multiple domains are found in Chapter 4. If a
parameter within a domain needs to be added or modified or if a domain needs to be added,
it is necessary to modify the information in the System Registry and then stop and restart
WebBase.

Commands -- This section lists all the built-in commands that are available in WebBase.
These are described in Chapter 3.

Dynamic variables -- This section lists al the WebBase dynamic variables. These are
described in Chapter 9.

Global variables -- This section lists all the global variables. If the user selects the ‘L oad
Globa Variables option from the Options menu, the updated global variables are
displayed here.

5.3 WebBase Transactions Service Window

The WebBase Transactions Service Window maintains a queue of messages, the most recent is
displayed at the top. The messages are those that are written out to the standard log file. If
the global variable %transactionsWindow% is created and set to true, this window will
automatically be opened when WebBase is started.

58

WebBase User’s Guide

Figure 5.16 WebBase Transactions Service Window

£S5 webBase 56 Transactions Service (100 lines) M=l E3
File Edit Status
1 <=> Service active as of Fri 14 Mar 1997 10:20:53 . =

1 | H

WebBase Transactions Menu Bar
The following menu options are available on the WebBase Transactions Service Window.

File>Exit -- If this option is selected, the WebBase Transactions Service Window is
closed. Closing thiswindow has no effect on other WebBase functions.

Edit>Cut -- thismenu option is only active if an area of text in the window has been
highlighted. If this menu option is selected, the highlighted text is copied into the system’s
paste buffer and removed from the text area. 1t can then be placed into another application
(e.g., Word, PowerPoint). The keyboard shortcut <ctrl>-X (pressthe Ctrl key and the X
key down at the same time) can also be used to perform a cut operation.

Edit>Copy -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Edit>Clear All -- If this option is selected, all of the information in the text areais
removed.

Edit>Find -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Edit>Find Again -- this menu option provides the same functionality as described for the
Late Breaking News Window.

Edit>Set Lines -- If this option is selected, the Set Lines Dialog shown in Fig. 5.18 below
isdisplayed. The number of lines of information to be displayed must be between 10 and
10000; the default is 100. The number of linesis displayed in the title bar of the window.
The number of lines specified can affect system performance, as alarge number of lines
will require alarge memory buffer. The globa variable %transactionsMaxLines% can
also be set to specify the number of lines on this window. The keyboard shortcut <ctrl>-S

WebBase User’s Guide 59

Chapter 5: WebBase Windows

(press the Ctrl key and the S key down at the same time) can also be used to perform a cut
operation.

Figure 5.18 Set Lines Dialog

I ~ |
Enter max linez [10<=n<=10000]:

[100] |

114 Cancel |

Status>Posting enabled -- If this option is selected, information will be written to the
window. If the option is turned off (no check mark is displayed next to the option), the
background of the window is displayed as dark gray and no data will be written to the
window. For example, the user can select the Show TCP/IP Status option and nothing will
be displayed in the window if posting is disable.

Status>Start transaction writing -- This option is only active if the ‘ Stop transaction
writing’ option was previoudy selected. It will cause transaction information to again be
displayed in the WebBase Transaction Services window.

Status>Stop transaction writing -- This option is only active if transaction information is
being written to the WebBase Transaction Services Window. When the WebBase
Transactions Services Window is opened, transaction information will automatically start
being written to the text area. When debugging a form, one might wish to view and/or
capture some of the messages from the text area without having it scrolled off should other
outside transactions comein. This option alows the user to stop the posting as soon as the
desired trace is shown, and then resume later by selecting the * Start transaction writing’
option. When this option is selected, the background of the window is changed to blue-
green.

Status>Trace incoming headers -- Thisis atoggle (on/off) option. If tracing of incoming
headers is enabled, a check mark is displayed next to the menu option. If tracing of
incoming headersis disabled (default), no check mark is displayed. If this option is
selected, one of the confirmations shown in Fig. 5.15 is displayed. If thisoptionis
selected, the header records for the incoming messages are displayed in the text window.
Thisisuseful for checking out cookie messages. If a user requests the dateTime
command, the following information will be displayed (some differences between systems
will occur, the display isfor informational purposes only):

19 <=> in: <CrLf>

18 <=> in: Cookie: WbBasel D=\W4394896E161808318465B;
Cooki eCount er =1<Cr Lf >

17 <=> in: Accept: image/gif, image/x-xbitmap, image/jpeqg,
i mage/ pj peg, */*<CrLf>

1 ;

6 <=> in: Host: 127.0.0.1<CrLf>
15 <=> in: Pragma: no-cache<CrlLf>
14 <=> in: User-Agent: Mzilla/3.0 (Wn95; 1)<CrLf>
13 <=> in: Connection: Keep-Alive<CrLf>
12 <=> 2 :: (8) 127.0.0.1 - - [14/Mar/1997:10:49:57 -0800] "GET
/dateTime HTTP/1.0" 200 496 "" "Mozilla/3.0 (Wn95; 1)"

60

WebBase User’s Guide

Status>Trace outgoing headers -- Thisis atoggle (on/off) option. If tracing of outgoing
headersis enabled, a check mark is displayed next to the menu option. If tracing of
outgoing headersis disabled (default), no check mark is displayed. If thisoption is
selected, the header records for the outgoing messages are displayed in the text window.
Thisis useful for checking out cookie messages and Last-Modified header records. If a
user requests the dateTime command, the following information will be displayed (some
differences between systems will occur, the display is for informational purposes only):

34 <=> out: <CrlLf>

33 <=> out: Content-Length: 120<CrLf>

32 <=> out: Content-Type: text/htm <CrLf>

31 <=> out: Last-Modified: Tuesday, 01-Jan-1901 01:01:01
GUIT<Cr Lf >

30 <=> out: Expires: Tuesday, 01-Jan-1901 01:01:01 GMI<CrLf>
29 <=> out: Pragma: no-cache<CrLf>

28 <=> out: Date: Friday, 14-Mar-1997 18:52:05 GUI<Cr Lf >
27 <=> out: Set-Cookie: Cooki eCounter=3; path=/<CrLf>

26 <=> out: License: #######<Cr Lf >

25 <=> out: Server: WbBase 4.10 build 56<CrLf>

24 <=> out: M Me-Version: 1.0<CrLf>

23 <=> out: Message-ID:

<100127. 3513600003@xper Tel | i gence. conme<Cr Lf >

22 <=> out: HITP/1.0 200 OK<CrLf>

21 <=> 3 :: (8) 127.0.0.1 - - [14/Mar/1997:10:52:05 -0800] "GCET
/dateTime HTTP/1.0" 200 496 "" "Mozilla/3.0 (Wn95; 1)"

Status>Show Server Status -- If this option is selected, the status of the server is
displayed in the Transactions Service window in the following form:

36 <=> 3 :: Fri 14 Mar 1997 10:54: 31Pause Server -> active

The 3 indicates that the WebBase server has processed 3 commands. The 36 is the entry
number within the WebBase Transactions Service window.

Status>Show TCP/IP Status -- If this option is selected, the TCP/IP parameters are
displayed in the WebBase Transactions Service window in the following form (the
parameter values are dependent on the system configuration; they are presented here for
illustration only):

53 <=> 0 :: TCP/IP: Fri 14 Mar 1997 11:39:22 wvalid: true port:
80 descriptor: 7 last return code: 0 status: Running on W ndows

95.

52 <=> 0 :: TCP/IP: SoType --> 1

51 <=> 0 :: TCP/IP. SoError --> 0

50 <=> 0 :: TCP/IP: SoDebug --> false

49 <=> 0 :: TCP/IP: SoRcvBuf --> 8192

48 <=> 0 :: TCP/IP: SoSndBuf --> 8192

47 <=> 0 :: TCP/IP: SoQoblnline --> false

46 <=> 0 :: TCP/IP: SoKeepAlive --> false

45 <=> 0 :: TCP/IP: SoBroadcast --> false

44 <=> 0 :: TCP/IP: SoLinger --> Onoff =0, Linger =0
43 <=> 0 :: TCP/IP: SoDontRoute --> false

42 <=> 0 :: TCP/IP: SoReuseAddr --> false

41 <=> 0 :: TCP/IP: SoDontlLinger --> true

40 <=> 0 :: TCP/IP: SoAcceptConn --> true

39 <=> 0 :: TCP/IP:. SoTcpNoDelay --> false

38 <=> 0 :: TCP/IP. Mcrosoft Wndows Sockets Version 1.1.

WebBase User’s Guide 61

Chapter 5: WebBase Windows

WebBase Transactions Text Window

The WebBase Transactions text area shows information about each transaction handled by
WebBase. Theinformation is presented in the format:

<=> data

Each line starts with an entry number. When the window is first displayed, the first entry
number is 1. Aseach additiona entry is added to the window, the entry number is
incremented. The number of entries maintained in the text areawill not exceed the number of
lines that the user has specified in the Set Lines menu option.

The information displayed after the entry number may be activation information, message-
handling information, or error information. When the window is opened, the first entry is
always of the form:

1 <=> Service active as of Fri 14 Mar 1997 11:42: 29

When WebBase processes requests, the information displayed is the same as that written into
the WebBase log files. The specific format of the log information is controlled by the
LogFormat parameter. In the examplesin this section, the default LogFormat of 2 (Extended
Common Log Format) isused. Thisformat displays the address of the requesting browser, the
date and time of the request, the request line received from the browser, the status code
returned to the browser, the number of bytes transferred back to the browser, the Referer
variable and the User-Agent variable. If the user requests WebBase to print the date and time
on abrowser, the WebBase Transactions Service window will include an entry of the form:

2 <=>4 :: (8) 127.0.0.1 - - [14/Mar/1997:11:43:38 -0800] "GET
/dateTime HTTP/1.0" 200 496 "" "Mzilla/3.0 (Wn95; I)"

Other information displayed in the text area has been previoudy described in conjunction with
the different menu options available on the window.

5.4 WebBase Total View Window

People have often asked “How can you tell what browser or server is handling my web
information?’. The genera reply is*“it'sin the header!”. But one does not get to SEE the
header -- it is read and used by your browser and server but the information is kept hidden
from you - the user. The Tota View utility has been designed so that users can see the
information contained within a header.

The WebBase Totd View Window is displayed when the Total View option in the Edit menu
in the WebBase Server window is selected. An example of the WebBase Total View Window
is shown below.

62 WebBase User’s Guide

Figure 5.19 WebBase Total View Window

£S5 webBase 56 Total View

I[=] B3
Filz Edi
Flt:luad] “GET C POST ¢ HEAD ¢ |GET
Accept:
Location:
Copyright - @ 1995-7 ExperTelligence, Inc. :
*; ; » et

From the WebBase Total View Window, the user can reference aweb site viaan Open
Location command, just like most web browsers. But rather than processing the returned
HTML, WebBase Totd View merely displays the returned HTML -- header and all. Itisan

extension of the View Source functionality available with most browsers with the additional
feature of not stripping off the header information.

WebBase Total View Menu Bar

The following menu options are available on the WebBase Total View Window.

File>New Window -- If this option is selected, a new WebBase Total View Window is

opened. Thisisequivalent to selecting the Total View option from the Edit menu of the
WebBase Server window.

File>Open Location -- If this option is selected, the Open Location Dialog shown in Fig.
5.20 below isdisplayed. The user is prompted to enter alocation to which a request will

be sent. The information entered by the user on the prompt is subsequently displayed in
the ‘Location’ field, which is described below.

Figure 5.20 Open Location Dialog

Open Location i
Open location

114 Cancel]

File>Exit -- If this option is selected, the WebBase Total View Window is closed. Closing
this window has no effect on other WebBase functions.

WebBase User’s Guide

Chapter 5: WebBase Windows

Edit>Cut -- this menu option provides the same functionality as described for the
WebBase Transactions Service Window.

Edit>Copy -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Edit>Clear All -- this menu option provides the same functionality as described for the
WebBase Transactions Service Window.

Edit>Find -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Edit>Find Again -- this menu option provides the same functionality as described for the
Late Breaking News Window.

Edit>Reload -- If this option is selected, the request is sent to the specified location. This
is equivalent to pressing the ‘Reload’ button in the WebBase Tota View Window.

WebBase Total View Options

The WebBase Total View Window presents several input fields and buttons at the top that
allow the user to enter the type of command to be generated and the location it is to be sent to.

Reload -- If this button is pressed, the information entered by the user on the input fields
(accept, location) and the type of command are formed into a message and sent to the
specified location. The address, message sent, and the results of the command are
displayed in the text window.

GET/POST/HEAD -- These radio buttons identify the type of message that will be sent
to the location. When a button is selected, the selection is displayed in the white area to
the right of the buttons.

Accept -- Thisfield contains any information to be included as the * Accept’ parameter
passed with the message. Details on this parameter can be found in Appendix C.

Location -- Thisfield contains the location of where the message will be sent. 1t can bein
the form of ‘www.expertelligence.com’ or a numeric address (e.g., 127.0.0.1).

WebBase Total View Text Window

The text part of the WebBase Total View Window displays the results of creating and sending
amessage containing the selections made by the user to the specified location. The address
where the message is sent is presented at the top of the window, broken down into host, port
and path. Below thisisthe message that is sent. Finally, the WebBase Total View Window
displays how many bytes were received and what the information was that was received back.

The results of selecting a‘GET’ command and sending it to www.expertelligence.com are
shown below.

64 WebBase User’s Guide

Figure 5.21 WebBase Total View Window Showing Results

E§ webBase 56 Total View =] E3
File Edi

Heluad] “GET C POST ¢ HEAD ¢ |GET
Accept:

Location: |www.expertelligence.com{

hddressing... -
Host: "wwnwr. expertelligence.com’
Port: 80
Path: °f*

sending...
Msqg: "GET f HTTPf1.0<Cr><Lf>
{Cr><Lf>

Heceiving...
7860 total bytes as...

HTTP{1.0 200 OK
Message-1D: <117231205.3518930835@ExperTelligence.com?>
MIME-Yersion: 1.0 -

*; ; » et

5.5 WebBase Heartbeat Window

The WebBase Heartbeat function can be used to send commands to WebBase on atimed
basis and receive reports on the reply status of the commands. When a command times out,
the heartbesat function can reset the TCP/IP socket in an attempt to clear the problem and
reissue the command to see if that socket reset has again enabled the communications port.
The WebBase Heartbeat Window reports on the heartbeat commands and replies.

The heartbeat function is only activated if the WebBase Heartbeat Window is opened by
selecting the menu option, or if the global variable %heartbeatWindow% isset totrue. If a
user wants to have the heartbeat function always active when WebBase is started, then
Y%heartbeat\Window% should be created as a global variable.

Note:

On Windows NT systems in which WebBase is started as a service, creating the
global variable %heartbeatWindow% with a value of true is the only mechanism by
which the heartbeat function can be started.

When the WebBase Heartbeat Window is closed, the heartbeat function is also terminated —
the heartbeat function is only active when the WebBase Heartbeat Window is open or
iconified.

Figure 5.22 shows an example of the WebBase Heartbeat Window. The first two lines are
always displayed when the window is opened to indicate that the heartbeat service has been
started. The remaining lines indicate the commands that are sent out and replies received. The

WebBase User’s Guide 65

Chapter 5: WebBase Windows

menu bar indicates the number of lines of information that will be displayed within the
window, aswell as how often the commands will be sent out.

Figure 5.22 WebBase Heartbeat Window

£ webBase 56 Heartbeat (100 lines) M=l
File Edit Status
6 <=> 8§ id: 14398769 received: 14398769 -

b <=> 8§ id: 14398769 sending...

4<=> 8 id: 14398765 received: 14398765

3 <=> 8 id: 14398765 sending...

2 <=» Service active as of Fri 14 Mar 1997 15:07:32 .
1 <= Service active as of Fri 14 Mar 1997 15:07:32 .

-
| | ap

The WebBase parameter HostAddress can be used to specify the |P address where the
heartbeat command isto be sent. If the parameter is not defined, it defaultsto *127.0.0.1" that
should work in most systemsto identify the local host.

If the user sets a parameter that is a different and possibly remote WebBase server, the
heartbeat commands will be sent to this server. However, if areply time-out occurs, the
TCP/IP restart command will be sent to the local server running the Heartbeat service.

WebBase Heartbeat Window Menu Bar
The following menu options are available on the WebBase Heartbeat Window.

File>Exit -- If this option is selected, the WebBase Heartbeat Window is closed. Closing
this window has no effect on other WebBase functions. However, the heartbeat is only
functional when thiswindow is open. If the window is closed, the heartbeat will be
stopped.

Edit>Cut -- this menu option provides the same functionality as described for the
WebBase Transactions Service Window.

Edit>Copy -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Edit>Clear All -- This menu provides the same functionality as described for the Late
Breaking News Window.

Edit>Find -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Edit>Find Again -- this menu option provides the same functionality as described for the
Late Breaking News Window.

66

WebBase User’s Guide

Edit>Set Lines -- this menu option provides the same functionality as described for the
WebBase Transactions Service Window. The global variable %heartbeatMaxLines% can
also be set to specify the number of lines on this window.

Status>Posting enabled -- If this option is selected, information will be written to the
window. If the option isturned off (no check mark is displayed next to the option), no data
will be written to the window. For example, if posting is disabled there will be no messages
displayed when a heartbeat command is sent out and a reply received. The background of
the window is darkened when posting is disabled. The globa variable
%heartbeatPostingEnable% can also be set to ‘true’ or ‘false’ to enable or disable
posting. If setto ‘false, it will cause posting into the WebBase Heartbeat Window to be
disabled when the window is opened (either automatically via the %heartbeat\Window%
variable or manually viathe Edit menu). Posting uses memory and processor resources, so
it might be desirable in a production system to disable posting. Error messages will
continue to be posted even though posting is marked as disabled. The TCP/IP reset will
also be issued when appropriate regardless of the posting enabled status.

Status>Start heartbeat service -- This option is only active if the * Stop heartbesat service
option was previously selected. It will cause a heartbesat to be sent out periodicaly (the
timeinterval is set by the Set heartbeat interval menu option or the variable
%heartbeatinterval%) and the replies reported.

Status>Stop heartbeat service -- This option is only active if the heartbeat function is
currently active. Note that the heartbeat function is only active when the WebBase
Heartbeat Window is opened, or if it has been stopped and then restarted using the Start
Heartbeat Service available on this menu. If the heartbeat service is stopped, the
background of the WebBase Heartbeat Window is changed to a blue gray color and no
additional information is displayed until the heartbeat service isrestarted. The heartbeat
parameters described below can only be changed when the heartbeat service has been
stopped.

Status>Set heartbeat interval -- This option is only available when the heartbeat service
has been stopped. If this option is selected, the Heartbeat Interval Dialog shown in Fig.
5.23isdisplayed. The user is prompted to specify the interval between commandsin
seconds. The value entered must be between 5 and 360 seconds; the default is 15. The
heartbeat interval is displayed in the title bar of the window. The global variable
%heartbeatinterval% can also be used to specify the heartbeat interval.

Figure 5.23 Heartbeat Interval Dialog

I ~ |
Enter heartbeat interval [5<=n¢=360] secs:

i |

114 Cancel |

Status>Set heartbeat reply time -- This option is only available when the heartbeat
service has been stopped. If this option is selected, the Heartbeat Reply Time Dialog
shown in Fig. 5.24 isdisplayed. The user is prompted to specify the length of time to wait
for areply in seconds. The value entered must be between 1 and 5 seconds; the default is

WebBase User’s Guide 67

Chapter 5: WebBase Windows

5. The global variable %heartbeatReplyTime% can also be used to specify the heartbeat
reply time.

Figure 5.24 Heartbeat Reply Time Dialog

I ~ |
Enter heartbeat reply time [1<{=n<=5] secs:

& |

114 Cancel]

Status>Set heartbeat reset TCP -- Thisoption is only available when the heartbeat
service has been stopped. If this option is selected, the Heartbeat Reset Dialog shown in
Fig. 5.25isdisplayed. The user is prompted whether the TCP/IP socket should be reset
when a command times out. The default isthat the socket will bereset. The global
variable %heartbeatResetTCP% can also be used to indicate whether the TCP/IP socket
should be reset.

Figure 5.25 Heartbeat Reset Dialog

Heartbeat 1

"ﬁ? Reset TCPAIRP Socket Interface when failz?
[Current = ez |

Mo 1 Cancel 1

Status>Set heartbeat sound -- This option is only available when the heartbeat service
has been stopped. If this option is selected, the Heartbeat Sound Dialog shown in Fig.
5.26 isdisplayed. The user is prompted whether a sound is played if afailureisidentified.
By default, no sound is played. If the user selects to have a sound played, the user cannot
control which sound is played; the only available sound isadirge. The global variable
%heartbeatSound% can a so be used to indicate whether a sound should be played if a
failure is detected.

Figure 5.26 Heartbeat Sound Dialog

Heartbeat i

"/f‘.f Sound notice when failz?
[Current = Mo]

Status>Issue single heartbeat -- This option is only available when the heartbeat service
has been stopped. If this option is selected, a single heartbeat command and reply
sequence isissued and the results displayed in the text area of the window. Thissingle

68 WebBase User’s Guide

heartbeat, if it fails, will cause areset TCP and sound based on the settings of these
parameters, not just areport on the status.

WebBase Heartbeat Text Window

The WebBase Heartbeat Window text area shows information about each heartbeat command
sent out and the reply that is received. The information is presented in the format:

<=> data

Each line starts with an entry number. When the window is first displayed, the first entry
number is 1. Aseach additiona entry is added to the window, the entry number is
incremented. The number of entries maintained in the text areawill not exceed the number of
lines that the user has specified in the Set Lines menu option.

The information displayed after the entry number may be heartbeat command/reply details,
status information, or error information. When the window is opened, the first entry is aways
of the form:

1 <=> Service active as of Fri 14 Mar 1997 15:33:19

When heartbeat commands are sent out and replies received, the information displayed is the
ID of the command, and whether it is being sent or received. Hereis an example of a heartbeat
command sent and received:

190 <=> 8 id: 7873913 received: 7873913
189 <=> 8 id: 7873913 sending..

If the heartbeat function detects no response to a command which has been sent out, the
following messages are displayed:

119 <=> Heartbeat - Restarting the TCP/IP Socket Interface.
118 <=> Heartbeat - No response from server.

The bottom line would appear immediately above a“sending...” line. The top line will occur
if the user has indicated that the TCP connection should be restarted if a“no response...” reply
is received.

Other information displayed in the text area has been previoudy described in conjunction with
the different menu options available on the window.

WebBase User’s Guide 69

Chapter 5: WebBase Windows

70 WebBase User’s Guide

pa3:
%% ODBC & SQL

£ ExperTailigance
Chapter 6

This chapter provides information about Open Database Connectivity (ODBC) which isthe
standard used by WebBase for communicating with databases. This chapter also covers some
of the basics of Structured Query Language (SQL) that is used to create, retrieve and delete
records from arelational database.

6.1 Open Database Connectivity

Open Database Connectivity (ODBC) is astandard devised by Microsoft to enable any
application to communicate with any database manager. ODBC is based on Structured Query
Language (SQL) as astandard for accessing data. This interface provides maximum
interoperability: a single application can access different SQL Database Management Systems
(DBMS) through a common set of code. This enables a developer to build and distribute a
client/server application without targeting a specific DBMS. Database drivers are then added
to link the application to the user's choice of DBMS.

Most key database vendors now provide an ODBC interface, via which the end-user has access
to centrally stored data directly from the database. These interfaces are called ODBC drivers.
Microsoft provides a set of ODBC drivers for their products on their web site; these drivers are
also made available at the WebBase web site. Instructions on acquiring and installing these
ODBC drivers are included in Chapter 3.

The sql macro within WebBase is used to generate a database query. WebBase packages the
guery into an ODBC function call that is then passed to the ODBC driver. The driver accepts
the ODBC requests; trandates them into internal format recognizable by the database system
(e.g., ODBC to Microsoft Access); manages the communications with the database itself; and
provides the results back to WebBase. WebBase completes processing of the results and they
are then available in the form for subsequent use. The advantage of using ODBC in this
approach is that it alows WebBase to support any ODBC compliant database with no need
for internal knowledge about the specifies of a particular database system.

It is possible to design forms with multiple database queries, and queries of multiple database
systems via different ODBC drivers. For example, it is possible to retrieve information from a
Microsoft Access database and use it to generate a new record in an Oracle database. In the
future if the Oracle database is replaced by a SQL Server database, no change to the WebBase
forms are required!

WebBase User’s Guide 71

Chapter 6: ODBC & SQL

6.2 Structured Query Language

Structured Query Language, or SQL, is a database access language. It is based upon the
relational database model. A relational database is basically a collection of tables of data.
Datais stored in rows in each table. Each row is broken into cdlls or fields of data; each row
of data within atable has the same number of cells athough the contents will usualy differ.

It is not the purpose of this chapter to provide extensive information about SQL. However,
database interactions via WebBase are done using SQL statements. The primary SQL
statements are presented here, along with an example of how they would be implemented in
WebBase code.

Users who are unfamiliar with SQL might want to consider finding a good reference book
about SQL usage, or search the Internet for information or tutorials on using SQL. Each
ODBC-compliant database implements many of the SQL statements. The reference materias
provided with a user’s particular database may also provide information about SQL
Statements.

SELECT

The SELECT statement is used to retrieve one or more rows of datafrom atable. Thisisthe
SQL statement most frequently used, both in general database interactions as well as with
WebBase. Thetable below isa portion of the Cars table provided with WebBase and used in
the WebBase database examples.

Example 6.1 Sample Database Table -- Cars

ID| Year | Maker Modd | Trans Kind | Color Miles Price

1 | 1967 | CITROEN DDSII | 4 Speed 2 Green 100000 | 3000.00
Door

2 11985 | MERCEDES | SE Automatic | 4 White 69000 | 19500.00
Door

3 | 1969 | PORSCHE 911E | 5 Speed 2 Orange 75000 | 4900.00

Door

SELECT -- General Usage

To retrieve al the records from the table, the following statement would be used:
SELECT * FROM Car s

The *SELECT’ indicates the type of database query that will be done, in this case some
records will be selected and returned. The ‘*’ is the wildcard character, and indicates that all
the fields in each record are to be returned. The ‘FROM’ specifies which table the data will be
retrieved from, and is followed by the name of the table.

It is possible to retrieve only some of the fields for each record. To retrieve only the ID, Year
and Maker of the records, the following statement would be used:

72

WebBase User’s Guide

SELECT I D, Year, Maker FROM Cars

It is strongly recommended that only the necessary fields of data be retrieved viaa SELECT
statement. This reduces the amount of data to be retrieved from the database and returned to
WebBase viathe ODBC driver, resulting in an improvement in performance.

Often, it is necessary to retrieve a set of records based on their contents. These qualifications
are added to the SELECT status using a WHERE clause. In the example above, we might
want to retrieve al the cars that were 2-door. The following example shows how this would be
done:

SELECT * FROM Cars WHERE Ki nd = ‘' 2-door’

The WHERE clause contains three components: the field name from the table, a comparison
operator, and avalue. In this casg, the field name was ‘Kind', the operator was ‘=, and the
value was ‘2-door’. It ispossible to specify several criteriain asingle WHERE clause.
Continuing with the above example, here’ s the select statement for all cars that are 2-door and
have less than 100000 miles:

SELECT * FROM Cars WHERE Kind = ' 2-door’ AND M LES < 100000

The OR statement can also be used to select records in which afield value matches one or the
other criteria but not necessarily both. Here' sthe SELECT statement for all cars that are 2-
door or have less than 100000 miles:

SELECT * FROM Cars WHERE Kind = ‘' 2-door’ OR M LES < 100000

A number of different operators can be used, as shown above. Some of the more frequent
operator are =, <, <=, >, >= and LIKE. The LIKE operator is used to do a case-insensitive
comparison; the = operator does a case-sensitive comparison. When the LIKE operator is
used, it is also possible to use wildcards as part of the value. The*%’ isthe wildcard
character. It can be added at the beginning of the value, the end of the value, or both. To
select all cars whose transmission is ‘auto’, the following statement would be used:

SELECT * FROM Cars WHERE Trans LI KE ‘ %aut o%

This would return matches for cars whose Trans entry was ‘ Automatic’, ‘Auto’, and ‘ Almost
Automatic'.

The ORDER BY clause is useful to define the sort order of the resulting collection of records.
All of the records in the Cars database can be retrieved and sorted using the following
Statement:

SELECT * FROM Cars ORDER BY Year ASC Price DESC

Thiswill return a collection of records in which the years of the car are in ascending
(increasing) order. For any cars with the same year value, their prices will be in descending
order.

There are several other clauses that can be used with the SELECT statement, and are
described in SQL reference materials. Again, it is not the purpose of this section to cover
everything about the SELECT statement. There are many good references available in books
and on the Internet that can provide additiona details.

WebBase User’s Guide 73

Chapter 6: ODBC & SQL

SELECT -- WebBase Usage

To use any of the above SELECT statements within a WebBase form, the statement is
enclosed within the sql macro and any explicit values are replaced with appropriate WebBase
variables. Let'sassume that there isaform that asks the user what kind of car they want, and
they can select from several options including ‘2-door’, ‘4-door’ and * hatchback’. The user’s
selection is stored in the WebBase variable { kindOfCar}. The following WebBase expression
will return all of the records from the Cars table that are of this particular kind:

{sgl to allCars source 'nyAccess' user 'fred password 'test'}
SELECT * FROM Cars WHERE Kind = * {ki ndOf Car sql =true}’

{/sql}

The only difference between the WebBase statement and an explicit SQL statement is that the
explicit value—*2-door’ —is replaced by the WebBase variable name. Instead of having to
have separate explicit SQL statements for each kind of car, only a single statement using a
WebBase variable is needed. WebBase will replace the variable with its value, and then
perform the database query. The sgl=true parameter is generally included with any WebBase
variable that contains a string and isincluded in a SQL statement.

The value of a particular field must be clearly identified as part of any SQL statement,
including a SELECT statement. Any text or memo field values must be enclosed in single
quotes, as shown above. Date or date/time field values must be enclosed in ‘# signs. An
example using dates is presented with the INSERT statement below. Numeric values need no
enclosing characters.

SELECT - Join Statements

Relational databases dlow data to be related across tables; the data does not have to be stored
in each table. Generadly, thereisone field that contains data that is common to both tables. In
order to retrieve the information from both tables, atablejoin isdone. The result of the table
joinisthat selected fields from each table may be retrieved, or all the fields from both tables
may be retrieved.

To show how ajoin statement works, another example table will be used. Thistableiscalled
Owners, and contains the names and addresses of the car owners. The common field between
the two tablesis ID in the Owners table, and OwnerID in the Carstable. Note that the name of
the field does not have to be the same between the two tables; only the contents are used to
match up records.

The following SELECT statement would be used to retrieve records from both tables.

SELECT ct. Year, ct.Mker, ct.Mdel, ot.Nane, ot.Address
FROM Cars ct, Omers ot
VHERE ct.OmerlID = ot.ID

Note that each table is assigned an abbreviated name and this abbreviated name is used to
specify which fields are used or retrieved from which table. Thisisrequired if there arefields
in both tables with the same name that may have different values. If there are no field names
common to the two tables, then the abbreviated names do not have to be used and the above
statement could be written as:

74

WebBase User’s Guide

SELECT Year, Maker, Model, Nane, Address
FROM Cars, Omers
VWHERE OmerI D = ID

A joinisalso referred to as an INNER JOIN. An equivalent way of writing the above would
be:

SELECT Year, Maker, Model, Nane, Address
FROM Cars INNER JO N Omers ON Cars. OwmerlI D = Omers. I D

This latter format is used by database applications such as MS-Access. It is often useful to
create the query within the database application and verify that the query is correct for a
representative sample of data and selection criteria. Once the query is working, many
applications can display the query in SQL format. Join queries will often use the above
format. WebBase can accommodate either of the join formats displayed above.

INSERT

The INSERT statement is used to create a new row of datain atable.

INSERT -- General Usage

It is not necessary that al fields be specified at the time the row of dataiis created. For most
databases, it is strongly recommended that one field contain a unique value (e.g., primary key).
This field should be defined when the new row is created.

Note:

Some databases include an AutoNumber data type which can create a unique
number for each new record added to the table. For those users just learning about
SQL and databases and WebBase, if your database includes this data type, it is
recommended that an id field using this data type be set up for each table.

If dl the field values for the new row will be specified, the following statement can be used to
create anew car record in the table:

I NSERT | NTO Cars VALUES (4, 1994, SATURN, SL2, 5 Speed, 4 Door, Red,
50000, 13000. 00)

A new row is created, and then populated on a column-by-column basis using the information
passed in as VALUES. Often, however, not al of the information to be stored in the fields will
be known when the record isto be created. To create arecord in which only some of the fields
will be populated, the following statement is used:

I NSERT | NTO Cars (1D,
Year,
Make,
Model ,

M es,
Price)
VALUES (4,

1994,
SATURN,
SL2,
50000,
13000. 00)

WebBase User’s Guide 75

Chapter 6: ODBC & SQL

All of the fields to be populated are specified immediately after the table name; all of the
values to storeinto the fields are stored in the same order immediately after VALUES. There
must be a 1:1 correlation between the field names and the values to be stored in them. The
style used above to present the fields and values as columnsis not required; al of the
information can be placed in asingleline.

INSERT -- WebBase Usage

Aswith the SELECT statement described earlier, it is very easy to take an explicit INSERT
statement and use it within WebBase. Assume thereis aform into which a user enters
information about their car. The car information is stored in the WebBase variables {year},

{make}, {model}, {miles} and {price}. A new record will be created with these variables
using the following:

{sgl to allCars source 'nyAccess' user 'fred password 'test'}
| NSERT | NTO Cars (1D,

Year ,
Make,
Model ,
M| es,
Price,
RecDat e)
VALUES (4,
{year},
‘{make sql =true}’,
‘{nodel sql =true}’,
{m | es},
{price},
#{ Ydat eTi me% #)

A new field is being added into this record called RecDate. Thisisthe date on which the
record was created. Such afield is not required in atable, although it is often found useful to
know when arecord was created and/or last updated. The value stored into that field is the

current date and time. Because it is a date/time field, the variable must be enclosed with ‘#
signs.

UPDATE

The UPDATE statement is used to change data in an existing row or rows, either by adding
new data or modifying existing data.

UPDATE - General Usage

Each UPDATE statement identifies the table in which the row(s) of data to be updated is
found, the field(s) to be updated, the new values for the fields, and possibly a WHERE clause
to identify which particular records will be updated. To update the NumOwnersfield for al
the Carsin the table to 1, the following statement would be used:

UPDATE Cars SET NunOmers =1

More than one field can be updated at atime. To update both the NumOwnersfield to 1 and
also specify that al audio systems are ‘ AM/FM’, the following would be used:

UPDATE Cars SET NumOamners = 1, Audio = ‘AM FM

76

WebBase User’s Guide

Often, only one or afew records in atable need to be updated. The WHERE clauseis used to
specify which particular records will be updated. The format of the WHERE clause is exactly
as described above for the SELECT statement, and can include a single conditional or multiple
conditionals using the AND and/or OR operators. To update the record created using the
INSERT statement above,

UPDATE Cars SET NumOmners = 1, Audio = “AMFM WHERE ID = 4

UPDATE — WebBase Usage

The UPDATE statement when used within the sql macro is very similar to an explicit
UPDATE statement as described above. 1f the number of owners an audio type from the
UPDATE statement in the preceding section were stored in the WebBase variables
{numOwners} and {audioType}, the corresponding UPDATE statement in WebBase would
look like:

{sgl to allCars source 'nyAccess' user 'fred password 'test'}
UPDATE Cars SET NunDwners = {nunOwners},
Audi o = ‘{audi oType sql=true}’ WHERE ID = 4
{/sql}

The {numOwners} value is being written into a numeric database field; thus it does not require
any special enclosing characters. The {audioType} value is being written into atext field, so it
is enclosed in single quotes.

DELETE

The DELETE statement is used to delete one or more records from a database'.

DELETE — General Usage

The DELETE statement always specifies atable as well asa WHERE clause to identify the
particular record or records to be deleted. To delete the car record inserted and updated in the
previous sections, the following statement would be used:

DELETE FROM Cars WHERE ID = 4

The WHERE clause can include a single field/value pair, or it can specify several field and
value pairs.

DELETE — WebBase Usage

Deleting arecord in aWebBase formis as easy as adding or updating arecord. The
appropriate DELETE statement is placed within the sql macro, and any values are replaced by
WebBase variables. The WebBase statement to delete the record added to the carstablein
the database would be:

{sgl to allCars source 'nyAccess' user 'fred password 'test'}
DELETE FROM Cars WHERE I D = {car| D}

{/sql}

12 some databases do ot actual ly delete the record from the database. Instead they set aflag that the record is to be deleted; the record is not actually
deleted until the database is compressed. See Chapter 14 for database-specific issues such asthis.

WebBase User’s Guide 77

Chapter 6: ODBC & SQL

The WebBase {carlD} variable would have been previoudy determined either by an explicit
entry by the user or as the result of a SELECT statement.

78 WebBase User’s Guide

WEB
%2 htf Files

€ —ExperTalligance
Chapter 7

WebBase is configured to process any file with an extension of .htf, .htm or .html. Itis
recommended that files containing WebBase macros and variables use the .htf file extension.
Any files containing “pure” HTML syntax should use the .htm or .html file extensions.

Chapter 2 presented an example of afilein which WebBase was used to perform a database
query, retrieve the results from the database, and determine how the data should be displayed
at the browser. Because of the importance of forms to WebBase, this example will be
reviewed again.

7.1 Editing .htf Files

WebBase .htf files are text files that can be created with atext editor or with an HTML editor.
The WebberActive HTML editor provided with WebBase™ is a full-featured HTML editor
that is aso customized for use with WebBase! You can insert any of the WebBase macros
into your form being edited as easily as adding an HTML tag. Y ou can even preview the page
you're developing in WebBase within the browser preview capabilities of WebberActive!

There are many other commercial HTML editing packages available; each offersits own level
of customization capabilities. Several of the HTML packages are based on the SGML
specification, and can have problems handling WebBase .htf files due to the use of curly
braces by WebBase macros and variables. Although it is possible to place WebBase
expressions with the <SCRIPT> tag, this can seriously limit the extent of WebBase
functionality that can be added into aform.

Although it is not required that WebBase forms be developed with WebberActive, we have
found that the capahilities provided within WebberActive make it the optimum environment
for developing and testing WebBase forms.

Note:
When a new .htf file is created, the name of the file must contain only alphanumeric
characters. Although operating systems such as Windows NT and Windows 95
support filenames containing spaces, WebBase and browsers do not support .htf

13 \WebberActive s a 32-bit application, and isincluded with the purchase of WebBase effective with build 55. Users who purchased WebBase prior
to build 55 may purchased WebberActive by contacting sales@expertelligence.com

WebBase User’s Guide 79

Chapter 7: .htf Files

filenames containing spaces. This also applies to directories. It is not possible to
create a URL that includes a subdirectory whose name includes spaces.

7.2 Requesting Input on a Form

Many of the WebBase forms that are developed either request information from the user in
preparation for querying the database, or present information back to the user after the query
has been completed. This section covers forms that request information from the user.

Information from a user is generally requested using the HTML <FORM> construct. The form
element can contain input, selection, and text area tags, along with document structuring
elements. Form elements can be mixed in with document structuring elements. For example, a
<PRE> element may contain a <FORM> element, or a <FORM> element may contain lists
that contain input elements. This gives considerable flexibility in designing the layout of forms.

Each <FORM> statement has one required attribute: ACTION. This attribute identifies the
file/lURL to which the form contents will be submitted. A FORM may also have an optional
attribute METHOD that defines whether a GET or a POST request will be made. GET
requests include all the command line arguments as part of the URL ; POST requests include
the command line arguments as part of the request.

The INPUT tag represents aform field for user input. These can appear in awide variety of
types, including text, password, checkbox, radio, submit, reset, image and hidden. Most
INPUT fields will also have a NAME attribute specified. This name and the value entered by
the user into the field are passed as command line arguments and become a WebBase local
variable". Itisalso possibleto set up a default value for an INPUT field; thisis done using
the VALUE attribute. The value of this attribute can be a constant or a WebBase variable.

The SELECT tag provides alist of values for the user to select from. The values are given in
<OPTION> dements. Aswith INPUT fields, each SELECT tag has an associated NAME
attribute that must be specified. The WebBase variable %ovarList% is used to create a
WebBase variable containing the multiple selections; see Chapter 9 for more information on
this variable.

The TEXTAREA tag isused to alow a user to type in multiple lines of text. It isusualy used
as afree-form message area. The content of the field is used as the default value. The rows and
columns determine the size of the text area.

A FORM will generaly include some type of button or other mechanism so that the user can
indicate that their interactions with the form are complete and they are ready for their datato
be processed. When such an indication is provided, the browser builds a URL starting with the
file/lURL specified as the ACTION attribute of the FORM statement. It appends name=value
pairsto this URL, one pair for each named tag entity within the FORM. The browser then
sends out the URL to the server for processing.

In the example presented earlier, the GET query generated was:

14 Differences between browsers on the way that empty input fields are handled have been noted. For example, Netscape passes all variables as
command line arguments whether avalue is entered or not. MSIE only creates command line arguments for those variables for which the user entered
avalue. Itisawaysrecommended that form designers check the command line arguments that are received and take appropriate action depending on
which variables are or are not received. It should be noted that the browser behavior described here may change with future versions of the browsers.

80 WebBase User’s Guide

htt p: // <host URL>/ get nane. ht f ?nanme=Denny

The ACTION attribute of the FORM was “ getname.htf”. Therewasasingle INPUT tag
within the FORM whose name was ‘name’. The value typed into the input field was ‘ Denny’
(this was aso the default value specified for the field). The browser combined all this
information to generate the URL shown above.

7.3 Processing Input from a Form

After the user has entered information into a form and indicated that they wanted to proceed,
another form isinvoked. Thisform should address two issues: verifying that the user entered
proper information, and processing the information entered by the user.

WebBase automatically creates local variables for each of the command line arguments sent
by the browser. Any WebBase variable names specified in the .htf file within curly braces,
e.g., {name}, are automatically replaced by the value of the variable. In the above example,
any references in the file to { name} are replaced by the string * Denny’.

The form designer should include some code to verify that appropriate values were entered.
For example, if afield isto contain only numbers, then an error should be returned back to the
user if they entered a non-numeric value. Error checking such as this should be done before
any data processing to ensure that only valid datais being used in computations and database
interactions. It is much easier to correct data before it is stored in the database than to have to
try to correct it onceit is stored in the database.

The WebBase WebWizard basic example #7 shows how to do error checking and return error
information to the user. Error checking can aso be done using Java applets or JavaScript as
part of theinitial FORM statement. An example of using JavaScript for error checking is
provided in the Java examples, also accessible from the WebBase WebWizard table.

Once the data has been validated, it can be processed. Continuing with the example from the
previous section, the file ‘getname.htf’ that is accessed by the GET query is displayed in Fig.
2.1. Thisfile does a database query, checksto seeif there are any results returned from the
guery, and then displays appropriate information to the user. All WebBase expressions and
variables are in bold.

The sql macro, starting with ‘{sgl ...}’ and ending with ‘{/sqgl}’, provides the details
WebBase needs to interface with the database. This includes the data source and login
information that is specified within the sql macro itself. Between the {sgl} and {/sql}
keywords is the database query. In thiscase, a SELECT statement is used to extract the
desired records from the database. The WebBase variable {name} is used within the
SELECT statement. When the form is processed, WebBase replaces { name} with ‘Denny’.
Theresulting SELECT statement received by the database will 100k like:

SELECT * FROM Exanpl es WHERE Nane LI KE ' %®enny%

The ‘%' characters before and after ‘Denny’ are wildcard characters. Any database records
containing the string * Denny’ will be returned. The LIKE operator specifies that the match
should be a case insensitive match. Thus, names such as ‘ Denny Bollay’, ‘Denny’s
Restaurant’ and ‘ photography by denny’ are valid. Only the first 25 records that have a match
will be returned; thisis controlled by the max keyword that is part of the sql macro. The
returned records are stored in the WebBase variable answers.

WebBase User’s Guide 81

Chapter 7: .htf Files

NOTE:

Any valid ODBC SQL query statement can be constructed and processed by
WebBase including UPDATE, INSERT and DELETE statements -- queries are not
limited to SELECT statements.

After the data has been retrieved from the database, the WebBase if macro is used to test
conditions. In this example, the if macro starts with *{if ...}’ and endswith ‘{/if}". Itisused
to determine the action to take based on the number of records returned by the query. The first
line of this section

{if 0 answers size =}

tests the size of the WebBase variable answers. |f there are O answers, the HTML
immediately following the {if ...} statement isreturned. If thereisat least 1 record returned,
the HTML immediately following the {else} statement is returned.

In this example, there are 2 records returned from the database. WebBase provides looping
macros to iterate through multiple returns. The forRow macro, starting with ‘{forRow ...}’
and ending with ‘{/forRow} ", loops on the records returned by the query and stored in the
variable answers.

Field names defined in the database are referenced in the . htf file as WebBase field variables.
The value of the field returned by the query will be substituted for the field name whereit is
used within curly braces. In this example, some of the field namesin the database are:
‘Name', ‘Company’, ‘City’, ‘State’, ‘Zip’ and ‘Phone’. There may be additional field names
in the database records whose contents are not used at thistime (e.g.,

‘Socia SecurityNumber’). As each record is processed, the { Name}, { Company}, et al. field
variables take on different values.

AsWebBase has been processing thefile, it has been building a stream of characters that will
be returned to the browser. These characters are the HTML tags and data to be displayed.
Much of the data to be displayed is the result of evaluating WebBase expressions. The
returned stream does not include any WebBase expressions; it simply includes the results of
evaluating the expressions.

82

WebBase User’s Guide

WEB Chapter 8
V- Sa N v

.7
come M ACKOS

Invariably, one needs to add some intelligence to forms. The WebBase macro language allows
tremendous flexibility in processing files.

Macros within WebBase are the means by which one specifies database SQL statements and
performs logic on variables, including the results of SQL queries, such asIF THEN ELSE
constructs, FOR loop iterations, and CASE statements. The WebBase macro language allows
you to create Dynamic HTML -- web pages that respond to user input as well as database
search results.

8.1 Overview of WebBase Macros

WebBase macros are expressed in one of two formats:

Single expression format: The entire macro is expressed within a set of curly braces, e.g.
{insert "../filename.HTF} or {set counter 3}. Thisformat issimilar to the HTML <P> or
<INPUT ...> construct.

Start and end expression format: The macro is begun with one single expression statement,
e.g. {if counter 3 =}, and is terminated with a second single expression statement, e.g.
{/if}. Thisformat is similar to the HTML <TITLE> ... </TITLE> construct. Some start
and end expression format macros also have optional intermediate single expression macro
forms that may exist between the beginning and ending macros such asthe {else} clause
within the {if...} {/if} range. Thisismuch like the <LI1> within a range.

With the exception of the comment and output macros, macros may be nested to any desired
depth. Note, however, that forms or variables within curly braces cannot be nested. For
example, the expression {if O {variable} =} will produce a syntax error; the correct format is
simply {if O variable =}.

The WebBase macros are described below. Some macros have required and/or optional
arguments. Required arguments are explicitly indicated in the macro definition line. Optiona
keyword-value pairs are described in atable for each macro; the keyword and value are aways
separated by a space. Except for specific cases noted below, any argument or value used in a
WebBase macro can be a constant, a WebBase variable, or an expression. Aninteger
congtant is a collection of the decimal digits with an optional leading + or - sign, e.g., 12345.

WebBase User’s Guide 83

Chapter 8: Macros

A string constant is a collection of characters enclosed in single quotation marks, e.g., ‘string
constant’. Chapter 11 covers WebBase expressions. Unless the only argument to amacro is
an expression (e.g., the f = macro), expressions within macros should be placed within
parentheses, e.g., (1 start +).

8.2 The WebBase Macros

{~ text} {/~}

The brace macro generates a string enclosed in curly braces. Thisis useful when dynamically
generating other .htf forms to be processed by WebBase. While the same functionality can be
achieved using the set or setString macro and the %l eftBrace% and %rightBracedo variables,
the brace macro makes code much easier to read. Thetilde (~) character is used to identify the
macro so that ‘brace’ is not considered a reserved word. This reduces the potential for
conflicts when adding this macro to existing forms. The example below generates a string
‘{set foo ‘bar'}’.

Example 8.1 Brace macro example
{~}set foo 'bar'{/~}

{call <path> <args>} {/call}

The call macro essentially calls a subroutine! It starts up a new command as if the user
addressed a different URL, but more than likely this * subroutine’ would not be referenced
directly by auser viaaURL asit would not be run independently. In principal, it issimilar to
the insert macro in that it allows code reuse but in implementation it is quite different. The
insert macro actualy inserts the source inline (the internal structures that are built to represent
the macros, etc.). The call macro actualy creates a new command, runsit, and if requested
returns information from it to the calling form. The path is required, and specifies the name of
the command or file to execute. See the insert macro below for the format of specifying the
filename. Aswith most arguments, path can be a constant, variable or expression. The
optional keyword-value pairs for the call macro are shown in the table below.

Keyword Value Description
return String The names of local variables that are to be SET with
the return values from the CALLed command. The
names are separated by spaces; e.g., return ‘valuel
va2 findVa'. The CALLed command will usea
{return vall val2 val3} macro or {exit vall val2
val3} macro to specify what isto bereturned. The
caleereturns n itemsin positiona order; the caller
specifiesm variablesin positional order. WebBase
places the returned values into the specified variables
from left to right until whichever list runs out first
(both should be the same length).
wait Boolean If true (default), a synchronous call will be done and
WebBase will wait for the return. If false, the return
and output arguments are meaningless and ignored.
output Boolean If the CALLed form generates output, it would

84 WebBase User’s Guide

normally be accumulated into the stream being
created and returned to the requesting browser. If
true (default), the calling form inserts any such output
from the CALLed form at the point of the call macro.
If false, the output is not inserted. Thisis desirable
where the CALLed form is used to compute
something and return results in variables and not in
stream-to-browser output. This eliminates many
blank lines generated by the newlines, tabs and spaces
used to nicely indent and format the macros within the
htf files.

Arguments are passed into the CALLed routine by specifying them on the lines between the
{cal ..} {/call} using the format:

argl = val ue
arg2 = {\WbBase vari abl e val ue}

Note that only one argument can be specified on each line. The argument name is the line up to
the = sign (less any starting or trailing spaces) and the value is the rest of the line (also less any
starting or trailing spaces).

WebBase variables may be used in this argument area and will be replaced with their values
before the argument = value pairing is performed. It isimportant to understand this ordering
of variable substitution followed by argument processing to insure correct handling of the
arguments to be passed to the CALLed routine.

Since variable substitution occurs first, any = (equal signs) and newlines (carriage return/line
feed sequences) that might exist within a variable' s value become relevant to the argument
processing that follows. Examine the following example:

Example 8.2 Variable Substitution 1
{set temp ‘argl =1
arg2 = 2'}
{call ‘forml.htf’ output false}
{tenp}
{/call}

Since variable substitution will occur before the arguments are processed and the variable
{t enp} was set to a string that contained both = signs and newlines, the above isidentical to:

Example 8.3 Variable Substitution 2
{call ‘forml.htf’ output false}
argl =1
arg2 = 2
{/call}

Embedded = signs and newlines might not always represent argument list formatting
information, however, asin the following:

WebBase User’s Guide 85

Chapter 8: Macros

Example 8.4 Arbitrary Text String

{set tenmp ‘this is an arbitrary text string
it may contain carriage returns and |line feeds
and it mght also contain expressions |ike
vari abl e = sonme val ue
that one wi shes to pass to the CALLed routine
as a text block and NOT as a collection of
argunent = value lines!’}
{call ‘forml.htf’ output false}
testField = {tenp}
{/call}

In the above example the call macro would attempt to interpret the text between the {call ...}
{/cal} statements as argument = value lines which would result in either errors or premature
termination of the argument structure with undesired arguments and values being passed.
Arbitrary text, including = signs and/or newlines, may be passed as the value of an argument
by the call macro. In this case, the information must first be “encoded” so asto replace these
characters before the lines are processed as argument lines. Within the CALLed form, the
variableis “decoded” to return the datato its original state.

The easiest way of performing this encoding and decoding isto use the same technique that is
used between a browser and server when passing information. Certain characters like the ?
(question mark), & (ampersand), and newlines also have specific meaning within a browser-to-
server command and thus must be encoded when used within text fields. WebBase provides
operations on strings, encode and decode, just for this purpose. In the last example above,
writing:
{set tenpl tenp encode}
{call ‘forml.htf’ output false}

testField = {tenmpl}
{/call}

or:

{call ‘forml.htf’ output false}
testField = {tenp encode=true}
{/call}

would accomplish the desired result of having the text block within the variable {t enp}
encoded into a format that would essentially hide all the = signs and newlines so as to not
cause problems when the arguments are processed. In the CALLed form, the local variable
{testField} would now have to be decoded to return it to its original state. This can be
accomplished by writing:

{set testField testField decode}
at the top of the CALLed form.

The example of the call macro presented below is contained in 3 files. Thesefiles also show
examples of the exit macro when used with return variables, as well as the return macro.

86 WebBase User’s Guide

Example 8.5 The calling form: call1.htf

<HTM_>

<BODY>

{conment }

Assune variabl es Userld and Password were input and contain strings.
Check if the user id and password are valid in a specified

i d/ password dat abase.

The valid routine returns three val ues,

1st = true or false - okay on the database access

2nd = true or false - if 1st was okay, this indicates that the
user's id and password were found as entered or not

3rd = the error text if 1st is false.

{/ comrent }
{call './valid.htf' return 'okay yesorno nessage' output false}
id = {Userld}

pass = {Password}
dbase = 'Fil eOne’
{/call}

{if okay not}

{! we received an error - nmessage in variable nmessage do sonet hi ng
- then tell user file not found. !}

{%err404%

{exit}
{/if}

{if yesorno}
<P>Ckay, you were found!

{! Now log the activity offline - i.e. don't nake the user wait for
the sqgl call that does the |ogging to receive HIM. output back at the
browser. !}
{call './logger.htf' wait false}
id = {Userld}
trans "Sonme | og transaction nessage here
dbase ' LogOne!
{/call}
{el se}
{%rrd404% {! not found in database !}
{/if}
</ BODY>
</ HTML>

WebBase User’s Guide 87

Chapter 8: Macros

Example 8.6 The first called file: valid.htf:

{conment }
W were called with three argunments as foll ows..
id =the user's id
pass = the password the user entered
dbase = the ODBC source of the password database we are to use

W will return three values as foll ows...

1st = true if the database | ookup was okay, false if not
2nd = true if the user id and password were found in the database
and
were acceptable, false if not
3rd = the error nessage if 1 above was false - i.e., the database
| ookup
was not successful
{/ comrent }

{errorProtect}
{sgl to valid source dbase}
SELECT PASSWORD FROM PASSTABLE WHERE [USER I D] = {id sql =true}
{/sql}
{onError}
{set nmsg %error% nessageText}
{exit false fal se nsg}
{/errorProtect}

{set success pass PASSWORD =}
{return true success ''}

Example 8.7 The second called file: logger.htf:

{conment }

W were called with three vari abl es,
id =the user's id
trans = sone text to be |logged to the | og database
dbase t he ODBC source nane of the | og database

W will not be returning anything and don't care if any errors occur
during the database transactions but we will wap an errorProtect
around the entire process so that if any errors do occur we wll

i medi ately skip out w thout bothering WbBase to return error data.
{/ comrent }

{errorProtect}
{sqgl to ignore source dbase}
| NSERT | NTO LOGTABLE (| D, WHEN, WHAT)
VALUES ({id sql =true}, {%dateTi me%, {trans sqgl =true})
{/saql}
{/errorProtect}

{case <exp>} {match <mArg>} {otherwise} {/case}

The case macro causes control to be transferred to one of several match clauses. Each case
macro must have at least one match clause; the otherwise clause isoptional. The exp
expression argument is required with the case statement; the mArg argument is required with

88 WebBase User’s Guide

each match statement. The case macro evaluates exp and comparesit to the values for each
associated match clause. When the match clause value equals the case value, the text
following that match clause until the next match, otherwise, or /case clauseis processed. The
otherwise clause contains a block of text that is processed if no match clause condition
evaluates to true. If no match clause matches the case value and no otherwise clause is present,
the macro returns no text for processing.

Example 8.8 case Macro

{case results size}
{match 0} {! no results returned !}
<H2>Sorry but | couldn't find a match</H2>
{match 1}
<H2>Ww Exactly one match was found! </ H2>
{ot herw se}
<h2>There were {f= results size} matches found...</H2>
{/ case}

{comment} {{comment}

The comment macro alows the devel oper to insert commentary into the .htf files that will not
be sent to the browsers as part of the HTML. The text contained between the { comment} and
{/comment} is skipped as WebBase processes the file. Another valid comment macro format
is{! comment statement !}. The latter isuseful for short in-line comments within a .htf form.

Note:

Since the purpose of the comment macro is to insert text that is to be skipped,
WebBase does not parse the information within the {comment} ... {/comment} or {!
... I} area. For this reason, after encountering the opening {comment} or {!,
WebBase scans for the first occurrence of an ending {/comment} or !}. WebBase
does not support nested comment blocks.

Example 8.9 comment Macro

{conment }

This is cormentary on this file and is not to be sent to the
br owser as

is <!-- conmentary --> so as never to be seen by the user!
{/ comrent }

{! This is a short coment !}

{ensure} {onEXxit} {/ensure}

The ensure macro is very similar to the errorProtect macro, in that it is used to ensure that
some action is taken regardless of whether the *protected’ block terminates normally or not.
With the errorProtect macro, one executes the onError clause only if an error occurs. The
onExit clause of the ensure macro is executed regardless of whether the code preceding the
onExit statement completed normally or with an error.

The example presented below ensures that the file opened for reading is closed even if an error
occurs while reading. This can be particularly problematic on exclusive-access open for
writing files. Without using this macro, if an error occurs the file will remain open until you
terminate WebBase, as there is no handle to the file or stream by which it could be closed.

WebBase User’s Guide 89

Chapter 8: Macros

Example 8.10 ensure Macro

{ensure}
{set filestream'foo.txt' %l e% pat hNameReadOnl y: }
read fromthe stream...
{onExit}
{f==fil estream cl ose}
{/ ensur e}

{errorProtect} {onError} {/errorProtect}

The errorProtect macro is designed to trap errors that might occur during the processing of
your WebBase .htf form and allow you to return a more meaningful message to the browser
than the default error information ordinarily returned by WebBase. Any error that occursin
the statements following the {errorProtect} keyword will cause WebBase to branch to the
onError clause. All statements within the onError clause will then be processed. If thereis no
onError clause, the default error message will be suppressed and no information will be
returned to the browser.

Example 8.11 errorProtect Macro

{errorProtect}
{sal ...}
SELECT * WHERE ...
{/sql}
{onError}
<H2>Sorry, database not available. Please try later.</H2>
{/errorProtect}

A common usage for the errorProtect macro isaround {sql ...} ... {/sgl} blocks as shown
above. If thesql macro and SELECT statement generate an error, the onError clause returns a
message to the effect that “the database is temporarily down for maintenance ... please try
again later”. This allows you to perform maintenance on the database without having to shut
down your WebBase server, which might also be interacting with other databases that are till
accessible. To insure you are not masking errors that should not be occurring, you can have
the actual error message you masked logged to a database to be analyzed off-line. Within the
onError clause, {f= %error% messageText} will provide the error message that would have
been sent to the browser had the errorProtect macro not been used.

NOTE:

The errorProtect macro will not catch programming errors such as leaving off the
ending macro keyword (e.g., {Z/if}) or using a parenthesis instead of a curly
brace. The macro is designed to capture user errors, not programming errors.

{escape <label>}

The escape macro alows one to escape from within aforlndex or forRow loop. It can be used
as an escape mechanism when, for example, your logic finds a condition within one of these
loops under which you do not want to continue processing the loop but do not want to exit the
entire .htf form. The escape macro can be called based on specific conditions within aloop and
references the label associated with the loop from which the escape isto be made. Processing
continues with the first statement following the closing {/forindex} or {/forRow}.

90

WebBase User’s Guide

If forindex or forRow structures are nested, an enclosed escape can escape from any level of
depth. It will escape to the first statement following the closing {/forindex} or {/forRow} of
the forindex or forRow macro for which the label value matches the argument in the escape.
The label required argument must be identical to the value of the label keyword in the forlndex
or forRow macro out of which you wish to escape. A WebBase variable or expression cannot
be used as the label value; only literal values can be used.

Unique labels should be used for each forlndex and forRow macro that may be nested together.
The escape macro starts at the topmost forlndex or forRow and looks through the subsequent
branches to find one with the matching label. As soon asthe label isfound, the escapeis
performed. If the same label isused on multiple branches with nested forlndex and forRow
macros, the first branch with the specified label will be branched to, which may not necessarily
be the correct branch. To prevent this type of problem, use unique labels.

Example 8.12 escape Macro
{forlndex anlxA from1 to 20 | abel fool}

{ anl xA}
{forlndex anlxB from1 to 20 | abel foo02}

{ anl xB}

{if anlxB 5 =}
{escape fool}
{/if}
{/forlndex}
<H3>Here is the next thing after foo2...</H3>
{/forlndex}
<H3>Here is the next thing after fool...</H3>

The above example would generate the following results:

O WNBE

Here is the next thing after fool..
{exit <args>}

The exit macro exits the entire .htf form when encountered. It can be used as an escape
mechanism when, for example, your logic finds an error in the input data the user supplied. It
can be used within the onError clause of the errorProtect macro to exit the form after
encountering an {sgl} or other logic error. It isaso very useful in verifying that auser is
accessing a page only in a proper sequence or that they are authorized to access. Itisvery
similar to the escape macro, but exits from the entire form. In essence, it closes the stream
that has been accumulating the output and returns what has been collected to the browser.

The exit macro takes optional arguments that specify arguments to be returned. See the call
and return macros for how return arguments may be used.

WebBase User’s Guide 91

Chapter 8: Macros

Example 8.13 exit Macro

{forlndex anlx from1 to 20 | abel foo}

{ anl x}
{if anlx 5 =}
</ BODY>
</ HTML>
{exit}
{/if}
{/forlndex}
<H3>Here is the next thing...</H3>

The above example would return the following results to the browser:

O WNBE

{f= <exp>}

The f= macro evaluates the given expression and prints the result in place of the {f=...}
statement. The only valid argument with the f= macro is a WebBase expression; constants or
variables cannot be used. Note that there is no space between the ‘f’ and ‘=* but there ISa
space between the f= and the subsequent expression terms. If the expression iswritten as{f =
<exp>}, an error will result.

Example 8.14 f= Macro

{! add 3 to the nunber of results returned !}
{f= 3 results size +}

{f== <exp>}

Thisisvery similar to the f= macro. The f= macro is designed to evaluate an expression and
return the results to be printed at the browser. The f== macro is designed to evaluate the
expression but return an empty string so as not to alter the browser output by itsinclusion in a
form. Thisis particularly for use in expressions like the example below, which returns afile
object that istypically of no use to the user. The only valid argument with the f== macroisa
WebBase expression; constants or variables cannot be used. Note that there is no space
between the ‘f" and *==" but there IS a space between the f== and the subsequent expression
terms. If the expression iswritten as {f == <exp>}, an error will result.

Example 8.15 f== Macro

{f=="foo. EXE %l e% execute:}

{forIndex <indexCtr> <args>} {/forindex}

The forIndex macro iterates over the enclosed text a specified number of times, updating an
index variable with the value of the current counter for each iteration. The first argument,
indexCtr, isrequired and is a variable name for the index counter. The optional keyword-value
pairs for the forIndex macro are described in the table below.

92

WebBase User’s Guide

Keyword Value Description

from Integer The starting value of the index. The default valueis
1.

to Integer The maximum or ending value of the index. The
default valueis 1. If not specified, the forindex loop
will execute only 1 time.

by Integer The value by which the index is incremented on each
iteration through the macro. The default valueis 1.

label Literal valueonly | Used in conjunction with the escape macro to exit the
Macro.

Example 8.16 forIndex Macro

{forlndex anlndexVar from3 to 17 by 2}
The current forlndex |oop counter is {anlndexVar}

{/forlndex}

{forRow <currentRow> <optionalArgs>} {/forRow}

The forRow macro iterates over the enclosed text once for each result in a collection, including
one that contains results from an sgl query. The first and arequired argument is a variable
name which will receive the current entry in the collection during each iteration of the loop. If
the collection contains the results of a sgl query, this variable will hold an OdbcRowObject. If
the collection is a Dictionary, the variable will contain an Association. Finaly, if the collection
is any other type of Collection, the variable will be the entry in the collection. The optiona
keyword-value pairs for the forRow macro are shown in the table below.

Keyword

Value

Description

on

String

The name of the variable that contains the collection
to be processed. If the on argument is missing, the
variable %oresults%o that contains the results from the
last sql macro issued will be used.

from

Integer

The starting element within the list of results specified
by the on argument; it defaultsto 1.

max

Integer

The number of iterations of the loop to be processed;
it defaults to infinite which means that all rows will be
processed.

label

Literal value only

Used in conjunction with the escape macro to exit the
macro.

order

‘asc’, ‘desc’,
‘reverse

Specifies whether the collection is sorted in ascending
or describing order or processed in reverse order.
Only the specified strings (whether stored as
constants, variables or expressions) are valid.

counter

String

The name of the variable that will hold the integer
representing the number of the current row being
processed. If not specified, the variable
%rowCounter% holds the current row number.
Note that this row number is merely the sequential
number of rows that have been processed; it is not

WebBase User’s Guide

Chapter 8: Macros

datathat is actually stored as part of the database

record.

Example 8.17 forRow Macro

{set counter 1}
{! return no nore than 10 answers !}
{! print the Name and Address fields fromthe database !}
{f or Row aRow on soneAnswers max 10}
Entry nunmber {counter} is {Name} at {Address}.
{set counter counter 1 +}
{/f or Row}

{htf} {/htf}

The htf macro prevents values surrounded by curly bracesin HTML from being processed by
WebBase. Thisis useful if you want to include JavaScript within your form and not have
WebBase try to processiit.

Another use of this macro is to construct your own WHERE clause from information provided
viaFORM INPUT by creating the clause as the value of a hidden variable. The example
below is extracted from Basic Example #9 that is accessed viathe WebBase WebWizard.

Example 8.18 htf Macro — form 1

<PRE><FORM METHOD="GET" ACTI ON="Wbact 9. htf">
 Name: </ B><I NPUT NAME="nane" S| ZE="32">
 Cat egory: </ B><SELECT NAME="cat egory">
<OPTI ON>Manager
<OPTI ON\N>Pr ogr amrer
<OPTI O\N>Qper at or

</ SELECT>
M ni num Age: <| NPUT NAME="age" VALUE="21" SIZE="3">
 Wor k: </ B><SELECT NAME="wor k" >

<COPTI ON>Easy

<OPTI ON>Moder at e

<OPTI ON>Har d

</ SELECT>
 M sc: </ B><| NPUT NAME="m sc" >

<I NPUT TYPE="H DDEN' NAME="nyWhere"
VALUE="{htf} category = '{category}’
AND m sc LIKE "% m sc sql =true}%
AND wor k LI KE " % wor k} %
AND age {%E% {age}{/htf}">
<I NPUT TYPE="SUBM T" VALUE="SUBM T">
</ FORM>
</ PRE>

The htf macro surrounding the information in the VALUE field above ‘quotes' the contents so
that WebBase does not PROCESS the fields contained within curly braces (e.g., ‘{ category}’,
‘{'misc sgl=true}’) at thistime. Instead, the ‘myWhere' hidden variable is passed to
Whact9.htf, where WebBase will then processiit.

94

WebBase User’s Guide

The Whbact9.htf form called when you submit the above example uses the ‘ myWhere' variable
asfollows:

Example 8.19 htf Macro — form 2

{sgl to answers source 'nyData' user 'nme' password 'secret'}
SELECT * FROM nyTabl e WHERE {f = nyWere %nd% asHTF: }

{/sql}

The {f= myWhere %cmd% asHTF:} expression parses the contents of the { myWhere}
variable, first removing any surrounding { htf} {/htf} macros and then evaluating the
{variable} referenced contained within the string.

The htf macro would not be necessary if the input form was being handled by a non-WebBase
server, since a non-WebBase server will not attempt to process anything within curly braces.
If WebBase is used to handle the input form, the htf macro is simply asignal to WebBase to
not process everything within the macro. The htf macro was designed so that, when used as
shown above, a WebBase server or a non-WebBase server could use the exact same form.

The %GE% variable used in the example generates a‘>=" when WebBase expandsit. Some
browsers end the <INPUT> tag if the VALUE containsa‘>‘, even if the contents of the
VALUE field are correctly enclosed in double quotation marks.

{if <exp>} {else} {/if}

The if macro evaluates its expression argument which returns aresult of either true or false. If
the result is true, the text following the {if} up to the {/if} keyword or the {else} keyword if
present is processed. If the expression evaluates to false, the text following the optiona { else}
keyword is processed if present. If the expression evaluates to false and no { else} keyword is
present, no text is returned by the if macro. The only valid argument with the if macroisa
WebBase expression; constants or variables cannot be used.

Example 8.20 i f Macro

{if O results size =}
<H2>Sorry, no results.</H2>
{el se}
<H2>Hey, we got {f= results size} replies!</H2>

{1if}

{insert <filename>}

The insert macro alows one to insert other .htf files at the location of the {insert} keyword as
if the text from the inserted file existed inline at that location. WebBase macros and variables
within the inserted file are handled asin any .htf file. The insert macro alows one to write
small .htf filesthat can be more easily understood and alows one to develop segments of .htf
logic that could be used in many other .htf files.

The argument filename is required, and is the name of the file to be inserted. It can be a string,
avariable containing a string, or an expression that generates a string. The valid formats for
the filename are:

WebBase User’s Guide 95

Chapter 8: Macros

“/file_htf” -or- “/subdir\file_htf’

appends the filename string to the Directory parameter. This format specifies afilename
that isrelative to the Directory parameter. If multiple domains are specified, thisis the
Directory parameter for the current domain in use.

“:file.htf” -or- “:subdir\file_htf’

appends the filename string to the Directory parameter. This format specifies afilename
that isrelative to the Directory parameter. If multiple domains are specified, thisis the
default Directory parameter specified in the HttpSQL/Parameters key — not the Directory
parameter for the current domain in use. If multiple domains are not in use, thisformat is
equivalent to the previous format.

“file_htf” -or- “subdir\file._htf”
appends the filename to the directory of the current form. Thisformat specifies a filename
that is relative to the directory in which the current form (the one that contains the insert
macro) exists. A variation on thisformat is‘..\filehtf’. For each “..\'" sequence, one moves
up one level of directory from that in which the form doing the {insert...} was located.

“c:\dir\subdir\file_htf’
uses the filename string as the complete pathname for accessing the inserted file. This
format specifies afilename that is absolute.

Note: forward slash / (URL syntax) and backslash \ (DOS) characters can be used
interchangeably within .htf when referencing local files. WebBase will convert al / characters
to \ as necessary to access files within the Windows host environment.

Example 8.21 insert Macro

{set fileone '../address.htf'}
{insert fileone}

{output <args>} {/output}

WebBase does not process the text contained within the output macro, but insertsit into the
output HTML exactly as encountered. VVariables and other macro keywords are not processed
but are output with their enclosing { } characters as entered in the .htf file. The optional
keyword-value pairs supported by this macro are described in the table below.

Keyword Value Description

convert Boolean If true, dl < and > characters are converted to the

character sequences &It; and & gt; respectively, so
that HTML forms can be printed as part of the text
rather than being interpreted by the browser. If fase
(default), no character conversion is done.

insert String The name of another file to be output without

processing. This alows one to output the contents of
afile rather than including the file to be processed by
WebBase. See the insert macro for the formats of
the argument.

96

WebBase User’s Guide

Note:

Since the purpose of the output macro is to insert text that is to be printed and not
processed by WebBase, WebBase does not parse the information within the
{output} ... {/output} area. For this reason, after encountering the opening
{output} keyword, WebBase scans for the first occurrence of an ending {/output}
keyword. WebBase does not support nested output blocks.

The example below would output <TITLE> {systemName} </TITLE> at the browser and
NOT set the browser’ s title to the value of the variable systemName.

Example 8.22 output Macro

{out put convert true}
<TlI TLE> {systenNane} </ Tl TLE>
{/ out put }

{parallel} {/parallel}

The parallel macro sets up a placeholder for a semaphore. Within the { parallel} {/parallel}
statements, one can have multiple {fork} statements, each of which forks off a separate
process within WebBase and ties their completion to the semaphore of the enclosing parallel
structure. Logicaly picturing it, one starts off al these fork blocks, then sits and waits at the
{/parallel} for them all to complete. Thiswas primarily developed to allow multiple GET and
POST operations to be running simultaneoudy, waiting until all complete. However, the
parallel macro is not limited to that use.

Note:

The parallel and fork statements form a static structure and the fork statements
must be within the top-level scope of the parallel statement; i.e., they cannot be
within another nested structure within the parallel like a forRow or forindex.

Example 8.23 parallel Macro

{parallel}
{fork}
{set varl ...
any general WbBase stuff here
Could be SQ calls, maybe ones that reference
dat abases on a renote nachi ne
{fork}
anot her set of WbBase nacros, etc.
again, possibly {SQ - }
{fork}
and yet nore..
{/parallel}

{reDirect <url>}

The reDirect macro causes aredirect instruction to be sent to the browser; the argument is sent
asthe new location. Most browsers will automatically access the new location. Some browsers
may display alink to the new location. All .htf form processing stops when a reDirect macro is
encountered and any reply data accumulated at that point is replaced with the redirect
information.

WebBase User’s Guide 97

Chapter 8: Macros

The url argument is required, and can use any of the following formats:

“/file_htf” -or- “/subdir\file_htf’
Thefile string is relative to the Directory parameter. The resulting URL will be
‘http://<server | P address>:<port #>/file string’.

“file_htf” -or- “subdir\file._htf”

Thefile string is relative to the directory of the current form. The resulting URL will be
‘http://<server |P address>:<port #>/<current location>/file string’. A variation on this
format is*.\filehtf’. For each*..\" sequence, one moves up one level of directory from
that in which the form doing the {reDirect...} waslocated. However, itisNOT possible
to move up in the directory structure past the Directory. For example, if the Directory
parameter is set to ‘c:\http’, it is not possible to access afilein ‘c:\" or ‘c:\otherDir’.
Aliasing can be used to accessfiles in other directories or devices on the server system.

“http://www._mySite.com/default._htm”
The URL/file string is the complete URL.

Note:

If any cookie variables are set using the {setCookie} macro in the form prior to the
redirect macro being invoked, these cookies are returned to the browser, but the
browser ignores them. The cookies will not subsequently be returned to the server
by the browser.

Example 8.24 reDirect Macro

{reDirect "http://ww. Mysite.com '}

{reDirect2 <arg>} {/reDirect2}
The format of the reDirect2 macro isidentical to that of the reDirect macro, but alows
arguments to be appended to the command line by specifying them as

val ue
val ue

argl
arg2

The arguments are specified one per line between the {reDirect2 ...} and {/reDirect2} macros
(just asin the call macro). Whileit is possible to do this using the reDirect macro, it is rather
difficult. The following shows how the same result would be done using both the reDirect2
and reDirect macros.

Example 8.25 reDirect2 Macro

{reDirect2 './abc.htf'}
nanme=John Q Public
id=12.34

{/reDirect 2}

{reDirect './abc.htf?name=John+Q+Publ i c& d=12%3E34' }

{remove <varNames>}

The remove macro removes the variable with the specified varName from the topmost scope
(see scope macro) or local variable if found. If no variableis found in either the scope or local

98 WebBase User’s Guide

variables, no error isreturned. The argument is one or more variable names. If onevariableis
to be removed, the format is:

{renove aVar}
If multiple variables are to be removed, the format is:

{renove aVar bVar cVar}

Example 8.26 remove Macro

{set nyVar *‘abcdef’}

{! Now set up scoping and create a variable !}
{scope}
{set scopeVar 12345}
nore WebBase statenents ...
{renove nyVar scopeVar}
{/ scope}

{removeAll <varNames>}
The removeAll macro removes all scope and local variables of the given name. If no variables
by this name exist within the current scope(s) or as alocal variable, no error is returned. One
or more variables can be specified as arguments; see the remove macro for more details.

Example 8.27 removeAll Macro

{set avar ‘abcdef’}

{! Now set up scoping and create a variable of the sane nane !}
{scope}
{set aVar 12345}
... hore WbBase statenents ...
{renoveAl | aVar}
{/ scope}

{removeCookie <varNames>}

For each name in the <varNames> list, the removeCookie macro creates a cookie by the
specified name and setsits value to “deleted”. The expiration tag for the cookie is set to
Tuesday, 01-Jan-1901 01:01:01 GMT. The cookie is added to the output cookies, and is
returned to the browser when the form processing is completed. 1f a cookie by the specified
name exists on the browser, it should be deleted. If the user has just created the cookie
variable using the setCookie macro and then deletes it, the information is still returned to the
browser which should do nothing since no cookie by that name exists on the browser.

Example 8.28 removeCookie Macro

{! create and renove a cookie variable !}

{set Cooki e cVar *‘abcdef’}

{renoveCooki e cVar}

{! renove a cookie variable that probably already exists !}
{renoveCooki e WbBasel D}

WebBase User’s Guide 99

Chapter 8: Macros

{removeGlobal <varNames>}

The removeGlobal macro removes the specified global variable(s) from memory; it does not
delete them from the System Registry. The next time that WebBase is started, the global
variable will once again exist unlessit is explicitly removed from the System Registry. If no
global variable with the specified name exists, no error is returned. One or more variables can
be specified as arguments; see the remove macro for more details.

Example 8.29 removeGlobal Macro

{! create and renove a gl obal variable !}
{setd obal gVar *‘nmyConpanyNane’}

nore WebBase statenents ...
{renoved obal gVar}

{removeHeader <varNames>}

The removeHeader macro removes the specified header variable that was created using the
setHeader macro. If no header variable with the specified name exists, no error is returned.
One or more variables can be specified as arguments; see the remove macro for more details

Example 8.30 removeHeader Macro

{! create and renove a header variable !}

{set Header Expires %Jniversal Ti me% now asStri ng}
nore WebBase statenents ...

{renoveHeader Expires}

{removeLocal <varNames>}

The removelLocal macro removes the specified local variable(s). If scoping is not being used,
thisis equivalent to the remove macro. If scoping is being used, thiswill remove the
variable(s) from the local context, but will not affect any scoping variables of the same name.
If no local variable with the specified name exists, no error is returned. One or more variables
can be specified as arguments; see the remove macro for more details.

Example 8.31 removelLocal Macro

{! create a local variable !}
{set IVvar ‘testl’}
{scope}
{set IVvar ‘test2’}
nore WebBase statenents ...
{renovelLocal | Var}

{! the value of ‘lvar’ is still ‘test2” within the scope !}
{/ scope}
{! the local ‘lvar’ no longer exists !}

{removeUser <varNames>}

The removeUser macro removes the specified variable(s) from the current user dictionary, as
specified with the variable %ouserName%. If no user variable with the specified name exists,

100 WebBase User’s Guide

no error is returned. One or more variables can be specified as arguments; see the remove
macro for more details.

Example 8.32 removeUser Macro

{! create a user dictionary and user variable !}
{set %user Name% *‘ user Vars’}
{setUser uVar ‘Enpl oyee Nane’}
nore WebBase statenents ...
{renoveUser uVar}

{return <vals>}

The return macro, designed to be used within a CALLed form, posts the indicated values so
that they can be read by the caller when the CALLed form completes (see the call macro for an
example of how the return macro isused). The return macro writesits values to the call, it
does not append them. If there is more than one return macro in a CALLed form, the last one
executed is what gets returned.

The return macro can also be used within insert files that are designed to operate like
subroutines; an example is presented below with the scope macro. The values posted by the
return macro can be accessed viathe %returns% dynamic variable. For example,
{return true varNane 3}

{f=1 %eturns¥at:} ->true
{f=2 Beturns%at:} -> value of varNane variable
{f=3 Weturnsat:} -> 3

The value fields in the macro line are evaluated before being written; thus variable names are
allowed, their values will be returned. The return macro does not terminate processing of the
form it occursin, it merely writes the return values so any output being generated for the
browser following the return macro will still be processed.

{scope} {/scope}

The scope macro is used to create a variable context that is in existence for a specified amount
of processing, namely for all statements within the { scope} ...{/scope} keywords. Scope
variables override local variables for the duration of the scope. The scope macro creates a
‘topmost’ scope variables dictionary that is searched before any other already-existing scope
dictionaries. Then the local variables, user variables, etc. are searched as necessary. As soon
as the {/scope} keyword is encountered, the scope dictionary for that particular scopeis
removed so those scope variables are no longer accessible in subsequent processing of the
form.

It is possible to nest scopes to create nested levels of scope dictionaries— all of which might be
searched when looking for a particular variable. The innermost scope isthefirst to be
searched, followed by the next scope, followed by any other scopes, and then finally the local
variables, user variables, global variables and dynamic variables. Field variables within a
scope will still take precedence over any other variables.

The scope macro example below shows how insert files work great as subroutines. This
particular insert file creates a directory whose pathname is passed in asthe variable "DIR_".

WebBase User’s Guide 101

Chapter 8: Macros

It will check to seeif any intermediate levels of directory are required and if so make a
directory at each level.

The scope macro is used because the variables DIR_1 and DIR_2 are created with the set
macro, and the variable DIR_3 is created with the forRow macro. These variables have no
value outside this insert file, and could possible override existing variables of the same name if
this file were inserted into existing code without one realizing what wasin it. Using the scope
macro, these variables will not exist after the insert file is completed.

There are two other interesting featuresin thisinsert file. First, the setString macro is used at
the top to act like a %ooutput% off/on wrapper. This effectively turns off output without
having to explicitly know whether the main form had the %output% status set to true or false.
Nothing is added to the output being generated for the browser as the result of inserting this
file, and the %output% variable status is not affected.

The second interesting feature is the use of the return macro that is returning values indicating
success or failure of thisroutine. If it is successful, two values are returned; 1=the Boolean
true and the second the pathname passed in of the directory that was created. If an error
occurs during the create process, three return values are returned; 1=false, 2=pathname,
3=error message string. To query the returns from an “insert” subroutine such as this, the
%returnso variable can be used as in the following:

{if %Beturns%first}

successf ul
{el se}
error = {f=3 %Weturns% at:}
{/if}
Example 8.33 scope Macro
{! create the necessary directories for the pathnane in DIR_
'}
{scope}

{errorProtect}

{if DR_9%irectory%exists: not}
{set DOR 1 $\ DI R_ pat hnaneDCOS par seAt: }
{set DR 2 ''}

{forRow DIR_3 on DIR 1}
{if DDR 2 isNull}
{set DDR 2 DI R 3}
{el se}
{set DR2 DR3 '\' DR2, ,}
{/if}
i rectory% exi sts: not
{if DR 2 % y% exi }
{f==DR2 %irectory%create:}
{/if}
{/f or Row}
{/if}
{return true DR}
{onError}
{return false DIR_ (%rror% nmessageText Basi c)}
{/errorProtect}
{/ scope}

102 WebBase User’s Guide

{set <var> <val>}

The set macro creates alocal variable whose name is specified by var, and whose value is
specified by val. If val is an expression, the value of var is set to the result of evaluating the
expression. The val argument may aso be another variable name or aconstant. The variable
created will be alocal scoping variableif within a{scope} ...{/scope} statement. Local
variables can be removed using the remove, removeAll or removelLocal macros.

In the example below, the first statement sets the variable counter to 3. The next statement
sets the variable xxx to the value of the variable name. The last statement sets the variable
uName to the result of applying the asUppercase method to the value of the variable name.

Example 8.34 set Macro

{set counter 3}
{set xxx nane}
{set uName nanme asUppercase}

WebBase also alows for indirection when setting variables. If the second argument is
specified as @myVar, the first argument is set to the value of the variable myVar. For
example:

{set counter 3}
{set ol dCounter ‘counter’}
{set newCounter @l dCounter}

The first expression sets counter to avalue of 3. The next expression sets oldCounter to the
string ‘ counter’, which is also the name of avariable. The last expression @oldCounter says
set the variable newCounter to the value of the variable whose name can be found in
oldCounter.

If theindirection sign @ is placed in front of the variable that is being updated or created (i.e.,
the first argument), this meansto treat this as an existing variable name whose contents is what
we actualy want here in the set macro. For example,

{set foo 'bar'}
{set @oo 3}

will set bar to 3. The value of the variable foo is ‘bar’, but the value of the variable bar is 3.
Multiple variable indirection is aso possible as shown in the following two examples:

Example 8.35 set Macro and Multiple Variable Indirection

{set counter 3}

{set ol dCounter ‘counter’}

{set ol der Counter ‘ol dCounter’}
{set newCounter @@l der Counter}

{set counter 3}

{set ol dCounter ‘counter’}
{set ol derCounter ' @ounter’}
{set newCounter @l derCounter}

WebBase User’s Guide 103

Chapter 8: Macros

{setCookie <var> <val>}

The setCookie macro operates exactly as does the set macro except that it will store its name-
value pair in acookie dictionary. A cookie dictionary is very similar to the user dictionaries
described in Chapter 10. However, there is only asingle cookies dictionary used by WebBase.
The cookies dictionary gets written out as a header variable and sent back to the browser.

Unlike other variables, the value of the cookie specified by the user is combined with other data
before being stored in its dictionary. The cookie value and the current values of
%cookiePath%, %ecookieDomain% and %cookieExpires¥ are all concatenated together, and
then the value is stored into the dictionary. This alows the user to create some cookies that are
transitory and others that are persistent — all within the same form. The example below shows
how to set the value of %cookieExpires¥ to create a persistent cookie that will exist for
approximately 2 years.

Chapter 9 includes additional information on cookie variables. Cookie variables can be
removed using the removeCookie macro.

Example 8.36 setCookie Macro

{set %ooki eExpires% 700 %Jni ver sal Ti ne% now addDays: }
{set Cooki e nyCooki evVar ‘test’}

Variableindirection is possible using cookie variables, but should be used with caution. The
following example shows how indirection can be done. Note that the setCookie macro is only
the last macro used. As noted above, when a name-value pair is entered into the cookies
dictionary, additional information is appended to the variable name. Thus, it is not possible to
retrieve avalue from the cookie dictionary for use in indirection.

Example 8.37 setCookie Macro and Multiple Variable Indirection

{set counter 3}
{set ol dCounter ‘counter’}
{set Cooki e newCounter @l dCount er}

{setGlobal <var> <val>}

The setGlobal macro will create a name-value pair as aglobal variable in memory only.
Unless the System Registry is modified, the next time that WWebBase is started this global
variable will not exist. Global variables created either with the setGlobal macro or within the
System Registry can be removed from memory using the removeGlobal macro. It isimportant
to remember that both the setGlobal and removeGlobal macros only make in-memory changes.
All permanent changes to global variables must be done in the System Registry.

Example 8.38 setGlobal Macro

{setd obal nyd obal Var ‘test’}

{setHeader <var> <val>}

The setHeader macro alows users to specify header vaues that will be returned to the
browser. For example, the user can specify the Expires: header information using this variable

104 WebBase User’s Guide

instead of using the %expires% dynamic variable. If abrowser receiving the header variable
and value does not recognize or support the header variable, it will normaly just ignore it.

Example 8.39 setHeader Macro

{set Header Expires %Jniversal Ti me% now asStri ng}

{setLocal <var> <val>}
The setLocal macro is designed for use only with the scope macro to create alocal variable
that will exist after the scope macro is completed. If scoping is not in effect, thisis equivaent
to the set macro.

Example 8.40 setLocal Macro

{scope}
{setLocal local Var ‘test’}
nore WebBase statenents ...
{/ scope}
{! the local variable ‘localVar’ still has a value of ‘test’ !}

{setString <var> <options>} {/setString}

The setString macro creates a variable containing a string; the string value is specified on one
or more statements within the { setString} ...{/setString} keywords. This macro provides an
alternative to using the set or f= macros with multiple concatenation operations; it allows the
user to see very clearly how text and variable values will be put together into the resulting
variable. var isany valid variable name.

The setString macro supports a number of options that determine the type of variable to be
created as well as how the resulting string value will be handled. Each of these options can be
specified as a constant, variable or parenthesized expression; however, they must resolve to a
string of the specified option name. The valid options are:

‘collapse’ -- replaces al control characters and multiple spaces in the string within the
{setString} ...{/setString} with a single space character. This reduces the string to the
barest minimum for sending to the browser. Thisis desirable asit eliminates extraneous
whitespace when doing a view source at the client browser.

‘trim” — replaces leading and trailing spaces and newlines, but does not modify embedded
formatting. Thisisless severe than the ‘ collapse’ option above.

‘local’ —the resulting variable is stored as alocal variable.

‘global’ —the resulting variable is stored as a global variable in memory only. When
WebBase is restarted, the global variable will not exist unless the System Regidtry fileis
edited.

‘user’ —the resulting variable is stored in the user variable dictionary specified by the
%userName% variable.

WebBase User’s Guide 105

Chapter 8: Macros

‘cookie’ —the resulting variable is stored as a cookie variable that will be returned to the
browser when form processing is compl eted.

If the type of the variable is not specified, the resulting variable will be alocal variable within
the current scope. If scoping is used, that means that the variable will not exist once the
{/scope} keyword is encountered.

The ‘collapse’ option can be used in conjunction with any one of the other options. If two or
more of ‘loca’, ‘global’, ‘user’ and ‘cookie’ are specified, then resolution is done based on the
order local, user, global and cookie.

Example 8.41 setString Macro

{setString i mageFiles 'collapse'}
| magel. gif;lmgel.gif,
| mage2. gi f; 1 mage2. gif
{/setString}

{setUser <var> <val>}

The setUser macro operates exactly as does the set macro except that it will store its name-
value pair in auser dictionary. See Chapter 10 for information on user variables and user
dictionaries. The same variable indirection described above for the set macro can also be used
for the setUser macro.

Example 8.42 setUser Macro

{set %user Name% ‘' nyUserDict’}
{setUser xx ‘test’}

{signalError <error text string>}

The signalError macro signals an error that results in the argument being displayed as shown
below. This macro can be helpful in simulating situations which could return errors under
some circumstances. It allows you to develop appropriate { errorProtect} ... {/errorProtect}
constructs and/or error logging procedures without having to force actual error conditions.

Aswith other errors, this error can be caught in the errorProtect macro to prevent the message
from reaching the user but allowing one to ‘escape’ to the { onError} clause within the
errorProtect macro.

The first example below shows the error message that will be displayed on the browser if the
error is not trapped using the errorProtect macro. The second example shows the use of the
errorProtect macro to redirect the user to aform instead of displaying the error message.

106 WebBase User’s Guide

Example 8.43 signalError Macro — no error trapping

{signal Error 'You should not be here!'}
The following is then displayed on the user’s browser:

An error occurred processing your request
Mergi ng data into macro form

"You shoul d not be here!

Example 8.44 signalError Macro — with error trapping

{errorProtect}
{if answer isNull}
{signal Error 'x'}
{/if}
{onError}
{reDirect 'GetAnsr.htf"}
{/errorProtect}

{sql <args>} {/sql}

The sql macro identifies the database that is to be queried, allows for specifying a variable into
which it can return its query results, and defines the text block that constitutes the actual
ODBC query statement. The optional keyword-value pairs supported by the sql macro are
listed in the following table:

Keyword Value Description
to String The variable name into which the results will be
placed. If thisargument is omitted, the variable
%results% will be used. The value of this keyword
must be a variable name, it cannot be an expression or

constant.

source String The ODBC source name. If thisargument is omitted,
the variable %source% will be used.

user String The user id for logging into the ODBC source. If this

argument is omitted, the variable %user% will be
used. Note that some ODBC drivers do not require a
username and password; this is a database-specific
issue. It isrecommended that even though a username
and password may not be required by the current
ODBC driver, that they be specified as part of the sql
macro statement in case they are required by future
ODBC drivers.

password String The required password for logging into the ODBC
source. If this argument is omitted, the variable
Y%password% will be used. Note that some ODBC
drivers do not require a username and password; this
is a database-specific issue. It is recommended that
even though a username and password may not be
required by the current ODBC driver, that they be
specified as part of the sgl macro statement in case

WebBase User’s Guide 107

Chapter 8: Macros

they are required by future ODBC drivers.

buffer

Integer

The maximum buffer length for ODBC to use to
return data from the database to WebBase. The
default is 8192 bytes. If one requests a record from
the database and the buffer is not long enough, some
of the datawill be truncated. Thisistypicaly some
text from along memo field but it can be entire fields
asthe datais returned in the order requested
(SELECT fieldy, field2, field3, ...). If fieldlis by
itself longer than the buffer, the rest will belost. See
the operations available for ODBCRowObject in
Chapter 11 that include detecting if a message about
data truncation was received.

cache

Boolean

If set to false, the ODBC connection will not be added
to the cache of ODBC connections after the operation
and, if previoudly in the ODBC cache, will be
removed as a Side effect of the operation. This
parameter in no way affects the setting of the ODBC
connections cache. If caching isdisabled, this
parameter has no effect. Setting this parameter to true
will not cause this connection to be cached if caching
isdisabled. The value of the ‘Cache ODBC
Connections' menu option set viathe WebBase
Service window aways takes precedence. The default
is true which means the connection will be cached if
caching is enabled. This keyword/value pair is useful
to selectively keep a database from being cached. It
can also be used to remove a cached connection at the
end of aform that possibly hit the database multiple
times and cached the connection earlier so that non-
WebBase access of the database can be made. Once
WebBase caches a connection, the database has
WebBase as a user with exclusive, read/write or read
only access -- however the ODBC source was
specified. This prevents the user from accessing the
database with exclusive access for maintenance
purposes. If this database is thus accessed on a
routine basis, it is possible the user might wish to not
leave the connection cached while wanting cached
connections for other databases.

max

Integer

The maximum number of records the query isto
return. By default, all records matching the query
specifications are returned. The WebBase
WebWizard Database Example #4 shows how to
implement ‘More’ and ‘Previous' buttons using this

keyword.

start

Integer

The number of the first matching record to be
returned (i.e., skip the first start - 1 matching records).
The WebBase WebWizard Database Example #4
shows how to implement ‘More’ and ‘ Previous
buttons using this keyword.

108

WebBase User’s Guide

rowCount String The name of the variable that will hold the number of
INSERTED rows. If thisvariable name s not
specified, %rowCount% is used.

error String The name of the variable that will hold any error
messages reported by the ODBC driver. Thiscan be
used to determine exactly the nature of the error if
specialized processing is needed. In general, users
should not require this option. This does not prevent
the macro from generating an error, the user should
till wrap the sql macro with the errorProtect macro.
Within the { onError} branch, the user can use the
contents of this variable to determine the explicit
error. Using the {f= %error% messageText} within
the error branch returns the ODBC error message to
the user, aswell as al of the WebBase error
information (macro dump, stack dump, etc.).
keepHandle | Boolean The only purpose for this keyword is to address a
problem with Microsoft Access 7.0 and greater
databases and the associated ODBC driver. If false
(default), the handle is not kept following the { sgl}
statement, unless of course the handleis cached in the
ODBC connection cache. If true, the handle allocated
for the ODBC connection to the data source will not
be free following itsuse. 1n addition, even if one has
the * Cache ODBC Connections' menu option enabled,
the connection handle associated with this{ sgl}
statement will not be placed in the ODBC cache
following use but will be disconnected but not freed.
Thiswill ensure that the handle does not cause any
General Protection Fault (GPF) errors to occur either
by executing the {sgl} statement or by clearing the
ODBC cache explicitly or on server shutdown. See
Chapter 14 for details on implementing this keyword
to address the Microsoft AccessODBC driver
problem.

Only asingle SQL statement can be included within the sgl macro. However, multiple sl
macros can be placed within the same .htf form.

It is very important that WWebBase variables used in SQL statements be set up to match the
expected data type in the database table. Any WebBase variable that contains a string and
will be written to atext or memo field must be enclosed in single quotes. It is also strongly
recommended that the parameter { sgl=true} be added to all text fields; this ensures that any
apostrophes in the string stored in the WebBase variable will be properly inserted into the
database. Any numeric value must be entered without single quotes. A date or date/time value
must be entered by placing the ‘# sign before and after the variable. In the example below, the
Name field in the database is specified to be atext field; the Salary field is numeric, and the
StartDate is a dateTime field.

WebBase User’s Guide 109

Chapter 8: Macros

Example 8.45 sql Macro

{sqgl source 'nySQ.' wuser 'nme' password 'test'}
| NSERT | NTO Enpl oyees (Nane, Sal ary, St art Dat e)
VALUES (' {Last Nane sql =true}', {Sal ary}, #{t heDat e} #)

{/sql}

{sgl to alltn source 'nySQ.' user 'ne' password 'test'}
SELECT * FROM Enpl oyees WHERE St artDate <= #{%at eTi ne% #

{/sql}

Note:

The ODBC drivers do NOT return the number of records returned by a SELECT
statement — the user must determine this information by asking the size of the to
variable.

{timer id <idVal> <args>} {/timer}

The timer macro is used to schedule entries on the WebBase timer queue. WebBase checks
this queue once every minute and, when an entry’ s time has expired, the entry is processed.
The <args> provide for scheduling the entry that can be for a“onetime”’ execution or for a
repeated, periodic execution.

The entry that is scheduled is all the text contained within the {timer ...} {/timer} construct as
well as acopy of al variables defined at the time the entry is scheduled. This text will
generally consist of WebBase macros and expressions that will be interpreted at the time the
entry isexecuted. Since the timer queue entry will be executed at some point in the future it
will not be associated with the browser that executed the form that originally scheduled the
entry. If the entry references variables associated with such a browser (e.g.
%browserAddress%, Accept, Content-length), unpredictable results can occur. Output
generated by the timer queue entry does not get sent to a browser as does output generated by
standard WebBase forms. However, output to files using any of the WebBase file access
mechanisms and output to a database via the sql macro will be properly processed.

Theid keyword is aso required, asisits value which is either an integer or string which is
used to identify this entry in a‘remove from timer queue’ operation if necessary. The table
below shows the optiona keyword-value pairs that can be used with the timer macro.

Keyword Value Description
date Date/String The date on which the entry is to be executed. If a
string, it isin aformat that can be used to generate a
Date instance.
time Time/String The time of day on which the entry isto be executed.

If astring, itisin aformat that can be used to
generate a Time instance.

period Integer The number of minutes between execution of the
entry. The first time the form will be run will be
<Integer> minutes from the time the entry is placed
onto the timer queue; it will not be run immediately.

title String The function of the entry added to the timer queue.
This can be displayed using the timerQueueSQL

operation available on %cmd% (see Chapter 11).

110

WebBase User’s Guide

count Integer The number of times the entry should be run before it
isremoved from the queue. If date is specified, this
value is automatically set to 1. It can be used to allow
periodic entries to run every <Integer> minutes for a
count number of times, then be removed.

The above date, time and period entries are interpreted as follows to control the scheduling of
the timer entry.

If adate argument is supplied, the entry will be executed only once on the date indicated (or
today if the date has already passed) based on the values of any additional arguments. If a
time argument is indicated along with a date, the entry will be executed once at the specified
time on the given date. If no time argument is specified, atime of 00:00:00 on the given date
isassumed. The period argument has no effect on the scheduling when date is specified.

Note:

Both date and time arguments are processed as being egual to or less than the
current date and time. When the entry is checked it will be executed if the date is
the current date or a prior date and the time is the current time or has already
expired.

If no date argument is specified, the entry will be executed periodically until it is explicitly
removed from the queue or the WebBase server isterminated. If atime argument is provided,
the entry will be executed once per day at the specified time. The period argument has no
effect when time is specified. If the time argument is specified and a period argument is also
provided, the entry will be executed once every period minutes. If no date, time or period
argument is provided, the entry will be queued but will never be executed.

The removeTimer: operation (see HttpCommand section in Chapter 11) can be used to remove
atimer queue entry based onitsid. There are no operations currently provided for
manipulating or inquiring into the scheduling parameters (date, time or period) of atimer entry
once it has been placed on the timer queue. The WebBase WebWizard More Examples
includes an example of how to use the timer macro to schedule aform to be regularly

processed.
Example 8.46 Timer macro
{timer id 3 tine ...}
{set var ...}
{sal ...}
{/sql)
{coment} any WebBase scripting here ... {/coment}
{/timer}

{while <exp>} {/while}

Aslong as exp returns true, the while macro will continue looping and executing al the
statements contained within the macro. When exp returns false, control passesto the first
statement following the {/while}. The variable %whileLimit% can be created and set to a
positive integer to limit the number of times one will loop regardless of the state of the
condition. Thisisuseful as a safeguard during development to prevent infinite loops. The
local variable %whileCounter% is automatically set to the loop count (e.g., 1, 2, 3).

WebBase User’s Guide 111

Chapter 8: Macros

The example below uses the while macro to wait for a given length of time before processing
will continue. The variable pauseTime would be set before this macro is invoked and would
contain an integer value identifying how many seconds to wait from the current time.

Example 8.47 while Macro

{set startTinme %econds%
{set stopTine pauseTine startTime +}
{set now startTine}
{whil e now stopTi ne >}
{set %priority% 0}
{set now Y%seconds%
{if now startTime >}
{set stopTine 86400 stopTinme -}
{/if}
{/whi | e}

{with <val>} {/with}

The with macro allows one to specify an sgl result set that is to be made available for
accessing viafield names. Unless one iswithin the forRow macro, by default the most recent
sgl macro datais made available for accessing by field names. If one were to use more than
one sql macro in aform, the with macro alows one to indicate which of the result sets are to
be used when afield name is specified outside aforRow construct.

The with macro can be nested as shown in the example below. The result set in effect will be
the one in the innermost nesting at the time. See the section on Field Variables in Chapter 9 for
details on how the with and forRow macros access field variables within a result set.

The argument to the with macro is either a variable name (as in the example below), or an
expression that must evaluate to either a collection of records returned from a{sgl} SELECT
or asingle OdbcRowODbject instance. |If the argument is a collection or records, only the first
will be handled within the with macro. Generally, a single item from a collection will be the
argument to the with macro. If one wished to address the last row of data returned by the first
sgl macro in the example below, one could write

{with setl |ast}
or the third row of data returned in set2 would be
{with 3 set2 at:}

112

WebBase User’s Guide

Example 8.48 with Macro

{sgl to setl ...}
SELECT NAME, ADDRESS,

{/sql}

{sdl ib.setZ ...}
SELECT MODEL,
{/sql}

{with set1}

{ NAVE}
{with set?2}
{ MODEL}

{/with}

{ ADDRESS}
{/vi th)

{writeFile <file> <optionalArgs>} {/writeFile}

The writeFile macro surrounds text that isfirst processed by WebBase to substitute for
variables and expressions. The resulting string is then written to the indicated file. The file can
be specified in any of the formats as described for the insert macro. The optiona keyword-
value pairs for this macro are shown in the table below.

Keyword Value Description
append Boolean If true, the resulting string will be appended to the

specified file. If false (default), the datain thefile
will be overwritten.

Example 8.49 writeFile Macro

{writeFile './nyfile.txt' append true}

| amgoing to add this text to the end of the file "nyfile.txt'.
It will include the current (%lateTi me%4 and the address of the
browser {%browser Address% that called ne along with sonme ot her
i nteresting WebBase vari ables, etc.
{/witeFil e}

WebBase User’s Guide 113

Chapter 8: Macros

114 WebBase User’s Guide

VWEB
%% Variables
Chapter 9

WebBase variables let you access, store, and display data within a WebBase .htf file.
Browser GET or POST requests might include input variables, the author can define local
variables and access global variables, and database queries will result in field variables.
WebBase also has a number of dynamic variables that can be used in the .htf form.

Variables are expressed as alphanumeric names, e.g., counter. They are distinguished from
string constants by the fact that string constants are enclosed in single quote marks, e.g.,
‘counter’. All WebBase variable names must start with an a phabetic character or a‘%’. The
dynamic variables and global variables provided by WebBase all start witha*%'. Itis
recommended that users create their variable names starting with aphabetic charactersso it is
easy to differentiate between user-created and system-provided variables.

A WebBase variable name cannot be the same as a WebBase reserved word; the
%reservedWords% dynamic variable is a collection of al the WebBase reserved words. Itis
also important to remember that variables are CASE SENSITIVE -- i.e,, counter and Counter
are two different variables.

The search order for WebBase variablesis

Field variables
Loca variables
User variables
Global variables
Dynamic variables

grLODE

Notice that Local variables override User variables, and User variables take precedence over
Global variables, and Global variables override Dynamic variables. Because of this
precedence order, it is strongly recommended that you carefully select the names of any
variables to ensure proper precedence. For example, preface all user variableswithaU (eg.,
{setUser Uname name}).

WebBase User’s Guide 115

Chapter 9: Variables

9.1 Field Variables

Field variables are variables whose names correspond to fields within a database record
definition. Variables representing database record field names must be specified exactly asthe
field names are returned by the ODBC driver for that particular database. With many
databases, the ODBC database driver returns the field names exactly as specified by the user
when doing the record definition. For example, the user specifies ‘Last Name' in the database
development interface and the ODBC database driver returns ‘Last Name'.

However, some ODBC database drivers return the field names in other forms (e.g., ‘LAST
NAME’). To determine how your specific ODBC driver returns the field names, it is
recommended that you use the ‘ Data Sources' tool available from the WebBase WebWizard
window. Select the ‘Data Sources anchor, and then select to view your available data
sources. Thiswill present atable of all the data sources you currently have defined on your
system, as well as the driver associated with them. Select the desired source. A list of the
tables within this database is displayed, along with information such as the path specification
for the database file. Select the desired table, and a table showing all thefieldsin the tableis
displayed. Thefirst column in thistable lists all the fields within the database. Thefield
names within this column can be used as field variables within WebBase forms. Again, be
very sure on the spelling and case of each field variable name because al variable names are
case senditive.

When a database query is issued and data is returned, fields within the returned record are
accessed using the field name as avariable. Multiple records will often be returned as the
result of aquery. Theindividual records can be accessed using the with or forRow macro. As
each record is processed within the macro, the field variables within the macro take on the
value of the field within the record being processed.

The forRow macro is useful for iterating through multiple records returned from a database
and using field variables to access the data values within the record currently being processed.
The with macro is useful for accessing field variablesin asingle record of data.

When aforRow or with macro is encountered in aform, any references to field variables will
be resolved against the record set specified as the argument to the macro. In the forRow
macro, thiswill be the current record within its record collection. In the with macro, this will
be the argument if it is an OdbcRowODbject, or it will be the first entry in the collection if the
argument is a collection.

A potentially confusing situation can arise when a second set of records is acquired viaan
{sql} call within aforRow or with macro. It isnot possible to access the field variables of this
new data collection unless they are also accessed within aforRow or with macro. The result
set used to resolve field variables is that for the current forRow or with macro.

Field variables can also be specified outside the forRow or with macros. In this case, the first
record in the last collection of data records returned by an {sgl} cal isused. Itis strongly
recommended that field variables only be used within the forRow or with macros, and that the
forms devel oper not rely on the result set received from the last { sgl} macro.

The following two examples show how to improperly use field variables, as well as how to
properly use field variables for multiple collections.

116

WebBase User’s Guide

Example 9.1 Incorrect use of field variables

{sgl to cltnl source "aSrc’ user ‘aUser’ password ‘aPwd’ }
SELECT * FROM Tabl el
{/sql}
{forRow aRow on cltnl}
{Fi el dvar 1}
{sgl to cltn2 source *aSrc’ user ‘aUser’ password ‘aPwd’ }
SELECT * FROM Tabl e2 WHERE | D = {Fi el dVar 2}

{/sql}
{! The following line will generate an error because only the field
variables fromthe records in cltnl are accessible. |f not within

the ‘forRow macro, this would work. !}
{Var FronCl t n2}
{/f or Row}

Example 9.2 Correct use of field variables

{sgl to cltnl source "aSrc’ user ‘aUser’ password ‘aPwd’ }
SELECT * FROM Tabl el
{/sql}
{forRow aRow on cltnl}
{Fi el dvar 1}
{sgl to cltn2 source *aSrc’ user ‘aUser’ password ‘aPwd’ }
SELECT * FROM Tabl e2 WHERE | D = {Fi el dVar 2}
{/sql}
{with cltn2 first}
{! The following Iine will correctly display the field val ue
VarFronCtn2 since the field variables for the recordSet of the
‘with” macro are now being processed. Note that if ‘FieldVarl were
used in the “with’ macro, an error would result since it is not part
of the current result set being used to determine field variables !}
{Var FronCl t n2}
{/with}
{/f or Row}

Database table and field names can often include spaces. In order to use atable name with a
space as part of an SQL statement (e.g., INSERT, SELECT), the table name must be enclosed
in double quotes as in:

{sgl to cltn source "‘aSrc’ user ‘aUser’ password ‘aPwd’ }
SELECT * FROM “My Tabl e”

{/sql}

Field names that contain a space must aso be referenced as field variables using double
quotes®®, as shown in the following:

{“File No"}

Only field variables can include embedded spaces. All other WebBase variables must consist
of characters other than the space character.

1% some database applications such as Access dlow the use of square brackets to specify table or field names that include spaces. Square brackets can
be used with table and field names in WebBase, but the SQL standard is to use double quotes.

WebBase User’s Guide 117

Chapter 9: Variables

Note:

Many databases also have reserved words such as Date, Time, Order, etc. These
reserved words can be used in sgl statements such as SELECT only if they are
enclosed in double quotes. Double quotes can be used around any field name, with
or without spaces and reserved word or not, without generating problems..

WebBase provides two operations on strings for handling field names. The asFieldName
operation adds double quotes around the specified string. The asFieldNameName operation
removes double quotes from the specified string. Examples of these operations are found in
Chapter 11.

As noted above, field variables are at the top of the precedence order. If you are using alocal
variable called {Name} and retrieve records from a database in which thereis afield called
Name, the field variable Name will take precedence over the local variable. This can cause
unexpected errors in form processing.

9.2 Local Variables

Local variables are in existence for the duration of the form that is being processed. As soon
as the WebBase server completes the processing of the form and returns the output stream to
the browser, al local variables cease to exist. Maintaining state across multiple forms can be
done using user variables, as described in Chapter 10.
Local variables can be created four ways:

by passing arguments into a form via the command line

by explicitly setting them using a WebBase macro

from the header information on the request from the client

from the cookies sent from a cookie-enabled browser to the server

Local Input Variables

Local input variables are created from command line arguments that are passed in from one
form to another. A full URL GET request including command line arguments uses the format:

http://<IP address>: <port>/dirSpec/fil eNane. Type?argl=val 1
&ar g2=val 2&ar g3=val 3

Each command line argument and value are separated by an ‘=". The first argument/value pair
following the filename is preceded by a‘?. All subsequent argument/value pairs are separated
from the previousby an*&’.

There are several ways in which command line arguments can be created. The most common
way to create command line argumentsisto set up an HTML <FORM?> that includes one or
more <INPUT> statements. Some <INPUT> statements allow the user to make or enter
salections, such as text field or check boxes. Other <INPUT> statements are buttons which
signal that a user wants some type of action to be taken. And finaly other <INPUT>
statements allow hidden data to be passed to the next form to be invoked.

118

WebBase User’s Guide

For example, a user might create aform to enter in aname, address, city, state and zip. There
would be 2 buttons — one to create a new record and the other to cancel. Lastly, there might be
a hidden variable passed aong that was an ID previously entered by the user. A FORM
congtruct for these input fields might look like:

<FORM METHOD="GET" ACTI ON="forn2. htf">

Name: <INPUT TYPE="TEXT" NAME="nane" S| ZE=15 VALUE="">

Addr ess: <I NPUT TYPE="TEXT" NAME="address" SIZE=15 VALUE="">
Cty: <INPUT TYPE="TEXT" NAME="city" SIZE=15 VALUE="">
State: <INPUT TYPE="TEXT" NAME="state" S|IZE=15 VALUE="">

Zip Code: <INPUT TYPE="TEXT" NAME="zip" SIZE=15 VALUE="">

<I NPUT TYPE="SUBM T" NANME="button" VALUE="WMake Record">

<I NPUT TYPE="SUBM T" NAME="button" VALUE="Cancel ">

<I NPUT TYPE="HI DDEN' NAVME="id" VALUE="12345">

</ FORW>

The command line generated when the user presses the *Make Record’ button would look like:

fornR. ht f ?name=ny+nanme&addr ess=123+Mai n+St . &ci t6y=Sant a+Bar bar a&
st at e=CA8zi p=93101&i d=12345&but t on=Make+Recor d*

The values typed in by the user would be passed aong with each variable name on the
command line. The‘+’ charactersin the command line are automatically added to represent
spaces, they are automatically removed by WebBase when the command line is received and
parsed. The browser also encodes other special characters such as ‘%’ in the formation of the
URL sent to the server; WebBase automatically decodes these characters a so.

When the WebBase server receives this command, it parses al the argument and value pairs
into loca variables and values. In this case, the local variables would be:

{nane}="ny nane’
{address}="123 Main St.’
{city}="Santa Barbara’
{state}="CA
{zip}="93101’

{id}=" 12345
{button}="Make Record’

WebBase stores the names of all the local variables received viathe command line in the
variable %theArgs¥. The form designer can use this variable to determine which local
variables are aresult of command lineinput. The values of the variables are not included in
%theArgsYo, just the names of the variables. The dynamic variables %inputV ariables% and
%inputVariablesHTML % can be used to determine/display the local variables created from
command line arguments as well as their values.

Each local variable created from a command line is automatically stored as a string value, as
indicated above. An important responsibility for the forms designer is to know which local
variables should be passed into aform viaa command line, and set up appropriate conversions
of the data valuesif necessary. In the example above, the {id} should be a numeric value.
This should be set up in the form as:

{set id id asNunber}

16 A “posST" request passes the command line arguments to the receiving form in a similar fashion, but the arguments are not displayed as part of the
URL. Thisisoften desirable as it presents a cleaner interface to the user at the browser, and it may aso hide information that the user should not see.

WebBase User’s Guide 119

Chapter 9: Variables

Another way to create command line argumentsis to explicitly include them in the creation of
anchors. An example of an anchor using command line argumentsis:

<A HREF="fil e2. htf ?i d={i d} &hanme={ nane encode=true}” Page 2 </ A>

In this example, there are two WebBase variables that are going to be passed from the current
forminto ‘file2.ntf’. The {name} variableisatext field and may include spaces or other
punctuation characters that need to be specially encoded as part of the HTML command line.
The ‘encode=true’ parameter indicates that the variable is a string that should be encoded.
After WebBase processes this URL and sets up the anchor, it will look like:

<A HREF="fil e2. htf ?i d=12345&nane=ny+nane” Page 2 </ A>

The final way to create command line argumentsis using the redirect2 macro. Unlike the
redirect macro that smply pointsto anew URL, the redirect2 macro can be used to pass
command line arguments to the specified file. The following shows how the {id} and { hame}
variables can be passed via aredirect2 macro.

{redirect2 ‘file2.htf’}
i d={id}
nane={ nane}
{/redirect 2}

Unlike with anchors, it is not necessary to indicate that the { name} variable isatext field and
needs to be encoded. The redirect2 macro will automatically handle this and generate a URL
that looks like:

http://./[file2. htf?i d=12345&nanme=ny+nane

Local variables created from command line arguments are indistinguishable from other local
variables that may have been created by the set or setLocal macro, or may have beenread in as
header and cookie variables. Because of the variable precedence order and the several waysin
which local variables can be created, it is very important that the form designer take care in the
selection of variable names.

Set Local Variables

The author of an .htf form can define variables within the file using the set or setLocal macro.
Writing {set counter 3} will create alocal variable named counter and assign it thevalue 3. If
alocal variable by this name aready exists, its value will be updated to be 3. It isimportant to
remember that local variables can be created by both setting them as described here, by
inputting them to the form, as described in the preceding section, or from header or cookie
information sent from the client browser to the server as described in the following sections.

All these variables are considered local variables. The creation of a variable with the set or
setLocal macro can override any of these other local variables.

The scope macro has been designed for those situations in which some local variables need to
be created for a specified amount of processing, but which should not interfere with other local
variables. This situation is often encountered when using insert files to perform actions as
would be done by subroutines. The local variables created and used within the scope macro
are only in existence until the ending {/scope} keyword is encountered. The local variables
created within the scope macro can override any other local variables, but only for the duration
of the scope.

If scoping is not being used, then the set and setLocal macros are equivaent — both will cause
alocal variable of the specified name and value to be created that will be in duration until the

120

WebBase User’s Guide

form processing is completed. If scoping is being used, the set macro will create alocal
scoping variable with the specified name and value that is only in existence until the scopeis
completed. The setLocal macro, when used within a scoping context, will create or override a
local non-scoping variable that will be in existence beyond the scope macro and until form
processing is completed. The following example shows how the set and setLocal macros can
be used with the scope macro.

Example 9.3 Scoping and local variables

{scope}
{! The following variable will only exist within the scope !}
{set sVar ‘abc’}
{! The following variable will exist outside the scope !}
{setLocal |Var true}

{/ scope}

It is possible to nest scopes to create nested levels of scope dictionaries— all of which might be
searched when looking for a particular variable. The innermost scope isthefirst to be
searched, followed by the next scope, followed by any other scopes, and then finally the local
variables, user variables, global variables and dynamic variables. Field variables within a
scope will still take precedence over any other variables.

Additional information on scoping and local variables can be found in the description and
example presented with the scope macro in Chapter 8.

Header Local Variables

When the WebBase server receives arequest from a client, the browser has added some
information to the start of the request. Thisinformation is called ‘ header information’, and
includes some or al of the entries that are described in Appendix C. This appendix includes
the set of header variables defined by the HTTP/1.1 specification. There may be additional
header variables created and sent by a particular client browser application.

Each header entry is extracted and created as alocal variable. All of the header variables can
be examined by looking at the %headerVariables% or %headerVariablesHTML% variables.

The header variables which WebBase forms developers may find useful are:
Host — host portion of URL entered by user. This can be used to provide different
responses based on different host designations. Thisis an adternative to multiple domain
support.
Referer —this variable is only included when a page is displayed via an anchor, redirect or
<FORM?> congtruct; it is not provided if the user explicitly typesinaURL. It identifies
the previous URL from which the current form was invoked.

User-Agent — defines the browser in use

Cookie Local Variables

Cookies are a special type of header variable that are not supported by the current HTTP/1.1
specification, but are provided by many of the main browser applications such as Netscape and
Microsoft Internet Explorer.

WebBase User’s Guide 121

Chapter 9: Variables

Cookies are a general mechanism which servers can use to both store and retrieve information
from clients. A server, when returning an HTTP object to a client, may also send a piece of
state information that the client will store. Included in that state object is a description of the
range of URLs for which that state is valid. Any future HTTP requests made by the client
which fall in that range will include a transmittal of the current value of the state object from
the client back to the server. The state object is called a cookie, for no compelling reason.

Cookies are very useful for maintain state across multiple forms, as well as acrosstime.
However, not al browsers support cookies and some users may not have cookie support
enabled at their browser. To maintain state through multiple forms, WebBase provides user
variables that are described in the next chapter.

Creating Cookies

Cookies are created using the setCookie macro. Any “outbound” cookies created using this
macro are sent to the browser when the form is returned to the browser for display. The
browser may or may not do anything with the cookies, depending on the level of cookie support
enabled at the browser.

A number of parameters can be specified with cookies that determine which domainsthey are
valid for, and whether they will be persistent or memory-resident in the browser:

Name -- This string is a sequence of characters excluding semi-colon, comma and white
space. It must also adhere to the WebBase variable standard, which requires the first
character to be alphabetic or ‘%' .

expires — The attribute specifies a date string that defines the valid life time of that cookie.
Once the expiration date has been reached, the cookie will no longer be stored or given out.
If not specified, the cookie will expire when the user’ s browser session ends (e.g., they shut
down their browser application). To cause a cookie to be persistent on the client side, the
form designer must specify an expiration time. This attribute is set using the
%cookieExpires% variable, which by default is not specified.

domain -- when searching the cookie list for valid cookies, a comparison of the domain
attributes of the cookie is made with the Internet domain name of the host from which the
URL will be fetched. If thereis atail match, then the cookie will go through path matching
to seeif it should be sent. "Tail matching” means that domain attribute is matched against
thetail of the fully qualified domain name of the host. A domain attribute of "acme.com”
would match host names "anvil.acme.com” as well as "shipping.crate.acme.com"”. This
attribute is set using the %cookieDomain% variable, which by default is not specified.

path -- used to specify the subset of URLsin adomain for which the cookieisvalid. If a
cookie has aready passed domain matching, then the pathname component of the URL is
compared with the path attribute, and if there is a match, the cookie is considered valid and
is sent along with the URL request. The path "/foo" would match "/foobar" and
"[foolbar.html". The path "/" is the most general path. If the path is not specified, it as
assumed to be the same path as the document being described by the header that contains
the cookie. This attribute is set using the %cookiePath% variable, which by default is set
to'/.

122

WebBase User’s Guide

Receiving Cookies

When requesting a URL from an HTTP server, the browser will match the URL against all
cookies and if any of them match, aline containing the name/value pairs of al matching
cookies will be included in the HTTP request. Here is the format of that line:

Cooki e: NAME1=CPAQUE STRI NG1; NAME2=OPAQUE_STRIN®X ...
WebBase extracts the cookies from this line and makes each cookie name alocal variable.

A cookie variable can be deleted using the removeCookie macro.
NOTE:

Cookie variables are sensitive to the way in which the host machine is addressed.
To ensure that the server properly receives cookie values, make sure your links are
consistent in the way they reference your host machine. Referencing your host as
‘http://www.yourSite.com/” in one instance and as “http://1.2.3.4’ in another
instance might be pointing to the same host machine but will cause the Cookies
connection to be re-established the first time you switch from one mode of reference
to the other. If you consistently use the host name string, or the host IP address, or
relative references (recommended), you should have no problems with cookie
variables being received properly from cookie-enabled browsers..

WebBaselD Variable

When a browser that supports cookies sends a request to the WebBase server, it includes any
cookies that have previously been received from the server. |If the cookies sent to the browser
by the server included an expiration date, the cookies may be persistent on the browser. If the
cookies sent to the browser did not include an expiration date, they are memory resident on the
browser until the browser application is stopped.

WebBase attempts to maintain alink between a browser and the server using the WebBasel D
variable. WebBase automatically creates this variable for each request that is received from a
browser that does not include the WebBasel D as an inbound cookie variable. For browsers
that do not support cookies, WebBase will create this cookie each time it receives a request.
This behavior can be modified using the %skipCookies¥ or %oskipAutoCookies% variables.

It is preferable to use the WebBasel D cookie variable instead of the browser’s IP address to
maintain alink between the user's browser and the WebBase server. Thisis because a
browser's address can change from one screen to the next when a user is sitting behind a
firewall or network service provider talking to WebBase.

WebBase does not include any expiration information with the WebBasel D as a cookie when
it isreturned to the browser. If the browser is cookie-enabled, it will return WebBaselD as a
cookie variable until the browser is stopped. When the browser is subsequent restarted and a
connection established with WebBase, the browser will not send out the WebBaselD since it
was only memory resident. WebBase will generate a new WebBasel D and return it to the
browser on the first interaction.

The WebBasel D variable is often used in conjunction with user variables, as described in
Chapter 10.

WebBase User’s Guide 123

Chapter 9: Variables

9.3 Global Variables

WebBase can access a number of global variables when the server is started. These variables
differ from those defined within WebBase formsin that their values are set in the System
Registry and not viaan HTML GET or POST query. These global variables can be
overridden by local variables of the same name for the processing of the .htf file in which the
local variableis defined. It isaso possibleto create, change the vaue of, or delete global
variables in memory using the setGlobal and removeGlobal macros. However, the values for
global variables will only be persistent when the variables and their values are defined in the
System Registry.

Consider using global variables to define the source, username and password required as part
of the sgl macro. If these values are set up using global variables and the values subsequently
change, only the global variable' s value has to be edited — not multiple forms. Any sgl macros
that reference these variables will now work successfully.

Globa variables should be used to hold information that is used in multiple forms and that
changes very infrequently. Some suggested uses of global variables are image directories (e.g.
myPix -> ‘http://www.myCompany.com/images/gifs”), e-mail addresses (e.g., eMailAddr ->
‘WebM aster @M yCompany.com’), and copyright statements (e.g., copyright -> *©1997
MyCompany, Inc.”). Should your system configuration(s) change and your WebBase server be
moved to a different site or machine, you would need only to dter afew variablesin one
location and not edit numerous forms.

All global variables are extracted from the System Registry when WebBase is launched.
Unlike parameters, it is possible to change the value of aglobal variable in the System
Registry and have the change reflected in WebBase. The ‘Load Global Variables command
in the WebServer window’ s *Options' menu causes WebBase to re-read all the global
variables from the System Registry. Any in-memory changesto global variables made using
the setGlobal or removeGlobal macros will be lost unless they were explicitly added to the
System Registry.

There are anumber of global variables that are displayed in the WebBase Server window as
global variables, but which do not appear in the System Registry. These global variables
identify classes of objects. It ispossible to perform operations on these classes (see Chapter
11 for class operations); it is also possible to create a new instance of a specific class, assign it
to avariable, and perform operations on the instance. The global variables and the class they
represent are:
- %Array% = Array

%A ssociation% = Association

%Databasel nfo% = Databaselnfo

%Dated% = Date

%Dictionary% = Dictionary

%Directory% = Directory

%File% = File

%Float% = Float

%Fraction% = Fraction

%Il nteger% = Integer

%Number% = Number

%OrderedCollection% = OrderedCollection

%OrderedList% = OrderedList

%Point% = Point

%ReadStream% = ReadStream

124

WebBase User’s Guide

%0ReadWriteStream% = ReadWriteStream
%RegistrationDatabase% = RegistrationDatabase
%SortedCollection% = SortedCollection
%SortedList% = SortedList

%String% = String

%Time% = Time

%Universa Time% = Universal Time
%WriteStream% = WriteStream

Editing Global Variables

Adding or changing global variablesis done using the WebBase WebWizard Registration
Database utility. Appendix B includes information on setting up the .INI files used on 16-bit
systems. To edit WebBase global variables,

1.

10.

11.

12.

Start WebBase and open up the WebBase WebWizard by entering the URL:
http://127.0.0. 1/ wowi zar d/
Select the Registration Database anchor.

From the pull-down ligt, select ‘HKEY_LOCAL_MACHINE' and then press the ‘ OPEN’
button.

Select the *Open’ anchor next to the * SOFTWARE' key.

Select the *Open’ anchor next to the ‘ExperTelligence, Inc.” key.
Select the *Open’ anchor next to the ‘WebBase' key.
Select the *Open’ anchor next to the ‘4.10° key

If thekey ‘Variables does not exist, create it by selecting the * Add New Key' anchor and
entering ‘Variables asthe key name.

Select the *Open’ anchor next to the ‘Variables key. All of the WebBase global variables
currently defined and their values are displayed in the table.

To add anew global variable, select the ‘ Add new entry’ anchor and specify the global
variable name and desired value.

To modify a parameter, select the * Edit’ anchor next to the parameter and specify the
changed value.

From the WebBase Server Window, select the ‘Load Global Variables option to reload
the global variables.

WebBase User’s Guide 125

Chapter 9: Variables

9.4 Dynamic Variables

Dynamic variables are similar to the global variables described above in that they are available
for usein any .htf form. However, unlike global variables in which the user defines their
value, WebBase sets the values of dynamic variables. A user can override the value of a
dynamic value by creating a global variable of the same name following the procedures
described in the previous section, or creating aloca variable of the same name in aform.

A list of the WebBase dynamic variablesis displayed in the WebBase Server window when
WebBase is started. Some variables displayed on thislist are for WebBase add-on products,
which are documented separately. Other dynamic variablesin the list are considered obsolete
and are described in Appendix D. The WebBase dynamic variables, an example of their
contents, and their descriptions are:

%allUserVariables% e.g., (Dictionary(("UW14259281E161808318469B' ==>
Dictionary((‘%%altered%%' === true) (‘%%expires%%' ==> 60) (‘Usitelname' ==>
'‘Personnel Directory Service') ...)))))

adictionary of the dictionaries of user variables. The keysto the top-level dictionary are
the names of the different user variable dictionaries that have been creasted. Thevaluesin
the top-level dictionary are the dictionaries containing user variables. The
%userVariables% dynamic variable shows all the user variables defined for the user
variable dictionary currently specified in %ouserName%. This variable shows the user
variable dictionaries for all user variable dictionary names, including that specified in
%userName%. Details on user variables can be found in Chapter 10.

%allUserVariablesHTML% e.g., (see below)

formats all the dictionaries containing user variables for a nice printout on the browser.
The %userVariablesHTML% dynamic variable shows all the user variables defined for
the user variable dictionary currently specified in %userName%. This variable shows the
contents of the user variable dictionaries for al user variable dictionary names, including
that specified in %userName%. Details on user variables can be found in Chapter 10. The
example below shows the information generated by this dynamic variable as displayed on a
browser. This particular display was generated by accessing the ‘ Sample Sites' option
under the WebBase WebWizardd window, as it uses user variables to set up the
necessary sample sites.

Example 9.4 %allUserVariablesHTML% display

User Variables - UW14259281E161808318469B (17)
%%accessed%% = (03/10/97 05:46:49 ANV

Waltered%% = true
Y%%created%% = (03/10/97 05:46: 44 AM
%%expires%% = 60

Udirpath = c:\ htt p\ WB- Showiwve

Ulogpath = c:\ htt p\ WB- Showive\ W\BSM Log

UMSAdriver = Dictionary(('FileExtns' ==> '"*.nmdb') ('FileUsage'
==>"'2") ('Driver' ==>"'C \WNDOAS\ SYSTEM odbcjt32.dlI|")

(' Connect Functions' ==>"YYN) ('APILevel' ==>"1")

(' Conect Functions' ==> "'YYN) ('UsageCount' ==> 1) ('SQ.Level’
==>"'0") ('Setup' ==>"'C \WNDONS\ SYSTEM odbcj t32.dl1")
('DriverODBCVer' ==> '02.50"))

UmyDir = c:\http\wbw zard\ showre

UodbcDriver = M crosoft Access Driver (*.ndb)

UodbcPaths = Dictionary((' pds' ==> 'PDS.MDB') ('videos' ==>
'"VIDECS. MDB') ('cars' ==> 'CARS.MDB'))

126

WebBase User’s Guide

UodbcSources = Dictionary((' pds' ==>"'Wb_Start_Pds') ('videos'
==> 'Web_Start_Videos') ('cars' ==>'"Wb _Start_Cars'))
UserToken = UW4259281E161808318469B

Usitelname = Personnel Directory Service

Usite2name = Used Cars Site

UsiteDict = Dictionary((' pds' ==> 'Personnel Directory
Service') ('videos' ==> "On Line Videos') ('cars' ==>"'Used

Cars Site'))

UsitesDir = c:\http\wbw zard\ showne\ si t

UsubDirs = SortedCol |l ection(("\http\wbw zard\showne\sit\cars'
"cars') ('\http\wbw zard\showre\sit\pds' 'pds')

("\http\wowi zar d\ showre\si t\vi deos' 'videos'))

%allUserVarNamesHTML% e.g., (see below)

formats the names of all user variable dictionaries currently created for a nice printout on
the browser. Only the names of the dictionaries are presented here; the contents of al the
user variable dictionaries can be viewed using %allUserVariablesHTML% or
%userVariablesHTML% for the specific user variable dictionary defined in
%userName%. Details on user variables can be found in Chapter 10. The example below
shows the information generated by this dynamic variable as displayed on a browser.

Example 9.5 %allUserVarNamesHTML% display

Current User Variable Dictionaries (1)

UWL4259281E161808318469B

%base% e.g. (http://127.0.0.1/)

returns the URL including the directory and subdirectories where the form requested by the
browser islocated. The server address specified in the URL is that which was used in the
form request.

%browserAddress%o e.g. (127.0.0.1)
the 1P address of the browser issuing a query to the WebBase server.

%build% e.g. (56)
the build number of the WebBase server software.

%cmd% e.g. (an HttpGetN)
returns the instance of the internal ‘command’ object that is processing the current form.
See Chapter 11 for the details on how to send messages to this variable.

%command% e.g., (GET /getname.htf?name=Denny)
the command line that was sent in from the browser, including the type of request (e.g.,
GET, POST), the path to the file to be processed, and any command line arguments.

%commandCounter% e.g. (123)
the count of the number of queries processed by WebBase since it was last started.

%commandsHTML% e.g. (see below)

formats the names of al the build-in commands for a nice printout on the browser. Each
of the built-in commands in the display are set up as anchors, so that the corresponding
built-in command can be executed immediately. These commands are described in
Chapter 3.

WebBase User’s Guide 127

Chapter 9: Variables

Example 9.6 %commandsHTML% display

Internal Commands

build

bui l dString
dat eTi me

el apsedTi ne
gmt
mlliseconds
seconds
title
titleString

%comment% e.g. ‘<!-- Processed by: WebBase 4.10 build 56 (TM) by
ExperTelligence, Inc. 04/17/97 21:55:31 -->*

the header comment returned in the data back to the browser for any form which WebBase
processes. Files which are returned but not processed by WebBase (e.g., gif files) do not
include this header comment. This comment can be seen by doing a‘View Source’ at the
client browser. The %skipHeaderComment% variable can be set to true, which will cause
this comment to not be included on any processed forms returned to the browser.

%concurrentUsers% e.g. (4)
returns the number of concurrent commands being serviced by WebBase.

%cookieDomain% e.g., ()

if thisvariableis set, it becomes part of the cookie that is sent to the browser. When one
does a{setCookie ...}, this variable along with %cookieExpires¥ and %cookiePath% are
appended to the value of the ‘cookie’. The default value of this variable is an empty string
so it isnot included in any cookie sent to the browser. In this case, the domain address
used at the browser isthe host name of the server that generated the cookie response. The
section on Cookie Local Variables earlier in this chapter provides additional details about
cookies and domains. It isimportant to note that the value of this variable is used at the
time the cookie is created by the setCookie macro; it isthus possible to change domains for
cookies created within a single form by changing the value of this variable.

%cookieExpires% e.g., ()

if thisvariableis set, it becomes part of the cookie that is sent to the browser. When one
does a{setCookie ...}, this variable along with %cookieDomain% and %cookiePath% are
appended to the value of the ‘cooki€ . The expires attribute specifies a date string that
defines the valid lifetime of that cookie. Once the expiration date has been reached, the
cookie will no longer be stored or given out. The date string is formatted as Wdy, DD-
Mon-YY HH:MM:SS GMT. If not specified, the cookie will expire when the user’s
browser session ends. The section on Cookie Local Variables earlier in this chapter
provides additional details about cookies and their expiration. It isimportant to note that
the value of this variable is used at the time the cookie is created by the setCookie macro;
it is thus possible to change the expiration for cookies created within a single form by
changing the value of thisvariable.

%cookielnVariables% e.g., (Dictionary(('CookieCounter' ==>'17") (‘WebBaselD'
==> "W14259214E161808318465B')))

adictionary of the cookie variables that were received in the header of the request from the
browser. The keysto the dictionary are the cookie variable names; the values are the
contents of the cookies. These incoming cookie local variables are automatically created

128

WebBase User’s Guide

when the header variables are created. They are not returned to the browser unless they
are modified viaa setCookie macro. The dictionary returned by this variable is a copy;
thus modifying this dictionary will have no effect on the cookie variables active in
WebBase. Thisdictionary should be used for information only. See aso

%cookielnV ariablesHTM L %, %cookieV ariables% and %cookieV ariablesHTM L %.

%cookielnVariablesHTML% e.g., (see below)

formats the names of al the cookie local variables received in the header of the request
from the browser for a nice printout on the browser as shown below. See aso
%cookielnV ariables, %cookieV ariables%o and %cookieV ariablesHTM L %.

Example 9.7 %cookielnVariablesHTML% display

Input Cookie Variables (2)

Cooki eCounter = 17
WebBasel D = WL4259214E161808318465B

%cookieOutVariables% e.g., (Dictionary())

adictionary of the cookie variables that have been created with the setCookie macro for
return to the browser at the completion of form processing. The keysto the dictionary are
the cookie variable names; the values are the contents of the cookies. These outgoing
cookie local variables will be returned as input cookies in the next request from the same
browser if the browser is cookie enabled. The dictionary returned by thisvariableisa
copy; thus modifying this dictionary will have no effect on the cookie variables active in
WebBase. Thisdictionary should be used for information only. See also

%cookieOutV ariablesHTM L%, %cookieV ariables% and %cookieV ariablesHTML %.

%cookieOutVariablesHTML% e.g., (see below)

formats the names of all the cookie local variables created with the setCookie macro for
return to the browser at the completion of form processing for a nice printout on the
browser as shown below. See also %cookieOutV ariables¥%, %ocookieV ariables¥ and
%cookieVariablesHTML %.

Example 9.8 %cookieOutVariablesHTML% display

Output Cookie Variables (0)

NONE

%cookiePath% e.g., (/)

if thisvariableis set, it becomes part of the cookie that is sent to the browser. When one
does a{setCookie ...}, this variable along with %cookieDomain% and %cookieExpires%o
are appended to the value of the ‘cookie'. The path attribute is used to specify the subset of
URLs in adomain for which the cookieis valid. The section on Cookie Loca Variables
earlier in this chapter provides additional details about cookies, domains and path. It is
important to note that the value of this variable is used at the time the cookie is created by
the setCookie macro; it is thus possible to change paths for cookies created within asingle
form by changing the value of thisvariable.

%cookies%o e.g. (true)
aflag indicating whether the browser sent a cookie to the WebBase server. If true, this
indicates that the browser is cookie enabled and the server previoudy sent a cookie to this

WebBase User’s Guide 129

Chapter 9: Variables

browser. If false, this either indicates the browser is not cookie enabled or no cookies have
been sent to the browser from the server, and thus none have been returned. On the first
interaction with a browser, WebBase creates a cookie variable called WebBasel D that is
returned to the browser. If the browser is cookie enabled, all subsequent requests from this
browser will include this cookie. If the browser is not cookie enabled, the server will
recelve no cookies.

%cookieVariables% e.g. (Dictionary((‘CookieCounter' ==> '17") ("WebBaselD' ==>
'W14259214E161808318465B")))

returns a dictionary of all the cookie variables, both incoming and outgoing. The keysto
the dictionary are the names of the variables; the values are the values of the cookie
variables. Note that there is no indication within the dictionary of which cookie variables
were received from the browser and which have been created via the setCookie macro for
return to the browser. Modifying this dictionary will have no effect on the cookie variables
active in WebBase. See also %cookieV ariablesHTML %, Y%cookiel nV ariables¥s,
%cookieOutV ariables%, %cookielnVariablesHTM L% and

%cookieOutVariablesHTML %.

%cookieVariablesHTML% e.g., (see below)

formats al the incoming and outgoing cookie variables and their values for a nice printout
on the browser as shown in the example below. See also %cookieV ariables¥s,

%cookiel nV ariables%o, %cookieOutV ariables¥%, %ocookielnVariablesHTM L% and
%cookieOutVariablesHTML %.

Example 9.9 %cookieVariablesHTML% display

Input Cookie Variables

Cooki eCounter = 17

WebBasel D = WL4259214E161808318465B
Output Cookie Variables

NONE

%copyright% e.g. (‘Copyright - © 1995-7 ExperTelligence, Inc.”)
the system copyright string.

%date% e.g., (03/10/97)

the current date. It is accessed from the operating system and cached once per form the
first timeit isreferenced. Although most forms are processed very quickly, there are some
database queries that can take sometime. Thisintroduces the possibility that the form
could start processing on ‘today’, and complete ‘tomorrow’. If the processing of aform
will take some time and date information is critical, the forms designer should create a
local variable using an expression like { set curDate %Date% today} each timethe dateis
needed instead of using %date%. Thiswill eliminate any problems with the caching of
%date% and ensure the proper date is used.

%dateTime% e.g., (03/10/97 06:01:54)

the date and time. It is accessed from the operating system and cached once per form the
first timeit isreferenced. Thetimeisin theloca time. Although most forms are processed
very quickly, there are some database queries that can take some time. If the processing of
aform will take some time and date/time information is critical, the forms designer should

130

WebBase User’s Guide

create alocal variable using an expression like { set curDate %Universal Time% now} each
time the date and time are needed instead of using %dateTime%. Thiswill eliminate any
problems with the caching of %dateTime% and ensure the proper date and time are used.

%defaultExtensionsHTML% e.g., (see below)

formats al the extensions specified for the WebBase server for anice printout on the
browser as shown below. Chapter 4 includes information on the system-supplied
extensions, aswell as how to override or set up additional extensions. Both system-
supplied and user-defined extensions are included in this display.

Example 9.10 %defaultExtensionsHTML% display
Default Extensions (82)

a M neUnknown ("text/htm' true)
= a

* M neError (* 404 true)

abs a MneReturn (abs 'audio/ x-npeg' true)

ai = a MneReturn (ai 'application/postscript' true)

xwd = a MnmeReturn (xwd 'image/ x- xwi ndowdunp' true)

z = a MneReturn (z 'application/x-conpress' true)

zip = a MnmeReturn (zip 'application/x-zip-conpressed true)

%domainDirectory% e.g., (c:\http)

identifies the root directory for the IP address specified in the command. If multiple
domains are in effect, each different domain can have a different root directory where files
arelocated. It isnot required that each domain has a different root directory. If the
particular |P address maps to a domain but there is no root directory specified for the
domain, then the default root domain is used. If multiple domains are not being used, this
isthe root directory as specified in the System Registry under Parameters. Chapter 4
includes information on multiple domains.

%domainExtensionsHTML% e.g., (see below)

formats al the extensions for the I P address specified in the command for a nice printout
on the browser as shown below. If multiple domains are in effect, each different domain
can have a different set of extensions it supports. It is not required that each domain have a
set of extensions specified. If the particular P address maps to a domain but there are no
extensions specified for the domain, then the default set of extensions isused. If multiple
domains are not being used, thisis the set of extensions as specified in the System Registry
under Extensions. Chapter 4 includes information on multiple domains and extensions.

Example 9.11 %domainExtensionsHTML% display

Extensions (0)

None

%domains% e.g., (Domain for: 1.2.3.4 Default = default.htf Directory = c:\http\et
Error401 = error401.htf Error403 = error403.htf Error404 = error404.htf
LogDirectory = c:\http\logl Domain for: 1.2.3.5 Directory = c:\http\p Error403 =
error403.htf Extensions = Dictionary(('xpm' ==> a MimeReturn (xpm 'image/x-xpixmap'
true))...etc...))

returns a dictionary of all the domains that the user has defined. The key isthe domain
address, the values are a collection of the key/value pairs specified for this domain (e.g.,

WebBase User’s Guide 131

Chapter 9: Variables

extensions). Chapter 4 includes information on multiple domains. See aso
%domainsHTML %.

%domainsHTML% e.g. (see below)
returns the multiple domain information formatted for a nice printout on the browser as
shown below. See also %domains%.

Example 9.12 %domainsHTML% display

Domains (2)

1.2.3.4 (6)
Default = default. htf
Directory = c:\http\et
Error401 = error401. htf
Error403 = error403. htf
Error404 = error404. htf

LogDirectory = c:\http\logl
1.2.3.5 (4)

Directory = c:\http\p

Error403 = error403. htf

Extensions = Dictionary(('xpm ==& gt; a MneReturn (xpm
"image/ x- xpi xmap' true)) ("htm' ==& gt; a M nmeProcess (htm
"text/htm "' true)) ...)

%dynamicVariableNamesHTML% e.g. (see below)

returns the names of al the dynamic variables formatted for a nice printout on the browser
as shown below. Note that some of the dynamic variables are for use by add-on products
to WebBase, such as E-Merge.

Example 9.13 %dynamicVariableNamesHTML% display

Dynamic Variables - (138)

%adm nTi me%

%l | User Vari abl es%

%l | User Vari abl esHTM_%
%l | User Var NamesHTM_%
9%AOL%

OMHERE%

%her eAndOr %
%vher eMul ti AndOr %
X%

%y %

%elapsed% e.g., (12080)

the elapsed time in milliseconds from the start of processing for this particular form. The
value of the variable will continually change each timeit is accessed asit makes an
operating system call each time it is referenced for the current clock time.

%EQ% e.g. (&)
returns an equal sign (=) character.

132

WebBase User’s Guide

%error%
used by the errorProtect macro, it isonly set if an error condition occurs. If so, it contains
the exception that caused the error. The particular error message can be displayed by
sending the operation ‘messageText’ to the exception, as shown in the example below:
{errorProtect}
some WbBase scripting ..
{onError}
<H2>Sorry but we could not satisfy your request</H2>
{if % ocal % =}
{! browser is on the host, display the error that
occurred !}
{f= %error% nmessageText}
{1if}

{/errorProtect}

%errd01% e.g. (see below)

generates the 401 Unauthorized error message text. Thisisdisplayed if Basic
Authentication is being used and the user does not properly enter a username and
password, or the user’s browser does not support Basic Authentication.

Example 9.14 %err401% display

401 Unauthorized

Proper authorization is required for this area. Either your
browser does not perform authorization, or your authorization has
failed.

%errd03% e.g. (see below)

generates the 403 Browsing not permitted error message text. Thisis displayed if
directory browsing is enabled but the directory or filename entered by the user isin a
directory that has been marked for no browsing by inclusion of afile named
‘NOBROWSE'.

Example 9.15 %err403% display

403 Access to the requested file or directory is not permitted

Access to the requested file or directory is not permtted

%errd04% e.g. (see below)

generates the 404 requested URL not found error message text. Thisis displayed if the
user enters a filename that is not found. Thisis aso displayed if adirectory included in
the URL does not exist.

Example 9.16 %err404% display

404 The requested URL was not found

The requested URL was not found

%err500% e.g. (see below)
generates the 500 internal server error message text. Thisis not used by WebBase but can
be used by aforms developer to indicate that some type of error has occurred.

WebBase User’s Guide 133

Chapter 9: Variables

Example 9.17 %err500% display

500 Internal server error

I nternal server error

%err501% e.g. (see below)
generates the 501 not implemented error message text. Thisis not used by WebBase but
can be used by aforms developer to indicate that an option is not currently implemented.

Example 9.18 %err501% display

501 Not implemented

Not i npl emrent ed

%err503% e.g. (see below)

generates the 503 server too busy error message text. Thisis displayed if arequestis
received from a browser but the server has currently been paused using the Pause Server
option on the WebBase server window.

Example 9.19 %err503% display

503 The server is too busy

The server is too busy

%expire%o e.g. (0)

the vaue of %expireo in seconds is added to the current timein GMT and returned to the
browser in the header as the Expires parameter, e.g., Expires: Fri, 12 Jan 1996 05:39:40
GMT Thisisthe time at which the form is to be considered expired so that the browser
will no longer display the results from its own cache but reissue the query to the WebBase
server for updating. This value defaults to 0 and should be overridden by the user with
either agloba variable of the same name or alocal variable for the specific form. If the
valueis set to -1, the Expires parameter will not be set. If thevalueis set to -2, the
Expires parameter is set to 12:00:01 on January 1, 1900. The time used to set the
Expiration is that of the server system. The browser’s clock may differ, dightly or
substantially, from that of the server. In order to ensure that aform is expired, setting
%expire% to avalue of -2 is recommended. Experience with most current browsers shows
this expiration is honored for pages that were accessed via POST requests and not those
acquired via GET requests. See Chapter 12 for tips on how to handle browser-side caching
of forms.

%filler% e.g. ()
returns the space () character and is used as the default pad character when specifying a
Size=<nn> parameter tag within avariable display - e.g. { varname size=7}.

%form%o e.g. (test.htf)
returns the current form name. Thisis equivaent to {f= %cmd% path} .

%formDirectory% e.g., (/wbwizard/)
returns the name of the directory in which the form specified in the URL is located.
Within this form, additiona files may be inserted using the insert macro. These insert files

134

WebBase User’s Guide

may be in other directories. The %formDirectory% is the directory of the main form, not
the inserted form. A backslash character is aways included at the end of the vaue.

%FORMScache% e.g., (Dictionary((‘c:\http\ test.htf' ==> an OutputForm
‘c:\http\test.htf")))

adictionary containing al the forms which are currently cached. If %cacheEnabled% is
disabled, this dictionary will be empty. See %cacheEnabled% for details on why caching
should be used. See aso %FORM ScacheHTML %.

%FORMScacheHTML% e.g., (see below)

returns the list of formswhich are currently cached. If %cacheEnabled% is disabled, there
will be no formsin the cache. See %cacheEnabled% for details on why caching should be
used. For each form in the cache, there are 5 items displayed: the full file specification, the
date and local time it was cached by WebBase, the date and time it was last modified on
disk, and the time in milliseconds for when the file was cached. See dso

%FORM Scache%b.

Example 9.20 %FORMScacheHTML% display

Forms cache

"'form' (size cached _date/tinme file_systemdate/tine <ms-clock>)
1)

"c:\http\test.htf" (472 bytes at: 03/10/97 10: 04: 46 AM
03/ 10/ 97 05:39: 24 <36286250>)

%fullHostAddress% e.g., (1.2.3.4:80)

the IP address and port number that the request from the browser was received on. If the
address entered by the user was alphabetic (e.g., www.expertelligence.com), this will
reflect the numeric |P address.

%fullHostName% e.g., (www.mydomain.com:80)

the HostName parameter if specified. One can provide a HostName parameter and that
will be returned by this variable along with the port number. If HostName is not specified
as a parameter, the 1P address will be returned.

%GE% e.g. (>=)
returns the greater than or equal to (>=) sequence of characters.

%gfmt% e.g. (JPG)
avariable that returns the string JPG if the browser reports that it supports the Jpeg image
display or GIF if it does not so indicate.

%globalVariables%o e.g. (Dictionary(('%SortedList%' ==> SortedList)
("%OrderedCollection%' ==>0rderedCollection) (‘%ReadStream%' ==> ReadStream)
... ("%String%' ==> String)))

adictionary of al the global variables. The keysto the dictionary are the names of the
variables; the values are the values of the global variables. Thisis useful to determineif a
particular global variable has been defined. The dictionary returned by thisvariableisa
copy of the dictionary containing al the global variables. Thus, modifying this dictionary
will have no effect on the global variables active in WebBase. This dictionary should be
used for information only. See aso %globalVariablesHTML %.

WebBase User’s Guide 135

Chapter 9: Variables

%globalVariablesHTML% e.g. (see below)
formats the global variables and their values for a nice printout on the browser. See aso
%ogl obal V ariables%s.

Example 9.21 %globalVariablesHTML% display

Global Variables (23)

YArray% = Array

%Associ ati on% = Associ ati on

%at abasel nf 0% = Dat abasel nfo

%at e% = Dat e

%0i ctionary% = Dictionary

%i rectory% = Directory

%-ile%=File

%-1 oat % = Fl oat

%-raction% = Fraction

% nt eger % = | nt eger

YNunber % = Nunber

% der edCol | ecti on% = OrderedCol | ecti on
% der edLi st % = Or der edLi st

%Poi nt % = Poi nt

%ReadSt r eanto = ReadStream
YReadWiteStreanto = ReadWiteStream
%Regi st rati onDat abase% = Regi strati onDat abase
osort edCol | ecti on% = SortedCol | ecti on
9&ort edLi st % = Sort edLi st

%St ring% = String

o%di me% = Ti ne

%Jni ver sal Ti me% = Uni versal Ti me
WWiteStreanto= WiteStream

%gmt%o e.g. (03/10/97 18:35:12)
the current time. It is accessed from the operating system once per form the first timeit is
referenced, and displayed in GMT format.

%GT% e.g. (>)
returns the greater than (>) character.

%headerVariables% e.g. (Dictionary(('User-Agent' ==> '"Mozilla/3.0 (Win95; I)")
('Connection' ==> 'Keep-Alive') ("Host' ==> “127.0.0.1") (‘Accept’ ==> "image/qgif,
image/x-xbitmap, image/jpeg, image/pjpeg, */*')))

adictionary of al the header variables. The keysto the dictionary are the names of the
variables; the values are the values of the header variables. Thisis useful to determineif a
particular header variable has been defined. Header variables are also considered local
variables. Thisvariable allows the user to see specifically which local variables came
from header information. The dictionary returned by this variable is a copy of the
dictionary containing al the header variables. Thus, modifying this dictionary will have no
effect on the header variables active in WebBase. This dictionary should be used for
information only. See also %headerVariablesHTML %.

%headerVariablesHTML% e.g. (see below)
formats the header variables and their values for a nice printout on the browser, as shown
below. Header variables are also considered local variables. This display allows the user

136

WebBase User’s Guide

to see specifically which local variables came from header information. See also
%headerV ariables.

Example 9.22 %headerVariablesHTML% display
Header Variables (4)

Accept = image/gif, inmagel/x-xbitmap, inmage/jpeg, inagel/pjpey,
/

Connection = Keep-Alive

Host = 127.0.0.1

User-Agent = Mozilla/3.0 (Wn95; 1)

%host% e.g. (myComputer.myCompany.com)
returns the host name of the server as set up in the TCP/IP network configuration.

%inputVariables%o e.g., (Dictionary((‘arg2' ==> "abc") (‘'now' ==>'32254")))
adictionary containing any arguments which were passed into the form on the command
line. Command line arguments are another way to create local variables, as described at
the start of this chapter. This display allows the user to see specifically which local
variables came from command line arguments. See also %inputV ariablesHTML %.

%inputVariablesHTML% e.g. (see below)

formats the command line arguments and their values for a nice printout on the browser, as
shown below. Command line arguments are another way to create local variables, as
described at the start of this chapter. This display alows the user to see specifically which
local variables came from command line arguments. See aso %inputV ariables%o.

Example 9.23 %inputVariablesHTML% display
Input Variables (2)

arg2 = abc
now = 32254

%LE% e.g. (<=)
returns the less than or equal to (<=) sequence of characters.

%leftBrace%o e.g. ({)

returns the left brace ({) character. Thisis provided should you wish to display a{
character in your .htf form and not have WebBase interpret it as the opening character of
amacro or variable construct. It issimilar to the HTML &It; sequence. Setting this name
with the set macro will change what is returned for the duration of the containing .htf form
but will have no effect on the fact that WebBase will till interpret the { character asa
special character used to start macro and variable fields within an .htf form. The brace
macro can also be used to add braces around strings.

%local% e.g. (true)

a Boolean value identifying whether the browser that generated the request is on the same
system as the WebBase server. Thisis equivalent to comparing %serverAddress% with
%browserAddress%.

%localVariables% e.g. (Dictionary((*CookieCounter' ==> '2") (‘%accepts¥%' ==>
OrderedCollection('image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*')) ...))
adictionary of al the local variables. The keysto the dictionary are the names of the

WebBase User’s Guide 137

Chapter 9: Variables

variables; the values are the values of the loca variables. Thisis useful to determineif a
particular local variable has been defined. Local variables include input variables
(command line arguments), cookie variables, header variables, and variables set using the
set or setLocal macros. Modifying this dictionary will have no effect on the local
variables active in WebBase. See also %localVariablesHTML %.

%localVariablesHTML% e.g. (see below)

formats the local variables and their values for a nice printout on the browser. This
information is appended to most error messages returned by WebBase to aid in debugging
the form being developed. See also %localV ariables%.

Example 9.24 %localVariablesHTML% display

Local Variables (15)

Y%accept s% = OrderedCol | ection('inmage/gif, inmage/x-xbitmap,

i mage/ j peg, image/pjpeg, */*')

Ysear ch% = now=32254 AND ar g2=abc

% heArgs% = OrderedList('arg2' 'now)

Accept = image/gif, inmagel/x-xbitmap, inmage/jpeg, inagel/pjpey,
*/ *

Connection = Keep-Alive

Cooki e = WebBasel D=WL4263151E161808318465B; Cooki eCount er =2
Cooki eCounter = 2

Host = 127.0.0.1

User-Agent = Mozilla/3.0 (Wn95; 1)

WebBasel D = WL4263151E161808318465B

%logRecord% e.g. (127.0.0.1 - - [10/Mar/1997:11:19:55 -0800] "GET /test
HTTP/1.0" 200 0 " "Mozilla/3.0 (Win95; I)")

acopy of the log record generated for the request that referenced this form. If logging is
enabled, an identical record will be written to the log file. The actual format of the

%l ogRecord% and the data written into the log file is determined by the L ogFormat
parameter.

%LT% e.g. (<)
returns the less than (<) character.

%milliseconds%o e.g. (61480122)

the time in milliseconds from the previous midnight as returned by the operating system.
Thisvalue is accessed from the operating system each time the variable is referenced and
will therefore change during the processing of the form.

%name% e.g. (WebBase)
returns the product name string.

%NEQ% e.g. (I=)
returns the not equal to (!=) sequence of characters.

%newAscendingList% e.g. (SortedList())
returns a new sorted list object into which added elements will be sorted into ascending
order.

138

WebBase User’s Guide

%newDescendingList% e.g. (SortedList())
returns a new sorted list object into which added elements will be sorted into descending
order.

%newL.ist% e.g. (OrderedList())
returns anew list object into which added elements will be maintained in the sequence in
which they are added to the list.

%onextCookield% e.g., (W14264278E161808318467B)

returns a string similar to the WebBasel D that is used for initial interactions with the client
browser. Thisvariable isuseful when the form devel oper wants a unique string that can
be used as the name of the user variable dictionary. See Chapter 10 for more information
on user variables.

%NGT% e.g. (I>)
returns the not greater than (!>) sequence of characters.

%NLT% e.g. (<)
returns the not less than (1<) sequence of characters.

%ODBCcache% e.g., (OrderedCollection(an OdbcConnectionCache
('myAccess'/'fred'/* * ('Microsoft Access Driver (*.mdb)' 1 03/10/97 12:22:58 PST
03/10/97 12:22:58 PST 0 +0:0:13))))

the collection of connection handles that are currently cached. See Chapter 12 for
information on caching and ODBC connections. See aso %ODBCcacheHTML %.

%ODBCcacheHTML% eg., (see below)

formats the information on the connections stored in the ODBC cache for a nice printout
on the browser. For each connection, the source, username and password are initially
specified. The type of ODBC driver isthen indicated, as well as how many times the
handle has been used, when it was created, when it was last used, when it was cached, and
how long it has been since it was used. See also %ODBCcache%.

Example 9.25 %0ODBCcacheHTML% display

ODBC Cache

"source'/'user' /' password' ('driver' 'count' created |astused
ti me_cached tine_idle)

@

"nyAccess'/'fred' /" ' ('Mcrosoft Access Driver (*.ndb)' 1
03/10/97 12:22:58 PST 03/10/97 12:22:58 PST 0 +0:0:13)

%ODBCdrivers% e.g. (SortedCollection(‘Microsoft Access Driver (*.mdb)' ==>
(‘UsageCount=6809923" '‘APILevel=1" 'ConnectFunctions=YYN'
'‘DriverODBCVer=02.50" 'FileUsage=2" 'FileExtns=*.mdb' 'SQLLevel=0'
‘ConectFunctions=YYN") ... etc ...))

acollection of available ODBC drivers. The entriesin the collection are each an
association. The key to each association isthe ODBC driver, the value is a string of
interest attributes of the driver. See aso %ODBCdriversHTML %.

WebBase User’s Guide 139

Chapter 9: Variables

%ODBCdriversHTML% e.g. (see below)

formats the information about the available ODBC drivers for a nice printout on the
browser as shown below. The ODBC driversin thislist are those provided in the ODBC
driver pack available from the WebBase web page or from Microsoft. See also
%ODBCdrivers¥%

Example 9.26 %ODBCdriversHTML% display

ODBC Drivers (9)

M crosoft Access Driver (*.mdb) = (' UsageCount =6809923

" APl Level =1" ' Connect Functi ons=YYN ' Driver ODBCVer =02. 50'
"Fil eUsage=2"' 'Fil eExtns=*.ndb' 'SQ.Level =0

' Conect Functi ons=YYN)

M crosoft dBase Driver (*.dbf) = (' UsageCount=6809923

" APl Level =1' ' Connect Functi ons=YYN ' Driver ODBCVer =02. 50'
"Fil eUsage=1" 'Fil eExt ns=*.dbf, *. ndx, *. mdx' ' SQ.Level =0

' Conect Functi ons=YYN)

M crosoft Excel Driver (*.xls) = ('UsageCount=6809923

" APl Level =1" ' Connect Functi ons=YYN ' Driver ODBCVer =02. 50'
"FileUsage=1" 'FileExtns=*.xls' 'SQ.Level =0

' Conect Functi ons=YYN)

M crosoft FoxPro Driver (*.dbf) = (' UsageCount=6809923'

" APl Level =1' ' Connect Functi ons=YYN ' Driver ODBCVer =02. 50'
"Fil eUsage=1" 'Fil eExt ns=*.dbf,*.cdx,*.idx,*.ftp" 'SQVLevel =0
' Conect Functi ons=YYN)

M crosoft Paradox Driver (*.db) = (' UsageCount =6809923'

" APl Level =1" ' Connect Functi ons=YYN ' Driver ODBCVer =02. 50'
"Fil eUsage=1" 'FileExtns=*.db" 'SQ.Level =0

' Conect Functi ons=YYN)

M crosoft Text Driver (*.txt, *.csv) = (' SQVLevel =0

"Fil eExtns=*.asc, *.csv, *.tab,*.txt' 'FileUsage=1'

"Driver ODBCVer =02. 50" ' Conect Functi ons=YYN ' APl Level =1")
M crosoft Text Driver (*.txt; *.csv) = (' UsageCount =6809923'
" APl Level =1" ' Connect Functi ons=YYN ' Driver ODBCVer =02. 50'
"Fil eUsage=1" 'FileExtns=*.,*.asc,*.csv,*.tab, *.txt,*.csv'
'SQ.Level =0'")

SQL Server = (' UsageCount=6809923" 'SQ.Level =1' 'Fil eUsage=0
" Driver ODBCVer =02. 50" ' Connect Functi ons=YYY' ' API Level =2")
Visigenic 32-bit Oracle Driver = (' UsageCount =6809923'
'SQ@.Level =1' 'Fil eUsage=0" 'Driver ODBCVer =02. 50'

' Connect Functi ons=YYY' ' APl Level =1")

%ODBCsources% e.g. (SortedCollection('dBASE Files' ==> 'Microsoft dBase Driver
(*.dbf)" 'excell’ ==> "Microsoft Excel Driver (*.xIs)' '‘FoxPro Files' ==> "Microsoft
FoxPro Driver (*.dbf)' 'myAccess' ==> 'Microsoft Access Driver (*.mdb)" '‘Paradox
Files' ==> 'Microsoft Paradox Driver (*.db)" 'Text Files' ==> 'Microsoft Text Driver
(*.txt; *.csv)")

a collection of the ODBC sources which have been defined. Each entry in the collection is
an association. The key to each association is the source name and the value is the driver
used (e.g., MS Access, SQL Server). Note that some sources have database files
associated with them (e.g., ‘myAccess'), while other sources are generic and do not have
database files associated with them. See also %ODBCsourcesHTML %.

140

WebBase User’s Guide

%ODBCsourcesHTML% e.g. (see below)
formats the information about the available ODBC sources for a nice printout on the
browser as shown below. See also %ODBCsources%.

Example 9.27 %ODBCsourcesHTML % display

ODBC Sources (6)

dBASE Files = Mcrosoft dBase Driver (*.dbf)
excel 1 = Mcrosoft Excel Driver (*.xls)

FoxPro Files = Mcrosoft FoxPro Driver (*.dbf)
myAccess = Mcrosoft Access Driver (*.ndb)
Paradox Files = Mcrosoft Paradox Driver (*.db)
Text Files = Mcrosoft Text Driver (*.txt; *.csv)

%0s% e.g. (Windows 4.0)
returns the operating system name and version as a string.

%output% e.g., (true)

a Boolean value that specifies whether output being generated by formsis added to the
stream that is being constructed to go back to the browser. The default istrue. Setting
%output% to false stops all forms from outputting to the stream being constructed. The
variable is changed using { set %ooutput% <true-or-false>}. The <true-or-false> argument
can be aconstant, variable, or any expression that evaluates to true or false. If the
expression does NOT evaluate to atrue or false, the value of true is used without
generating an error. This variable should be used to limit the whitespace (carriage returns,
line feeds) returned to the browser. Each carriage return encountered within aform s
added to the output stream, even if it isjust at the end of a WebBase statement. If the
expression { set %output% false} is placed around WebBase processing that does not
generate anything to be displayed at the browser, less information will be returned to the
browser.

%priority% e.g. (3)

anumber (4=high 3=medium 2=low O=yield) that isthe priority of the current command.
The statement { set %priority% 4} does not actually set the variable but changes the
priority of the command. O does not change the priority number but forces the command to
yield the CPU to give another process access to it.

%random% e.g. (a Random)

an instance of arandom number generator object. Random numbers are in the range
between 0.0 and 1.0. There are only two operations that can be used with %random%:
‘next’ and ‘integerBelow:’. The operation ‘next’ returns the next random number, as
shown in the following example:

Example 9.28 %random%o next usage

{! Generate a random nunber and save it in the variable ‘rand !}
{set rand % andon?tb next}

If you want to choose among a set number of items randomly, you can use the
integerBelow: operation. As shown in the example below, the returned value will be in the
range O to the integer below the give argument inclusively.

WebBase User’s Guide 141

Chapter 9: Variables

Example 9.29 %random% integerBelow: usage

{! Pick a randomentry froma list of returned answers !}
{set limt answers size}

{! Add 1 since indexing is 1 based but integerBelow returns
values fromO through the limt - 1 !}
{set rand 1 linmt % andonts i nt eger Bel ow. +}

{! Make random sel ection !}
{set selection rand answers at:}

%reservedWords% e.g., SortedList('!" ‘ascending’ 'call’ ‘case’ ‘changed' ‘class’
‘comment’ ‘commit’ ‘concat’ ‘copy" 'debug’ ‘dependents' ‘descending’ ‘dll' ‘edit’ 'else’
‘encode’ ‘ensure’ 'errorprotect’ 'escape’ ‘evaluate’ 'exit' 'f=""'f==""false’ 'forindex’ 'fork’
‘forrow" 'free’ 'get’ 'grow’ ‘halt’ 'hash' "htf* 'if' 'include’ ‘insert’ ‘inspect' 'invoke' ‘mail’
'match’ ‘'match’ ‘'munge’ 'nil’ 'no’ 'onerror’ ‘onexit’ 'otherwise' ‘output’ ‘parallel’ ‘parse’
‘patternmatch’ ‘post’ ‘print’ ‘quote’ ‘redirect’ 'redirect2’ 'release’ ‘'remove’ 'removeall’
‘removecookie’ 'removeglobal’ ‘removelocal’ ‘'removeuser’ ‘repeat’ ‘return’ 'rollback’
'scope’ 'sender’ 'set' 'setcookie’ ‘setglobal’ ‘setlocal’ 'setstring' ‘setuser" ‘shoppingitem’
'signalerror’ 'size’ 'species’ 'sgl’ ‘timer’ ‘transact’ 'true’ ‘value’ 'verity' ‘while’ 'with'
‘writefile' 'yes' "yourself'))

the reserved words within WebBase that should not be used for variable names as errors
will result. The reserved words include all WebBase macro names, as well as several
operation names that can be applied to any WebBase datatype. If the user attempts to
create alocal variable using any of the set* macros, an error will be displayed. However,
it is aso possible to create variables using command line arguments or field names.
Database fields with the same name as a reserved work can be used by enclosing the field
name in double quotes. A genera rule-of-thumb isto take great care in selecting any
variable name. See also %reservedWordsHTML %.

%reservedWordsHTML% e.g., (see below)
formats the list of WebBase reserved words for a nice printout on the browser as shown
below. See aso %reservedWords%.

Example 9.30 %reservedWordsHTML% display

Reserved Words (89)

|
ascendi ng
cal |

case

with
witefile
yes

your sel f

%results% e.g. ()
adefault variable into which the sql macro placesits results if ato keyword/value pair is

not included.

%returns% e.g., (OrderedCollection())
the values returned by the last return macro. Thisis equivaent to {f= %cmd% returns}.

142

WebBase User’s Guide

%rightBrace%o e.g. (})

returns the right brace (}) character. Thisis provided should you wish to display a}
character in your .htf form and not have WebBase interpret it as the closing character of a
macro or variable construct. Itissimilar to the HTML > sequence. Setting this name
with the set macro will change what is returned for the duration of the containing .htf form
but will have no effect on the fact that WebBase will till interpret the} character asa
special character used to close macro and variable fields within an .htf form. The brace
macro can also be used to add braces around strings.

%root% e.g., (c:\http)

the root directory for the particular domain specified in the IP address. If multiple
domains are in use, each domain can have a different root directory. If multiple domains
are not in use, thiswill be the same as %rootDirectory%.

%rootDirectory% e.g., (c:\http)

the root directory for WebBase. If multiple domains are in use, each domain can have a
different root directory. If no root directory is specified for adomain, it will default to the
root directory for WebBase.

%rowCount% e.g. (10)

contains the value of the ODBC statement's ‘ row count’ field following the execution of
the sgl statement. The value returned for this variable is ODBC driver dependent and is
typically NOT provided as aresult of a SELECT statement. In general it does indicate the
number of rows affected by NON-SELECT sgl statements (INSERT, UPDATE, ...).
Again, it isimportant to note that thisfield isvery DRIVER DEPENDENT and users need
to experiment with their particular ODBC driver to determine under what conditions this
value is meaningful.

%rowCounter% e.g., (1)

used by the forRow macro. The forRow macro provides for a‘counter’ keyword argument
by which the user may specify a variable to keep a count of the iterations through the loop.
If the user does not specify any counter variable, the default Y%orowCounter% variable will
be created and used to keep track of the row element currently being processed on each
iteration through the loop.

%rowHeader% e.g. (an OdbcRowHeader)
the OdbcRowHeader object for the most recent sql macro issued or nil if no sgl has been
used. See Chapter 11 for the messages which can be sent to this object.

%search% e.g., (‘first=George AND Last=Jones’")

this variable is the precursor to %WHERE%. 1t provides a very simplified form of the
WHERE clause in which all testing is strictly by equality, and al argument/value pairs are
put together with AND operators.

%seconds%o e.g. (61480)

the time in seconds from the previous midnight as returned by the operating system. This
value is accessed from the operating system each time the variable is referenced and will
therefore change during the processing of the form.

%self% e.g. (c:\http\testfile.htf)

the full pathname of the file currently being processed. If %self% is used in an inserted
file, it will contain the path of the file contained in the URL and not the path of the inserted
file. Thisisequivalent to %root% and %form% concatenated together.

WebBase User’s Guide 143

Chapter 9: Variables

%oselfDirectory% e.g. (c:\http\)

the full path to the directory containing the file currently being processed. If
%selfDirectory% isused in an inserted file, it will contain the directory of thefile
contained in the URL and not the path of the inserted file. Thisis equivaent to %root%
and %formDirectory% concatenated together.

%serverAddress% e.g. (127.0.0.1)

the I P address of the WebBase server in dotted 000.000.000.000 format. When one has
multiple IP addresses assigned to the WebBase port, this allows one to detect which
address was referenced by the incoming query and take a possibly different path based on
IP address. See Chapter 4 for more information on multiple domain support.

%serverAverage% e.g., (7.07680945)

the average number of seconds that each command has taken to be processed by the
WebBase server. Thisis simply the amount of time WebBase has been running since last
launched divided by the number of commands it has processed. It does not take into
account any idle time and therefore is not a measure of the performance of the server. See
also YserverAverageHTML %.

%serverAverageHTML% e.g., (7.07680945 seconds per command)

formats the current statistic on the average number of seconds that each command has
taken to be processed by the WebBase server for a nice printout on the browser as shown
below. Thisis simply the amount of time WebBase has been running since last launched
divided by the number of commands it has processed. It does not take into account any
idle time and therefore is not a measure of the performance of the server. Seedso
YoserverAverageo.

Example 9.31 %serverAverageHTML% display

7.07680945 seconds per command.

%serverElapsedTime% e.g., (a TimeDifference (-1:19:51))
the amount of time that the server has been active. Thisvalueis used in the computation
of %serverAverage%o and %oserver Throughput%.

%serverHostName% e.g., (http://www.expertelligence.com)

the name of the server system. If the local header variable Host is defined, the value is
used. If not, the domain HostName parameter isused. If this parameter is not defined,
then the server IP addressisused. Any of these values are concatenated with *http://’ to
generate the full server host name.

%oserverStartTime% e.g., (Monday, 10-Mar-1997 14:12:40 GMT)
the date and time when the WebBase server was started.

%serverThroughput% e.g., (8.47839699)

the average number of commands that are being processed by the WebBase server. Thisis
smply the number of commands WebBase has processed divided by the amount of time
WebBase has been running since last launched. 1t does not take into account any idle time
and therefore is not a measure of the performance of the server. See also

%server ThroughputHTML %.

%serverThroughputHTML% e.g., (see below)
formats the current statistic on the average number of commands processed by the
WebBase server for a nice printout on the browser as shown below. Thisis smply the

144

WebBase User’s Guide

number of commands WebBase has processed divided by the amount of time WebBase
has been running since last launched. 1t does not take into account any idle time and
therefore is not a measure of the performance of the server. Seeaso

%server Throughput%.

Example 9.32 %serverThroughputHTML% display

8.47839699 commands per minute

Yostatistics% e.g., (4/1)

the current contents of the small statistics pane just under the menu bar in the WebBase
Server window. It typically contains a string with the total command count / concurrent
commands in process :: the most recent command string or a date/time - Idle message.

%time% e.g., (12:23:14 PM)

the current local time. It is accessed from the operating system and cached once per form
thefirst timeit isreferenced. Although most forms are processed very quickly, there are
some database queries that can take some time. If the processing of aform will take some
time and time information is critical, the forms designer should create aloca variable
using an expression like { set curTime %Time% now} each time the time is needed instead
of using %time%. Thiswill eliminate any problems with the caching of %time% and
ensure the proper time is used.

%timeStamp% e.g., (Mon 10 Mar 1997 12:23:10)
a string containing the current date and time. It is accessed from the operating system and
cached once per form thefirst time it is referenced.

%ititle% e.g. ("WebBase 4.10 build 56°)
returns the product’ s title string consisting of its name, version number, and build number.

%userExpires% e.g., (60)

default expiration time in minutes for User variables. This can be overridden by a global
variable, or it can be set for each individua user variable dictionary. See Chapter 10 for
information on user variables.

%userLimit% e.g., (0)

the maximum number of User variable dictionaries allowed. See Chapter 10 for
information on User Variables and User Variable Dictionaries. This variable returns 0
(zero) -- which indicates that there is NO limit to the number of user dictionaries.

%userName% e.g., (W14263151E161808318465B)

the name of the current user variable dictionary. If not explicitly specified, it defaults to
WebBaselD. It ispossibleto have multiple user variable dictionaries in use within one or
more forms. See Chapter 10 for information on user variable dictionaries.

%userVariables% e.g. (Dictionary(('%%altered%%" ==> true) (‘%%expires%%'
==> 60) ('%%created%%" ==> (03/10/97 04:42:25 PM)) (‘%%accessed%%' ==>
(03/10/97 04:42:26 PM)) (‘'UserToken' ==> 'UW14269116E161808318480B")))
adictionary of al the user variables. The keysto the dictionary are the names of the
variables; the values are the values of the user variables. If no user variables have been
defined for the user dictionary specified by %userName%o, returns an empty dictionary.
Thisis useful to determine if a particular user variable has been defined. One can also set
%userName% to point to a specific dictionary and then use %userVariables¥% to dump the

WebBase User’s Guide 145

Chapter 9: Variables

contents. The dictionary returned by this variable is a copy of the dictionary containing all
the user variables. Thus, modifying this dictionary will have no effect on the user
variables active in WebBase. This dictionary should be used for information only. See
also YouserVariablesHTML %, %allUserV ariables%o, %al lUserVariablesHTM L% and
%allUserVarNamesHTML %.

%userVariablesHTML% e.g. (see below)

formats the user variables and their values for a nice printout on the browser. See also
%ouserV ariables¥%o, %allUserV ariables%o, %a lUserVariablesHTM L% and
%allUserVarNamesHTML %.

Example 9.33 %userVariablesHTML% display

User Variables - W14263151E161808318465B (5)

YWaccessed%®o = (03/10/97 04:42:26 PV
%Wal tered¥®b6 = true

%Wer eat ed%o = (03/10/97 04:42: 25 PM

%Wexpi res%®o = 60

User Token = UW4269116E161808318480B

%version% e.g., (4.10)
the program’ s version number as reported in the WebBase Server window title bar.

%WHERE%
astring of the form

WHERE xxx = yyy AND ...

The %WHEREY variable can be used in an SQL statement to identify a particular record
or set of records based on command line arguments. For each command line
argument/value pair, the ‘xxx’ specifies the name of the command line variable and the
‘yyy' specifies the value of the variable. The advantage of the %WHERE% clause is that
it is not generated until actually used within the sgl statement. 1t is thus possible to modify
the variables and values to be used in the %WHEREY% variable before it is generated. For
example, users may want to ensure that a given value is numeric and not a string of
numbers, or that the string value of avariable is al in uppercase alpha characters. This
can be done using statements like:

{set xxx xxx asNunber}
{set xxx xxx asUppercase}

The %WHEREY variable generates and returns a string each time it is called. This means
that if one were to use the %WHERE% variable more than once in the same form, one
could change the contents of a variable used within the %WHERE% after one access and
receive a different string with the subsegquent access. If you want to use the same
%WHERE% string more than once in asingle form, store the variable in alocd variable
with a statement like this:

{set where WHEREY%}
This not only ensures that the value does not change, but also reduces the overhead in not

having to reconstruct the same %WHERE% string each time. More details on the use of
the %WHERE% variable can be found in Chapter 12.

146

WebBase User’s Guide

%whereAndOr% e.g., (AND)

specifies whether the command line argument/value pairs used in the %0WHERE% variable
will be put together with the AND or OR operator. By default, %whereAndOr% returns
the string *AND’. If you want to replace the AND operators with OR operators, the
following will create alocal variable to override this dynamic variable to return the ‘ OR’
string.

{set %whereAndOr %' OR }

%whereMultiAndOr% e.g., (OR)

specifies whether multiple valued components used in the %oWHEREY variable will be put
together with AND or OR operators. The %WHERE%Y% dynamic variable uses the val ue of
%whereM ultiAndOr% to indicate the logical operator to use when collecting multiple
valued values (e.g. a collection of checkboxes al given the same variable name). By
default, %whereMultiAndOr% returns the string ‘ OR'’ . If you want to replace the OR
operators with AND operators, the following will create alocal variable to override this
variable to return the ‘AND’ string.

{set %whereMilti AndOr % ' AND }

%whileCounter% e.g., (1)
used by the while macro, it is automatically set to the loop count.

%x% e.g. (123)
the x coordinate sent when the user clicks over an ISMAP image -- returns O if referenced
outside the context of an ISMAP reference.

%y% e.g. (132)
the y coordinate sent when the user clicks over an ISMAP image -- returns O if referenced
outside the context of an ISMAP reference.

Operational Variables

A global, user or local variable can override any of the above WebBase dynamic variables.
The following dynamic variables can be modified by accessing the Options menu on the
WebBase Server window. However, the changes made by selecting these menu options are
only valid for the current session. When WebBase is stopped and restarted, the default values
will berestored. If you want to permanently change the values of any of these variables, it is
recommended that you add global variables with the desired values following the instructions
earlier in this chapter. If agloba variableis created to override the value of one or more of
these dynamic variables, WebBase must be stopped and restarted for the change to take effect.
The values of these operational variables are only used at system startup. The default value
for each dynamic variable is shown in parentheses.

%cacheEnabled% e.g. (true)

a Boolean value which defaults to true, that indicates whether WebBase isto read forms
fromitsinternal cache. Each form that is handled by the WebBase server isfirst parsed
to build internal structures identifying the macrosin use. The form isthen processed and
the results returned to the browser. When aform isidentified in aURL, WebBase checks
to see if %cacheEnabled% istrue. If so, it checksitsinternal cacheto seeif the form has
already been processed. If so, the internal structures are re-used. This can significantly
reduce the amount of time it takes WebBase to process a request for the second and
subsequent reference to the same Web page since only the process step and not the parsing
step has to be completed. For production systems, it is strongly recommended that this
variable be |eft in its default mode, which is true.

WebBase User’s Guide 147

Chapter 9: Variables

%cacheTimeCheck%o e.g. (true)

a Boolean value which defaults to true, that indicates whether WebBase isto check thefile
date of its forms againgt the file date stored in itsinternal cache to ensureit is using the
latest version of the form. Thisvariableisonly used if %cacheEnabled% istrue.

During forms development, setting this variable to true helps ensure developers are always
seeing the most current form -- they need not be concerned whether the form they are
editing has already been cached or not. During production, however, disabling this feature
improves throughput as WebBase will not have to do any file modification date
determinations.

%cacheODBC% e.g. (true)

a Boolean value which defaults to true, that indicates that ODBC connections are to be
cached within WebBase. Each sql macro request specifies a source name, user name and
password. The username and password default to empty strings if not explicitly specified.
An ODBC database connection is made using the source name and user name. If
%cacheODBC% is true, the connection is cached. If a subsequent sql macro specifies the
same source name and username, the connection in the cache is used and a new connection
isnot created. This can significantly reduce the amount of time it takes WebBase to
process a request for the second and subsequent reference to the same source and
username. See Chapter 12 for more information on ODBC caching.

%logEnabled% e.g. (true)

indicates that the log file functionaity of WebBase isto be enabled. If aglobal or local
variable setsthisto false, logging will be disabled. Logging can be temporarily enabled or
disabled using the WebBase server window menu options. It is strongly recommended
that logging be enabled, and then only temporarily disabled if necessary. Many Web
analysistools can use the log information. See the section on Logging in Chapter 12 for
more information.

Special Variables

The variables described in this section do not exist unless specified by the user. Thereisa
default value associated with each of them, but it is not possible to query for or use this default
value. Any of these special variables, unless otherwise specified, can be created as a globa,
user or local variable to override the default value.

%directoryBrowse%

This variable controls whether directory browsing is supported. By default, WebBase
does not support directory browsing. To enable directory browsing, aglobal variable must
be created with avalue of ‘true’. It is not possible to enable directory browsing with a
user or local variable.

%disableAllInternal Commands%o

If set to true, all built-in (internal) commands are disabled. If thisvariable is created asa
global variable, a user would not be able to send the dateTime command to the server.
Instead, the 404 file not found error would be returned.

%dumpVariablesOnError%

By default, WebBase acts as if this variable were set to false. When set to true, the system
will dump the local, header, cookie and user variables plus alist of available ODBC
sources and drivers to the browser whenever an error message is generated. This can be
helpful in debugging .htf forms. It is recommended that this variable be created and its
value st to true during forms development. Once the forms have been debugged, the forms

148

WebBase User’s Guide

designer should remove any statements setting this variable to true to prevent displaying
this information on browsers visiting their site.

%enablePrivatelnternal Commands%o

If set to true and %odisableAlllnternal Commands% is not set to true, any dynamic variable
can be called asif it were a built-in (internal) command. When adynamic variableis
invoked as a built-in command, the surrounding ‘%' signs are removed from the variable
name. Thus, localVariablesHTML, alUserVariablesHTML, reservedWordsHTML, etc.
can be invoked directly from a browser without having to write aform to return them.
This can be useful during forms development on a development machine. It is not
recommended that this variable be enabled on a production system.

%errorMacroLines%

this variable is used when an error message is generated due to aform’s designer
programming error. It defines the number of lines beginning with the start tag of the macro
and number of lines ending with the end tag of the macro that will be displayed. The
center portion will bereplaced by ‘..." if the total lines exceed 2* %errorMacroLines* +1.

It defaultsto 5. If avaluelessthan 2 is specified, the entire macro is displayed.

%errorUseColor%

this variable is used when an error message is generated due to aform’s designer
programming error. It iseither true or false, and determines whether color is used in the
error display. It defaultsto false, so no color isdisplayed. If set to true, the error lineis
displayed in red and the macro containing the error is displayed in blue. All other codeis
displayed in black.

%errorWrapperLines%o

this variable is used when an error message is generated due to aform’s designer
programming error. It defines the number of lines to be displayed before and after the
macro that contains the error to give more help in locating the offending code. It defaults
to 3. If avaluelessthan 2 is specified, the entire form is displayed within the error

message.

%heartbeatInterval%

this variable defines the length of time in seconds between heartbeat commands. The vaue
entered must be between 5 and 360 seconds; the default is 15. More information on the
WebBase Heartbeat Window can be found in Chapter 5.

%heartbeatMaxLines%

this variable defines the number of lines of information to be displayed in the WebBase
Heartbeat Window. By default, 100 lines are displayed. If %heartbeatMaxLines% is
created as agloba variable with a value between 10 and 10000, this defines how many
lines will be displayed in the window. More information on the WebBase Heartbeat
Window can be found in Chapter 5.

%heartbeatPostingEnable%o

this variable enables or disables posting of information into the WebBase Heartbeat
Window. If set to ‘false’, it will cause posting into the WebBase Heartbeat Window to be
disabled when the window is opened (either automatically via the %heartbeatWindow%
variable or manually viathe Edit menu). Posting uses memory and processor resources, so
it might be desirable in a production system to disable posting. Error messages will
continue to be posted even though posting is marked as disabled. The TCP/IP reset will
also be issued when appropriate regardless of the posting enabled status.

WebBase User’s Guide 149

Chapter 9: Variables

%heartbeatReplyTime%o

this variable defines the length of time the heartbeat function will wait for areply in
seconds. The value must be between 1 and 5 seconds; the default is 5. More information
on the WebBase Heartbeat window can be found in Chapter 5.

9%heartbeatResetTCP%

this variable is either true or false, and defines whether the TCP/IP socket will be reset
when a heartbeat command times out. If not specified, the default value is true. More
information on the WebBase Heartbeat window can be found in Chapter 5.

%heartbeatSound%o

this variable is either true or false, and defines whether a sound is played if a heartbeat
failureisidentified. If not specified, the default value is false. More information on the
WebBase Heartbeat window can be found in Chapter 5.

%heartbeatWindow%o

this variable determines whether a WebBase Heartbeat Window is opened when WebBase
is started. By default, the window is not opened. If %heartbeatWindow% is created as a
global variable with avaue of true, the window will be opened each time WebBase is
started. Note that if WebBase is started as a service under Windows NT, no windows
may be displayed. More information on the WebBase Heartbeat window can be found in
Chapter 5.

%lastModified%o

When the processed information is returned back to the browser, additional header
information is attached to the message. One of the fields returned by the server is Last-
Modified. Thisfield indicates the date and time at which the server believes the file was
last modified. Thisis not dways meaningful because many forms are dynamic: they
contain data taken from a database, etc. Thus, what the user seesis not really the .htf form
itself but what the form caused to be generated and returned to the browser. The user can
set YlastModified% to any of 3 values: aUniversa Time, true or false. If the user sets
%l astM odified% to %odateTime%s or any other Universal Time, that is the date and time
that will be returned in the header. If %lastModified% is set to true, then the current
%dateTime% value is returned in the header. If %lastModified% is set to false, the Last-
Modified: header entry is not returned by the server. If the user does not set the value of
%l astM odified%, the date the file was last modified is returned to the browser.

%max%o

the maximum number of records to be returned in a query by the {sgl} macro. Thiscan be
created as aglobal, user or local variable, or overridden explicitly in the sql macro using
the max keyword argument. This defaults to 0, which means that al records will be
returned by the query.

%mimeType%o

this variable identifies what will be stored in the Content-type: header entity that is
returned to the browser. For standard .htf files, this defaults to ‘text/html’. Each file
extension has an associated mime type, as described in Chapter 4. Since a .htf fileis
already being processed and will ship something back to the browser for display, the only
other type of %mimeType% that one might want to set is ‘text/plain’. This means the
browser ignores all the HTML tags and just displays the text - including al the <H2>
controls, etc.

%password%
the name of the password to be used by the sql macro. This can be created as a global,

150

WebBase User’s Guide

user or local variable, or overridden explicitly in the sgl macro using the password
keyword argument. This defaults to an empty string.

%skipAutoCookies%o

Thisisless drastic than turning off cookie support completely by setting %oskipCookies¥o
to true. If set to true, WebBase will not send any of the default WebBase cookies to the
browser. Any cookies created by the user using the setCookie macro will be sent to the
browser. If %skipCookies¥o is set to true, the value of this variable isignored.

%skipCookies%

By default, WebBase will awaystry and establish a‘ cookie connection’ with the browser.
If it receives a cookie from the browser, it will return that cookie on the next write. If it
does not receive a cookie, it will generate a new one and send it to the browser. If this
variableis set to true, WebBase will not send a cookie to the browser regardless of
whether one was received or not.

%skipHeaderComment%

When WebBase processes afile, it accumulates al the information to be returned to the
browser in astream. Once the processing is completed, the header information is created
and added to the start of the stream. By default, WebBase also includes a comment line at
the start of the stream indicating that the stream was generated by WebBase as well asthe
current date and time. The comment information is stored in the Y%scomment% variable.
This starting comment in the HTML returned to the browser is only seen if the user does a
‘View Source' at their browser. If thisvariableis set to true, the %ocomment% value is not
included in data returned to the browser.

%source%

the name of the data source to be used by the sql macro. This can be created as a global,
user or local variable, or overridden explicitly in the sgl macro using the source keyword
argument. It defaults to an empty string.

%sqlBufferSize%

the maximum buffer length for ODBC to use to return data from the database to
WebBase. This can be created as a global, user or local variable, or overridden explicitly
in the sgl macro using the buffer keyword argument. This defaults to 8192 bytes.

%ostart%

the number identifying the first matching record to be returned by the sql macro. This can
be created as a global, user or local variable, or overridden explicitly in the sql macro
using the start keyword argument. This defaultsto 1.

%ostatusCode%

this variable is used to change the default status code that is returned as part of the header
message. All servers use the same status numbers. For example, 200 means ‘OK’ and
404 means ‘file not found'. The variable should be set to an integer or begin with a 3-digit
status value. If the variableis set to a string, the first 3 characters must be one of the
valid status codes listed below. Any additional text provided with the variable is not used.
The valid status codes are:

Example 9.34 %statusCode% values

100 Cont i nue

101 Swi t chi ng Protocol s
200

201 Creat ed

202 Accept ed

WebBase User’s Guide 151

Chapter 9: Variables

203 Non- Aut horitative |Information
204 No Cont ent

205 Reset Cont ent

206 Partial Content

300 Mul ti pl e Choices

301 Moved Permanently

302 Moved Tenporarily

303 See O her

304 Not Modi fi ed

305 Use Proxy

400 Bad Request

401 Unaut hori zed

402 Payment Required

403 For bi dden

404 Not Found

405 Met hod Not Al | owed

406 Not Accept abl e

407 Proxy Aut hentication Required
408 Request Ti ne- out

409 Confli ct

410 Gone

411 Lengt h Required

412 Precondition Fail ed

413 Request Entity Too Large
414 Request - URI Too Large
415 Unsupported Media Type
500 Internal Server Error
501 Not | npl ermrent ed

502 Bad Gat eway

503 Servi ce Unavail abl e

504 Gat eway Ti me- out

505 HTTP Versi on not supported

The actual message displayed may vary by browser. Browsers are not required to
understand the meaning of all these status codes. However, browsers must understand the
class of any status code, as indicated by the first digit, and treat any unrecognized response
as being equivalent to the x00 status code of that class.

%theArgs%o

this variable contains the names of all command line arguments that were specified as part
of the URL. Thisvariableisin fact alocal variable but, asit is created dynamically for
each form that is processed by WebBase, its description isincluded here. The variableis
used in the construction of the %0WHERE% variable if used within the form. A form
designer can also use this variable to determine input arguments and their values.

It is possible to modify the list of variable names found in %theArgs% and thus impact the
resulting %WHERE% variable. For example, one could use the following:

{set newArg. GE 13}
{set % heArgs% ' newArg. GE' % heArgs% add: }

to add the variable named newArg.GE to the list of arguments stored in %theArgs%. The
resultant %WHERE% variable would now include the following test along with the
arguments provided via the command line.

newArg >= 13 ...

152

WebBase User’s Guide

%transactionsMaxLines%

this variable defines the number of lines of information to be displayed in the WebBase
Transactions Service window. By default, 100 lines are displayed. If
Y%transactionsMaxLines% is created as a global variable with a value between 10 and
10000, this defines how many lines will be displayed in the window. More information on
the WebBase Transactions Service window can be found in Chapter 5.

%transactionsWindow%o

this variable determines whether a WebBase Transactions Service window is opened when
WebBase is started. By default, the window is not opened. If %transactionsWindow% is
created as a global variable with avalue of true, the window will be opened each time
WebBase is started. Note that if WebBase is started as a service under Windows NT, no
windows may be displayed. More information on the WebBase Transactions Service
window can be found in Chapter 5.

%updateStats%o

If set to false, disables the ‘ Transactions Pane’ - the one line band just below the menu bar
in the server window. If the %updateStats% variable is not defined or is set to true, this
pane will display the command counter and most recent command line. The user can
enable/disable this pane via the Transactions Pane menu item in the server's Options menu.
Providing a global variable %updateStats¥o set to false will cause this pane to initially
come up as disabled.

%user%o

the name of the user to be used by the sql macro. This can be created as a global, user or
local variable, or overridden explicitly in the sql macro using the user keyword argument.
It defaults to an empty string.

%ovarList%

The %ovarList% variable is specified by the user in conjunction with having aform return
more than one variable using the same name. This is common when aform may contain a
series of checkboxes using the <SELECT MULTIPLE ...> ... </SELECT> construct,
where the user is requested to select none, one, or many items as desired to satisfy a
request. An example form with multiple checkboxesis presented below in Fig. 9.36.

WebBase User’s Guide 153

Chapter 9: Variables

Example 9.35 Example form with multiple checkboxes

Sel ect a body styl e</ B><P>

You can select as many different body styles as you like. <P>
<PRE>

<FORM METHOD="GET" ACTION="test.htf">

<I NPUT TYPE="checkbox" NANME="nodtype" val ue="convertibl e">
Convertible

<I NPUT TYPE="checkbox" NANME="nodtype" val ue="m ni van"> M ni van
<I NPUT TYPE="checkbox" NAVME="nodtype" val ue="truck"> Truck

<I NPUT TYPE="subnit" VALUE="Submit Query"s
</ PRE>

The resultant GET command for such alist, should the user select multiple checkboxes,
might appear as

CET test. htf?nodt ype=converti bl e&nodt ype=ni ni van& nodt ype=t r uck

The norma way in which WebBase would parse the command string would be to assign
the value 'convertibl€' to the variable named 'modtype’, then assign the vaue 'minivan’ to
the variable named 'modtype' (overwriting the first value), then on with ‘truck’ and so forth.
The result would be a variable named 'modtype’ with a value of the last "modtype=xxx"
entry found in the command string.

The %varList% variable is used to inform WebBase that there are multiple entries in the
command string with the same name and that all values associated with these entries are
desired. Thisvariableis created using a hidden variable, asin the following expression:

<I NPUT TYPE=HI DDEN NAME="%var Li st % VALUE="nodtype">

Placing this input field before the fields named modtype causes WebBase to set up alist
for collecting the modtype values as they are encountered in the command string. With
this entry in the command string, the 'modtype’ variable would return alist of the
accumulated values as

{rodtype} ® O deredList('convertible 'mnivan' 'truck')

The size method can be sent to modtype (e.g. { case modtype size} ...) to determine the
number of entries and the { forRow oneValue on modtype} ... {oneVaue} ... {/forRow}
construct could be used to iterate over the collected entries.

If the input form were to contain more than one variable that isto be repeated in the
command string, one must specify all the variables that can appear multiple timesin the
%varList% variable. Thisis done by listing all the variable names as the value of
%varList%, separated by commas. For example, if the above form had alist of
manufacturers, styles and colors as well as modd typesto select from, the following
expression would be used:

<I NPUT TYPE=H DDEN NAME="9%ar Li st % VALUE="manuf act urer,
nodt ype, styl e, col or">

%whileLimit%

used by the while macro, it limits the number of times the macro will loop regardless of the
dtate of the condition. Thisis useful as a safeguard during development to prevent infinite
loops.

154 WebBase User’s Guide

9.5 Displaying Variables

The value of aWebBase variable can be displayed in HTML by enclosing the variable name
in curly braces, e.g. {counter}. Parameters can be used to control the format in which
variables will be displayed within the HTML resulting from WebBase processing the .htf file.

Variable parameters are specified following the variable name and within the braces using the
format parameterName=value. One or more parameters can be specified with each variable
name. However, parameters can only be used when the variable name only is within the
braces. Parameters cannot be used with variablesin an expression. Thefollowing isavalid
WebBase variable expression:

{counter size=5 align=right prefix=$}.

Thefollowing is an invalid expression using variables and parameters:
{set nyCntr counter size=5 align=right prefix=$}

Parameter names are not case sensitive. Supported parameters and their allowable values are
described below.

Note:

Some of the parameters allow the user to insert spaces into a field (align, padchr,
etc.). Recall that browsers replace multiple spaces with a single space character
except within the <PRE> ... </PRE> construct.

align

specifies the alignment of the field within the specified size area. Valid values are left,
center, right, and currency. If currency is specified, the alignment is right justified and the
numeric value is displayed with two decimal places and a comma character inserted for
every group of three digits to the left of the decimal point. Default value is left for strings
and right for numbers.

comma
adlows for redefinition of the comma character. The default value is the comma character

).

currency
allows for redefinition of the currency character. The default valueis $.

decimal

allows for redefinition of the decimal point character. Thisis useful to change monetary
values in which a comma should separate values instead of a decimal point. The default
value isthe period character (*.").

encode

specifies that the value of the variable is to be explicitly encoded in the same fashion as the
browser automatically encodes its command string when sending it to the server. Browsers
encode the command string by:

1) replacing al spaceswith plus (+) signs
2) encoding most non-alphanumeric characters as a sequence of three characters: a

percent (%) sign followed by two hexadecimal digits representing the original ASCII
character's numerical equivalent.

WebBase User’s Guide 155

Chapter 9: Variables

The browser provides any necessary encoding for the command line arguments generated
by the <FORM> </FORM> construct. WebBase will handle any necessary encoding on
arguments passed via the redirect2 macro. However, it is the responsibility of the form
designer to properly set up any arguments and values used on anchors and their associated
HREFs. The general rule-of-thumb is that any WebBase variable containing text and
used as an argument on an anchor must include the encode=true parameter. For example,

 </ A>

HTTP command line processing stops at the first space character. If the encode=true
parameter is not used on a variable containing a string, some of the string value may be
lost. Any variables and values following the space will also not be set up as variables.

nonempty

When nonempty=true is specified, a‘ ’ Non Breaking Space sequence will be
returned in place of anil or empty string value. Thisis helpful when formatting table
fields as most browsers do not display a border for afield that has no value to display.
The sequence constitutes a displayable value and thus the border is properly

displayed.

padchr
a single character to be used as a padding character when aligning valuesin afield where
the specified size is greater than the size of the value. The default value is a space.

prefix
a series of characters that will be prepended to the value of the variable, preceded by one
or more pad characters if the field requires padding.

size

specifies the field width as an integer. Results larger than the specified size will be
truncated on the right while results shorter than the size will be aigned as specified by the
align parameter, and padded with the indicated padchr as necessary to fill out the field.

sql

indicates that the variable will be used in a statement within an sql macro and must be
checked for the inclusion of an apostrophe character. SQL statements must have strings
enclosed within apostrophes -- thus any strings that contain apostrophes must have these
enclosed apostrophes represented by two consecutive apostrophe characters. To
accomplish this within a variable's value without requiring the user to enter two
apostrophes for each one desired, one must specify the parameter asin:

{Var Nane sql =true}

As ageneral rule-of-thumb, forms designers should always include the sql=true parameter
on any WebBase variable containing a text string that is used in a statement within the sql
macro. Although one might not expect a variable to contain an apostrophe, users will
sometimes do the unexpected and enter an apostrophe. A little extra effort during form
design will generate forms that are much more robust and less likely to have runtime
errors.

suffix
a series of characters that will be appended to the variable's value, followed by one or
more pad characters if the field requires padding.

156

WebBase User’s Guide

WebBase User’s Guide 157

Chapter 10: User Variables

WEB

oo

%2 i
y& User Variables

ExparTeiligance

Chapter 10

The previous chapter described the general principles behind variables and how field variables,
local variables, global variables, and dynamic variables are used within WebBase forms. This
chapter describes an additional type of variable, called a user variable, and its intended use
within WebBase.

Local variables provide the .htf form author with the ability to obtain information from the
user, change information, and return information to the user. Local variables can be read and
written by the form designer, but their lifetime is the duration of processing of one form.

Globa and dynamic variables have a much longer life span: they exist aslong as \WebBase is
up and running. They can be overridden by alocal variable, but again this change is only for
the duration of asingle form.

The type of variable that is missing is one that can be both read and written by the forms
designer and whose lifetime can span the processing of a series of .htf forms:
variables that could be set by one form and read by a subsequent form,

variables that could maintain ‘state’ information for a user who is browsing a number of
related and/or digoint forms,

variables whose ‘ state’ information could influence the content of the ‘next’ form a user
would visit.

10.1 User Variables

User variables are smply variables that can be both read and written by an .htf form. They
are created using the setUser macro. When alocal variable is created using the set or setLocal
macro, the local variable and its value are stored into a dictionary that is maintained as part of
the form being processed. As soon as the command is completed, the local dictionary ceasesto
exist. When auser variableis created, the user variable and its value are stored in a user
variable dictionary that is maintained as part of the WebBase server — not part of the form
being processed. The datain the user variable dictionary is available to other forms being
processed, thus alowing state information to be maintained through multiple pages within a
session.

158

WebBase User’s Guide

10.2 User Variable Dictionaries

The WebBase server maintains alist of al the user variable dictionaries that have been
created. Thislist and the dictionaries reside in memory and are accessible by any number of
requests sent to WebBase. The implementation and use of user variables and user variable
dictionariesis up to each form designer.

WebBase supports multiple user dictionaries. For example, the user variable { UserVar} might
have the value ‘Denny’ in one user dictionary while it has the value ' Denny Smith’ in another
user dictionary. The variable %userName% identifies which user variable dictionary is
currently in use. It ispossible to use several user variable dictionaries— all within asingle
form!

The default value for this variable is the value of the local variable WebBaselD. As described
previoudy, the WebBasel D variable is created for each request received from a browser that
does not include WebBasel D as a cookie variable. On the first interaction between a browser
and the WebBase server, WebBase will generate this variable and return it as a cookie. If the
browser supports cookies, the variable will be returned on any subsequent requests from the
browser until the browser is shut down.

It isimportant to note that user variable dictionary names should be unique for each user
accessing the dictionary. Theinformation stored in user variablesis generally information that
has been entered by a specific user, and should be considered sensitive. Under no circumstance
should it be made available to other users accessing the same form. If a user dictionary name
is created which is not unique to each user, information may be improperly displayed to other
users.

For example, let’s create a user variable dictionary whose nameis set to ‘theUserDict’. The
first form requests a user to enter their name, address and social security number. If there are
user variables for the name, address and socia security number, they are displayed. If there
are no user variables yet defined, the fields are blank. The first user accesses the form, sees al
blank fields, and enters their name, address, and social security number. Thisinformation is
stored as user variables in the user variable dictionary whose nameis ‘theUserDict’. The
second user accesses the form. However, this second user sees aform on which is displayed
the first user’ s name, address and social security number. Thisis definitely not desirable!

The WebBasel D and %onextCookiel d% variables have been set up specifically for use with
user variables — to ensure that a unique value can be used as the name of the user variable
dictionary.

Special User Variables

The user variable dictionary is not actually created when the name of the dictionary is specified
in %userName%. The user dictionary is created when the setUser macro is processed and the
appropriate user dictionary is not found in WebBase memory.

When anew user variable dictionary is created, a number of special user variables are
automatically written into the dictionary as follows:

%%created%%
contains a timestamp of when the dictionary was created

WebBase User’s Guide 159

Chapter 10: User Variables

%%accessed%%
contains a timestamp of the most recent read or write access to the dictionary

%%expires%%

the number of minutes that the dictionary should be maintained in memory since last
accessed (Y0%accessed%% value). This variable isinitialized with the contents of the
dynamic variable %userExpires%, the default value of which is 60 minutes. Setting this
value to O will cause the dictionary and its contents to immediately be removed. A form or
set of forms can specify how long a user dictionary should be allowed to exist following
the last access by setting this variable to an appropriate value. For example,

{set User 9%expires¥no 15}

will cause the dictionary to be removed if it has not been accessed in 15 minutes. Each
time %%expires¥%% is sat, it updates the %%accessed%% variable a so.

All of the above special variables can be read from the user variable dictionary, but only the
%%expires%% variable can be written using the setUser macro. There is one other specia
user variable that is not written into the user dictionary as aresult of its appearance in a
setUser macro but that will have side effects on the maintenance of the dictionary.

{setUser %% remove%% dictionaryName}

tells WebBase to remove the dictionary named dictionaryName (specified by a string
constant such as ‘myDictionary’ or asthe value of a variable such as %userName%). This
is equivaent to setting this dictionary’ s %%expires¥% variable to 0 except that it
operates on a specifically named dictionary rather than on the current dictionary referenced
by %userName%. If the dictionary name is specified as the string constant ‘ %%all %%’
WebBase will remove all user dictionaries from memory.

User Variable Dictionary Maintenance

WebBase periodically performs maintenance on user variable dictionaries to ensure memory is
managed in areasonable fashion. It will check the %%accessed%% and %%expires%%
values of al dictionaries once per minute and remove those that have expired.

In addition, a WebBase administrator can limit the number of user dictionaries that can exist
a asingle time. The variable %userLimit% can be overridden to indicate the total number of
dictionaries that can be created. WebBase will remove the least recently accessed dictionaries
that exceed this limit regardliess of their expiration status. By default, there is no limit on the
number of user dictionaries.

From the host server, the administrator has one Options menu items to interact with the user
dictionaries within WebBase. The Remove All User Variables menu item causes WebBase
to remove all user dictionaries regardless of their expiration status. This last option should be
used with great care. If there are users interacting with formsin which user variables are used,
the users may get unexpected results or errors if al the user variable dictionaries are removed.

10.3 Using User Variables in WebBase

Theinitial concept of cookie support on browsers was to alow state to be maintained in a
session between a browser and a server. Not all browsers support cookies, and some users
disable cookie support on their browsers due to security considerations. Another aternative

160 WebBase User’s Guide

needed to be found to allow state between forms. WebBase provides user variablesto
maintain state information without the necessity of cookies!

User Variable Design

If the form designer is setting up user variables, the default value of WebBasel D for
%userName% can certainly be used. However, this requires all accessing browsersto be
cookie enabled. 1n some Intranet configurations, this may be acceptable. However, as noted
above, not all browsers support cookies and some may not have cookie support enabled. If the
forms designer relies on the default value of WebBasel D for the value of %userName% and
the browser does not return cookies to the server, a new WebBasel D will be created for each
request received from the browser. All user variables created on the first form will be stored in
auser variable dictionary associated with the first WebBaselD. Any user variables needed or
created on the second form will be stored in a user variable dictionary associated with the
second WebBaselD. Form #2 will not have access to any of the user variables from form #1,
because it does not have the same WebBasel D as used on form #1.

Thereis an easy solution to this problem. The form designer can create atoken asalocal
variable using the value of WebBaselD or %nextCookield%. For example,

{set nyToken WebBasel D * App-* ,}

will generate aloca variable called myToken whose vaue will be something like App-
W14263151E161808318465B. The forms designer can then set this local variable to be the
name of the user variable dictionary using:

{set %user Name% nyToken}.

Any user variables created via the setUser macro within this form will automatically go into
this user variable dictionary. Thislocal variable is aso passed to any other forms that will be
displayed, either viaa FORM statement, anchor or redirect2macro (the redirect2 macro
supports passing arguments; the redirect does not). Those subsequent forms would set this
local input variable to be the name of the user variable dictionary. These forms would then
have access to the user variables created in the first form. They would also be able to modify
or create new user variables. Because there is only one dictionary of user variables, any form
that receives the local variable myToken and setsit to be the user variable dictionary name can
access any of the user variables in the dictionary.

User Variable Example

The WebBase WebWizard Basic Example #7 shows how user variables can be used to pass
information between two forms. The first form requests the user to enter several pieces of
information, some of which are required or have specific requirements as to the contents. The
second form verifies that al input requirements have been met. If any requirements are
lacking, the information entered by the user is passed back to the first form and redisplayed
with arequest to correct it.

One of the big advantages of using user variablesis that the amount of information to be
passed between forms can be substantialy reduced. In Example #7, a number of command
line arguments are passed from the first form to the second to indicate the values the user
entered into the input fields. After the error checking has been completed, it may be necessary
for the user to correct some of the entered information.

WebBase User’s Guide 161

Chapter 10: User Variables

If user variables were not used, the FORM, redirect or anchors used on the second page to
return back to the first page would have to include al of the input arguments and their values.
Thisisalot of information to be set up properly by the form designer. In addition, al the
information must be sent as part of the browser request that can generate a large request.

Instead, user variables are used. Thefirst forms create a {token} local variable using
WebBaselD. It passes this as a hidden variable to the second form, along with all the other
variables generated from the input statements. On the second form, the {token} local variable
isreceived and set up as the name of the user variable dictionary. All the other input local
variables, such as name and address, are stored as user variables. The error checking is
performed, and the error information is stored as a user variable. Finally, the anchors and
FORM statements are set up to return {token} to the first form. No other local variables need
to be passed back to the first form!

Thefirst form is redisplayed with the error information at the top, and the values — as entered
by the user the first time — redisplayed in the input fields. All of thisis possible using alocal
variable {token} and storing information in the user variable dictionary. Plus, thereisno
dependence on whether a browser supports cookies or not. The form designer uses the initia
value of WebBasel D — or any other unique value —to create atoken. The form designer then
passes that token to any other forms to be accessed.

Creating User Variables

User variables are created via the setUser macro. The setUser macro operates exactly as does
the set macro except that it will store its name-value pair in the appropriate user variable
dictionary as described above.

The following expression will create a user variable called xx whose vaue will be the string
‘test’:
{setUser xx ‘test’}

Using the variable { xx} in a subsequent form using the same user variable dictionary will
return the value ‘test’.

User variables are accessed as are any other WebBase variables by merely specifying their
name within curly braces, e.g. {UserVar}, and the value of the variable will be substituted in
the form at that point. Since user variables are stored in a user dictionary, the containing . htf
form must specify the name of the user dictionary currently in effect before the variableis
referenced.

The search order for WebBase variablesis
Field variables

Loca variables

User variables

Global variables

Dynamic variables

grLODE

Notice that local variables can be used to mask user variables, user variables can be used to
mask global variables, and global variablesin turn can be used to mask dynamic variables.

162

WebBase User’s Guide

Persistent User Variables

User variable dictionaries provide state across multiple forms. In general, however, they will
eventually expire and be removed from memory in typical WebBase ingtallations. If the form
designer wishes to make the contents of a user dictionary persistent, the variablesin the
dictionary can be written to a database using the sql macro. In like fashion, a user dictionary
can be created and populated with the results of reading a database via .htf SQL.

For example, imagine an application that requests information from the user such as their
name, address and e-mail address. Once thisinformation is entered, it is stored in user
variables. A unique token is created as the name of the user variable dictionary; thistoken is
sent to the browser as a cookie. An expiration date is also specified for the cookie so that it
will not expire and be removed from the browser for 1 year. If the browser does not support
cookies, thisinformation isjust discarded. If the browser does support cookies, this
information will be stored on disk and loaded into memory each time the browser starts up.

In addition to storing the information as user variables, it is aso written into a database table
that contains fields for name, address, e-mail, tokenlD and browserAddress. ThetokenID is
the unique token returned to the browser as a cookie and used as the user variable dictionary
name. The browserAddressis set to %browserAddress%, the | P address of the client browser.

Severa days later, the user again visits the same site. Instead of again having to fill in his
name, address and e-mail address, heis greeted by name! There are two reasons thisis
possible.

First, if the user’s browser supports cookies, theinitial cookie which was sent from WebBase
to his browser was stored by the browser and was returned to the WebBase server as part of
therequest. A simple SQL SELECT statement was used to query the database to seeif there
were any records for thisunique ID. If amatch isfound, then the information in the database
is loaded into a user variable dictionary with the specified unique name.

If no matches are found, it may be because the user has never visited the site or because his
browser does not support cookies. In this case, another SQL SELECT query is made to see if
amatch can be found based on the incoming %browserAddress%. If a match isfound, then
again the user variable dictionary is set up and populated with the information from the
database. If no match isfound, then the blank form is displayed and the user hasto re-enter
hisinformation. This situation may occur if the user is on another system, is behind a firewall,
or is going through a provider that generates different |P addresses for each session.

Once the user enters the information again, yet another SQL SELECT query can be done.
Thistime, the query checksto see if a match exists between the e-mail address entered by the
user and entriesin the database. E-mail addresses are aso quite unique and can be used to
help identify auser. If amatch isfound in this fashion, then once again the user variable
dictionary is created, populated, and the user can resume his interactions with the forms.

A judicial use of user variable dictionaries and SQL maintenance of these dictionariesin a
database provides a very wide range of capabilities with respect to developing Web pages that
are highly interactive and carefully tailored to a given user's needs.

WebBase User’s Guide 163

WEB
5% Expressions

€ —ExperTalligance
Chapter 11

Expressions are used in macros for math tests, string manipulation and more. WebBase
expressions arein a ‘FORTH-Like’ or Reverse Polish Notation (RPN) format. This chapter
provides a description of RPN and how it isused in expressions. The remaining sections cover
all the different types of WebBase data types, the operations that can be performed on them
within WebBase expressions and examples of their use.

11.1 WebBase Expression Components

Each WebBase operation is performed on a receiver. For example, to determine how many
characters are in a string, the operation would be size and the receiver would be ‘myString’.
Some operations require arguments. For each ;" (colon) in the operation, an argument must be
provided". For example, to determineif a date is between two other dates, the operation
would be between:and:, the receiver would be datel, and the arguments would be date2 and
date3. In RPN notation, the receiver always immediately precedes the operation. Any
arguments will precede the receiver; the arguments are in order left to right within the RPN
Statement.

Each operation returns some type of result. In some cases, a new instance is returned. For
example, the result of adding 3and 5is8. Thereceiver is 3, the operationis‘+, the argument
is5and theresult is8. Asanother example, when ‘abc’ and ‘xyz' are concatenated together, a
new string -- ‘abexyz’ -- is returned.

In other operations, the receiver isreturned. The receiver may or may not have been modified,
depending on the purpose of the operation. For example, {f=2 3*'BC’ *abcdef’
replaceFrom:to:with:} returnsthe origina string but it has now been modified to be ‘aBCdef’ .

In some other operations, a copy of the receiver is returned and the original receiver is left
unmodified. For example, {f=2 3 ‘BC’ ‘abcdef’ copyReplaceFrom:to:with:} returns a new
string -- ‘aBCdef’; the receiver is unmodified -- it is still ‘abcdef’ .

Y There are anumber of operations that do not includea*:’ (colon) but do require an operator including +, -, =, <, >. Theinformation included with
each operation description identifies argument requirements.

164 WebBase User’s Guide

The descriptions and examples provided below for the operations supported for each WebBase
data type clearly identify the type of data returned. It isimportant to understand what is
returned because unexpected errors can result.

Sound confusing? It can be. The following section presents several examples of how to
develop expressions using RPN.

11.2 RPN Notation

A WebBase expression is written using the RPN format which is easy for the computer to
understand but is difficult to read and frequently difficult to write. For example, to seeif the
contents of the variable counter is equal to the constant 3, one would write

{f= counter 3 =}

To determine if the number of results returned in the variable results from a database query is
greater than zero, one would write

{f=0 results size >}

There are three types of components within an expression: constants (e.g., integers, characters,
strings), variables and operators. WebBase works from left to right in evaluating the
information in the expression. If aconstant is encountered, it is put directly onto the stack. If
avariableisfound, the value of the variable is put onto the stack. If an operator isfound, the
receiver of the operator isretrieved from the stack -- it will be the last item placed on the stack.
If the operation has arguments, the necessary arguments will be retrieved from the stack. The
result of the operation will be computed and placed onto the stack.

We will go through two examples of expressionsin RPN notation to see how each of these
types of componentsis handled.

Thefirst example we will examineis:
{f= Shipping Total TaxRate * +}

When the expression is parsed from left to right and evaluated, the following actions occur.
The information on the stack at each step is displayed in the right column.

WebBase User’s Guide 165

Chapter 11: Expressions

Example 11.1 Simple RPN Example
Action Computations Stack

The first component encountered is Shipping which isa ",
variable, so itsvalueis placed onto the stack.
Next is Total which is another variable; its value is also j Total t
placed onto the stack. { Shipping}
Next is TaxRate, another variable whose value is placed j TaxRatet
onto the stack. The stack now contains three values. {Total}

{ Shipping}
The next component isthe ‘*’ operator. The top value on TaxRate Total
the stack is removed; thisisthe receiver for the ‘*’ I { } I S{h —}—
operation. { Shipping}
This operation reguires one argument, so the next value | { TaxRate} | Shippin
from the stack is removed. *
The operation is performed on the receiver and argument, (TR*T}
the result is placed back onto the stack. There are now two T Shippingl
values on the stack -- the original value of Shipping and RPN
the product of Total and TaxRate.
The last component in the expression isthe ‘+' operator. | {TR*T} | Shippin
The top value on the stack is popped off; thisisthe
receiver of the‘+' operator.
The next value on the stack (and the only remaining value)
is popped off. +

| {Shipping} |

The operation is performed; the result of summing the
receiver and the argument is returned as the value of the
expression.

The next example includes a operation with multiple arguments. It will determine whether 15
is between 10 and 20. Although this example does not include as many stack operations as the
previous example, it shows how multiple arguments are placed within the WebBase expression
and onto the stack.

{f= 10 20 15 between: and:}

166 WebBase User’s Guide

Example 11.2 Detailed RPN Example

Action Computations Stack
The first component encountered is 10 which is a constant,
so it is placed directly onto the stack.
Next is 20 which is another constant; itsis also placed 20
directly onto the stack. 10
Next is 15, another constant that is placed onto the stack. 15
The stack now contains three values. 20
10
The next component isthe ‘between:and:’ operator. The | 15 | >0
top value on the stack is removed; thisis the receiver for 10
the operation.

This operation requires two arguments, so the two previous
values on the stack areremoved. Note that the arguments between:
are on the stack in the reverse of how they are used in the
operation: the second argument is highest in the stack and
removed first; the first argument is lower in the stack and -
removed second.

The operation is performed; and the result (in this case,
true) is returned as the value of the expression.

Building Compound Statements in RPN

After reviewing the examples of RPN usage shown above, RPN can till be difficult to use
especialy when attempting to build compound statements. When attempting to build a
compound ‘if’ statement in RPN, we recommend:

WebBase User’s Guide 167

Chapter 11: Expressions

1. Setthevalues of each of the individual components of the compound ‘if’ as aunique
WebBase variable using the set statement.

2. Combine the results using the required and/or logical. Again do it one at atime setting the
result to another local WebBase variable.

3. Test the resultant variable within the compound if.

4. Once you get the above working, cut the expression from one set statement and paste it
into the following statement where that variable name was used. Continue back up the
sequence of set statements, etc. until you've eliminated the need for the local variables.

For example, how would a user go about building a statement to do something IF varlis
greater than 5 and the string strl contains the substring 'abc’ or variable var2 is greater than 10
but lessthan 20. Here's how the RPN would be devel oped.

Example 11.3 Developing RPN Statements

{! condl is set true if varl > 5, otherwise it is set false !}
{set condl 5 varl >}

{set cond2 'abc' strl containsString:}

{set cond3 10 var2 >}

{set cond4 20 var2 <}

{! the and-ing of var2 > 10 AND var2 < 20 !}
{set cond5 cond3 cond4 &}

{set cond6 condl cond2 &}

{! the solid vertical bar is the OR operator !}
{set cond7 cond5 cond6 |}

Now you can write...
{if cond7}

Example 11.4 Developing RPN Statements -- Continued

{if cond5 cond6 |} ... replacing cond7 by its expression
{if cond3 cond4 & cond6 |} ... replacing cond5 by its expression
{if cond3 cond4 & condl cond2 & |} ... and so forth..

{if 10 var2 > cond4 & condl cond2 & |} ...

{if 10 var2 > 20 var2 < & condl cond2 & |} ...

{if 10 var2 > 20 var2 < & condl 'abc' strl containsString: & |}
{if 10 var2 > 20 var2 < & 5 varl > 'abc' strl1 containsString: & |}

Just go through the process one step at atime! The sequence of set’s and the {if cond7} will
work just fine. They do add alittle bit of overhead in the creation of the temp variables but
they make it that much easier to understand.

168

WebBase User’s Guide

11.2 General Operations

The remainder of this chapter covers the different types of operations that can be performed on
WebBase datatypes. The user is encouraged to read through the different operations
available to become familiar with the various data types as well as the types of operations that
can be performed upon and with them. For each data type, there are operations that can be
performed upon an instance of the data type. There may aso be operations that can be
performed upon the classitself.

There are several WebBase expression operators that are represented by special characters:

&
|

concat enati on
| ogi cal AND
| ogi cal OR

General Instance Operations

The operations described in this section may be used with an instance of any type of WebBase
data (e.g., numbers, strings, collections).

asString
returns a string representing the information stored in the receiver. Each WebBase data
can represent itself differently as a string.

copy
returns a copy of the receiver which can subsequently be modified without affecting the
receiver.

hasMessage

returns false unless the receiver is an ODBCRowObject which has an associated message
or if the receiver is a collection and one of the members of the collection is an
ODBCRowObject which has an associated message.

iSArray
returns true if the argument is an array, otherwise false

iSAssociation
returns true if the argument is an association, otherwise false

isBoolean
returns true if the argument is a Boolean (e.g., true or false), otherwise false

isCharacter
returns true if the argument is a character, otherwise false

isCollection
returns true if the receiver is a collection; otherwise false. Note that strings, dictionaries
and lists are types of collections.

isDictionary
returns true if the receiver is a dictionary; otherwise false.

WebBase User’s Guide 169

Chapter 11: Expressions

isDirectory
returns true if the receiver is a directory; otherwise false.

isFloat
returns true if the receiver is afloating point number; otherwise false

iIsFraction
returns true if the receiver is afractional number (represented as n/m); otherwise false

isInteger
returnstrue if the receiver is an integer; otherwise false

isList
returnstrueif therecaeiver isalist; otherwise false

isNil
returns true if the receiver is non-existent; use this to test for a non-existent variable or
fidd

isNull
returns true if the receiver is non-existent or if it isacollection (e.g., string, list or
dictionary) and does not have any contents

isNumber
returns true if the receiver is a number (e.g., integer, fraction, float); otherwise false

isPoint
returns true if the receiver is a point; otherwise false.

isSortedList
returns true if the receiver is a sorted list; otherwise false

isStream
returns true if the recaeiver is a stream; otherwise false

isString
returns true if the receiver is a string; otherwise false

isSymbol
returnstrue if the receiver isa symbol; otherwise false

notNil
returns true is the receiver exists; equivalent to isNil not

notNull
returns true is the receiver exists; equivalent to isNull not

printOn:
return the receiver, which is not modified. Adds the appropriate representation of the
receiver to the argument, which must be a stream.

170 WebBase User’s Guide

11.3 Numbers

There are three different kinds of numbers supported within WebBase: integers (e.g., 12345),
floats (e.g., 123.45) and fractions (1/2).

Number Instance Operations

This section covers all the operations that can be performed on any type of number.

Operations specific to integers or floats or fractions are described in subsequent sections. In
genera, numbers are always instances. There are no class operations that can be performed on
numbers.

-eg.,{f=36-}® 3
returns the difference of the receiver and an argument

eg{f=33® 9
returns the product of the receiver and an argument

/ eg.,{f=310.0/} ® 3.33333333
returns a number generated by dividing the receiver by the argument. If both numbers are
integers, returns either an integer or afraction. If either number is afloat, returns a float.

/l eg.,{f=3100/}® 3
returns an integer generated by dividing the two arguments; the result is truncated

\ eg,{f=3100\}® 1
returns the integer remainder after dividing the receiver by the argument; the result is
truncated

+ eg.,{f=33+}® 6
returns the sum of the receiver and an argument

< eg., {set Price 29.95} {f= 100 Price <} ® true
returns true if the receiver isless than the argument, otherwise false

<= e.g., {set Price 29.95} {f= 100 Price <=} ® true
returns true if the receiver isless than or equal to the argument, otherwise false

= eg., {set Price 29.95} {f= 100 Price =} ® false)
returnstrue if the receiver is equal to the argument, otherwise false

> eg., {set Price 29.95} {f= 100 Price >} ® false
returns true if the receiver is greater than the argument, otherwise false

>= e.g., {set Price 29.95} {f= 100 Price <} ® false
returns true if the receiver is greater than or equa to the argument, otherwise false

abs eg., {f=-10abs} ® 10
returns the absolute value of the receiver

alignDollar: eg., {f=7 123.45 alignDollar: } ® ‘$123.45’

returns a string representing the receiver as a dollar anount. The argument defines the
number of characters to be contained in the resulting string; spaces are added on the left
for padding if necessary. If the total number of digits plus the $ sign are more than the

WebBase User’s Guide 171

Chapter 11: Expressions

specified field width argument, the returned string will be longer than the specified value;
truncation is not performed.

arcCos eg., {f=0arcCos} ® 1.57079633
returns the arc-cosine, an angle in radians, of the receiver

arcSin e.g., {f= 0.5 arcSin} ® 0.52359878
returns the arc-sin, an angle in radians, of the receiver

arcTan eg., {f=1/4 arcTan} ® 0.24497866
returns the arc-tangent, an angle in radians, of the receiver

asBoolean: eg., {f=00.0 asBoolean: } ® false

{f=01/2 asBoolean: } ® true

returns true if the receiver is zero, otherwise false. The argument is required but ignored
internally so any value can be used.

aslnteger e.g., {f=13.6 asinteger} ® 14
returns an integer representing the receiver as an integer; equivalent to rounded

asNumber eg., {f=-13.6 asNumber} ® -13.6
returns the receiver

between:and: eg., {f=5 25 20 between:and: } ® true
returnstrue if the value of the receiver is between the first and second arguments,
otherwise fase

ceiling eqg., {f= 12.7 ceiling} ® 13
{f=12.3 ceiling} ® 13
returns an integer that is rounded up to the next highest integer from the receiver

containsinteger e.g., {f=-13 containsinteger} ® true

{f= 13.7 containsinteger} ® false

returns true if the receiver is an integer or a string representation of an integer, otherwise
false

containsNumber e.g., {f=-13.7 containsNumber} ® true
returns true if the receiver is a number or a string representation of a number, otherwise
false

cos eg., {f=1cos} ® 0.54030231
returns the cosine, an angle in radians, of the receiver

degreesToRadians eg., {f= 360 degreesToRadians} ® 6.28318531
returns a number representing the receiver converted from degrees to radians

denominator e.g., {f= 17.3 denominator} ® 1

{f=3/10 denominator} ® 10

returns the denominator of the receiver. For most numbers, thisis 1. For fractions, it will
be the denominator within the fraction

even eg., {f=11even} ® false
returns true if the receiver is an even number, otherwise false

172

WebBase User’s Guide

exp eg., {f=5exp} ® 148.413159
returns afloat that is the exponential of the receiver

floor eg., {f=12.7 floor} ® 12
{f=12.3floor} ® 12
returns an integer that is rounded down to the preceding integer from the input

format: e.g., {set phoneNumber 1234567890} {f= '(000) 000-0000' phoneNumber
format:} ® (123) 456-7890

returns a string in which any digits in the control string argument have been replaced with
the next corresponding character from the receiver - al other charactersin the control
string print as entered. Processing stops when the end of the receiver or control string is
reached. There must be a good match between the receiver and control stream. Inthe
example shown above, if the variable phoneNumber did not have an area code, the string
returned would be (456) 789-0, which is probably not what was intended.

integerCos e.g., {f= 0.3 integerCos} ® 100
returns the integer cosine of the receiver angle, measured in degrees, scaled by 100

integerSin eg., {f= 3.6 integerSin} ® 7
returns the integer sine of the receiver angle, measured in degrees, scaled by 100

In eg, {f=17In} ® 2.83321334
returns the natural log of the receiver

log: eg., {f=217 log:} ® 4.08746284
returns the log of the argument in the base specified by the receiver

max: e.g., {f=22 25 max:} ® 25
returns the maximum of the receiver or the argument

min: e.g., {f=22 25 min:} ® 22
returns the minimum of the receiver or the argument

negated eg., {f= 12.7 negated} ® -12.7
returns the negative vaue of the receiver

negative e.g., {f= 11 negative} ® false
returnstrue if the receiver is a negative number, otherwise false

numerator e.g., {f= 17.3 numerator} ® 17.3

{f=3/10 numerator} ® 3

returns the numerator of the receiver. For most numbers, this is the value of the receiver.
For fractions, it will be the numerator within the fraction.

odd eg., {f=11 odd} ® true
returns true if the receiver is an odd number, otherwise false

positive e.g., {f= 11 positive} ® true
returns true if the receiver is a positive number, otherwise false

printDollars e.g., {f= 29.95 printDollars} ® ‘$29.95
returns a string representing the receiver as adollar value. If the receiver contains more
than 2 decimal places, it is rounded.

WebBase User’s Guide 173

Chapter 11: Expressions

printFraction: e.g., {f= 3 0.52399327 printFraction:} ® '0.524'
returns a string representing the receiver in which it has been truncated and rounded to the
number of decimal places specified by the argument

printFraction:decimalSeparator: eg. {f=3 ‘,” 0.52399327
printFraction:decimalSeparator:} ® '0,524"'

returns a string representing the receiver in which it has been truncated and rounded to the
number of decimal places specified by the first argument and the second argument (a
string) is used as the decimal separator.

printRounded: eg., {f=30.52399327 printRounded:} ® '0.524'
returns a string representing the receiver in which it has been rounded to the number of
decimal places specified by the first argument.

printWholeDollars e.g., {f=29.95 printWholeDollars} ® ‘$30’
returns a string representing the receiver asa dollar value. If necessary, the receiver is
rounded.

quo: eg., {f=3.217.6 quo:} ® 5
returns the integer quotient generated by dividing the receiver by the argument; the result is
truncated toward zero.

radiansToDegrees e.g., {f= 3.14159265 radiansToDegrees} ® 180.0
return a number representing the receiver converted from radians to degrees

raisedTo: eg., {f= 3 5 raisedTo:} ® 125.0
returns a float representing the receiver raised to the power specified by the argument

raisedTolnteger: e.g., {f= 3 5 raisedTolnteger:} ® 125
returns a number representing the receiver raised to the power specified by the argument.
This differs from raisedTo: in that the argument must be an integer.

reciprocal e.g., {f= 4.0 reciprocal} ® 0.25
returns a number representing 1 divided by the receiver

rem: eg., {f=617rem:}® 5
returns the integer remainder generated by dividing the receiver by the argument

rounded eg., {f=12.7 rounded} ® 13
{f=12.3 rounded} ® 12
returns the nearest integer to the receiver

roundTo: e.g., {f=517 roundTo:} ® 15
returns a number representing the receiver rounded to the nearest multiple of the argument

sign eg., {f=12sign} ® 1
{f=-12sign} ® -1
returns 1, -1 or O identifying whether the receiver is positive, negative or zero, respectively

sin eg., {f=1sin} ® 0.84147098
returns the sine, an angle in radians, of the receiver

sqrt eg., {f=25sqrt} ® 5.0
returns a number representing the square root of the receiver

174

WebBase User’s Guide

squared e.g., {f=5 squared} ® 25
returns a number representing the square of the receiver

strictlyPositive e.g.,{f= 3 strictlyPositive} ® true
{f= 0 strictlyPositive} ® false
returns true if the receiver is greater than zero, otherwise false

tan eg., {f=30tan} ® -6.4053312
returns the tangent, an angle in radians, of the receiver

timesTwoPower: eg., {f= 35 timesTwoPower:} ® 40.0
returns the result of multiplying the receiver by 2 to the exponent identified by the
argument

truncated eg., {f= 12.7 truncated} ® 12
{f=12.3 truncated} ® 12
returns the integer portion of the receiver; any fraction is dropped.

truncateTo: e.g., {f= 6 17 truncateTo:} ® 12
returns an integer that is the receiver truncated to the nearest multiple of the argument

11.4 Integers

This section describes al the operations that can be performed on integers. Integers can also
perform any of the operations described in the General Number Operations section above.

Integer Instance Operations

Integers are always instances of the class Integer, which is accessed viathe variable
%lnteger%. The Integer class operations that can be done are described in the following
section.

and: eg., {f=1223and:} ® 4
returns an integer representing the receiver bits ANDed with the argument.

asBoolean eg., {f= 0 asBoolean} ® false
{f= 3 asBoolean} ® true
returns true if the receiver is non-zero.

asCharacter e.g., {f= 123 asCharacter} ® ${
returns the character whose ASCII value matches the value of the receiver.

asFloat eg., {f= 13 asFloat} ® 13.0
returns a float representing the receiver as a floating point value.

asUnsigned e.g., {f=-12345 asUnsigned} ® 4294954951
{f= 12345 asUnsigned} ® 12345
returns a number representing the receiver as a 32-bit unsigned number.

authEncode e.g., {f= 123 authEncode} ® $w
returns a character representing the receiver that has been encoded for use in the Basic
Authorization capabilities within WebBase.

WebBase User’s Guide 175

Chapter 11: Expressions

bitinvert e.g., {f= 123 bitinvert} ® -124
returns an integer whose bit values are the inverse of the bit values of the receiver.

bitShift: e.g., {f= 2 12345 bitShift:} ® 49380

{f=-2 12345 bitShift:} ® 3086

returns an integer which is the receiver shifted left the number of bit positions specified by
the argument if the argument is positive, or shifted right the number of bit positions
specified by the argument negated if the argument is negative.

factorial eg., {f= 8 factorial} ® 40320
returns the factorial of the receiver.

ged: eg., {f=180255¢gcd:} ® 15
returns the greatest common divisor between the receiver and the argument.

intSgrt eg., {f= 144 intSqrt} ® 12
returns the integer square root of the receiver.

Icm: eg., {f= 180 255 Icm:} ® 3060
returns the least common multiple between the receiver and the argument.

printOn:base: e.g., {set strm %String% new %WriteStream% on:} {f== strm 3 25
printOn:base:} {f= strm contents} ® 3r221

appends the ASCII representation of the receiver with radix specified by the second
argument to the stream specified in the first argument.

printOn:base:showRadix: e.g., {set strm %String% new %WriteStream% on:} {f==
strm 3 false 25 printOn:base:showRadix:} {f= strm contents} ® 221

appends the ASCII representation of the receiver with radix specified by the second
argument to the stream specified in the first argument.

printPaddedTo: eg., {f=5 123 printPaddedTo:} ® ' 123’
returns a string representing the receiver padded on the left with blanks to be at least the
number of characters as specified in the argument.

printPaddedWith:to:base: e.g., {f= $% 6 9 123 printPaddedWith:to:base:} ®
'%%%146'

returns a string representing the receiver padded on the left with the character specified by
the first argument to be at least the number of characters as specified in the second
argument. The third argument specifies the base of the result.

printStringRadix: e.g., {f= 3 529 printStringRadix:} ® '3r201121'
returns a string containing a text description of the receiver with the radix specified by the
argument.

radix: eg., {f=3529 radix:} ® '3r201121'
returns a string representing the receiver with radix specified by the argument.

radix:showRadix: e.g., {f= 3 true 529 radix:showRadix:} ® '3r201121"

{f= 3 false 529 radix:showRadix:} ® '201121"

returns a string representing the receiver with radix specified by the argument. If the
second argument is true, include the radix prefix.

176

WebBase User’s Guide

Integer Class Operations

The Integer classis accessed using the variable %l nteger%. The following operations can be
performed on this class.

readFrom: eg., {f= ‘123" asStream %Integer% readFrom:} ® 123
reads an integer from the stream (argument) and returns the integer. Note that the
argument must be a stream, and not a string.

11.5 Floats

This section describes al the operations that can be performed on floating point numbers.
Floats can a so perform any of the operations described in the General Number Operations
section above.

Float Instance Operations

Floating point numbers are always instances of the class Float, which is accessed viathe
variable %Foat%. The Float class operations that can be done are described in the following
section.

asFloat eg., {f=13.5 asFloat} ® 13.5
returns the receiver.

exponent eg., {f=423.543 exponent} ® 8.0
returns a float whose value is the exponent part of the floating point representation of the
receiver.

printOn:decimalSeparator: e.g., {set strm %String% new %WriteStream% on:} {f==
strm ', 123.45 printOn:decimalSeparator:} {f= strm contents} ® 123,45’

appends the ASCII representation (maximum of 8 digits) of the receiver to the stream
identified in the first argument using the second argument as the decimal separator. Note
that the second argument must be a string.

significand e.g., {f= 423.543 significand} ® 1.65446484
return afloat whose value is the significand part of the floating point representation of the
receiver.

Float Class Operations

The Float classis accessed using the variable %F oat%. The following operations can be
performed on this class.

fromlnteger: eg., {f= 123 %Float% frominteger:} ® 123.0
returns a floating point representation of the integer argument.

fromString: eg., {f= -0.593" %Float% fromString:} ® 0.593
returns a floating point conversion of the string argument. The argument is expected to be
a sequence of the form [(+]-)][digits][decSep [digits]] [(E|e)[(+|-) digits]].

fromString:decimalSeparator: eg., {f= *-0.593" $, %Float%
fromString:decimalSeparator:} ® -0,593

WebBase User’s Guide 177

Chapter 11: Expressions

returns a floating point conversion of the first argument, using the second argument as the
decimal separator. See fromString: for the format of the first argument.

pi eg., {f=%Float% pi} ® 3.14159265
return the floating point representation of pi.

11.6 Fractions

This section describes all the operations that can be performed on fractions. A fraction is
represented by two integersand a‘/’ (e.g., 1/2). Fractions can also perform any of the
operations described in the General Number Operations section above.

Fraction Instance Operations

Fractions are always instances of the class Fraction, which is accessed viathe variable
%Fraction%. The Fraction class operations that can be done are described in the following
section.

asFloat eg., {f=13/5 asFloat} ® 2.6
returns the receiver.

Fraction Class Operations

The Fraction classis accessed using the variable %Fraction%. The following operations can
be performed on this class.

numerator:denominator: e.g., {f= 15 28 %Fraction% numerator:denominator:} ®
15/28

returns a new instance of fraction with the numerator specified in the first argument and
the denominator specified in the second argument.

11.7 Points

A Point represents a position in two dimensions (e.g., the cursor’ s position on a screen). It
consists of a pair of numbers, x and y, representing the horizontal and vertical coordinates

respectively.
Point Instance Operations

This section covers all the operations that can be performed on apoint. Two example points
are used in the following and are generated using { set pointl 3 5 %Point% x:y:} and { set
point2 4 6 %Point% x:y:}.

- eg., {f=pointl point2 -} ® 1@1

returns a new point which is the difference between the receiver and the argument. The
argument can be a number or another point. If it isapoint, the x-coordinates are
subtracted and the y-coordinates are subtracted. If it isanumber, the value is subtracted
from both the x-coordinate and the y-coordinate.

* eg., {f=pointl point2 *} ® 12@30
returns a new point which is the product of the receiver and the argument. The argument

178 WebBase User’s Guide

can be anumber or another point. If it isa point, the x-coordinates are multiplied and the
y-coordinates are multiplied. If it is anumber, the value is multiplied by both the x-
coordinate and the y-coordinate.

/ eg., {f= pointl point2 /} ® (4/3) @ (6/5)

returns a new point which is the receiver divided by the argument. The argument can be a
number or another point. If it isapoint, the x-coordinates are divided and the y-
coordinates are divided. If it is a number, the x-coordinate and y-coordinate of the receiver
are both divided by the value.

/I eg., {f= pointl point2 //} ® 1@1

returns a new point which is the receiver divided by the argument. The argument can be a
number or another point. If it isapoint, the x-coordinates are divided and the y-
coordinates are divided. If it is a number, the x-coordinate and y-coordinate of the receiver
are both divided by the value.

\\ eg., {f=pointl point2 \\} ® 1@1

returns a new point which is the integer remainder of the receiver divided by the argument.
The argument can be a number or another point. If it isa point, the x-coordinates are
divided and the y-coordinates are divided. If it isanumber, the x-coordinate and y-
coordinate of the receiver are both divided by the value.

+ eg., {f=pointl point2 +} ® 7@11

returns a new point which isthe sum or the receiver and the argument. The argument can
be a number or another point. If it isa point, the x-coordinates are added and the y-
coordinates are added. If it isanumber, the value is added to both the x-coordinate and y-
coordinate of the receiver.

< eg., {f=pointl point2 <} ® false
returns true if the x and y coordinates of the receiver are less than the x and y coordinates
of the argument, respectively, otherwise answer false.

<= e.g., {f=pointl point2 <=} ® false
returns true if the x and y coordinates of the receiver are less than or equal to the x and y
coordinates of the argument, respectively, otherwise answer false.

= eg., {f=pointl point2 =} ® false
returnstrue if the x and y coordinates of the receiver are equal to the x and y coordinates
of the argument, respectively, otherwise answer false.

> eg., {f=pointl point2 >} ® true
returns true if the x and y coordinates of the recelver are greater thanthex and y
coordinates of the argument, respectively, otherwise answer false.

>= e.g., {f=pointl point2 >=} ® true
returns true if the x and y coordinates of the recelver are greater than or equal to the x and
y coordinates of the argument, respectively, otherwise answer false.

abs e.g., {f= pointl point2 - abs} ® 1@1
returns a new point whose coordinates are the absolute values of the x and y coordinates of
the receiver.

between:and: e.g., {set point3 5 7 %Point% x:y:}
{f= pointl point3 point2 between:and:} ® true

WebBase User’s Guide 179

Chapter 11: Expressions

returns true if the receiver is greater than or equal to the first argument (another point) and
less than or equa to the second argument (yet another point); otherwise false.

dotProduct: e.g..{f= pointl point2 dotProduct:} ® 42
returns a number which is the sum of the product of the x-coordinates and the product of
the y-coordinates of the receiver and the argument.

max: e.g.,{f= pointl point2 max:} ® 4@6
returns a new point whose coordinates are the maximum of the x-coordinates and the
maximum of the y-coordinates of the recelver and the argument.

min: e.g.,{f= pointl point2 min:} ® 3@5
returns a new point whose coordinates are the minimum of the x-coordinates and the
minimum of the y-coordinates of the receiver and the argument.

negated e.g.{f= pointl negated} ® -3@-5
returns a new point with the x and y coordinates of the receiver negated.

rounded e.g..{f= pointl rounded} ® 3@5
returns a new point which has the receiver coordinates rounded to integers.

transpose e.g. {f= pointl transpose} ® 5@3
returns a new point with x-coordinate equa to the receiver’s y-coordinate and y-coordinate
equal to the receiver’s x-coordinate.

truncated e.g. {f= pointl truncated} ® 3@5
returns a new point which has the receiver coordinates truncated to integers.

x e.g.{f= pointl x} ® 3
returns the receiver’s x-coordinate

x: e.g.{f== 4 pointl x:} {pointl} ® 4@5
returns the receiver after changing its x-coordinate to the argument.

y e.g.{f= pointly} ® 5
returns the receiver’ s y-coordinate

y: e.g..{f== 6 pointl y:}{pointl} ® 3@6
returns the receiver after changing its y-coordinate to the argument.

Point Class Operations

This section covers all the operations that can be performed on the Point class, which is
accessed using the global variable %Point%.

x:y: e.g.{f= 35 %Point% x:y:} ® 3@5
returns a new point whose x-coordinate is the first argument and whose y-coordinate is the
second argument.

180 WebBase User’s Guide

11.8 General Collection Operations

Many of the objects used within WWebBase are atype of collection, including Arrays,
OrderedCollections, OrderedLists, SortedCollections, SortedLists, Strings and Symbols. A
Dictionary is aso acollection, but its structure is enough different that it is covered separately.

General Collection Instance Operations

This section describes al the operations that can be performed on an instance of any type of
collection. Subsequent sections will cover the operations that are specific to a given type of
collection. Several of the operations described apply only to numeric values within a
collection. If the collection contains no numeric values, aresult of O isreturned. If therearea
mix of humbers and non-numbers in the collection, only the numeric values are used for
computations. The examples shown for these operations are alist that contains the integers (1
2 3) generated using the expression {set numCltn #aslInteger ',' '1,2,3' parseAt: map:}. Note
that any type of numbers can be included in collections.

Although ordered collections and strings are both types of collections, examples of each will be
presented for each of the operations below for clarification. The example collection used is
cltnl, generated using: {set cltnl “,” ‘one,two,three’ parseAt:}. The example string used is
‘abc’.

, (comma) e.g., {set cltn2 *,” “four five,size’ parseAt:}

{f=cltn2 cltn1 ,} ® OrderedList(‘one’ ‘two’ three’ “four’ ‘five’ ‘six’}

{f=*xyz’ strl ,} ® ‘abcxyz’

returns a new collection with the contents of the two collections concatenated together.

= e.g., {set cltn2 *,” “four fivesize’ parseAt:}

{f=cltn2 cltn1 =} ® false

{f=*xyz’ strl =} ® false

returnstrue if the receiver and argument are equal, otherwise false. Each element within
the receiver must exactly match the corresponding element within the argument. For
example, if the arguments are strings, the receiver and argument are compared using a case
senditive string comparison.

asArray e.g., {f=cltnl asArray} ® (‘one’ ‘two’ ‘three’)
{f=strl asArray} ® ($a $b $c)
returns an array containing all the elements of the receiver.

asOrderedCollection e.g., {f= cltnl asOrderedCollection} ® OrderedCollection(‘one’
‘two’ ‘three’)

{f= str1 asOrderedCollection} ® OrderedCollection($a $b $c)

returns an ordered collection containing al the elements of the receiver.

asSortedCollection e.g., {f= cltn1 asSortedCollection} ® SortedCollection(‘one’
‘three’ ‘two’)

{f= strl asSortedCollection} ® SortedCollection($a $b $c)

returns a sorted collection containing all the elements of the receiver sorted in ascending
order.

WebBase User’s Guide 181

Chapter 11: Expressions

atAllPut: e.g., {f= ‘new’ cltnl atAllPut:} ® (‘new’ ‘new’ ‘new’)
{f= $p strl atAllPut:} ® ‘ppp’
returns the receiver after each element has been replaced with the value in the argument.

average e.g., {f= numCltn average} ® 2

returns the average of al the numbersin the collection. Only numeric valuesin the
collection will be processed; non-numeric values will be skipped and not counted in
determining the number of items over which the average is taken.

concat e.g., {f=cltnl concat} ® ‘onetwothree’

{f=strl concat} ® 'abc’

returns a string consisting of all the elements in the collection concatenated together. The
itemsin the collection must al be strings.

concatWith: e.g., {f=$, cltnl concatWith:} ® ‘one,two,three’

{f=$, strl concatWith:} ® 'a,b,c’

returns a string consisting of all the elements in the collection concatenated together and
separated with the specified separator character. The elementsin the collection must all be
strings.

concatFrom:to: e.g., {f=1 2 cltnl concatFrom:to:} ® ‘onetwo’

{f=1 2 str1 concatFrom:to:} ® ‘ab’

returns a new string made of the elements in the receiver from the start index (first
argument) to end index (second argument) concatenated together. The elementsin the
collection must all be strings.

concatFrom:to:with: e.g., {f=12$, cltnl concatFrom:to:with:} ® ‘one,two’
{f=12$, strl concatFrom:to:with:} ® 'a,b’'

returns a new string made of the elements in the receiver from the start index (first
argument) to end index (second argument) concatenated together with the given separator
string (third argument). The elementsin the collection must al be strings.

copyFrom:to: e.g., {f=1 2 cltn1 copyFrom:to:} ® (‘one’ ‘two")

{f=1 2 str1 copyFrom:to:} ® ‘ab’

returns a new collection containing the el ements between the starting index (first argument)
and ending index (second argument)

copyReplaceFrom:to:with: e.g., {set newCltn *,” “eight,nine’ parseAt:}

{f=1 2 newCltn cltnl copyReplaceFrom:to:with:} ® (‘eight” ‘nine’ ‘three’)

{f=1 2 *st’ str1 copyReplaceFrom:to:with:} ® 'stc’

returns a new collection containing all the elements in the receiver with entries indexed
from start (first argument) through stop (second argument) being replaced by the elements
in the collection (third argument). Note that the replacement collection may be less than or
greater than the number of elementsto be replaced.

copyWith: e.g., {f= “four’ cltnl copyWith:} ® (‘one’ ‘two’ ‘three’ ‘four’)

{f= $d strl copyWith:} ® ‘abcd'

returns a new collection containing a copy of the receiver with the element in the argument
added to the collection.

copyWithout: e.g., {f= ‘one’ cltnl copyWithout:} ® (* two’ ‘three’)
{f= $c strl copyWithout:} ® 'ab’
returns a new collection containing a copy of the receiver with the first element that exactly

182

WebBase User’s Guide

matches the argument omitted. If thereis no element in the receiver that matches the
argument, a copy of the receiver is returned.

first e.g., {f=cltnl first} ® “ one’

{f=strl first} ® $a

returns the first element of the collection. For strings, the value returned is a character. In
order to return the first character of a string as a string, you must use:

{f="Hello" first asString} ® 'H

hasMessage e.g., {f=cltnl hasMessage} ® false
returnstrue if one or more of the members of the receiver is an ODBCRowObject which
has an associated message.

includes: e.g., {f= ‘two’ cltnl includes:} ® true
{f=$d strl includes:} ® false
returnstrue if the collection includes the specified element, otherwise false.

indexOf: e.g., {f= ‘two’ cltnl indexOf:} ® 2

{f= %d strl indexOf:} ® 0

returns an integer defining the index position of the specified e ement (argument) within the
receiver. If no such element isfound, return O.

indexOfCollection: e.g., {f= cltn2 cltnl indexOfCollection:} ® 0

{f= *bc’ strl indexOfCollection:} ® 2

returns an integer defining the index position of the first occurrence of the collection
(argument) within the receiver. 1f no such collection is found, return O.

iISEmpty e.g., {f=cltnl isEmpty} ® false
{f="isEmpty} ® true
returnstrue if the recelver does not contain any elements, otherwise false

last e.g., {f=cltnl last} ® * three’

{f=strl last} ® $c

returns the last element of the collection. For strings, the value returned is a character. In
order to return the last character of a string as a string, you must use:

{f="Hello'" last asString} ® 'o0o'

map: e.g., {f=#asinteger ', '1,2,3' parseAt: map:} ® (1 2 3)

{f= #asUppercase strl map:} ® ‘ABC’

returns a new collection in which each element in the receiver has had the operation in the
argument performed on it. Thisis useful for converting a collection of strings identifying
numbers into a collection of numbers. The argument must be a symbol (i.e., preceded by
the'# dgn).

map:for: e.g., {f=#< 2 numCltn map:for:} ® false false true)

returns a new collection generated by applying the given method (first argument) to the
target (second argument) and taking each member of the receiver in turn as an argument.
The example isfor illustration only; the receiver does not have to be a collection containing
only numbers.

map:with: e.g., {f=#+ 5 numCltn map:with:} ® 6 7 8)
returns a new collection in which each element in the receiver has had the operation in the
first argument performed on it. The operation in the first argument requires an additional

WebBase User’s Guide 183

Chapter 11: Expressions

argument, which is specified in the second argument. The exampleisfor illustration only;
the receiver does not have to be a collection containing only numbers.

max e.g., {f= numCltn max} ® 3
returns the largest number in the collection. Only numeric values in the collection will be
processed; non-numeric values will be skipped.

min e.g., {f= numCltn min} ® 1
returns the smallest number in the collection. Only numeric values in the collection will be
processed; non-numeric values will be skipped.

notEmpty e.g., {f= cltnl notEmpty} ® true

{f="notEmpty} ® false

returnstrue if the receiver does contains any elements, otherwise false. Equivalent to
iSEmpty not

nums e.g., {f= numCltn nums} ® 3
returns the number of list items that are numbers.

occurrencesOf: e.g., {f= “two’ cltn1 occurrencesOf:} ® 1

{f= $A strl occurrencesOf:} ® 0

returns the number of elements contained in the receiver that are equal to the element
specified in the argument.

replaceFrom:to:with: e.g., {set newCltn “,” “eight,nine’ parseAt:} {f= 1 2 newCltn cltnl
replaceFrom:to:with:} ® (‘eight’ *nine” “three’)

{f=1 2 *st’ strl replaceFrom:to:with:} ® 'stc’

returns the receiver with the elements from the start index (first argument) to the end index
(second argument) replaced with the elements in the specified collection (third argument).
The number of elements being replaced must be the same as the number of elementsin the
third argument. Thisisvery similar to copyReplaceFrom:to:with, except that this
operation returns the modified receiver and the copyReplaceFrom:to:with: operation
returns a new collection and leaves the receiver unmodified.

replaceFrom:to:with:startingAt: e.g., {set newCltn “,” “eight,nine,ten’ parseAt:} {f=1
2 newCltn 2 cltnl replaceFrom:to:with:startingAt:} ® (‘nine’ ‘ten’ ‘three”)

{f=2 3 “jkI’ 2 strl replaceFrom:to:with:startingAt:} ® ‘akl'

returns the receiver with the elements from the start index (first argument) to the end index
(second argument) replaced with the elements in the specified collection (third argument).
The replacement elements are selected starting at the index specified in the fourth
argument.

replaceFrom:to:with:startingWith: e.g., {set newCltn *,” “‘eight,nine,ten’ parseAt:} {f=
1 2 newCltn 2 cltnl replaceFrom:to:with:startingWith:} ® (‘nine’ ‘ten’ ‘three’) {f=2 3
‘jkI” 2 strl replaceFrom:to:with:startingWith:} ® 'akl’

returns the receiver with the elements from the start index (first argument) to the end index
(second argument) replaced with the elements in the specified collection (third argument).
The replacement elements are selected starting at the index specified in the fourth
argument. Thisis almost the same as replaceFrom:to:with:startingAt: except that it has
improved error handling.

replaceFrom:to:withObject: e.g., {f==1 2 “four’ cltnl1 replaceFrom:to:withObject:}
{cltn1} ® (‘four’ “four’ ‘three’)
{f==2 3 $L strl replaceFrom:to:withObject:} {strl} ® 'alLL'

184

WebBase User’s Guide

returns the replacement element (third argument). The receiver is modified by replacing
the elements from the start index (first argument) to the end index (second argument) with
the element specified in the third argument).

reverse e.g., {f= cltnl reverse} ® (‘three’ ‘two’ ‘one’)

{f=strl reverse} ® ‘cha’

returns a new collection in which the elementsin the recelver have been reversed (i.e, the
first element in the receiver isthe last element in the returned collection). This can also be
written as reversed.

size e.g., {f=cltnlsize} ® 3
{f=""size}® 0
returns an integer defining the number of e ementsin the collection

sum e.g., {f= numCltn sum} ® 6
returns the sum of all the numbers in the collection. Only numeric valuesin the collection
will be processed; non-numeric values will be skipped.

General Collection Class Operations

This section describes al the operations that can be performed on an of the collection classes
accessed using the variables %A rray%, %OrderedCollection%, %OrderedList%,
%SortedCollection%, %SortedList% and %String%.

with: e.g., {f= ‘one’ %Array% with:} ® (‘one’)
returns a new collection with only one element, the argument

with:with: e.g., {f= ‘one’ ‘two’ %OrderedCollection% with:with:} ®
OrderedCollection(‘one’ ‘two’)
returns a new collection with two elements, the first and second arguments

with:with:with: e.g., {f= ‘one’ 2 3.0 %Array% with:with:with:} ® (*one’ 2 3.0)
returns a new collection with three elements, the first, second and third arguments

with:with:with:with: e.g., {f= ‘one’ ‘two’ ‘three’ “four’ %SortedList%
with:with:with:with:} ® SortedList(‘one’ ‘two’ ‘three’ *four’)
returns a new collection with four elements, the first, second, third and fourth arguments

11.9 Arrays

An array isacollection of any objects accessed through a fixed range of integer indices
(representing the positions of the elements within the array). Note that the size of an array
cannot grow. There are no operations that are specific to arrays. All of the general collection
instance operations above are applicable to an array. Likewise, the general collection class
operations described above are valid when sent to the variable %Array%.

11.10 Strings

Strings are a collection of characters that are enclosed in single quotes. To include asingle
guote mark within a string, put two quote marks together. A string and a character within
WebBase are different types of data. See the section on Characters for the representation and
use of characters within WebBase. The following operations can be performed on any string.

WebBase User’s Guide 185

Chapter 11: Expressions

String Instance Operations

This section describes all the operations that can be performed on a string.

NOTE:

The inclusion of a ‘}” or *{* in a string may cause unexpected results because
WebBase may interpret it as an opening or closing to a macro instead of part of a
string. Instead of using these characters in strings in a form, the user should use
the WebBase dynamic variables %leftBrace% and %rightBrace% and concatenate
them with the string at the appropriate place(s). For example, {set strBuf 'my
output' %leftBrace% asString , } will set the variable strBuf to ‘{my output’.

NOTE:

The operations asFloat, asinteger and asNumber return a numerical value -- if the
argument is a string that is not a representation of a number, the value returned
will be 0.0, 0, or O respectively. Note that preceding or trailing blanks will cause
what otherwise might appear as a number to be treated as non-numeric and a 0 or
0.0 will be returned. trimBlanks can be used to remove any leading or trailing
blanks. Use containsNumber or containsinteger to test a string before conversion if
it might NOT be a representation of a number and the resultant value of 0 would
cause problems with your logic.

< e.g., {f="Goodbye' 'Hello' <} ® false
returns true if the receiver isless than the argument using a case insensitive string
comparison, otherwise false

<= e.g., {f="Goodbye' 'Hello' <=} ® false
returns true if the receiver isless than or equal to the argument using a case insensitive
string comparison, otherwise false

> e.g., {f="Goodbye' 'Hello' >} ® true
returns true if the receiver is greater than the argument using a case insensitive string
comparison, otherwise false

>= e.g., {f="Goodbye' 'Hello' >=} ® true
returns true if the receiver is greater than or equal to the argument using a case insensitive
string comparison, otherwise false

align: e.g., {f=5‘abc’} ® 'abc

returns a new string containing the receiver and enough blanks necessary on the right to
pad it out to the number of characters specified in the argument. If the total number of
digits is more than the specified field width argument, the returned string will be truncated.

alignDollar: e.g., {f=5'123" alignDollar:} ® ' $123'

{f=8"'123.45" alignDollar:} ® ' $123.45'

returns a new string representing the receiver as adollar amount. If the total number of
digits plus the $ sign are more than the specified field width argument, the returned string
will be truncated.

alignLeft: e.g., {f= 5 'abc’ alignLeft:} ® ‘abc '

returns a new string containing the receiver and enough blanks necessary on the right to
pad it out to the number of characters specified in the argument. If the total number of
digits is more than the specified field width argument, the returned string will be truncated.

186

WebBase User’s Guide

alignLeft:fill: e.g., {f=5 $# 'abc" alignLeft:fill:} ® ‘abc##'

returns a new string containing the receiver and enough fill characters specified in the
second argument necessary on the right to pad it out to the number of characters specified
in the first argument. If the total number of digits is more than the specified field width
argument, the returned string will be truncated.

alignRight: e.g., {f= 5 'abc’ alignRight:} ® ' abc’

returns a new string containing the receiver and enough blanks necessary on the left to pad
it out to the number of characters specified in the argument. If the total number of digitsis
than the specified field width argument, the returned string will be truncated.

alignRight:fill: e.g., {f=5 $# 'abc" alignRight:fill:} ® '##abc'

returns a new string containing the receiver and enough fill characters specified in the
second argument necessary on the left to pad it out to the number of characters specified in
the first argument. If the total number of digitsis more than the specified field width
argument, the returned string will be truncated.

appendFilename: e.g., {set a ‘c:\dir’} {set b ‘“file.htf’} {f= b a appendFilename:} ®
‘c:\dir\file.htf'

returns a new string in which the receiver is combined with the argument to generate a
pathname including the correct number of ‘\" characters between each directory and
filename (i.e., dways one and not two ‘\' or no ‘\' characters).

appendFilenameDOS: e.g., {set a ‘c:\dir’} {set b “file.htf’} {f=b a
appendFilenameDOS:} ® ‘c:\dir\file.htf'

returns a new string in which the receiver is combined with the argument to generate a
pathname including the correct number of ‘\" characters between each directory and
filename (i.e., aways one and not two ‘\' or no ‘\' characters). Thisis equivalent to
appendFilename:, and ensures that the DOS directory separation character (‘\') is used.

appendFilenameUNIX: e.g., {set a “\dir’} {set b “file.htf’} {f=b a
appendFilenameUNIX:} ® ‘/dir/file.htf'

returns a new string in which the receiver is combined with the argument to generate a
pathname including the correct number of /' characters between each directory and
filename (i.e., ways one and not two /" or no ‘/’ characters). This ensures that the
UNIX directory separation character (‘/") is used.

asArrayOfSubstrings e.g., {f= ‘roses and daisies’ asArrayOfSubstrings} ® (‘roses’
‘and’ ‘daisies’)

returns an array of substrings from the receiver. The receiver isdivided into substrings at
the occurrences of one or more space characters.

asArrayOfSubstringsSeparatedBy: e.g., {f= $- ‘555-11-5555’
asArrayOfSubstringsSeparatedBy:} ® (‘555 ‘11’ ‘5555°")

returns an array of substrings from the receiver. The receiver isdivided into substrings at
the occurrences of one or more of the input argument, which is a character.

asBoolean: e.g., {f=0 ‘yes’ asBoolean:} ® true

{f= 0 ‘maybe’ asBoolean:} ® 0

{f=0 ‘0" asBoolean:} ® false

returns true if the first character of thereceiverisa‘t’ or ‘T’ or ‘y’ or ‘Y’ or if the receiver
converted to anumber is not zero. Returnsfalse if the first character of the receiver if a“f’
or‘F or‘n or ‘N’ or if the receiver converted to a number is zero. If none of these are
satisfied, returns the argument.

WebBase User’s Guide 187

Chapter 11: Expressions

asCapitalized e.g., {f= ‘aBc123xYz’ asCapitalized} ® ‘Abcl23xyz’
returns a new string in which the first character is capitalized and any subsequent
alphabetic characters are lowercase.

asCharacter e.g., {f= ‘a’ asCharacter} ® $a

returns the first character of string. This functionality is now obsolete since a character
can be defined using the format $a; it is maintained for compatibility with previous
versions of WebBase.

asCodedHtml e.g., {f= "#$%" asCodedHtmI} ® '#$%'

returns a copy of the receiver with al non-alphanumeric characters encoded as per the
HTML Coded Character set definitions, &#n where n is the integer number of the ASCI|
character e.g. '&' -> $#38;.

asDate e.g., {f="29 March 1997' asDate} ® 03/29/97

returns a date representing the date described by the receiver. The receiver can bein any
of these formats:. ‘Jan 2, 1990', ‘2 Jan, 1990’ or ‘02-01-90’ with any sequence of non-
alphanumeric characters between the month, day and year.

asDoubleQuoteString e.g., {f='string with "quotes™ asDoubleQuoteString} ® 'string
with "'quotes™™

returns a new string in which each occurrence of a double quote character has been
doubled. In SQL one often uses formats like xx = '{ something}"' so the asSql String routine
is used to double the single quotes within { something sgl=true} to prevent syntax
problems. A similar situation exists when creating HTML forms. One writes <INPUT
NAME="name" VALUE="{value}"> - if {value} contains any double quotes the same
type of syntax problem occurs - embedded "-s need to be doubled.

asFieldName e.g., {f="Goodbye Hello' asFieldName} ® ‘’Goodbye Hello™’

if the recelver contains any space character, returns a new string containing the receiver
enclosed in double quotes. If the receiver does not contain any space characters, returns
the receiver

asFieldNameName e.g., {f= ""Field One’”* asFieldNameName} ® ‘Field One’

if the receiver is enclosed in double quotes, returns a new string with the starting and
ending double quotes removed. If the receiver is not enclosed in double quotes, returns the
receiver

asFloat e.g., {f='-13.6' asFloat} ® -13.6
{f="not a number" asFloat} ® 0.0
returns a float value if the string is the representation of a number, otherwise returns 0.0

aslnteger e.g., {f="-13" asinteger} ® -13

{f="not a number" asinteger} ® 0.0

returns an integer value if the string is the representation of a number, otherwise returns
0.0

asLowercase e.g., {f='Hi There' asLowercase} ® ‘hi there'
returns a new string in which al the characters of the receiver have been converted to
lowercase. This can aso be written using asL owerCase.

asNonEmptyString e.g., {f="Hi’ asNonEmptyString} ® ‘Hi’
{f=*" asNonEmptyString} ® ‘ ’

188

WebBase User’s Guide

returns the receiver if the receiver is not an empty string; otherwise returns a non-breaking
HTML space.

asNumber e.g., {f="-13.6' asNumber} ® -13.6
{f="not a number' asNumber} ® 0.0
returns a number if the string is the representation of a number, otherwise returns 0.0

asOptions: e.g., {f= ‘banana’ ‘apple;banana;cherry’ asOptions:} ®
'<OPTION>apple<OPTION SELECTED>banana<OPTION>cherry</SELECT>'

the receiver isastring of options as would be found on an HTML list box. Each optionis
separated from the other by a semi-colon. The input argument is the option which is
currently selected. A string isreturned that is properly formatted for HTML to identify all
the options and which particular option is currently selected.

asPrintableHTML e.g., {f='&and' asPrintableHTML} ® '&and'
returns the receiver with any occurrencesof ‘&’, ‘>* or ‘<’ replaced with ‘&’, ‘>’
and ‘&It;’, respectively.

asSqlString e.g., {f="0"Brien' asSqlString} ® 'O""Brien’

returns a new string in which all single quote marks within the string have been doubled.
Thisisrequired syntax for sgl statements where the value is enclosed within single quotes
and the value might contain a single quote character

asStream e.g., {f= 'my data for a stream' asStream} ® a ReadWriteStream
returns a stream (read-write) containing the receiver. The contents of the stream are the
receiver, and the stream is positioned at the beginning for any subsequent operations.

asSymbol e.g., {f="'myString' asSymbol} ® #myString
returns a symbol whose characters are the same as the receiver

asTime e.g., {f='10:30:00 AM" asTime} ® 10:30:00 AM
returns atime as specified in the receiver. Note that the receiver must be in the time
format in use by the operating system (e.g., 12-hour or 24-hour).

asUppercase e.g., {f="Hi There' asUppercase} ® 'HI THERE'
returns a new string in which all the characters of the argument have been converted to
uppercase. This can also be written using asUpperCase.

asUseableHTML e.g., {f='& < >’ asUseableHTML} ® '& < >
returns the receiver after replacing any occurrences of ‘&’ with ‘&, *&It;” with ‘<’
and ‘>’ with ‘>,

at: e.g., {f=2'Hello' at:} ® $e
returns the character at the position specified within the string. An error occursif the
index is out of range for the string size.

at:put: e.g., {f=1 $H 'hello’ at:put:} ® $H

returns the second argument after placing it within the receiver at the index specified in the
first argument. Note that the modified string is NOT returned, but that if the string had
been saved in avariable, the value of the variable would reflect the change.

authDecode e.g., {f= "Basic bXIOYW1IOm15UGFzc3dvemQ="authDecode} ®
'myName:myPassword’
returns a new string representing the receiver that has been decoded per RFC 1421.

WebBase User’s Guide 189

Chapter 11: Expressions

authEncode e.g., {f= 'myName:myPassword' authEncode} ® 'Basic
bXIOYW1IOm15UGFzc3dvemQ="

returns a new string representing the receiver that has been encoded per RFC 1421 for use
in the Basic Authorization capabilities within WebBase.

authPassword e.g., {f= 'Basic bXIOYW1lI0Om15UGFzc3dvemQ="authPassword} ®
'myPassword’

returns a new string containing the password portion of the RFC 1421 encoded string (see
authEncode)

authUserName e.g., {f= 'Basic bXIOYW1IOm15UGFzc3dvemQ="authUserName} ®
'myName’

returns a new string containing the user name portion of the RFC 1421 encoded string (see
authEncode)

authValid e.g., {f='Basic bXIOYW1IOm15UGFzc3dvemQ="authValid} ® true
returns true if the receiver begins with '‘Basic ' and contains at |east one "' character - as
required by RFC 1421 (see authEncode); otherwise false

base64decodeFileTo: e.g., {f= ‘c:\temp\encoded.htf’ ‘c:\temp\decoded.htf’
base64decodeFileTo:} ® ‘c:\temp\encoded.htf’

returns the argument after decoding the contents of the file whose pathname is the receiver
to afile whose pathname is the argument. See also base64EncodeFileto:. These
operations are used by the mail macro and setting up mail attachments to be sent.

base64EncodeFile:to: e.g., {f= ‘c:\temp\encoded.htf’ ??tagArg
‘c:\nttp\wbwizard\Wizard” base64EncodeFile:to:} ® “c:\temp\encoded.htf’

returns the path to the file created by encoding the file whose pathname is the receiver
using base-64 encoding. The first argument is either an integer or a Boolean. If an
integer, it defines the number of base64 encoded characters to output before inserting a
newline sequence (carriage return/line feed). If it is aboolean, true means to automatically
insert the newline sequence after 64 characters. If false, no newline sequences are inserted.
See a'so base64DecodeFileTo:. These operations are used by the mail macro and setting
up mail attachments to be sent.

characterConstant e.g., {f='$w' characterConstant} ® $w

{f="w' characterConstant} ® nil

returns the character constant if and only if the first character of the string wasa $,
otherwise returns nil.

classBaddr e.g., {f="123.45.6.78' classBaddr} ® '123.45'
returns the class B address portion of the receiver if it isformatted as an I P address,
otherwise returns an empty string

classCaddr e.g., {f='123.45.6.78' classCaddr} ® '123.45.6'
returns the class C address portion of the receiver if it isformatted as an |P address,
otherwise returns an empty string

collapse e.g.,, {f=° aspace and tab’ collapse} ® ‘a space and tab’

returns a copy of the receiver with all control characters replaced by a single blank and all
multiple blanks replaced by a single blank. Thisis useful for removing multiple spaces or
other characters (e.g., tabs) that the browser will consolidate into a single space character
unless within the <PRE> construct.

190

WebBase User’s Guide

containsAnyString: e.g., {set cltnl ‘,” “‘one,two,three’ parseAt: asOrderedCollection}
{f= cltnl ‘threes’ containsAnyString:} ® true

returnstrueif any item in the receiver collection contains the string specified in the
argument; otherwise false. Matches are case sensitive. Note that the receiver collection
should contain strings.

containsAnyStringlgnoreCase: e.g., {set cltnl “,” ‘one,two,three’ parseAt:
asOrderedCollection} {f= cltnl “THREES’ containsAnyStringlgnoreCase:} ® true
returnstrueif any item in the receiver collection contains the string specified in the
argument; otherwise false. Matches are case insensitive. Note that the receiver collection
should contain strings.

containsinteger e.g., {f="-13' containsinteger} ® true
{f="13.7' containsinteger} ® false
returns true if the receiver is a string representation of an integer, otherwise false

containsNumber e.g. {f=-13.7 containsNumber} ® true
returns true if the receiver is a string representation of a number, otherwise false

containsString: e.g., {f="ello’ 'Hello' containsString:} ® true
returnstrue if the receiver contains the argument; this method does a case sensitive
comparison

containsStringChecked: e.g., {f= “apple’ “fruit’ containsStringChecked:} ® *’

{f= *apple’ *apple’ containsStringChecked:} ® ‘CHECKED’

returns an empty string if the receiver does not contain the argument; otherwise returns the
string ‘CHECKED'. Thisisuseful for determining which check boxes on aform have
been selected by a user.

containsStringlgnoreCase: e.g., {f="'ELLO" 'Hello' containsStringlgnoreCase:} ® true
returnstrue if the receiver contains the argument; this method does a case insensitive
comparison

decode e.g., {f="String+%28Sample%?29' decode} ® 'String (Sample)’
returns a new string decoded from the receiver that was encoded as a browser would when
returned as part of a <Form>...</[FORM> block

encode e.g., {f="String (Sample)' encode} ® 'String+%28Sample%29'
returns a new string encoded as a browser would when returned as part of a
<FORM>...</[FORM> block

equals: e.g., {f="hello’ 'Hello’ equals:} ® false
returns true if the receiver and argument are equal when doing a case sensitive string
comparison, otherwise false. Thisisthesameasusing ‘=".

equalsignoreCase: e.g. {f="hello’ 'Hello' equalsignoreCase:} ® true
returns true if the receiver and argument are equal when doing a case insensitive string
comparison, otherwise false

fileExtension e.g. {f="c:\mydir\aSubDir\myFile.txt' fileExtension} ® 'txt'
returns a new string containing the three characters that follows the receiver’s last period
(*.") character.

WebBase User’s Guide 191

Chapter 11: Expressions

fileFullExtension e.g. {f='c:\mydir\aSubDir\myFile.text' fileFullExtension} ® ‘text'
returns a new string containing the characters that follows the receiver’s last period (*.")
character. This supports file extensions longer than 3 characters.

fileName e.g. {f="C:\mydin\aSubDir\myFile.txt' fileName} ® ‘c:\mydir\aSubDir\myFile’
returns a new string containing the characters of the receiver up to the last period (*.")
character.

fileNameLessPath e.g. {f="C:\mydir\aSubDir\myFile.txt' filleNameLessPath} ®
'myFile.txt'

returns a new string containing the unqualified file name of the receiver (file name and
extension without drive or directory path).

fileNamePath e.g. {f= 'c:\mydir\aSubDir\myFile.txt' fileNamePath} ®
‘c:\mydir\aSubDir’

returns a new string containing the directory path of the receiver path name (without the
file name and extension).

format: e.g., {set phoneNumber '1234567890'} {f= '(000) 000-0000' phoneNumber
format:} ® (123) 456-7890

returns a new string in which any digitsin the control string argument have been replaced
with the next corresponding character from the receiver - all other charactersin the control
string print as entered. Processing stops when the end of the receiver or control string is
reached. There must be a good match between the receiver and control stream. Inthe
example shown above, if the variable phoneNumber did not have an area code, the string
returned would be (456) 789-0, which is probably not what was intended.

indexOfString: e.g., {f="ello' 'Hello’ indexOfString:} ® 2
returns an integer defining the starting position of the argument within the receiver. If the
receiver does not contain the argument, returns 0

indexOfString:startingAt: e.g., {f="ello’' 4 'Mello Yellow' indexOfString:startingAt:} ®
8

returns an integer representing the starting position of the substring (first argument) found
after the starting index (second argument) within the receiver. If the substring is not
found, returns 0.

isValidDirectory e.g., {f= 'c:\\HTTP\Wbwizard\' isvValidDirectory} ® true
returns true if the string represents the pathname of a directory that exists on the host
system, otherwise false

isValidFile e.g., {f="c:\HTTP\Wbwizard\default.htf' isvValidFile} ® true
returns true if the string represents the pathname of afile that exists on the host system,
otherwise false

isValidlPaddr e.g., {f="1.2.3.4’ isValidlPaddr} ® true
returns true if the string represents an | P address of the form #.#.#.# where each
component is a numeric value that is less than 256.

nonempty e.g., {f= ‘Hello’ nonempty} ® ‘Hello’

{f=*" nonempty} ® ' ’

if the receiver is empty, returns the non-breaking space sequence. If the receiver is not
empty, returns the receiver.

192

WebBase User’s Guide

onlyDigits e.g., {f="'1 and 2 and 3’ onlyDigits} ® ‘123’

returns a new string containing only the numeric values contained within the receiver.
parseAt: e.g., {f="," 'one,two,three’' parseAt:} ® OrderedList(‘one’ ‘two' ‘three’)

returns an ordered list of items generated by parsing the receiver using the parse character
argument. If the receiver does not contain the parse character, returns an empty list. This
process is reversible using the concat* operations described above. Note that the argument
can be either a string or a character.

parseAt:into: e.g., {set cltn '," 'one,two,three’ parseAt:} {f="," cltn ‘four five,six’
parseAt:into:} ® OrderedList('one’ 'two' 'three’ “four’ “five’ six’)

returns the second argument which is an ordered list. The receiver is parsed using the first
argument and the result(s) are appended to the collection in the second argument. If the
receiver does not contain the parse character, returns the second argument. Note that the
first argument can be either a string or a character.

parseAtAny: e.g., {f=",:" ‘one,two:three' parseAtAny:} ® OrderedList('one’ 'two’
‘three")

returns an ordered list of items generated by parsing the receiver using any of the
characters found in the input argument. If the receiver does not contain any of the parse
characters, returns an empty list.

parseAtAny:into: e.g., {set cltn ;" ‘one,two,three’ parseAt:} {f=",:" cltn ‘four:five:six'
parseAtAny:into:} ® OrderedList('one’ 'two' ‘three' “four” ‘five’ six’)

returns the second argument which is an ordered list. The receiver is parsed using the
parse characters found in the first argument which isastring. The result(s) are appended
to the collection in the second argument. If the receiver does not contain any of the parse
characters, returns the second argument.

passEncode: e.g., {f= ‘myUsername’ ‘'myPassword’ passEncode:} ®
'mMR)UR:Q,H™"":c$m’

returns a new string containing an encoded password based on the receiver (initia
password) and argument (user name).

pathnameDOS e.g., {f= "/dirl/subdirl/myfile.txt' pathnameDOS} ®
\dirl\subdirl\myfile.txt'
returns anew string in which al the*/ characters in the receiver have been converted to '\'

pathnameUNIX e.g., {f= "\dirl\subdirl\myfile.txt' pathnameUNIX} ®
'/dirl/subdirl/myfile.txt'
returns anew string in which al the *\' characters in the receiver have been converted to '/

guote e.g., {f="String' quote} ® "'String""
returns a new string in which a single quote mark has been added to the beginning and end
of the receiver. For example, suppose you want to use a string value in an SQL statement:

SELECT * FROM Tabl e WHERE nane = '{varnane sql =true}’
If one were to construct the SELECT statement dynamically, one would need to surround

the { varname} value with single quotes as well as process any enclosed single quote
marks. The following statement accomplishes both of these requirements.

WebBase User’s Guide 193

Chapter 11: Expressions

{set var varnane asSql String quote}

readFromFile e.g. {f='c:\temp\message.txt' readFromFile}

The readFromFile alows oneto read text from afile in the file system and either display
that text as part of the returned HTML or store that text into a WebBase variable and
manipulate it as with any other text string. The readFromFile message is sent to a string
that contains a pathname for the file to be read. The pathname string is NOT relative to the
Directory parameter asis used for .htf forms but must be a full pathname for the host
machine's file system. The read is protected such that if an error occursin locating and/or
reading the file an empty string () will be returned rather than an error. The isValidFile
message can first be sent to the same pathname string to determine if the file does exists.

Note that this readFromFile message reads and returns the entire contents of the fileasa
string so users should be aware of the possible memory constraints of reading a very large
file. Also note that if the string being read is to be displayed by a browser, any HTML in
the file WILL be processed by the browser but any WebBase macros or variables WILL
NOT be recursively praocessed by WebBase -- they will be simply returned astext. Thisis
not another way of accomplishing what the insert macro does.

rejectComments e.g., {f= “‘Here is a “comment” within a string’ rejectComments} ®
‘Here is a within a string’

returns anew string in which al of the embedded comments in the receiver have been
deleted. A comment isindicated by double quotes.

rejectControls e.g.,{f=" atabandcr

and another tab' rejectControls} ® ' a tab and cr and another tab’
returns a new string representing the receiver with all of the embedded control characters
replaced by space characters - multiple contiguous controls being replaced by asingle
space.

rejectHTML e.g., {f= “‘Here is an HTML <INPUT> statement’ rejectHTML} ® ‘Here
is an HTML statement’

returns a new string in which al of the embedded <HTML> tags in the receiver have been
deleted.

removeString: e.g., {f= ‘Hi’ 'Hi there' removeString:} ® ' there'
returns a copy of the receiver with the argument removed

removeStringlgnoreCase: e.g., {f= ‘hi’ 'Hi there' removeStringlgnoreCase:} ® ' there'
returns a copy of the receiver with the argument removed. Note that the case of the
receiver and argument do not have to match.

replace:with: e.g., {f= 2 'hE' 'Hello' replace:with:} ® 'hEllo’
returns the receiver after replacing the number of characters specified in the first argument
with the characters in the collection in the second argument.

replaceCharacter:from:to:withString: e.g. {f= $l 1 5 "Xx' 'Hello'
replaceCharacter:from:to:withString:} ® 'HeXxXxo'

extracts the substring between the starting and ending positions. Replaces any occurrences
of the specified character with the specified string. Returns the modified substring.

194

WebBase User’s Guide

NOTE:

The resulting string may be longer than the original string if the replacement string
is longer than a single character. The resulting string may be shorter than the
original string if the starting and ending positions do not include the entire original
string.

replaceCharacter:with: e.g. {f= $I 75 'Hello' replaceCharacter:with:} ® 'HeKKo'
Replaces any occurrences of the specified character within the receiver and returns the
modified receiver. The second argument may be a string, character, integer or any other
non-nil object. If it isan integer, the character value associated with that integer is used,
not the string representation of the integer.

NOTE:

The resulting string may be longer than the original string if the replacement string
is longer than a single character.

replaceCharacter:withString: e.g. {f= $I "Xx' 'Hello' replaceCharacter:withString:} ®
"HeXxXxo'

Replaces any occurrences of the specified character within the receiver and returns the
modified receiver.

NOTE:

The resulting string may be longer than the original string if the replacement string
is longer than a single character.

replaceNewlinesWithString: e.g., {set longText ‘Here is

some text with

carriage returns

and line feeds

init’}

{f= “*CR*’ longText replaceNewlinesWithString:} ® Here is*CR*some text
with*CR*carriage returns*CR*and line feeds*CR*in it

returns a new string containing the receiver after al carriage returns have been removed
and all linefeeds have been replaced with the string identified in the argument.

replaceString:with: e.g., {f= ‘I’ ‘LL’ 'hello’ replaceString:with:} ® ‘heLLo’
returns a copy of the receiver with the string specified in the first argument replaced by the
string specified in the second argument.

sortAscendingAt: e.g., {f=$, 'George,Bev,Robert' sortAscendingAt:} ®
'‘Bev,George,Robert’

returns a new string of items that have been sorted. The receiver is a set of substrings that
are separated by the parsing character specified as the input argument. The receiver is
converted into a sorted list using ascending order, and then converted back into a string.
See aso parseAt: and concatWith:

sortDescendingAt: e.g., {f=$, '‘George,Bev,Robert’ sortDescendingAt:} ®
'Robert,George,Bev’

returns a new string of items that have been sorted. The receiver isa set of substrings that
are separated by the parsing character specified as the input argument. The receiver is
converted into asorted list using descending order, and then converted back into a string.
See aso parseAt: and concatWith:

WebBase User’s Guide 195

Chapter 11: Expressions

stripQuotes e.g., {f= " string in dbl quotes™”’ stripQuotes} ® ‘string in dbl quotes’

if the receiver is enclosed in double quotes, returns a copy of the receiver with the
enclosing double quotes removed. If the receiver is not enclosed in double quotes, returns
the receiver.

symbolConstant e.g., {f= "#foo' symbolConstant} ® #foo
returns a symbol from the string if and only if the first character was a'# -, otherwise
returns nil.

trimBlanks e.g., {f="Hi There ' trimBlanks} ® 'Hi There'
returns a new string with the leading and trailing blanks (spaces) of the receiver removed.
Note that any embedded blanks are not removed.

upTo: e.g., {f=$l 'Hello' upTo:} ® 'He'
returns a copy of the receiver up to the specified character.

withCrs

returns the receiver after al occurrences of the backdlash character ($\) have been replaced
with a carriage return. Thisis effective when displayed within a<PRE> construct where
the browser honors carriage returns. For example, the statement <PRE>{f='One\Per\Line
withCrs} </PRE> will generate:

One
Per
Li ne

zapCrs
returns a copy of the receiver with all carriage return characters removed

String Class Operations

The string class is accessed using the WebBase variable %String%. The operationsin this
section can be performed on this variable, as can any of the operations described above for
general collection classes.

fromArrayOfSubstrings:separatedBy: e.g., {set cltn',' 'one,two,three’ parseAt:}
{f=cltn $: %String% fromArrayOfSubstrings:separatedBy:} ® ‘one:two:three’
returns a new string by appending all of the stringsin the first argument with the second
argument used as a separator character between each substring.

readFrom: e.g., {f= *abc’’defg’’hi’ asStream %String% readFrom:} ® ‘defg’
read and return a string from the argument, which is a stream. A string comprises al of the
characters between quotes. Two quote marks together put a quote into the string.

11.11 Symbols

A symbol is a sequence of characters that is guaranteed to be unique throughout WebBase.
Symboals are represented using the #symbol notation. All of the operations for Strings can also
be used for symbols, with the exception of at:put: and the replace* operations. There are no
operations specifically for symbols. While a number of operations described in this chapter
return a symbol, there is no variable used to access the Symbol class.

196

WebBase User’s Guide

11.12 Ordered Collections

An ordered collection is similar to an array, except that it can grow to accommodate more
elementsif the original collection is not big enough. An ordered collection is often used as a
dynamic array, stack or queue.

Ordered Collection Instance Operations
This section describes al the operations that can be performed on an ordered collection.

An ordered collection is created and used by some WebBase macros. For example, in an {sql
to xxx ...} SELECT{/sql} construct, the variable xxx will contain an ordered collection
following the execution of the SELECT via ODBC. The collection may be empty (if no
matching data records were found) or may contain a number of ODBC row objects -- the
results of the SELECT. Several of the operations described below can only be applied to
ordered collections containing OdbcRowObjects. The collection used in these examplesis
cltnl, generated using {set cltn1 *;" ‘one,two,three’ parseAt: asOrderedCollection}. The
asOrderedCollection operation is used to convert the ordered list generated by parsing into an
ordered collection. All of the displayed behavior would work for ordered lists aso.

add: e.g., {f="end'cltnl add:} ® 'end'
{cltn1} ® OrderedCollection(‘one’ ‘two' ‘three' ‘end’)
returns the argument after adding it to the end of the receiver.

add:after: e.g., {f=="end’ ‘two’ cltnl add:after:} {cltn1} ® OrderedCollection(‘one’
‘two' ‘end’ ‘three")

returns the first argument after adding it to the receiver immediately after the element in
the second argument.

add:afterindex: e.g., {f=="end' 2 cltn1 add:afterindex:} {cltn1} ®
OrderedCollection('one’ 'two' 'end’ 'three")

returns the first argument after adding it to the receiver at the index position immediately
after the second argument.

add:before: e.g., {f=="end"' ‘two’ cltnl add:before:} {cltn1} ® OrderedCollection(‘one’
‘end’ 'two' 'three")

returns the first argument after adding it to the receiver immediately before the element in
the second argument.

add:beforelndex: e.g., {f=="end' 2 cltn1 add:beforelndex:} {cltn1} ®
OrderedCollection('one’ ‘end’ 'two' ‘three’)

returns the first argument after adding it to the receiver at the index position immediately
before the second argument.

addAll: e.g., {set cltn2 *;" *four,five,six’ parseAt: asOrderedCollection} {f== cltn2 cltnl
addAll:} {cltn1} ® OrderedCollection('one’ 'two' 'three' “four’ “five’ ‘six’)
returns the argument after all of the elementsin it have been added to the receiver.

addAllFirst: e.g., {set cltn2'," “four,five,six’ parseAt: asOrderedCollection} {f== cltn2
cltnl addAllFirst:}{cltn1} ® OrderedCollection(‘four’ “five” ‘six’ 'one’ 'two' 'three")
returns the argument after all of the elementsin it have been added to the receiver prior to
the first element in the receiver.

WebBase User’s Guide 197

Chapter 11: Expressions

addAllLast: e.g., {set cltn2 ', “four five,six’ parseAt: asOrderedCollection}

{f==cltn2 cltn1 addAllLast:} {cltn1} ® OrderedCollection(‘one’ 'two" ‘three' ‘four’
“five’ “six’)

returns the argument after all of the elementsin it have been added to the receiver after the
last lement in the receiver. Thisis equivaent to addAll:

addFirst: e.g., {f=="end' cltnl addFirst:} {cltn1} ® OrderedCollection(‘end’ ‘one’
'two' ‘'three")
returns the argument after adding it to the start of the receiver.

addLast: e.g., {f=="end' cltnl addLast:} {cltn1} ® OrderedCollection('one’ 'two’
‘three' ‘end’)
returns the argument after adding it to the end of the receiver.

after: e.g., {f="two’ cltnl after:} ® 'three’
returns the element that immediately follows the argument in the receiver. If the argument
is not found in the receiver, an error is reported.

ascending e.g., {f= cltnl ascending} ® SortedCollection(‘one’ ‘three’ 'two")
returns a SortedCollection containing all the elements of the receiver in ascending order

asOptions: e.g., {set cltn2 *,” “apple,banana,cherry’ parseAt: asOrderedCollection} {f=
‘banana’ cltn2 asOptions:} ® '<OPTION>apple<OPTION SELECTED>banana
<OPTION>cherry</SELECT>'

the receiver isacollection of strings of options as would be found on an HTML list box.
The input argument is the option which is currently selected. A string isreturned that is
properly formatted for HTML to identify al the options and which particular option is
currently selected.

asOptions:field: e.g., {sgl to answers ...} SELECT ... {/sql} {f= ‘banana’ ‘FruitType’
answers asOptions:field:} ® '<OPTION>apple<OPTION
SELECTED>banana<OPTION>cherry </SELECT>"

the receiver is a collection of ODBCRowODbjects as returned from a SELECT query. The
first argument is the option which is selected; the second argument is the name of the field
within the database record. Returns anew string that is properly formatted for HTML
identifying all the options as read from the specified field within the database, and which
particular option is currently selected.

at:e.g., {f=2cltnl at:} ® 'two’
returns the item at the specified index

at:put: e.g., {f==2 'middle’ cltnl at:put:} {cltn1} ® OrderedCollection('one' 'middle’
‘three")

returns the second argument after replacing the element in the receiver at the specified
index (first argument) with the new vaue (second argument).

before: e.g., {f="two’ cltnl before:} ® ‘one’
returns the element that immediately precedes the argument in the receiver. If the
argument is not found in the receiver, an error is reported.

descending e.g., {f= cltn1 descending} ® SortedCollection(‘two’ ‘three’ 'one’)
returns a SortedCollection containing all the elements of the receiver in descending order

198

WebBase User’s Guide

describeVHTMLTable e.g., {sql to answers ...} SELECT ... {/sql} {f= answers
describeVHTMLTable} ® <see below>

returns a string that displays a <TABLE> for each entry in the collection. Thetable
shows the field name, field size, field type and value within the field. The example below
shows a single record from the cars database provided with the WebBase WebWizard
examples.

Example 11.5 describeVHTMLTable example

| field width type ' value
ID | 11 INTEGER 26
Year 6 SMALLINT 92
| Maker 15 VARCHAR BMW
i Model | 15 VARCHAR 31815
Cylinders = 9 TINYINT 4
Transmission | 12 VARCHAR |5 Speed
Kind | 15 VARCHAR 2Door
! Color | 15 VARCHAR Red
Mileage | 11 INTEGER 3000
Price | 22 DOUBLE 22900.0
Air | 5 BIT true
Cruise | 6 [BIT false
Category | 15 |VARCHAR Paszsenger
Country | 10 VARCHAR European

describeVHTMLTable: e.g., {sql to answers ...} SELECT ... {/sql} {f= “Cars
Database’ answers describeVHTMLTable}

returns a string that displays a <TABLE> for each entry in the collection. Thetable
shows the field name, field size, field type and value within the field. Thisisthe same as
the describeVHTML Table operation described above, except that the title of the table can
also be specified.

printHTMLTable e.g., {sql to answers ...} SELECT ... {/sql} {f= answers
printHTMLTable}

returns a string representing the receiver in tabular form using a<TABLE> </TABLE>
block. This only works on collections that contain OdbcRowObjects returned from an sq
select. Column headers are taken from the database table's column names as returned by
the ODBC call. Limited formatting is done to allow for the indicated field widths as
specified in the database. This operation does not include any way to specify sizesin any
of the <TH> or <TD> generated. If you need to perform more details formatting (like
size=), you will need to write a{forRow ...} loop and do the <TABLE> ... </TABLE>
manually. As astarting point, you can use printHTMLTable in your form, view the
source from your browser, and copy and paste the <TR><TH> header row and one of the
<TR><TD> datarows to your .htf form, and then add the appropriate size, border,
alignment, etc. formatting tags to achieve the desired results. The WebBase WebWizard
database example #2 uses printHTML Table.

printPRETable e.g., {sql to answers ...} SELECT ... {/sql} {f= answers printPRETable}
returns a string representing the receiver in tabular form using a <PRE> </PRE> block.
This only works on collections that contain OdbcRowObjects returned from an sgl select.

WebBase User’s Guide 199

Chapter 11: Expressions

Column headers are taken from the database tabl€'s column names as returned by the
ODBC call. Limited formatting is done to allow for the indicated field widths as specified
in the database. The WebBase WebWizard database example #2 uses printPRETable.

printTable e.g., {sql to answers ...} SELECT ... {/sql} {f= printTable}

returns a string representing the receiver in tabular form using a<TABLE> construct
block if the browser supportsit, or in a <PRE> construct if the browser does not support
tables. Thisonly works on collections that contain OdbcRowObjects returned from an sq
select. See printHTML Table and printPRETable for details on how the tables may be

displayed.

printVHTMLTable e.g., {sql to answers ...} SELECT ... {/sql} {f= answers
printVHTMLTable}

Thisisvery similar to the printHTML Table operation, but prints the table vertically with
labels on the left (right justified), a colon, then values on the right (left justified).

Nanme: John Q Public
Address: 123 State St.
Tel ephone: (123) 456-7890

This operation should be used when there are alot of fields (horizontal table would require
alot of horizontal scrolling) and especialy when there is only a single row to be displayed.
The operation does iterate over all the rows in the collection it is sent to. This only works
on collections that contain OdbcRowObjects returned from an sgl select.

printVHTMLTable: e.g., {sql to answers ...} SELECT ... {/sql} {f= ‘Employees in
Company X answers printVHTMLTable:}

Thisisthe same as printVHTML Table except that it alows atitle to be specified. When
the table is displayed, the title is displayed centered over the table. This only works on
collections that contain OdbcRowODbjects returned from an sgl select.

remove: e.g., {f=="two' cltn1 remove:} {cltn1} ® OrderedCollection(‘one" ‘three")
returns the argument after it has been removed from the receiver.

removeAll e.g., {f=cltnl removeAll} ® OrderedCollection()
returns the receiver after al of the dementsin it have been removed.

removeAll: e.g., {set cltn2 " ‘one,two’ parseAt: asOrderedCollection}
{f== cltn2 cltn1 removeAll:} {cltn1} ® OrderedCollection(‘three")
returns the argument after al of the elementsin it have been removed from the receiver.

removeFirst e.g., {f= cltnl removeFirst} ® ‘one’
returns the first eement in the receiver after it is removed from the receiver.

removelndex: e.g., {f= 2 cltnl removelndex:} ® OrderedCollection(‘one’ ‘three")
returns the receiver after the element at the index position specified in the argument is
removed.

removeLast e.g., {f= cltnl removeLast} ® ‘three’
returns the last e ement in the recelver after it isremoved from the recelver.

200

WebBase User’s Guide

Ordered Collection Class Operations

The OrderedCollection class can be accessed using the variable %OrderedCollection% (note
there is no space between Ordered and Collection in either the variable or classname). This
section covers those operations that are sent to the %COrderedCollection% variable. The
operations described above for general collection classes are aso applicable for this variable.

new e.g., {f= %0rderedCollection% new} ® OrderedCollection ()

returns a new empty ordered collection capable of holding 12 dements. When the number
of elementsin the collection exceeds the collection size, the collection is “grown” by
creating anew larger empty ordered collection and copying al the elements from the small
collection into the larger collection. Depending on the sizes of the collections, this can be a
performanceissue. If the size of the collection to be created is known when the collection
is created, the new: operation should be used to optimize performance.

new: e.g., {f= 25 %0OrderedCollection% new:} ® OrderedCollection ()
returns an empty ordered collection capable of holding the number of e ements specified in
the argument. See the description of the new operation above for usage tips.

11.13 Ordered Lists

An ordered list is amost the same as an ordered collection. All of the operations described for
ordered collections apply to ordered lists. There are no operations specific to ordered lists.
However, an ordered list and a sorted list are the only WebBase data types that will return true
totheisList operation. The %OrderedList% WebBase variable can be used with the genera
collection and ordered collection class operations described above. There are no class
operations specific to the OrderedList class.

An ordered list can be created in WebBase by parsing a string (see parseAt: above), or viathe
dynamic variable %newL.ist%. Typicaly, one would assign alist to a variable, then send
messages to that variable to manipulate the contents of the list as appropriate for the
application.

11.14 Sorted Collections

A sorted collection contains elements sorted according to the elements sort order (which is how
they respond to the < method. All of the operations that can be performed on ordered
collections can aso be performed on sorted collections. However, ordered collection
operations which add a new element to a specific location within the collection (e.g., addFirst:,
removel ast:) cannot be used on sorted collections. The %SortedCollection% WebBase
variable can be used with the generd collection and ordered collection class operations
described above. There are no class operations specific to the SortedCollection class.

11.15 Sorted Lists

A sorted list is almost the same as a sorted collection. All of the operations described for
sorted collections apply to sorted lists. There are no operations specific to sorted lists.
However, an ordered list and a sorted list are the only WebBase data types that will return true
totheisList operation. In addition, a sorted list isthe only WebBase data type that returns
true to the isSortedL st operation.

WebBase User’s Guide 201

Chapter 11: Expressions

Sorted lists can be created in WebBase via the dynamic variables %onewAscendingList% or
%newDescendingList%. Typicaly, one would assign alist to a variable, then send messages
to that variable to manipulate the contents of the list as appropriate for the application.

Sorted List Class Operations

The %SortedList% variable is used to create a new sorted list using the class operations
described below. The operations described above for generd collection and ordered collection
classes are also applicable for this variable.

newAscending e.g., {f= %SortedList% newAscending} ® SortedList ()
returns an empty sorted list whose sort order for elements is ascending.

newDescending e.g., {f= %SortedList% newDescending} ® SortedList ()
returns an empty sorted list whose sort order for elements is descending.

11.16 Associations

An association associates two objects known as the key/value pair. Association objects are
used to store information into dictionaries.

Association Instance Operations

This section describes all the operations that can be performed on an association. There are
two examples associations used in the following examples: assocl and assoc2. They are
generated using: {set assocl ‘Version’ %version% %Association% key:value:} and {set
assoc2 ‘Build’ %build% %Association% key:value:}. Although both of these examples
include strings as the keys and values, it is possible to have any datatype as akey or avaue.
However, it is recommended that keys be strings or symbols whenever possible.

< e.g., {f=assoc2 assocl <} ® false
returnstrue if the receiver key is less than the argument key; otherwise false. Note that the
argument must aso be an association.

<= e.g., {f=assoc2 assocl <=} ® false
returnstrue if the receiver key isless than or equal to the argument key; otherwise false.
Note that the argument must also be an association.

= e.g., {f=assoc2 assocl =} ® false
returnstrue if the receiver key and the argument key are the same, otherwise false

> e.g., {f=assoc2 assocl >} ® true
returns true if the receiver key is greater than the argument key; otherwise false. Note that
the argument must aso be an association.

>= e.g., {f= assoc2 assocl >=} ® true
returnstrue if the receiver key is greater than or equal to the argument key; otherwise
fase. Note that the argument must also be an association.

between:and: e.g., {set assoc3 ‘Title’ %comment% %Association% key:value:} {f=
assoc2 assocl assoc3 between:and:} ® true
returnstrue if the receiver is between the first and second arguments, otherwise false.

202

WebBase User’s Guide

Note that the arguments must be associations, and the comparison is done based on the
keys.

key e.g., {f= assocl key} ® ‘Version’
returns the key of the receiver

max: e.g., {f= assoc2 assocl max:} ® 'Version' ==>'4.10'
returns the maximum of the receiver or the argument

min: e.g., {f= assoc2 assocl min:} ® 'Build' ==> '56'
returns the minimum of the receiver or the argument

value e.g., {f= assocl value} ® '4.10'
returns the value of the receiver

Association Class Operations

The Association class is accessed using the %A ssociation% WebBase variable. This section
describes dl the operations that can be performed on the Association class.

key: e.g., {f= *Version” %Association% key:} ® 'Version' === nil
returns a new association whose key is set to the first argument (the value is left as nil).

key:value: e.g., {f= “Version’ %version% %Association% key:value:} ® 'Version'
==>"'4.10'

returns a new association whose key is set to the first argument and whose valueis set to
the second argument.

11.17 Dictionaries

A dictionary is a collection of key/value pairs of objects. The keysin adictionary are unique,
whereas values may be duplicated. A dictionary may be searched either by key or by value.
Key searches use hashing for efficiency.

Dictionary Instance Operations

This section describes all the operations that can be performed on a dictionary. For the
examplesin the following, we will use an example dictionary dictl containing the two example
associations used in the preceding section. This dictionary is created using {set dictl
%Dictionary% new} {f== assocl dictl add:} {f== assoc2 dictl add:} {dictl} ®
Dictionary('56' '4.10")

add: e.g., {set assoc3 ‘Title’ %title% %Association% key:value:} {f== assoc3 dictl
add:} {dictl} ® Dictionary(‘WebBase 4.10 Build 56' '56' '4.10")

returns the argument after adding it to the receiver. Note that the argument isan
association.

addAll: e.g., {set assoc3 ‘Title” %title% %Association% key:value:} {set assoc4
‘Company’ ‘ExperTelligence, Inc.” %Association% key:value:} {set cltnl assoc3 assoc4
%OrderedCollection% with:with:}

{f==cltnl dictl addAll:} {dictl} ® Dictionary(('Title' ==> 'WebBase 4.10 build 56")
(‘Build' ==>'56") ("Company' ==> "ExperTelligence,Inc.") (‘Version' ==>'4.10"))

WebBase User’s Guide 203

Chapter 11: Expressions

returns the argument after adding all the elementsin it to the receiver. Note that the
elements in the argument collection are associations.

addDictionary: e.g., {set assoc3 ‘Title’ %title% %Association% key:value:} {set
assoc4 ‘Company’ “‘ExperTelligence, Inc.” %Association% key:value:} {set dict2
%Dictionary% new} {f== assoc3 dict2 add:} {f== assoc4 dict2 add:} {f== dict2 dictl
addDictionary:} {dictl} ® Dictionary(('Title' ==> 'WebBase 4.10 build 56") (‘Build’
==>'56") ('Company' ==> 'ExperTelligence,Inc.") (‘Version' ==> '4.10"))

returns the receiver after adding all the associations in the argument to the receiver.

asArray e.g., {f=dictl asArray} ® ('56' '4.10")
returns an array containing all the associations in the receiver.

asKeys e.g., {f=dictl asKeys} ® OrderedList('Build’ ‘Version')
returns an ordered list containing al of the keysin the receiver.

asOrderedCollection e.g., {f= dictl asOrderedCollection} ® OrderedCollection('56'
'4.10")
returns an ordered collection containing al the associations in the receiver.

asPairs e.g., {f=dictl asPairs} ® OrderedList('Build' ==> '56" "Version' ==> '4.10")
returns an ordered list containing all the associations in the receiver.

associationAt: e.g., {f= “Version’ dictl associationAt:} ® 'Version' ==> '4.10'
returns the association whose key is the same as the argument. If not found, an error is
reported.

asSortedCollection e.g., {f= dictl asSortedCollection} ® SortedCollection('56' '4.10")
returns a sorted collection containing all the associations in the receiver sorted in ascending
order.

asValues e.g., {f=dictl asValues} ® OrderedList('56' '4.10")

returns an ordered list containing all the valuesin the receiver. Note that if there are
multiple associations with the same value, there will be multiple entries in the ordered list
that are the same value.

at: e.g., {f= “Version’ dictl at:} ® '4.10'
returns the value of the association whose key equals the argument. If not found, an error
is reported.

at:put: e.g., {f==‘Build’ ‘57’ dictl at:put:} {dictl} ® Dictionary(('Build' ==> '57")
("Version' ==>'4.10")

returns the second argument. If the receiver contains the association whose key is the same
asthe first argument, replaces the value of the association with the second argument. If
the receiver does not contain an association whose key is the same as the first argument,
creates a new association whose key is the first argument and whose vaue is the second
argument and adds it to the receiver.

elementsEqual: e.g., {set assoc3 ‘Title’ %title% %Association% key:value:} {set
assoc4 ‘Company’ “‘ExperTelligence, Inc.” %Association% key:value:} {set dict2
%Dictionary% new} {f== assoc3 dict2 add:} {f== assoc4 dict2 add:} {f= dict2 dictl
elementsEqual:} ® false

returnstrue if the receiver has exactly those e ements in the argument; otherwise false.

204

WebBase User’s Guide

includes: e.g., {f= %version% dictl includes:} ® true
returns true if the receiver contains an association whose value is the same as the
argument; otherwise false.

includesKey: e.g., {f= “Version’ dictl includesKey:} ® true

{f= *version’ dictl includesKey:} ® false

returns true if the receiver contains an association whose key is the same as the argument;
otherwise false. Note that the key must match exactly.

iISEmpty e.g., {f=dictl isEmpty} ® false
{f= %Dictionary% new isEmpty} ® true
returns true if the receiver does not contain any associations, otherwise false

keyAtValue: e.g., {f= ‘4.10° dictl keyAtValue:} ® ‘Version’
returns the key for the association whose value equals the argument. If not found, returns
nil.

notEmpty e.g., {f= dictl notEmpty} ® true

{f= %Dictionary% new notEmpty} ® false

returns true if the receiver does contains any associations, otherwise false. Equivalent to
iSEmpty not

occurrencesOf: e.g., {f="4.10" dictl occurrencesOf:} ® 1
returns the number of associations in the receiver whose value is the same as the argument.

removeAll e.g., {f=dictl removeAll} ® Dictionary()
returns the receiver after al of the associations within it have been removed.

removeAssociation: e.g., {f= assocl dictl removeAssociation:} ® Dictionary(('Build’
==> '56'))

returns the receiver after the specified association has been removed from it. If the
association is not in the receiver, reports an error.

removeKey: e.g., {f== *Version’ dictl removeKey:} {dictl} ® Dictionary(('Build' ==>
'56'))

returns the receiver after the association whose key is the same as the argument is removed
fromit. If an association is not found, an error is reported.

size e.g., {f=dictl size} ® 2
returns the number of elements contained in the receiver.

urlArgString e.g., {f= dictl urlArgString} ® Build=56&Version=4.10
returns a string of key=value& key=value entries that can be used on a URL command line.

Dictionary Class Operations

The Dictionary class can be accessed using the variable %Dictionary%. This section covers
those operations that are sent to the %Dictionary% variable. The operations described above
for general collection classes are aso applicable for this variable.

new e.g., {f= %Dictionary% new} ® Dictionary()
returns a new empty dictionary.

WebBase User’s Guide 205

Chapter 11: Expressions

11.18 Characters

Characters in WebBase are specified using the format $a where the actua character desired
followsthe‘$. Note that characters and strings are represented and handled differently within
WebBase. Severa special characters, their description, and their ASCII value are available as
follows:

$cr carriage return 13
$lf line feed 10
$f f formfeed 12
$bs backspace 8
$esc escape 27
$t ab t ab 9
$space space 32
$nul | nul | 0
$bel | bel | 7

This section describes all the character related operations that can be applied to the
character(s) extracted from string variables and/or character constants. There are no class
operations available for characters.

-eg.,{f=AZ-}® 25

{f=25%$Z-}® 65

If the argument is a character, returns the difference between the recelver's asciiVaue and
the argument’ s asciiVValue; if it is an integer, returns the difference between the receiver's
asciiValue and the argument.

, (comma) e.g., {f=$B $A .} ® ‘AB’

{f=‘bc’ $A } ® *Abc’

returns a string generated by concatenating the receiver with the argument, which is either
acharacter or a string.

+eg,{=25%A+}® $Z
returns a character whose asciiValue is the sum of the receiver's asciiVaue and the
argument (or its asciiVaue)

< e.g., {f=%e $f =} ® false
returns true if the receiver is less than the argument using a sort-order character
comparison, otherwise false

<= e.g., {f= $e $f =} ® false
returns true if the receiver isless than or equal to the argument using a sort-order character
comparison, otherwise false

= e.g., {f=$e 2 'Hello' at: =} ® true
returns true if the receiver and the argument are the same character, otherwise false

> eg., {f=% $f=}® true
returns true if the receiver is greater than the argument using a sort-order character
comparison, otherwise false

206

WebBase User’s Guide

>= e.g., {f=%e $f =} ® true
returns true if the receiver is greater than or equal to the argument using a sort-order
character comparison, otherwise false

asCharacter e.g., {f= $X asCharacter} ® $X
returns the receiver since it is already a character

asciiValue e.g., {f= $X asciiValue} ® 88
returns an integer representing the ASCI I value for the receiver

asinteger e.g., {f= $X asinteger} ® 88
returns the integer ASCII value for the receiver; thisis the same as the asciiValue message

asLowercase e.g., {f= $X asLowercase} ® $x
returns the lowercase character for the receiver if it is an a phabetic character, otherwise
returns the receiver asis. This may aso be written using asL owerCase.

asUppercase e.g., {f= $x asUppercase} ® $X
returns the uppercase character for an the receiver if it is an aphabetic character,
otherwise returns the receiver asis. This may aso be written using asUpperCase.

authDecode e.g., {f= $w authDecode} ® 48
return an integer representing the character as per RFC 1421. See the number method
authEncode also.

between:and: e.g., {f= $A $Z $X between:and:} ® true
returnstrue if the receiver is between the first and second arguments when doing a sort-
order character comparison

digitValue e.g., {f= $W digitvValue} ® 32

returns a number corresponding to the digit value of the receiver. Only the characters $0-
$9 and $A-$Z are valid as areceiver (note that the lowercase a phabetic characters are not
valid).

isAlphaNumeric e.g., {f= $X isAlphaNumeric} ® true

{f=$$ isAlphaNumeric} ® false

returns true for the characters for letters a through z, A through Z and digits O through 9,
otherwise false

isDigit e.g., {f= $X isDigit} ® false
{f= $2 isDigit} ® true
returns true for the characters for digits O through 9, otherwise false

isLetter e.g., {f= $X isLetter} ® true
{f= $2 isLetter} ® false
returns true for the characters for letters a through z and A through Z, otherwise false

isLowercase e.g., {f= $x isLowercase} ® true

{f= $X isLowercase} ® false

returns true for the characters for letters a through z, otherwise false. This may also be
written as isLowerCase.

isSeparator e.g., {f= $space isSeparator} ® true
{f= $X isSeparator} ® false

WebBase User’s Guide 207

Chapter 11: Expressions

returns true for the characters for Space, Tab, Carriage Return, Line Feed, and Form Feed
characters; otherwise false

isUppercase e.g., {f= $X isUppercase} ® true

{f= $x isUppercase} ® false

returns true for the charactersfor letters A through Z, otherwise false. This may aso be
written as isUpperCase.

isVowel e.g., {f= $X isVowel} ® false
{f= $A isVowel} ® true
returns true for the charactersa, A, e, E, i, I, 0, O, u and U; otherwise false

isWhitespace e.g., {f= $space isWhitespace} ® true
{f= $X isWhitespace} ® false
returns true for Space or control characters, otherwise false

max: e.g., {f= $A $X max:} ® $X
returns the larger character when doing a sort-order character comparison

min: e.g., {f= $A $X min:} ® $A
returns the smaller character when doing a sort-order character comparison

validHtmIChar e.g., {f= $A validHtmIChar} ® true

{f= $% validHtmIChar} ® false

returns true or false depending on if the receiver needs to be converted for HTML use. All
alphanumeric characters and some punctuation characters return true. Any character that
must be encoded for use in a command line argument will return false.

11.19 Booleans

There are only two instances of Boolean - true and false. There are many Boolean operations
in the other sections that return atrue or false value depending on the result of the
computation. These operations require the receiver to be a Boolean. There are no class
operations available for Booleans.

& e.g., {f="yes''yes'='no' 'no' = &} ® true
returns the logical AND of the receiver and argument

| e.g., {f="yes''no'="no"'yes' =| } ® false
returns the logical OR of the receiver and argument

asBoolean: e.g., {f=false 1 1 = asBoolean:} ® true
returns the receiver and ignores the argument. Thisis provided for compatibility with the
asBoolean: operation available on strings.

asSqlString e.g., {f= 1 1 = asSqlString} ® ‘True’
returnsthe string ‘ True' if the receiver istrue, or the string ‘False’ if the receiver isfalse.

eqv: e.g., {f="yes' 'no’' ='no' 'yes' = eqv:} ® true
returnstrue if the receiver is equivaent to the argument, otherwise false.

not e.g., {f="yes' 'no’' = not} ® true
returns the inverse of the receiver.

208

WebBase User’s Guide

xor: e.g., {f="yes' 'no' ='no’' 'yes' = xor:} ® false
returns true if the receiver is not equivalent to the argument, otherwise false.

11.20 Dates

A date represents a particular day since the start of the Julian calendar. The dynamic variable
%date% returns the current date.

Date Instance Operations

The following messages can be sent to any WebBase variable containing a date. For the
following examples, assume %date% ® 3/18/97.

< e.g., {set datel '2/10/97" asDate } {f= %date% datel <} ® true
returns true if the receiver isless than the argument, otherwise false

<= e.g., {set datel '2/10/97" asDate } {f= %date% datel <=} ® true
returns true if the receiver isless than or equal to the argument, otherwise false

= e.g., {set datel '2/10/97" asDate } {f= %date% datel =} ® false
returns true if the receiver and argument are the same date, otherwise false

> e.g., {set datel '2/10/97" asDate } {f= %date% datel >} ® false
returns true if the receiver is greater than the argument, otherwise false

>= e.g., {set datel '2/10/97" asDate} {f= %date% datel >=} ® false
returns true if the receiver is greater than or equa to the argument, otherwise false

addDays: e.g., {f= 20 %date% addDays:} ® 04/07/97
returns a new date that is‘n’ number of days after the specified date, where ‘n’ isthe input
argument.

asSeconds e.g., {f= %date% asSeconds} ® 3036096000
returns the number of seconds elapsed from January 1, 1901 until the specified date

between:and: e.g., {set datel '12/10/97' asDate } {set date2 '2/10/97" asDate} {f= date2
datel %date% between:and:} ® true
returnstrue if the receiver is between the two dates specified as arguments

day e.g., {f= %date% day} ® 35140
returns the number of days elapsed from January 1, 1901 until the specified date

daylndex e.g., {f= %date% daylndex} ® 2
returns the index for the day of the week, 1=Mon, 7=Sun

dayName e.g., {f= %date% dayName} ® #Tuesday
returns the symbol identifying the day of the week

dayOfMonth e.g., {f= %date% dayOfMonth} ® 18
returns an integer from 1 to 31 specifying the day number within the month

dayOfYear e.g., {f= %date% dayOfYear} ® 77
returns an integer from 1 to 365 identifying the day number within the year

WebBase User’s Guide 209

Chapter 11: Expressions

daysinMonth e.g., {f= %date% daysinMonth} ® 31
returns an integer identifying the number of daysin the month

daysinYear e.g., {f= %date% daysinYear} ® 365
returns an integer identifying the number of daysin the year

daysLeftinMonth e.g., {f= %date% daysLeftinMonth} ® 12
returns an integer specifying how many days remain in the month

daysLeftinYear e.g., {f= %date% daysLeftinYear} ® 288
returns an integer specifying how many days remain in the year

elapsedDaysSince: e.g., {set datel '2/10/97" asDate} {f= datel %date%
elapsedDaysSince:} ® 36
returns an integer specifying the number of days between the receiver and the argument.

elapsedMonthsSince: e.g., {set datel '2/10/97' asDate} {f= datel %date%
elapsedMonthsSince:} ® 1
returns an integer specifying the number of months between the receiver and the argument.

elapsedSecondsSince: e.g., {set datel '2/10/97' asDate} {f= datel %date%
elapsedSecondsSince:} ® 3110400
returns an integer specifying the number of seconds between the recelver and the argument.

firstDayInMonth e.g., {f= %date% firstDaylnMonth} ® 60
returns an integer specifying the number of the first day in the month from the beginning of
the year

firstDayOfMonth e.g., {f= %date% firstDayOfMonth} ® 03/01/97
returns a new date representing the first of the month

firstSundaylIn: e.g., {f= 3 %date% firstSundayin:} ® 61
returns the number of days after the start of the year for the first Sunday within the month
for the specified index.

firstSundaylnMonth e.g., {f= %date% firstSundaylnMonth} ® 61
returns the number of days after the start of the year for the first Sunday in the current
month

lastSundayin: e.g., {f= 3 %date% lastSundayIn:} ® 89
returns the number of days after the start of the year for the last Sunday within the month
for the specified index.

lastSundaylnMonth e.g., {f= %date% lastSundaylnMonth} ® 89
returns the number of days after the start of the year for the last Sunday in the current
month

max: e.g., {set datel ‘2/10/97" asDate} {f= datel %date% max:} ® 03/18/97
returns the maximum (more recent) of the receiver or the argument.

min: e.g., {set datel ‘2/10/97" asDate} {f= datel %date% min:} ® 03/18/97
returns the minimum (less recent) of the receiver or the argument.

210

WebBase User’s Guide

monthindex e.g., {f= %date% monthindex} ® 3
returns the number of the month

monthName e.g., {f= %date% monthName} ® #March
returns the symbol identifying the name of the month

previousWeekday: e.g., {f= #Tuesday %date% previousWeekday:} ® 03/11/95
returns a Date reflecting the most recent day name represented by the argument preceding
the receiver. The argument must be a symbol; valid entries are Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday and Saturday. The ‘# denotes that the argument
isasymbol.

printinFormat:twoDigitYear: e.g., {f= 2 false %date% printinFormat:twoDigitYear:}
® 1997/03/18

returns a string representing the receiver in the form specified by the first argument. The
first argument is an integer as noted below:

0 = Mont h- Day- Year
1 = Day- Mont h- Year
2 = Year - Mont h- Day

The second argument is a Boolean that specifies whether the year should be printed in 2
digitsor 4. See aso printOn:inFormat:twoDigitY ear:.

printOn:inFormat:twoDigitYear: e.g., {set strm %String% new %WriteStream% on:}
{f==strm 2 false %date% printOn:inFormat:twoDigitYear:} {f= strm contents} ®
1997/03/18

appends a string representing the receiver in the form specified by the second argument to
the stream identified in the first argument. The third argument is a Boolean that specifies
whether the year should be printed in 2 digitsor 4. See also printlnFormat:twoDigitY ear:.

printOn:inFormat:twoDigitYear:dateSeparator: e.g., {set strm %String% new
%WriteStream% on:} {f== strm 2 false ‘** %date%
printOn:inFormat:twoDigitYear:dateSeparator:} {f= strm contents} ® 1997*03*18
appends a string representing the receiver in the form specified by the second argument to
the stream identified in the first argument. The third argument is a Boolean that specifies
whether the year should be printed in 2 digits or 4; the fourth argument is a string used to
separate the month, day and year portions of the date.

printOn:withPicture: e.g., {set strm %String% new %WriteStream% on:} {f== strm
‘MMM dd yyyy’ %date% printOn:withPicture:} {f= strm contents} ® ‘Mar 18 1997’
appends a string representing the receiver in the form specified by the second argument to
the stream identified in the first argument. See printWithPicture: for format information.

printWithPicture: e.g., {f= ‘MMM dd yyyy’ %date% printWithPicture:} ® Mar 18
1997

returns a formatted string displayed according to the argument. The receiver will be
printed with the substitutions listed below taking place. Note that there must be a
separation character between the*M’, *d’ and ‘y’ characters; the separation character will
be displayed in the output. (e.g., MM/ddlyy ® 01/24/96)

Every single M (uppercase M) will be replaced by the number of the month asa single
or two-digit value.

WebBase User’s Guide 211

Chapter 11: Expressions

Every two consecutive MM’ s (uppercase MM’ s) will be replaced by the number of the
month as atwo-digit (zero left filled if necessary) value.

Every three consecutive MMM’ s (uppercase MMM’ s) will be replaced by athree-
letter ABBREVIATION for the month -- e.g.,, 03® Mar.

Every four consecutive MMMM'’ s (uppercase MMMM’ s) will be replaced by the full
NAME of the month -- e.g., 03® March.

Every single d (lowercase d) will be replaced by the number of the day asasingle or
two-digit value

Every two consecutive dd's (lowercase dd's) will be replaced by the number of the day
as atwo-digit (zero left filled if necessary) value

Every three consecutive ddd' s (lowercase ddd' s) will be replaced by athree-letter
ABBREVIATION for the day of the week -- e.g., Sun.

Every four consecutive dddd’ s (lowercase dddd' s) will be replaced by the full NAME
of the day of the week -- e.g., Sunday.

Every two consecutive yy's (lowercase yy's) will be replaced by the last two digits of
theyear -- eg., 97

Every occurrence of asingley - or multiple (but not 2) yyyy’s (lowercase y) will be
replaced by the four-digit value of the year -- e.g., 1997

subtractDate: e.g., {set datel ‘2/10/97" asDate} {f= datel %date% subtractDate:} ®
36
returns the number of days between the receiver and the date specified in the argument.

subtractDays: e.g., {f= 20 %date% subtractDays:} ® 02/26/97
returns a new date that is‘n" number of days before the specified date

year e.g., {f= %date% year} ® 1997
returns an integer specifying the year

Date Class Operations

The %Date% variable alows the Date class to be accessed. This class has many useful
operations to create, compare and compute dates.

calendarForMonth:year: e.g., {f= #April 1997 %Date% calendarForMonth:year:} ®
<see below>

returns a string containing the formatted calendar for the month whose name is the symbol
specified in the first argument, and the year is specified in the second argument. The
results of the above example are:

212

WebBase User’s Guide

Su Mo Tu W Th Fr Sa

1 2 3 4 5
6 7 8 910 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

dateAndTimeNow e.g., {f= %Date% dateAndTimeNow} ® (03/18/97 02:03:27 PM)
returns an array containing two elements: a date representing the current date and atime
representing the current time.

day:month:year: e.g., {f= 255 97 %Date% day:month:year:} ® 05/25/97
returns a new date defined by the day (first argument), month (second argument) and year
(third argument).

dayNames e.g., {f= %Date% dayNames} ® Dictionary((Fri ==> 5) (Sunday ==>7)
(Wednesday ==> 3) (Friday ==> 5) (Sat ==> 6) (Tue ==> 2) (Saturday ==> 6)
(Monday ==> 1) (Thr ==> 4) (Tuesday ==> 2) (Thursday ==> 4) (Wed ==> 3) (Mon
==>1) (Sun ==>7))

returns adictionary. The key of each association is the day name as a symbol and the
value isthe index of the day (1=Monday). Note: thereis an association for the full name
and the short name of each day of the week (e.g., Mon, Monday).

dayOfWeek: e.g., {f=#Mon %Date% dayOfWeek:} ® 1

returns an integer from 1 to 7 indicating the weekday number for the symbol argument
(1=Monday, 7=Sunday). Note: the argument may be the symbol for either the short or full
name of the day.

daysinMonth:forYear: e.g., {f=#April 1997 %Date% daysinMonth:forYear:} ® 30
returns the total number of days for the month specified with the symbol in the first
argument in the year specified in the second argument.

daysinYear: e.g., {f= 1997 %Date% daysInYear:} ® 365
returns the total number of days for the year specified in the argument.

fromDays: e.g., {f= 1000 %Date% fromDays:} ® 09/28/03 (note this is 1903, not
2003!)

{f=-1000 %Date% fromDays:} ® 04/06/98 (note this is 1898, not 1998!)

returns a date that is the number of days specified in the argument before or after January
1, 1901. If the argument is negative, the date will be computed before January 1. If the
argument is positive, the date will be computed for after January 1, 1901.

fromString: e.g., {f='May 6, 1997' %Date% fromString:} ® 05/06/97
returns the date specified by the argument, which must represent a date in one of three
formats:

“Jan 2, 1990’
‘2 Jan, 1990’
‘02-01-90r

The delimiters between the month, day and year can be any sequence of non-alphanumeric
characters.

indexOfMonth: e.g., {f= #April %Date% indexOfMonth:} ® 4
returns an integer from 1 to 12 indicating the month index for the symbol argument

WebBase User’s Guide 213

Chapter 11: Expressions

leapYear: e.g., {f= 1996 %Date% leapYear:} ® 1
{f= 1997 %Date% leapYear:} ® 0
returns 1 if the year specified in the argument is aleap year; otherwise 0

leapYearsTo: e.g., {f= 1996 %Date% leapYearsTo:} ® 23
returns the number of leap years from 1901 to the year before the year specified in the
argument

monthNameFromString: e.g., {f='May' %Date% monthNameFromString:} ® #May
returns the symbol for the month name corresponding to the argument

monthNames e.g., {f= %Date% monthNames} ® Dictionary((Jul ==>7) (July ==>7)
(Oct ==> 10) (Feb ==> 2) (March ==> 3)(December ==> 12) (November ==> 11)
(Mar ==> 3) (February ==> 2) (Jan ==> 1) (January ==> 1) (August==> 8) (Dec
==> 12) (October ==> 10) (Nov ==> 11) (April ==> 4) (September ==> 9) (Sep
==>9) (Aug ==>8) (Apr ==> 4) (May ==> 5) (Jun ==> 6) (June ==> 6))

returns a dictionary. The key of each association is the month name as a symboal, the value
is the month index. Note: there is an association for the full name and the short name of
each month (e.g., Jan, January).

nameOfDay: e.g., {f= 3 %Date% nameOfDay:} ® #Wednesday
returns the weekday name as a symbol corresponding to the integer argument (Monday for
1, Sunday for 7).

nameOfMonth: e.g., {f= 3 %Date% nameOfMonth:} ® #March
returns the month name as a symbol corresponding to the integer argument (January for 1,
December for 12).

newDay:month:year: e.g., {f= 15 #June 1997 %Date% newDay:month:year:} ®
06/15/97

returns a date with the day specified in the first argument, the month in the second
argument, and the year specified in the third argument. The day and year are specified as
integers; the month is a symbol.

newDay:year: e.g., {f= 89 1997 %Date% newDay:year:} ® 03/30/97

returns a date with the day specified in the first argument and the year specified in the
second argument. The date is an integer representing the number of days since the first of
the year.

pathToday: e.g., {f= %Date% today %Date% pathToday:} ® 970318
returns a six-digit string in the format yymmdd using the date specified in the argument.

shortNameOfDay: e.g., {f= 2 %Date% shortNameOfDay:} ® #Tue
returns the short weekday name as a symbol corresponding to the weekday index integer
argument (Mon for 1, Sun for 7).

shortNameOfMonth: e.g., {f= 2 %Date% shortNameOfMonth:} ® #Feb
returns the short month name as a symbol corresponding to the month index integer
argument (Jan for 1, Dec for 12).

today e.g., {f= %Date% today} ® 03/18/97
returns a date representing the current date

214

WebBase User’s Guide

11.21 Times

A time represents a particular time of day to the nearest second. The dynamic variable
%time% returns the current time.

Time Instance Operations

The following messages can be sent to any WebBase variable containing a time. For the
following examples, assume %time% ® 01:30:00 PM.

< e.g., {set timel '8:00:00 PM' asTime} {f= %time% timel <} ® false
returns true if the receiver isless than the argument, otherwise false

<= e.g., {set timel '8:00:00 PM" asTime} {f= %time% timel <=} ® false
returns true if the receiver isless than or equal to the argument, otherwise false

= e.g., {set timel '8:00:00 PM' asTime} {f= %time% timel =} ® false
returnstrue if the receiver and argument are the same time, otherwise false

> e.g., {set timel '8:00:00 PM" asTime} {f= %time% timel >} ® true
returns true if the receiver is greater than the argument, otherwise false

>= e.g., {set timel '8:00:00 PM" asTime} {f= %time% timel >=} ® true
returns true if the receiver is greater than or equal to the argument, otherwise false

addTime: e.g., {set twoHoursInSeconds 60 60 2 * *} {set timel twoHoursInSeconds
%Time% fromSeconds:} {f= timel %time% addTime:} ® 03:30:00 AM

returns a new time in which the amount of time specified in the argument (atime) has been
added to the receiver time.

asSeconds e.g., {f= %time% asSeconds} ® 48600
returns the number of seconds from midnight until the specified time

between:and: e.g., {set timel '8:00:00 AM' asTime} {set time2 '8:00:00 PM' asTime}
{f=timel time2 %time% between:and:} ® true
returnstrue if the input time is between the receiver and the argument

hours e.g., {f= %time% hours} ® 13
returns the number of hours from midnight until the specified time

max: e.g., {set timel ‘3:30:00 AM’ asTime} {f= timel %time% max:} ® 01:30:00 PM
returns the greater of the receiver or the argument.

min: e.g., {set timel “3:30:00 AM’ asTime} {f= timel %time% min:} ® 03:30:00 AM
returns the lesser of the receiver or the argument.

minutes e.g., {f= %time% minutes} ® 30
returns the number of minutes past the hour

printOn12Hr: e.g., {set strm %String% new %WriteStream% on:} {f== strm %time%
printOn12Hr:} {f= strm contents} ® 01:30:00 PM

WebBase User’s Guide 215

Chapter 11: Expressions

appends a string representing the receiver time to the stream specified in the argument.
The timeisin 12-hour plus AM/PM format.

printOn24Hr: e.g., {set strm %String% new %WriteStream% on:} {f== strm %time%
printOn24Hr:} {f= strm contents} ® 13:30:00

appends a string representing the receiver time to the stream specified in the argument.
The timeisin 24-hour clock format.

seconds e.g., {f= %time% seconds} ® 0
returns the number of seconds past the minute

subtractTime: e.g., {set oneHourInSeconds 60 60 *} {set time1l oneHourlnSeconds
%Time% fromSeconds:} {f= timel %time% subtractTime:} ® 12:30:00 PM

returns a new time in which the amount of time specified in the argument (atime) has been
subtracted from the receiver time.

Time Class Operations

The %Time%o variable allows the Time class to be accessed. This section covers the
operations that the Time class can do.

dateAndTimeNow e.g., {f= %Time% dateAndTimeNow} ® (03/19/97 09:38:17 AM)
returns an array of two elements containing the current date and the current time. Note
that the array returned by the Date classis the same as the array returned by this
operation.

fromSeconds: e.g., {f= 4500 %Time% fromSeconds:} ® 01:15:00 AM
returns a time which represents the number of seconds in the argument after midnight.

fromString: e.g., {f= ‘11:29:00 PM’ %Time% fromString:} ® 11:29:00 PM
returns atime for the value given by the argument. The argument must be in the form
specified by the current system time format (e.g., 12-hour or 24-hour format).

fromStringl2: e.g., {f="3:30:00 PM’ %Time% fromString12:} ® 03:30:00 PM
returns atime for the value given by the argument. The argument must bein 12 hr
AM/PM format.

fromString24: e.g., {f="15:30:00° %Time% fromString24:} ® 03:30:00 PM
returns atime for the value given by the argument. The argument must be in 24 hr clock
format.

hours:minutes:seconds: e.g., {f= 11 29 00 %Time% hours:minutes:seconds:} ®
11:29:00 AM

returns a time which represents the given number of hours (first argument), minutes
(second argument) and seconds (third argument) after midnight of the current day.

millisecondClockValue e.g., {f= %Time% millisecondClockValue} ® 34697800
returns the number of milliseconds from midnight of the current day to the current time.

now e.g., {f= %Time% now} ® 09:38:17 AM
returns a time representing the current time in seconds

216

WebBase User’s Guide

totalSeconds e.g., {f= %Time% totalSeconds} ® 34697
returns the number of seconds from midnight of the current day to the current time.

11.22 Universal Times

The dynamic variable %odate Time% returns the current date and time as a Universa Time
object.

Universal Time Instance Operations

The following messages can be sent to any WebBase variable containing a Universal Time.
Note that these messages a so include those which can be sent to dates or times.

< e.g., {set dateTimel '2/10/97" %dateTime% dateFromString: } {set dateTime2
'2/11/97" %dateTime% dateFromString: } {f= dateTimel dateTime2 <} ® false
returns true if the receiver isless than the argument, otherwise false

<= e.g., {set dateTimel '2/10/97" %dateTime% dateFromString: } {set dateTime2
'2/11/97" %dateTime% dateFromString: } {f= dateTimel dateTime2 <=} ® false
returns true if the receiver isless than or equal to the argument, otherwise false

= e.g., {set dateTimel '2/10/97" %dateTime% dateFromString: } {set dateTime2
'2/11/97" %dateTime% dateFromString: } {f= dateTimel dateTime2 =} ® false
returnstrue if the receiver and argument are the same date and time, otherwise false

> e.g., {set dateTimel '2/10/97" %dateTime% dateFromString: } {set dateTime2
'2/11/97" %dateTime% dateFromString: } {f= dateTimel dateTime2 >} ® true
returns true if the receiver is greater than the argument, otherwise false

>= e.g., {set dateTimel '2/10/97" %dateTime% dateFromString: } {set dateTime2
'2/11/97" %dateTime% dateFromString: } {f= dateTimel dateTime2 >=} ® true
returns true if the receiver is greater than or equa to the argument, otherwise false

addDays: e.g., {f= 4 %dateTime% addDays:} ® 03/23/97 11:23:16
returns a new Universal Time with the indicated number of days added to the receiver.
Note that the number of days can be negative.

addSeconds: e.g., {f= 360 %dateTime% addSeconds:} ® 03/19/97 11:29:16
returns a new Universal Time with the indicated number of seconds added to the date and
time of the receiver. Note that the number of seconds can be negative.

asCookieDateTime e.g., {f= %dateTime% asCookieDateTime} ® Wednesday, 19-Mar-
1997 11:23:16 GMT

returns a string containing the current date and time in a format acceptable as the cookie
expiration time used when doing a setCookie.

asDate e.g., {f= %dateTime% asDate} ® *03/19/97"
returns a string representing the date portion of the receiver.

asDateTime e.g., {f= %dateTime% asDateTime} ® ‘03/19/97 11:23:16 AM’
returns a string representing the date and time of the receiver. Usesthe OS to determine
12-hour or 24-hour format

WebBase User’s Guide 217

Chapter 11: Expressions

asDateTimewithPicture: e.g., {f= ‘MMM dd yyyy’ %dateTime%
asDateTimewithPicture:} ® ‘Mar 19 1997 11:23:16 AM’

returns a formatted string of the receiver’s date and time with the ‘date’ portion displayed
according to the argument. The ‘time’ portion will be formatted as in the asDateTime
method. See Date--printWithPicture: for the formatting details. See also
asDateTimel2withPicture: and asDateTime24withPicture:.

asDateTimel2 e.g., {f= %dateTime% asDateTimel2} ® ‘03/19/97 11:23:16 AM’
returns a string representing the date and time of the receiver 12-hour format

asDateTimel2withPicture: e.g., {f= ‘MMM dd yyyy’ %dateTime%
asDateTimel2withPicture:} ® ‘Mar 19 1997 11:23:16 AM’

returns a formatted string of the receiver’s date and time with the ‘date’ portion displayed
according to the argument. The ‘time’ portion will be formatted as in the asDateTimel2
method. See Date--printWithPicture: for the formatting details. See also
asDateTimewithPicture:, asDatewithPicture:.

asDateTime24 e.g., {f= %dateTime% asDateTime24} ® ‘03/19/97 11:23:16’
returns a string representing the date and time of the receiver in 24-hour format

asDateTime24withPicture: e.g., {f= ‘MMM dd yyyy’ %dateTime%
asDateTime24withPicture:} ® ‘Mar 19 1997 11:23:16’

returns a formatted string of the receiver’ s date and time with the ‘date’ portion displayed
according to the argument. The ‘time’ portion will be formatted as in the asDateTime24
method. See Date--printWithPicture: for the formatting details. See also
asDateTimewithPicture:, asDatewithPicture:.

asDatewithPicture: e.g., {f= ‘MMM dd yyyy’ %dateTime% asDatewithPicture:} ®
‘Mar 19 1997’

returns a formatted string of the receiver’s date displayed according to the argument. See
Date—printWithPicture: for the formatting details.

asHeaderDateTime e.g., {f= %dateTime% asHeaderDateTime} ® Wednesday, 19-
Mar-1997 11:23:16 GMT

returns a string containing the recelver’s date and time in aformat acceptable for usein a
header

asLogFileTimeStamp e.g., {f= %dateTime% asLogFileTimeStamp} ®
[19/Mar/1997:11:23:16 -0800]
returns a string displaying the date and time in the format used in the log file records.

asMailDateTime e.g., {f= %dateTime% asMailDateTime} ® Fri, 19 Mar 1997
13:20:30

returns a string containing the receiver’s date and time in aformat acceptable for usein the
mail utility. This operation can only be used if the user has purchased the E-Merge add-on
option, which is described in Chapter 16.

asSeconds e.g., {f= %dateTime% asSeconds} ® 3036647206
returns the number of seconds elapsed from January 1, 1901 until the specified date plus
the number of seconds in the time.

asTime e.g., {f= %dateTime% asTime} ® ‘11:23:16 AM’
returns a string representing the time of the receiver. Uses the OS to determine 12-hour or
24-hour format

218 WebBase User’s Guide

asTimel2 e.g., {f= %dateTime% asTimel2} ® “11:23:16 AM’
returns a string representing the time of the receiver in 12-hour format

asTime24 e.g., {f= %dateTime% asTime24} ® *11:23:16’
returns a string representing the time of the receiver in 24-hour format

between:and: e.g., {set dateTimel '8:00:00 AM' %dateTime% timeFromString:} {set
dateTime2 '8:00:00 PM' %dateTime% timeFromsString: }

{f= dateTimel dateTime2 %dateTime% between:and:} ® true

returnstrue if the receiver is between the two arguments

date e.g., {f= %dateTime% date} ® 03/19/97
returns the date portion of the receiver

dateAndTime e.g., {f= %dateTime% dateAndTime} ® (03/19/97 11:23:16 AM 'PST")
returns an array containing 3 elements:. the date, the time, and the name of the timezone.

dateFromsString: e.g., {f= "2/10/97' %dateTime% dateFromString:} ® 02/10/97
11:23:16

returns a new Universal time in which the date is as specified in the input string. The time
isthe same as the timein the receiver. Acceptable date string formats are:

"' dd/ yy' (menont h, dd=day, yy=year)
'"FEB 10 96'
'10 FEB 96')

day e.g., {f= %dateTime% day} ® 35140
returns the number of days elapsed from January 1, 1901 until the specified date. Thisis
equivaent to { f= %dateTime% date day} .

daylndex e.g., {f= %dateTime% daylndex} ® 2
returns the index for the day of the week, 1=Mon, 7=Sun. Thisis equivalent to {f=
%dateTime% date daylndex} .

dayName e.g., {f= %dateTime% dayName} ® #Tuesday
returns the symbol identifying the day of the week. Thisis equivalent to {f= %dateTime%
date dayName} .

dayOfMonth e.g., {f= %dateTime% dayOfMonth} ® 18
returns an integer from 1 to 31 specifying the day number within the month. Thisis
equivalent to { f= %dateTime% date dayOfMonth} .

dayOfYear e.g., {f= %dateTime% dayOfYear} ® 77
returns an integer from 1 to 365 identifying the day number within the year. Thisis
equivaent to {f= %dateTime% date dayOfY ear} .

daysinMonth e.g., {f= %dateTime% daysIinMonth} ® 31
returns an integer identifying the number of daysin the month. Thisis equivaent to {f=
%dateTime% date daysinMonth} .

daysInYear e.g., {f= %dateTime% daysinYear} ® 365
returns an integer identifying the number of daysin the year. Thisis equivalent to {f=
%dateTime% date daysinY ear}.

WebBase User’s Guide 219

Chapter 11: Expressions

daysLeftinMonth e.g., {f= %dateTime% daysLeftinMonth} ® 12
returns an integer specifying how many days remain in the month. Thisis equivalent to {f=
%dateTimeY% date daysL eftinMonth} .

daysLeftinYear e.g., {f= %dateTime% daysLeftinYear} ® 288
returns an integer specifying how many days remain in the year. Thisis equivalent to {f=
%dateTime% date daysL eftinY ear} .

elapsedDaysSince: e.g., {set datel 25 %date% subtractDays:} {set dt1 datel asString
%dateTime% dateFromString:} {f= dtl %dateTime% elapsedDaysSince:} ® 25
returns an integer specifying the number of days between the receiver and the argument.
Only the date portion of the receiver and argument are used; both receiver and argument
must be Universal Times.

elapsedMonthsSince: e.g., {set datel 25 %date% subtractDays:} {set dt1 datel
asString %dateTime% dateFromString:} {f= dtl %dateTime% elapsedMonthsSince:} ®
1

returns an integer specifying the number of months between the receiver and the argument.
Only the date portion of the receiver and argument are used; both receiver and argument
must be Universal Times.

firstDayInMonth e.g., {f= %dateTime% firstDaylnMonth} ® 60
returns an integer specifying the number of the first day in the month from the beginning of
theyear. Thisis equivalent to {f= %dateTime% date firstDaylnMonth} .

firstDayOfMonth e.g., {f= %dateTime% firstDayOfMonth} ® 03/01/97
returns a new date representing the first of the month. Thisis equivaent to {f=
%dateTime% date firstDayOfMonth} .

firstSundaylIn: e.g., {f= 3 %dateTime% firstSundayIn:} ® 61
returns the number of days after the start of the year for the first Sunday within the month
for the specified index. Thisis equivalent to {f= 3 %dateTime% date firstSundayIn:}.

firstSundaylnMonth e.g., {f= %dateTime% firstSundaylnMonth} ® 61
returns the number of days after the start of the year for the first Sunday in the current
month. Thisis equivalent to {f= %dateTime%o date firstSundaylnMonth} .

gmt e.g., {f= %dateTime% gmt} ® 03/19/97 19:23:16
returns a new Universal Time with the date and time in the GMT time zone

hours e.g., {f= %dateTime% hours} ® 13
returns the number of hours from midnight until the specified time. Only the time portion
of the receiver isused; thisis equivaent to {f= %dateTime% time hours} .

lastSundayIn: e.g., {f= 3 %dateTime% lastSundayIn:} ® 89
returns the number of days after the start of the year for the last Sunday within the month
for the specified index. Thisis equivalent to {f= 3 %dateTime%o date lastSundayin:} .

lastSundaylnMonth e.g., {f= %dateTime% lastSundaylnMonth} ® 89
returns the number of days after the start of the year for the last Sunday in the current
month. Thisis equivalent to {f= %dateTime% date lastSundaylnMonth} .

220

WebBase User’s Guide

max: e.g., {set dtl 3 %dateTime% addDays:} {f= dtl %dateTime% max:} ® 04/14/97
09:35:21
returns the greater of the receiver or the argument.

min: e.g., {set dt1 3 %dateTime% addDays:} {f= dt1 %dateTime% min:} ® 04/11/97
09:35:21
returns the lesser of the receiver or the argument.

minutes e.g., {f= %dateTime% minutes} ® 30
returns the number of minutes past the hour. Only the time portion of the receiver is used;
thisis equivalent to {f= %dateTime% time minutes} .

monthindex e.g., {f= %dateTime% monthindex} ® 3
returns the number of the month. This is equivalent to {f= %dateTime% date
monthindex} .

monthName e.g., {f= %dateTime% monthName} ® #March
returns the symbol identifying the name of the month. Thisis equivaent to {f=
%dateTime% date monthName} .

seconds e.g., {f= %dateTime% seconds} ® 0
returns the number of seconds past the minute. Only the time portion of the receiver is
used; thisis equivalent to { f= %dateTime% time seconds} .

time e.g., {f= %dateTime% time} ® 11:23:16 AM
returns the time portion of the receiver

timeFromString: e.g., {f='8:00:00 PM' %dateTime% timeFromsString:} ® 03/19/97
20:00:00

returns a new Universal time in which the time is as specified in the input string. The date
isthe same as the date in the receiver. The time string MUST bein the format of the
system clock. If the system is set to a 12-hour format, the time string must be in a 12 hour
format with an uppercase AM or PM. If the system is set to a 24-hour format, the time
string must be in a 24 hour format. Because of these restrictions, it is recommended you
use one either timeFromString12: or timeFromString24:.

timeFromString12: e.g., {f='8:00:00 PM' %dateTime% timeFromString12:} ®
03/19/97 20:00:00

returns a new Universal time in which the time is as specified in the input string. The date
isthe same as the date in the receiver. The time string MUST be in 12-hour format with
AM or PM regardless of the format of the system clock.

timeFromString24: e.g., {f='20:00:00 PM' %dateTime% timeFromString24:} ®
03/19/97 20:00:00

returns a new Universal time in which the time is as specified in the input string. The date
isthe same as the date in the receiver. The time string MUST be in 24-hour format
regardless of the format of the system clock.

year e.g., {f= %dateTime% year} ® 1997
returns an integer specifying the year. Thisis equivalent to {f= %dateTime% date year:}.

zoneName e.g., {f= %dateTime% zoneName} ® PST
returns the time zone name of the receiver

WebBase User’s Guide 221

Chapter 11: Expressions

Universal Time Class Operations

The value of the %Universa Time% WebBase variable is the Universal Time class, which can
perform any of the following operations.

gmt e.g., {f= %UniversalTime% gmt} ® 03/19/97 19:23:17
returns a new universal time representing the current date and current time as GMT.

now e.g., {f= %UniversalTime% now} ® 03/19/97 11:23:17
returns a new universal time representing the current date and time.

11.23 OdbcTimeStamp

The value contained within a DateTime field in an ODBC database is returned to WebBase as
an OdbcTimeStamp. It is made up of 3 components: the date, the time, and afraction. The
date time value is displayed as: 07/11/96 02:37:38 PM.0. The date is displayed first, followed
by thetime. The*.0" at the end isthe fraction, and iseither aO or a 1.

The following operations can be sent to any instance of an OdbcTimeStamp returned as the
value in aDateTimefield in adatabase. For the examples below, the variable otsVarl will
contain the OdbcTimeStamp representing the date and time: 03/11/97 02:37:38 PM.0. The
variable otsVar2 will contain the OdbcTimeStamp representing the date and time: 03/12/97
11:23:35 AM.O.

< e.g., {f=otsVarl otsVar2 <} ® false
returns true if the receiver isless than the argument, otherwise false

<= e.g., {f=otsVarl otsVarl <=} ® false
returnstrue if the receiver isless than or equal to the argument, otherwise false

= e.g., {f=otsVarl otsVar2 =} ® false
returnstrue if the receiver and argument are the same date and time, otherwise false

> e.g., {f=otsVarl otsVar2 >} ® true
returns true if the receiver is greater than the argument, otherwise false

>= e.g., {f=otsVar2 otsVar2 >=} ® true
returns true if the receiver is greater than or equa to the argument, otherwise false

asDateTime e.g., {f= otsVarl asDateTime} ® ‘03/11/97 02:37:38 PM’
returns a string representing the date and time of the receiver. Usesthe OS to determine
12-hour or 24-hour format

asDateTimeWithPicture: e.g., {f= ‘MMM dd yyyy’ otsVarl asDateTimeWithPicture:}
® ‘Mar 11 1997 02:37:38 PM’

returns a formatted string of the receiver’ s date and time with the ‘date’ portion displayed
according to the *picture string’. The ‘time’ portion will be formatted asin the
asDateTime method. See Date--printWithPicture: for the formatting details. See also
asDateTimel2withPicture: and asDateTime24withPicture:.

asDateTimel2 e.g., {f= otsVarl asDateTimel2} ® ‘03/11/97 02:37:38 PM’
returns a string representing the date and time of the receiver 12-hour format

222

WebBase User’s Guide

asDateTimel2WithPicture: e.g., {f= ‘MMM dd yyyy’ otsVarl
asDateTimel2WithPicture:} ® ‘Mar 11 1997 02:37:38 PM’

returns a formatted string of the receiver’s date and time with the ‘date’ portion displayed
according to the *picture string’. The ‘time’ portion will be formatted asin the
asDateTimel2 method. See Date--printWithPicture: for the formatting details.

asDateTime24 e.g., {f= otsVarl asDateTime24} ® ‘03/11/97 14:37:38’
returns a string representing the date and time of the receiver in 24-hour format

asDateTime24WithPicture: e.g., {f= ‘MMM dd yyyy’ otsVarl
asDateTime24WithPicture:} ® ‘Mar 11 1997 14:37:38’

returns a formatted string of the receiver’ s date and time with the *date’ portion displayed
according to the *picture string’. The ‘time’ portion will be formatted asin the
asDateTime24 method. See Date--printWithPicture: for the formatting details.

asDateWithPicture: e.g., {f= ‘MMM dd yyyy’ otsVarl asDateWithPicture:} ® ‘Mar 11
1997

returns a formatted string of the receiver’s date displayed according to the ‘ picture string'.
See dso asDateTimeWithPicture:, asDateTimel2WithPicture: and
asDateTime24WithPicture.. See Date--printWithPicture: for the formatting details.

asNonEmptyString e.g., {f= otsVarl asNonEmptyString} ® *03/11/97 02:37:38 PM’
returns the receiver as adate time string. Thisis equivalent to the asDateTime operation.
Itis provided for compatibility with the asNonEmptyString operation on Strings.

asSeconds e.g., {f= otsVarl asSeconds} ® 3035543858
returns the number of seconds elapsed from January 1, 1901 until the specified date plus
the number of seconds in the time.

asUniversalTime e.g., {f= otsVarl asUniversalTime} ® 03/11/97 14:37:38
returns a new Universal Time instance in which the date and time are set to those of the
receiver.

date e.g., {f=otsVarl date} ® 03/11/97
returns the date portion of the receiver.

dateAndTime e.g., {f= otsVarl dateAndTime} ® (03/11/97 02:37:38 PM)
returns an array containing the date and the time represented by the receiver.

fraction e.g., {f= otsVarl fraction} ® 0
returns the fractional portion of the receiver (either O or 1).

max: e.g., {f= otsVarl otsVar2 max:} ® 03/12/97 11:23:35 AM.0
returns the greater of the receiver or the argument.

min: e.g., {f= otsVarl otsVar2 min:} ® 03/11/97 02:37:38 PM.0
returns the lesser of the receiver or the argument.

time e.g., {f=otsVarl time} ® 02:37:38 PM
returns the time portion of the receiver.

WebBase User’s Guide 223

Chapter 11: Expressions

11.24 Files

A file provides sequential or random access to the host file system. Each read operation
answers one page (maximum 2k bytes) of the file with the exception of the last page which
may have fewer bytes. The number of bytes to write may be from 1 to 2k bytes. In general,
reading and writing of file information should be done using afile stream. The specific file
associated with afile stream can be obtained from the file stream.

File Instance Operations

The following operations can be sent to any instance of afile. For the examples below, two
fileinstances are used. Thefirst is caled myFilel and is opened on the file default.htf that is
provided with the WebBase WebWizard. Thisinstance is created using {set fileDir
‘c:\http\wbwizard\” %Directory% pathName:} {set myFile 'default.htf' fileDir %File%
open:in:}. The second instanceis called myFile2 and is opened on a non-existent file called
fileExam.htf. Thisinstanceis created using {set fileDir 'c:\http\wbwizard\” %Directory%
pathName:} {set myFile ‘fileExam.htf' fileDir %File% open:in:}. The myFilel instanceis
used for read access; the myFile2 instance is used for write access.

close e.g., {f= myFilel close} ® a File on: ‘default.htf'
returns the receiver after closing thefile

directory e.g., {f= myFilel directory} ® a Directory on: 'c:\http\wbwizard\'
returns the directory which contains the receiver

flush e.g., {f= myFilel flush} ® a File on: 'default.htf'
returns the receiver after forcing al data written to the receiver to be recorded on disk

getFileTime e.g., {f= myFilel getFileTime} ® 02/26/97 15:22:40
returns a universal time representing the system time of thefile

name e.g., {f= myFilel name} ® ‘default.htf’
returns a string containing the receiver’ s file name

pathName e.g., {f= myFilel pathName} ® ‘c:\http\wbwizard\default.htf’
return a string that contains the entire path name (drive:/path/filename.ext).

readBuffer:atPosition: e.g., {set strBuf 100 %String% new:} {f== strBuf 1 myFilel
readBuffer:atPosition:} {strBuf} ® <see below>

returns the number of bytes read starting at the position specified in the second argument
into the first argument. The result of the above exampleis:

{set %out put % f al se}
{!- © 1997 ExperTelligence, Inc. Al R ghts Reserved. -!}

{reDirect2 ("W

size e.g., {f= myFilel size} ® 184
returns the number of bytesin thefile.

writeBuffer:ofSize:atPosition: e.g., {set strBuf ‘Data to be written into a file that is
already open’} {f= strBuf strBuf size 1 myFile2 writeBuffer:ofSize:atPosition:} ® a File
on: 'fileExam.htf'

224 WebBase User’s Guide

returns the receiver after writing the number bytes specified in the second argument of the
first argument into the receiver file at the position specified in the third argument.

File Class Operations

The %File% variable provides access to the File class, which includes a number of useful
operations, as described below.

changeModeOf:to: e.g., {f="c:\nttp\wbwizard\default.htf' #r %File%
changeModeOf:to:} ® File

{f="c:\http\wbwizard\default.htf' #n %File% changeModeOf:to:} ® File

change the attributes of the file named in the first argument to those of the attribute in the
second argument. Valid types of attributes are #r - read only, #h - hidden, #s - system, #a
- archive. All attributes can be unset by specifying an attribute other thanr, h, sor a; this
is shown in the second example above.

copy:to: e.g., {f= 'c:\http\wbwizard\default.htf' ‘c:\http\wbwizard\default.ntm' %File%
copy:to:} ® true

copy the file named in the first argument to the new file named in the second argument.
Return true if the copy is successful, otherwise false.

drive:path:file: e.g., {f= $c "\http\wbwizard\' 'default.htf' %File% drive:path:file:} ®
‘c:\nttp\wbwizard\default.htf’

returns the file path name of the file name. Note that the drive must be a character; the
path and file are strings.

execute: e.g., {f="c:\msoffice\access\msaccess.exe' %File% execute:} ® File
execute the file named in the argument (a.exe or .pif file). To run abatch file, specify
‘command.com /c xxx.bat’ .

exists: e.g., {f="c:\nttp\wbwizard\default.htf' %File% exists:} ® true
returns true if the file or subdirectory specified by the string argument exists; otherwise
false.

exists:in: e.g., {set fileDir 'c:\http' %Directory% pathName:} {f= 'example.htf' fileDir
%File% exists:in:} ® false

returns true if the file or subdirectory specified by the string argument existsin the
specified directory (second argument); otherwise false. Note that the second argument
must be a directory, not a string identifying a directory.

fileName:extension: e.g., {f='aLongFilename’ 'aLongFileType' %File%
fileName:extension:} ® aLngFInm.aLo

returns a string which is afile name abbreviated from the first and second arguments.
Lowercase vowels are dropped from the right of the first argument until it isless than or
equal to 8 characters.

fullPathName: e.g., {f= "webbase.exe' %File% fullPathName:} ®
C:\WEBBASE\WebBase.exe
returns the full path name of the file name specified in the argument

newFile: e.g., {f="testFile.dat’ %File% newFile:} ® a FileStream on: 'testFile.dat’
returns a file stream with path name specified by the argument

WebBase User’s Guide 225

Chapter 11: Expressions

newFile:in: e.g., {set fileDir 'c:\http' %Directory% pathName:}
{f="example.dat’ fileDir %File% newFile:in:} ® a FileStream on: ‘example.dat’
returns a file stream with path name specified by the first argument in the directory
specified in the second argument.

open:in: e.g., {set fileDir 'c:\http\wbwizard\' %Directory% pathName:}

{f="default.htf' fileDir %File% open:in:} ® a File on: 'default.htf’

returns afile opened on the file named in the first argument in the directory specified in the
second argument. Note that this operation returns a file; most of the other operations
return afile stream.

pathName: e.g., {f= 'c:\http\wbwizard\default.htf' %File% pathName:} ® a FileStream
on: 'default.htf’
returns a file stream on the path named by the first argument

pathName:in: e.g., {set fileDir ‘c:\nttp\wbwizard\’ %Directory% pathName:} {f=
“default.htf’ fileDir %File% pathName:in:} ® a FileStream on: 'default.htf’

returns a file stream on the path named by the first argument with the default directory
specified in the second argument...

pathNameReadOnly: e.g., {f= "c:\http\wbwizard\default.htf' %File%
pathNameReadOnly:} ® a FileStream on: 'default.htf'

returns afile stream on the path named by the argument; the file stream allows only read
access.

pathNameReadOnly:in: e.g., {set fileDir ‘c:\http\wbwizard\' %Directory% pathName:}
{f="c:\http\wbwizard\default.htf' fileDir %File% pathNameReadOnly:in:} ® a
FileStream on: 'default.htf'

returns afile stream on the path named by the first argument in the directory specified in
the second argument; the file stream allows only read access.

remove: e.g., {f="c:\http\wbwizard\default.xxx” %File% remove:} ® File
erase the file named in the argument

rename:to: e.g., {f="c:\http\wbwizard\default.ntm' ‘c:\http\wbwizard\default.xxx'
%File% rename:to:} ® File
rename the file named in the first argument to have the name in the second argument.

11.25 Directories

A directory represents a disk directory with a volume string and a path name string. Filesare
generally described in terms of a directory and afile name.

Directory Instance Operations

The following operations can be sent to any instance of adirectory. An example directory dirl
isused in the following descriptions. It is generated using {set dirl ‘c:\http\wbwizard\'
%Directory% pathName:}.

= e.g., {set dir2 'c:\webbase\ ' %Directory% pathName:} {f=dir2 dirl =} ® false
returns true if the argument and receiver are the same directory; otherwise false

226

WebBase User’s Guide

create e.g., {set dir2 'c:\myNewDir\ ' %Directory% pathName:}
{f=dir2 create} ® a Directory on: 'C:\myNewDir\'
returns the receiver after creating a directory on the disk for it

drive e.g., {f=dirl drive} ® $C
returns the disk drive letter of the recaiver

drivePathName e.g., {f= dirl drivePathName} ® *C:\http\wbwizard\’
returns a string representing the drive and path name of the receiver.

drivePrefix e.g., {f=dirl drivePrefix} ® ‘C:’
returns a string that contains the logical drive (e.g., <drive>: for real drives, or
‘WSERVER\ALIAS' for network drive names).

file: e.g., {f="default.htf' dirl file:} ® a FileStream on: 'default.htf’
returns afile stream for the file named by the argument in the current directory. If thefile
does not exist, it will be created.

fileReadOnly: e.g., {f= 'default.htf' dirl fileReadOnly:} ® a FileStream on: 'default.htf’
returns afile stream for the file named by the argument in the recelver directory. If thefile
does not exidt, it will be created and opened for read only access.

filesNamed: e.g., {f="*.txt' dirl filesNamed:} ® (‘testfile.txt")
returns a collection of file names from the receiver, filtered using the argument (e.g.,
*TXT).

formatted e.g., {f= dirl formatted} ® OrderedCollection((‘wizard.gif' 432 '06/28/95
12:24:58' 'a’ 517759773) (‘wizard.htf' 332 '02/19/97 08:40:44" 'a' 575907094)
(‘testfile.txt' 0 '03/21/97 03:25:46' 'a’' 578124599) (‘default.htf' 184 '02/26/97 03:22:40" "
576355028) (‘expere2.gif' 170 '06/02/95 06:36:26' 'a’ 516043917) (‘experli.gif' 875
'02/24/97 08:34:12" 'a’ 576209990) (‘ii_secur.hti' 314 '02/19/97 09:25:34" 'a'
575884081) (‘ii_anchr.hti' 260 '02/20/97 07:29:54" 'a' 575945659) ... etc.)

returns a collection of arrays of file information for the receiver. Each array hasfive
entries: file name, size, date/time, attributes and internal date/time representation.

formatted: e.g., {f= “*.txt’ dirl formatted:} ® OrderedCollection((‘testfile.txt' O
'03/21/97 03:25:46' 'a’ 578124599))

returns a collection of arrays of file information for the receiver, filtered using the
argument, e.qg., **.TXT'. Each array hasfive entries: file name, size, date/time, attributes
and internal date/time representation.

freeDiskSpace e.g., {f= dirl freeDiskSpace} ® 394625024
returns the number of bytes of free space on the disk containing the current directory (not
necessarily the receiver).

fullDirName e.g., {f=dirl fullDirName} ® ‘C:\http\wbwizard\’
returns a string representing the path name of the receiver, including drive letter. Thereis
awaysa\ at the end.

hasNetworkName e.g., {f= dirl hasNetworkName} ® false
returns true if the drive specifier is a string representing a network drive (e.g.,
‘“WSRV\ALIAS)), otherwise false.

WebBase User’s Guide 227

Chapter 11: Expressions

hasSubdirectory e.g., {f= dirl hasSubdirectory} ® true
returns true if the receiver has a subdirectory

makeCurrent e.g., {f= dirl makeCurrent} ® a Directory on: 'C:\http\wbwizard\'
returns the receiver after making it the current directory

newFile: e.g., {f="testFile.txt' dirl newFile:} ® a FileStream on: 'testFile.txt'
returns afile stream for the file named by the argument in the receiver directory. If thefile
exigs, it will be removed and anew file will be created.

pathName e.g., {f= dirl pathName} ® “\http\wbwizard\’
returns a string representing the path name of the receiver (drive letter not included).

remove e.g., {set dir2 'c:\myNewDir\ ' %Directory% pathName:} {f= dir2 remove} ® a
Directory on: 'C:\myNewDir\'
returns the receiver after removing the directory represented by it from the disk

subdirectories e.g., {set dir2 'c:\webbase' %Directory% pathName:} {f= dir2
subdirectories} ® SortedCollection(("\webbase\docs' 'docs’) ("\webbase\logs' 'logs’)
("\webbase\odbtalk' 'odbtalk’) (‘\webbase\support' 'support’))

returns an ordered collection of arrays, where each array contains the complete pathname
and the file name of a subdirectory of the receiver

valid e.g., {f=dirl valid} ® true
returns true if the receiver isvalid; otherwise false

validDrive e.g., {f=dirl validDrive} ® true
returns true if thereceiver’ sdriveisvalid; otherwise false

validFile: e.g., {f="xxx.dat’ dirl validFile:} ® false
returnstrue if the file name in the argument is afile or subdirectory in the receiver.

volumeLabel e.g., {f=dirl volumeLabel} ® WILLIE
returns the volume label of the disk containing the receiver

Directory Class Operations

The value of the %Directory% variable isthe Directory class. The operations that can be
performed on this class are described below.

create: e.g., {f= ‘c:\myNewDir’ %Directory% create:} ® Directory
creates a directory on the disk with the complete path name specified in the argument

current e.g., {f= %Directory% current} ® a Directory on: 'C:\http\wbwizard\'
returns a directory representing the current directory

currentDisk e.g., {f= %Directory% currentDisk} ® 2
returns the current default drive (0=A, 1=B, etc.).

drives e.g., {f= %Directory% drives} ® (‘a:" 'c:' 'd:" 'e:")
returns the pathname strings of al the known drives.

228

WebBase User’s Guide

exists: e.g., {f="c:\webbase’ %Directory% exists:} ® true
returns true if the directory specified by the argument exists; otherwise false.

pathName: e.g., {f='c:\webbase' %Directory% pathName:} ® a Directory on:
'C:\webbase\'
returns a directory described by the complete path name in the input argument.

remove: e.g., {f="c:\myNewDir' %Directory% remove:} ® Directory
removes the directory with the path name specified in the input argument. The directory
must be empty before it can be removed.

removeAll: e.g., {f="c:\myNewDir' %Directory% removeAll:} ® true

removes the directory with the path name specified in the input argument by first removing
any files or subdirectories within the directory, and then removing the directory. Returns
trueif the directory removal was successful; false otherwise.

11.26 Streams

A stream is used for accessing files, devices and internal objects as a sequence of characters or
other objects. A stream has an internal record of its current position. It has access messages
to get or put the abject(s) at the current position and cause the position to be advanced.
Messages are defined for changing the stream position, so that random access is possible.

Stream Instance Operations

The following methods can be sent to an instance of any type of stream. Be sureto review the
use of the ensure macro when using these methods. It isimportant that any files opened aso
be properly closed. 1n the examples below, the stream in use will be afile stream on thefile
‘c:\http\wbwizard\default.htf’ generated using {set strm ‘c:\http\wbwizard\default.htf” %File%
pathNameReadOnly:}.

atend e.g., {f=strm atEnd} ® false
returnstrue if the receiver is positioned at the end (beyond the last object); otherwise false.

close e.g., {f=strm close} ® a FileStream on: ‘default.htf'
returns the receiver after closing it.

contents e.g., {f= strm contents} ® <see below>
returns the collection over which the receiver is streaming. The contents of the example
fileare:

{set %out put % f al se}
{!- © 1997 ExperTelligence, Inc. Al R ghts Reserved. -!}

{reDirect2 ('Wzard. htf' %base% appendFi | enane: pat hnameUN X) }
now = {¥%seconds%
{/reDirect 2}

copyFrom:to: e.g., {f= 15 42 strm copyFrom:to:} ® false}

{!- © 1997 ExperTel

returns the subcollection of the collection over which the receiver is streaming, from the
starting position (first argument) to the ending position (second argument).

WebBase User’s Guide 229

Chapter 11: Expressions

countBlanks e.g., {f=" 3spaces' asStream countBlanks} ® 3

returns the number of character position skipped when reading the stream starting with
whereit is currently positioned. A spaceisl, atabis4. If the next character read by the
stream is not a space or tab, returns 0.

indexOf: e.g., {f="htf' strm indexOf:} ® 106
returns the position of the first occurrence of the collection in the argument in the receiver.
If no such collection isfound, return O.

indexOfLowercase: e.g., {f= ‘unix’ strm indexOfLowercase:} ® 142

returns the position of the first occurrence of the collection in the argument in the receiver.
If no such collection isfound, return 0. All tests are done after converting the contents of
the receiver to lowercase.

iISEmpty e.g., {f=strm isEmpty} ® false
returns true if the recelver contains no elements, otherwise false.

lineDelimiter e.g., {f=strm lineDelimiter} ® $cr
returns the current line delimiter, the default is a carriage return character.

lineDelimiter: e.g., {f= $cr strm lineDelimiter:} ® a FileStream on: ‘default.htf'
returns the receiver after changing the line delimiter character to the argument. Thisis
only valid for file streams.

next: e.g., {f= 10 strm next:} ® {set %outp
returns the number of items from the receiver as specified in the argument. Theitemsare
returned in a collection of the same type as the stream is streaming over.

nextinteger e.g., {f= strm nextinteger} ® 0
returns the next integer from the receiver; the value may include aradix. Inthe example, O
is returned because there were no integers to read from the file.

nextLine e.g., {f= strm nextLine} ® ‘{set %output% false}’
returns a string containing the characters of the receiver up to the next line delimiter.

nextMatchFor: e.g., {f= ${ strm nextMatchFor:} ® true
returns true if the next object is the same as the argument; otherwise false

nextWord e.g., {f= strm nextWord} ® “set’
returns a string containing the next work in the receiver. A word starts with a letter,
followed by a sequence of letters and digits.

peek e.g., {f=strm peek} ® ${
returns the next object in the receiver without advancing the stream position. If the stream
is positioned at the end, returns nil

peekFor: e.g., {f= $> strm peekFor:} ® false
returnstrue if the next object to be accessed in the receiver is the same as the argument;
otherwise false. The stream position of the receiver is advanced only if the answer istrue.

position e.g., {f= strm position} ® 0
returns the receiver’s current stream position. 0 is at the start of the stream.

230

WebBase User’s Guide

position: e.g., {f= 25 strm position:} ® a FileStream on: 'default.htf'
returns the receiver after setting its position to the argument. |If the argument is outside the
bounds of the receiver collection, reports an error.

reset e.g., {f=strm reset} ® a FileStream on: 'default.htf'
returns the receiver after positioning it to the beginning

reverseContents e.g., {f= strm reverseContents} ® <see below>
returns a collection of the same type of the receiver’s collection, with the contents in
reverse order. The contents of the examplefile, in reverse order, are:

}2tceri Der/{

}¥%sdnoces% = won

}) XI NUemanht ap : emanel i Fdneppa %sab% ' fth. drazi W(2tceri Der{
}!'- .devreseR sthgiRII A .cnl ,ecnegilleTrepxE 7991 © -!{
}esl af % uptuo%tes{

setToEnd e.g., {f=strm setToEnd} ® a FileStream on: ‘default.htf'
returns the receiver after setting its position to the end

size e.g., {f=strmsize} ® 184
returns the number of objects in the recelver stream

skip: e.g., {f= 10 strm skip:} ® a FileStream on: ‘default.htf'
returns the receiver after incrementing its position by the argument

skipSeparators e.g., {f= strm skipSeparators} ® a FileStream on: 'default.htf'
skip over any separators

skipTo: e.g., {f= $r strm skipTo:} ® true

returns true if the argument is found, otherwise false. If the argument is found, the
position of the receiver is advanced to it. If the argument is not found, the position is put
at the end of the stream.

skipToWhitespace e.g., {f= strm skipToWhitespace} ® true
advance the receiver’ s position beyond the next occurrence of whitespace, or if none, to the
end of the stream. Return true if a whitespace occurred; otherwise false.

skipWhitespace e.g., {f= strm skipWhitespace} ® aFileStream on: ‘default.htf’
skip over any whitespace characters.

upTo: e.g., {f=$tstrm upTo:} ® {se

returns the collection of objects from the receiver starting with the next accessible object
and up to but not including the argument. Set the position beyond the argument. If the
argument is not present, returns the remaining elements of the stream.

upToWhitespace e.g., {f= strm upToWhitespace} ® {set

returns the collection of objects from the receiver starting with the next accessible object
and up to but not including the next whitespace character. Set the position beyond the
whitespace character. If no whitespace character is present, returns the remaining
elements of the stream.

WebBase User’s Guide 231

Chapter 11: Expressions

Stream Class Operations

The following methods can be sent to any type of stream class. The stream classes that are
available are %0ReadStream%o, %eWriteStream% and %ReadWriteStream%o.

crString e.g., {f= %WriteStream% crString} ® <CR><LF> characters

returns a string containing a carriage return and line feed characters. Thisis equivaent to
the cr operation available on WriteStreams. It does not add the string to a stream; it
merely returnsit.

on: e.g., {f= ‘astring to read’ %ReadStream% on:} ® a ReadStream

{f= %String% new %WriteStream% on:} ® a WriteStream

return a new instance of the receiver stream class whose contents are the argument (a
collection).

11.27 Read Streams

A read stream allows streaming over an indexed collection of objects for read access, but not
write access.

Read Stream Instance Operations

All of the operations described above for streams can aso be performed on read streams. The
following operations are specifically for read streams.

next e.g., { f= ‘c:\http\wbwizards\default.htf’ %File% pathNameReadOnly: next} ® ${
returns the next object accessible by the receiver and advances the stream position. If the
recaeiver is at the end, returns an error.

Read Stream Class Operations

The %ReadStream% variable represents the ReadStream class, which can use the stream class
operations described above. There are no class operations specifically for this class.

11.28 Write Streams

A write stream allows streaming over an indexed collection of objects for write access, but not
read access.

Write Stream Instance Operations

All of the operations described above for streams can also be performed on write streams. The
following operations are specifically for write streams. Write streams are particularly useful
for concatenating a large number of strings together. Although the same result can be achieved
with the‘,” operator, it is more efficient to create a write stream on an empty string, add in al
of the desired strings, and then use the contents of the stream. The stream used in the
following examples is generated using {set wstrm %String% new %WriteStream% on:}.

cr e.g., {f=wstrmcr} ® a WriteStream
returns the receiver after writing the line terminating character (carriage return and line-
feed) toit.

232 WebBase User’s Guide

nextPut: e.g., {f= $a wstrm nextPut:} ® $a
returns the argument after writing it to the receiver stream. For write streams on strings,
the argument must be a character.

nextPutAll: e.g., {f= *abc’ wstrm nextPutAll:} ® *abc’
returns the argument (a collection) after writing each of the objectsin it to the receiver.
For write stream son strings, the argument can be a substring.

space e.g., {f= wstrm space} ® a WriteStream
returns the receiver after writing the space character toit. Thisis equivalent to {f= wstrm
nextPut: $space} .

tab e.g., {f=wstrm tab} ® a WriteStream
returns the receiver after writing the tab character to it. Thisis equivaent to {f= wstrm
nextPut: $tab}.

tab: e.g., {f=5 wstrm tab:} ® a WriteStream
returns the receiver after writing the number of tab characters specified in the argument to
it.

Write Stream Class Operations

The %WriteStream% variable represents the WriteStream class, which can use the stream
class operations described above. There are no class operations specifically for this class.

11.29 Read-Write Streams

A read-write stream allows streaming over an indexed collection of objects for read and write
access.

Read-Write Stream Instance Operations

All of the operations described above for streams and write streams can a so be performed on
read-write streams. The following operations are specifically for read-write streams.

next e.g., {set strm 'This is an example string' %ReadWriteStream% on:} {f= strm next}

® $T
returns the next object accessible by the receiver and advances the stream position. If the
recaeiver is at the end, returns an error.

truncate e.g., {set strm 'This is an example string' %ReadWriteStream% on:} {f== 15
strm position:} {f== strm truncate} {f= strm contents} ® ‘This is an exam’
returns the receiver after setting the size of its stream to its current position

Read-Write Stream Class Operations

The %ReadWriteStream% variabl e represents the ReadWriteStream class, which can use the
stream class operations described above. There are no class operations specificaly for this
class.

WebBase User’s Guide 233

Chapter 11: Expressions

11.30 File Streams

A file stream allows streaming over the characters of files for read and write access. A file
stream accesses its file in pages, and streams across the string containing the current file page.
Because writes are buffered, a flush or close message must be sent to the file stream to ensure
that the written data is physically recorded. All of the operations on read write streams can
also be performed on file streams. The example file stream used in below is generated using
{set fstrm ‘c:\http\wbwizard\default.htf” %File% pathName:}.

file e.g., {f=fstrm file} ® a File on: 'default.htf’
returns the file over which the receiver is streaming.

flush e.g., {f=fstrm flush} ® a File on: 'default.htf'
guarantee that any writes to the receiver are physically recorded on disk

pathName e.qg., {f= fstrm pathName} ® ‘C:\http\wbwizard\default.htf’
returns the complete pathname of the file over which the receiver is streaming

11.31 OdbcRowObjects

An OdbcRowODbject represents arow of data returned via an sql macro SELECT request. The
OdbcRowObjects generated by the SELECT request are placed into an ordered collection that
is stored in the WebBase variable specified in the sql macro. An OdbcRowODbject is very
similar to an ordered collection since it contains the fields for the row that is represents. An
OdbcRowObject also can identify its associated OdbcRowHeader (see below). The example
OdbcRowObject used in the following operations is retrieved from the database examples
provided with the WebBase WebWizard. The datais retrieved using this sql macro:

{sgl to answers source 'nyAccess' user 'fred password 'test'}
SELECT * FROM Cars ORDER BY Year DESC, Price

{/sql}

After the SELECT is complete, the matching rows have been stored in the WebBase variable
{answers} as OdbcRowODbjects. Thefirst of these will be used: {set examORO answers first}.

alignDollar: e.g., {f= “123’ examORO alignDollar:} ® '$123'

returns a string in which the argument has been properly formatted to represent a dollar
vaue (eg., a‘'$ at the start). The alignDollar: operation provided by String is more
useful since it allows awidth of the resulting string to be specified.

at: e.g., {f=1examORO at:} ® 26
returns the value of the field at the specified key (argument). The argument may be a
string or symbol or number.

colTypeOf: e.g., {f= 1 examORO colTypeOf:} ® 4
returns the column Sgl type of the field at the specified key (argument).

columnNames e.g., {f= examORO columnNames} ® ('ID' 'Year' 'Maker' ‘Model'
‘Cylinders' 'Transmission’ 'Kind' ‘Color' ‘Mileage' 'Price' 'Air’ ‘Cruise’ ‘Category’
‘Country")

returns a collection of the column names.

234

WebBase User’s Guide

columnSqlTypes e.g., {f= examORO columnSqglTypes} ® (4512 12-6 12121248 -7 -
71212)
returns a collection of the column names. The different sgl types are:

Example 11.6 SQL Types

BIT ==> -7
TINYINT ==> -6
BIGNT ==> -5
LONGVARBI NARY ==> -4
VARBI NARY ==> -3

Bl NARY ==> -2
LONGVARCHAR ==> -1
CHAR ==> 1

NUMERI C ==> 2

DECI MAL ==> 3

| NTEGER ==> 4

SMALLI NT ==> 5
FLOAT ==> 6

REAL ==> 7

DOUBLE ==> 8

DATE ==> 9

TIME ==> 10

TI MESTAMP ==> 11
VARCHAR ==> 12
DEFAULT ==> 99

colWidthOf: e.g., {f= 1 examORO colWidthOf:} ® 11
returns the column width of the field at the specified key (argument).

describeHTMLRecord e.g., {f= examORO describeHTMLRecord}

returns a string that displays a <TABLE> about the receiver. The table shows the field
name, field size, field type and value within the field. The example presented with the
OrderedCollection describeVHTML Table operation uses this operation to display multiple
tables; one for each OdbcRowObject in the collection.

describeHTMLRecord: e.g., {f= ‘Record 1’ examORO describeHTMLRecord:}
returns a string that displays a <TABLE> about the receiver. The table shows the field
name, field size, field type and value within the field. Thisisthe same as
describeHTMLRecord, but includes atitle at the top of each table.

fullHTMLRecord e.g., {f= examORO full[HTMLRecord} ® <see below>
returns the receiver in a<TABLE></TABLE> format. Notitleisadded to thetable. The
results of the example are:

WebBase User’s Guide 235

Chapter 11: Expressions

Example 11.7

fullHTMLRecord example

\ ID 26

\ Year |92

. Maker BMW
\ Model 318 IS
‘ Cylinders I4
|

|

|

Transmission i5 Speed

Kind 2 Door
Color iRed

| Llileage |3000

| Price 22900.0
‘ Air tme

‘ Cruise |false
|

|

Category iPassenger

Country !European

fullHTMLRecord: e.g., {f= ‘Data Table’ examORO fullHTMLRecord:} ® <see

above>

returns a string representing the receiver in a<TABLE></TABLE> format. The
argument specified isthe title that isincluded in the table. The results are identical to
those presented above, with the exception that the title is displayed at the top of the table.

fullRecord e.g., {f= examORO fullRecord} ® <see below>

returns a string containing the column names and values for al the fieldsin the receiver.
The names and values are separated by a“:’. Each name/value pair is separated by a
carriage return. The results from the above example are shown below:

Example 11.8 fullRecord example
ID 26
Year: 92
Maker: BMWN
Model : 318 IS
Cylinders: 4
Transm ssion: 5 Speed
Ki nd: 2 Door
Col or: Red
M | eage: 3000
Price: 22900.0
Air: true
Crui se: false
Cat egory: Passenger
Country: European

getMessage e.g., {f= examORO getMessage} ® *’
returns any message associated with this receiver. This may occur if the buffer was
insufficient to hold all the data which was subsequently truncated. The hasMessage

236

WebBase User’s Guide

returnstrue if there is amessage to retrieve. If thereis no message to retrieve, an empty
string is returned.

hasMessage e.g., {f= examORO hasMessage} ® false

returns true if there is a message associated with the receiver. This may occur if the buffer
was insufficient to hold all the data which was subsequently truncated. The getMessage
operation is used to retrieve the actual message.

header e.g., {f= examORO header} ® an OdbcRowHeader
returns the row header of the receiver.

indexFor: e.g., {f= ‘Price’ examORO indexFor:} ® 10
returns the integer index of the field with the name specified in the argument. The name
may be either a string or a symbol.

isCurrencyCol: e.g., {f= ‘Price’ examORO isCurrencyCol:} ® false
returns true if the column with the name specified in the argument has a type of Currency;
otherwise false.

isNumeric: e.g., {f= ‘Price’ examORO isNumeric:} ® true
returnstrue if the column with the name specified in the argument has a type of Number;
otherwise false.

isYesNo: e.g., {f= ‘Price’ examORO isYesNo:} ® false
returns true if the column with the name specified in the argument has a type of Y esNo;
otherwise false.

printField:on: e.g., {set stream %String% new %WriteStream% on:} {f== 1 stream
examORO printField:on:} {stream contents} ® 26

returns the receiver after adding the properly formatted description of the field specified in
the first argument to the stream specified in the second argument.

printHRecord e.g., {f= examORO printHRecord} ® ‘<tr><td>26</td>
<td>92</td><td>BMW</td><td>318 IS</td><td>4</td><td>5 Speed</td> <td>2
Door</td><td>Red</td><td>3000</td><td>22900.0</td>
<td>true</td><td>false</td><td>Passenger</td><td>European</td></tr>’
returns a string containing al the field values properly formatted (see printField:on:).

printRecord e.g., {f= examORO printRecord} ® 26 92 BMW 318 IS
45 Speed 2 Door Red 3000 22900.0 true false
Passenger European

returns a string containing all the field values properly formatted.

printTHColumnNamesOn: e.g., {set stream %String% new %WriteStream% on:} {f=
stream examORO printTHColumnNamesOn} ® <tr><th>ID</th>
<th>Year</th><th>Maker</th><th>Model</th><th>Cylinders</th>
<th>Transmission</th><th>Kind</th><th>Color</th><th>Mileage</th>
<th>Price</th><th>Air</th><th>Cruise</th><th>Category</th>
<th>Country</th></tr>’

returns a string containing the column names as HTML <TH> headings.

tableWidth e.g., {f= examORO tableWidth} ® 167
returns an integer representing the width of al the columnsin the receiver.

WebBase User’s Guide 237

Chapter 11: Expressions

valueAt: e.g., {f= 1 examORO valueAt:} ® ‘26’
returns a string representing the value of the field specified in the argument. The argument
can be an integer, string or symbol identifying the field.

11.32 OdbcRowHeaders

The OdbcRowHeader contains a number of OrderedCollection dots - each collection the size
of the number of fields returned for that sgl statement. The header contains things like column
(field) names, column widths, column types, etc. The example OdbcRowHeader is accessed
viathe OdbcRowObject used above: {set examORH examORO header}.

at: e.g., {f=#ID examORH at:} ® 1
returns the number of the column specified by the argument which must be a symbol.

colTypeOf: e.g., {f= 1 examORH colTypeOf} ® 4

returns an integer representing the sgl type of the column specified in the argument. The
argument must be an integer. The different sgl types are described as part of the
OdbcRowObject columnSgl Types operation.

columncbColDefs e.g., {f= examORH columncbColDefs} ® (10 5 15 153 10 15 15 10
151115 10)
returns an array of column definitions.

columnDisplaySizes e.g., {f= examORH columnDisplaySizes} ® (11 6 15 153 10 15 15
1122111510)
returns an ordered collection of the display sizes of each field in the row

columnLengths e.g., {f= examORH columnLengths} ® (42 1515110151548 1115
10)
returns an ordered collection of the length of each field in the row

columnNames e.g., {f= examORH columnNames} ® ('ID' 'Year' 'Maker' ‘Model'
‘Cylinders' 'Transmission’ 'Kind' '‘Color' ‘Mileage' 'Price' 'Air’ ‘Cruise’ ‘Category’
‘Country")

returns an ordered collection of the names of each field in the row

columnSqlTypes e.g., {f= examORH columnSqglTypes} ® (451212 -6 12121248 -7 -
71212)

returns an ordered collection of the SQL types of each field in the row. The different sgl
types are described as part of the OdbcRowObject columnSgl Types operation.

isNumeric: e.g., {f= 1 examORH isNumeric:} ® true
returns true if the column specified in the argument has a type of Number; otherwise false.
The argument must be an integer.

isYesNo: e.g., {f=1 examORO isYesNo:} ® false
returns true if the column specified in the argument has a type of Y es/No; otherwise false.
The argument must be an integer.

printColumnDashes e.g., {f= examORH printColumnDashes} ®

returns a string that prints enough dashes for columnL engths with one space between each

238

WebBase User’s Guide

group of dashes. Thisisused when formatting tabular output but not using features like

the <TABLE> construct.
printColumnNames e.g., {f= examORH printColumnNames} ® * ID Year Maker
Model Cylinders Transmission Kind Color Mileage

Price Air Cruise Category Country *
returns a string containing the names of the columnsin aformat similar to
printColumnDashes.

11.33 Registration Database

The Registration Database can be used on 32-bit systems to access the System Registry. The
System Registry is organized like a Dictionary, and the RegistrationDatabase is very similar to
adictionary. There are severa top-level keysin the System Registry, including
HKEY_CLASSES ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE and
HKEY_USERS. The value associated with each of these keysis another dictionary (or
RegistrationDatabase) containing keys and values. Each key/value pair in the System Registry
also can have name/value pairs associated with it. Each key/value pair has a default
name/value pair automatically created for it; the nameis‘(Default)’ and the valueis (value
not set)’.

In the following, the terms ‘keys, ‘values' and ‘name/value pair’ will be used to specifically
identify the type of data being accessed in aregistration database.

Registration Database Instance Operations

The examplesin the following will use a RegistrationDatabase instance set up using the
following:

{set regDB 'SOFTWARE\ExperTelligence, Inc.\WebBase\4.10\Parameters'
%RegistrationDatabase% localMachine at:}.

add: e.g., {set assoc ‘exampleKey’ ‘exampleValue’ %Association% key:value:} {f==
assoc regDB add:} {set strm %String% new %WriteStream% on:} {f== strm regDB
printHierarchyOn:} {f= strm contents} ® exampleKey - exampleValue

returns the argument after adding it to the receiver. The argument must be an association.
Note that this creates a key in the specified registration database; the default value within
thiskey is specified as the association value (e.g., ‘exampleValue'). Thisdoes NOT add a
new name/value pair into the specified registration database. To add a new name/value
pair into aregistration database:

{f=" SOFTWARE\ Exper Tel | i gence, Inc.\WbBase\ 4. 10\ Paraneters’ assoc
%Regi st rat i onDat abase% | ocal Machi ne at: put:}

at: e.g., {f= "SOFTWARE\ExperTelligence, Inc.\WebBase\4.10\Parameters’
%RegistrationDatabase% localMachine at:} ® aRegistrationDatabase

returns a new RegistrationDatabase which spans out from the node named by the
argument. If the node does not exist, an error is generated. The following code will
display al of the WebBase parameters, as shown below the code:

{set strm%string% new %ViteStreantoon:} {set aCltn regDB
ent ryVal ues}
{for Row aRow on ad tn}

{f== aRow asString strm nextPutAll:}

{f==strmecr}

WebBase User’s Guide 239

Chapter 11: Expressions

{/f or Row}
{f= strm cont ent s}

The results of the above are;

"PortNo' ==> 80

"LogDirectory' ==>"'C: \WbBase\ LOGS

"Directory' ==>"'"C\HITP

"errorLogFile" ==>"'C \WbBase\ LOGS\ WbError. | og
"LogFormat' ==> 2

at:put: e.g., {set assoc ‘exampleKey’ ‘exampleValue’ %Association% key:value:} {f=
"SOFTWARE\ExperTelligence, Inc.\WebBase\4.10\Parameters’ assoc
%RegistrationDatabase% localMachine at:put:} ® ‘exampleKey' ==> 'exampleValue'
returns the second argument after setting the value of the node named in the first argument
to the value in the second argument. Thisis used to set (create/update) a name/value pair
within the specific registration database identified in the first argument.

entryValues e.g., {f= regDB entryValues} ® Dictionary(('PortNo' ==> 80)
('LogDirectory' ==> 'C:\WebBase\LOGS") (‘Directory’ ==> 'C:\HTTP") (‘errorLogFile’
==>"C:\WebBase\LOGS\WebError.log') (‘'LogFormat' ==> 2))

returns a dictionary containing the namefvalue pairs of the receiver.

includesKey: e.g., {f= ‘Parameters’ ‘SOFTWARE\ExperTelligence,
Inc.\WebBase\4.10’ %RegistrationDatabase% localMachine at: includesKey:} ® true
returnstrue if the receiver contains a subkey named by the argument; otherwise false.
Note that this finds keys within a registration database. To determineif anamein a
name/value pair isin aregistration database, use:

{f="Directory’ regDB entryVal ues incl udesKey:}

keyName e.g., {f= regDB keyName} ® *'SOFTWARE\ExperTelligence,
Inc.\WebBase\4.10\Parameters’

returns the name of the receiver up to but not including the top-level registry key. The
keyName for any top-leve registry key is anumeric value. It isnot possible to rename any
of the keysin the System Registry.

keys e.g., {f= 'SOFTWARE\ExperTelligence, Inc.\WebBase\4.10’
%RegistrationDatabase% localMachine at: keys} ® OrderedCollection('"Parameters'
‘Variables' 'Extensions' ‘Aliases')

returns a collection of the keys of the receiver, including any Windows reserved keys.

printHierarchyOn: e.g., {set strm %String% new %WriteStream% on:} {f== strm
'SOFTWARE\ExperTelligence, Inc.\WebBase\4.10" %RegistrationDatabase%
localMachine at: printHierarchyOn:}

{f= strm contents} ® <see below>

returns the receiver after adding its hierarchical representation to the stream specified in
the argument. The default value, if one is specified, follows each key name. The results of
the above are:

240 WebBase User’s Guide

Paraneters -
exanpl eKey - exanpl eVal ue
Vari abl es -
Ext ensi ons -
Al i ases -

printHierarchyOn:indent: e.g., {set strm %String% new %WriteStream% on:} {f==
strm “*FxERxx ISOFTWARE\ExperTelligence, Inc.\WebBase\4.10'
%RegistrationDatabase% localMachine at: printHierarchyOn:indent:} {f= strm
contents} ® <see below>

returns the receiver after adding its hierarchical representation to the stream specified in
the first argument. The second argument defines the initial indentation; each subsequent
level will indent 3 more spaces.

*xxxxxkxParaneters -

***xxxxx axanpl eKey - exanpl eval ue
*x*x*xxx*x\ariabl es -
*x*kkx*Ext ensi ons -

*******AI | ases -

publicKeys e.g., {f= 'SOFTWARE\ExperTelligence, Inc.\WebBase\4.10'
%RegistrationDatabase% localMachine at: publicKeys} ®
OrderedCollection('Parameters’ 'Variables' 'Extensions’ 'Aliases")

returns a collection of the keys of the receiver; Windows reserved keys are not included.

removeKey: e.g., {f=exampleKey’ regDB removeKey:} ® aRegistrationDatabase
returns the receiver after removing the subkey named in the argument.

value e.g., {set assoc ‘exampleKey’ ‘exampleValue’ %Association% key:value:} {f==
assoc regDB add:} {f= ‘SOFTWARE\ExperTelligence,
Inc.\WebBase\4.10\Parameters\exampleKey’ %RegistrationDatabase% localMachine at:
value} ® ‘exampleValue’

returns the value of the receiver if a default value has been set; otherwise returns an empty
string.

value: e.g., {set assoc ‘exampleKey’ ‘exampleValue’ %Association% key:value:} {f==
assoc regDB add:} {f= ‘newExampleValue’ ‘SOFTWARE\ExperTelligence,
Inc.\WebBase\4.10\Parameters\exampleKey’ %RegistrationDatabase% localMachine at:
value:} ® aRegistrationDatabase

returns the receiver after settings its value to the argument.

values e.g., {f= ‘SOFTWARE\ExperTelligence, Inc.\WebBase\4.10’
%RegistrationDatabase% localMachine at: values} ® OrderedCollection(™ " " ")
returns a collection of the values corresponding to all the keys of the receiver. If no default
value is specified for a key, returns an empty string in the appropriate location within the
collection.

Registration Database Class Operations

The %RegistrationDatabase% variable represents the RegistrationDatabase class. The
following operations can be sent to this class.

classesRoot e.g., {f= %RegistrationDatabase% classesRoot} ® aRegistrationDatabase
returns a new instance of the receiver corresponding to the HKEY_CLASSES ROOT

WebBase User’s Guide 241

Chapter 11: Expressions

predefined key. The keyName for top-level registration databases is a number (e.g.,
2147483652) that uniquely identifies this top-level RegistrationDatabase.

copyFrom:in:to:in: e.g., {f= ‘SOFTWARE\Company’ #currentUser
‘SOFTWARE\Company’ #localMachine %RegistrationDatabase% copyFrom:in:to:in:}
® aRegistrationDatabase

copy the key and al subkeys from one location in the registry to another. An error is
generated if the input key is absent, the output key will be created or overwritten.

currentUser e.g., {f= %RegistrationDatabase% currentUser} ®
aRegistrationDatabase

returns a new instance of the receiver corresponding to the HKEY_CURRENT_USER
predefined key. The keyName for top-level registration databasesis a number (e.g.,
2147483652) that uniquely identifies this top-level RegistrationDatabase.

localMachine e.g., {f= %RegistrationDatabase% localMachine} ®
aRegistrationDatabase

returns a new instance of the receiver corresponding to the HKEY_LOCAL_MACHINE
predefined key. The keyName for top-level registration databasesis a number (e.g.,
2147483652) that uniquely identifies this top-level RegistrationDatabase.

new e.g., {f= %RegistrationDatabase% new} ® aRegistrationDatabase
returns a new instance corresponding to the HKEY_CLASSES ROOT predefined key.

new: e.g., {f= ‘Access.Database\CurVer’ %RegistrationDatabase% new:} ®
aRegistrationDatabase

returns a new instance which spans out from the hierarchy node specified in the argument.
The argument must be a subtree within HKEY _CLASSES ROOT; it can specify one
subtree or afull specification.

printHierarchy e.g., {f= %RegistrationDatabase% printHierarchy} ® * ... *

returns a String containing a hierarchical representation of the complete System Registry
hierarchy. Because the System Registry contains many entriesin its hierarchy, the results
are not presented here.

printHierarchyOn: e.g., {set strm %String% new %WriteStream% on:} {f= strm
%RegistrationDatabase% printHierarchyOn:} ® RegistrationDatabase

returns the receiver after appending a hierarchical representation of the complete System
Registry hierarchy to the stream specified in the argument. Because the System Registry
contains many entriesin its hierarchy, the results are not presented here.

users e.g., {f= %RegistrationDatabase% users} ® aRegistrationDatabase

returns a new instance of the receiver corresponding to the HKEY _ USERS predefined
key. The keyName for top-level registration databases is a number (e.g., 2147483652)
that uniquely identifies this top-level RegistrationDatabase.

11.34 HttpCommand

The %cmd% variable is an instance of HttpCommand that is created within WebBase to
process the specific GET or POST reguest being handled. Some of the WebBase macros and
variables already described are directly associated with this command instance -- eg., the
%browserAddress% variable contains the | P address of the browser from which the GET or

242

WebBase User’s Guide

POST was issued -- therefore each command instance will have its own %browserAddress%o
variable.

In addition to standard macros and variables that are tied to a given command instance, there
are anumber of operations that can be sent directly to the command instance. In generd thisis
not encouraged as one can alter the contents of the command instance to the point where
WebBase can no longer process it without generating an error. There are, however, afew
methods that can be useful in the development of .htf forms that will be described here.

argList e.g., {f= %cmd% argList} ® ‘httpcmd?argl=abc&arg2=1’
The full argument string including the command (file) name.

argString e.g., {f= %cmd% argString} ® argl=abc&arg2=1
Returns just the arguments part of the argList (see above).

asHTF: eg., {f= myWhere %cmd% asHTF:} ® WHERE clause

The asHTF: ‘parses’ the contents of the variable, first removing any surrounding { htf}
{/ntf} macros and then evaluating the { variable} references contained within the string.
NOTE: the asHTF: message only processes variables -- it does not evaluate WebBase
macros like the {if ...}, {case ...} etc. The charactersimmediately following the opening
curly brace ({) are taken to be afield or variable name and any parameters (such as
sgl=true) will be handled as described in the documentation of WebBase variables. The
basic example #9 included with the WebBase WebWizard shows how the asHTF:
operation can be used.

beep e.g., {f= %cmd% beep} ® a HitpGetN (causes a beep to sound)
Beeps the server.

beep:for: e.g., {f= 3 50 %cmd% beep:for:} ® a HitpGetN (causes 3 beeps every 50 ms
at the server)

Beeps the server at the frequency specified in the first argument for the duration specified
in the second argument. The duration isin milliseconds.

cacheFreeForm: e.g., {f= ‘c:\nttp\wbwizard/default.htf’ %cmd% cacheFreeForm:} ®
false

Removes the indicated form from the forms cache. The argument must be the fully
qualified form pathname - not just the ‘ default.htf’ portion as referenced viaa URL. This
operation returnstrue if the form was found in the cache and removed; false if not found in
the cache.

cacheFreeSource:user: e.g., {f= ‘myAccess’ ‘fref’ %cmd% cacheFreeSource:user:} ®
false

Removes the specified ODBC connection from the cache. Thisis similar to the cache
keyword used on the sql macro described earlier. A user can create a.htf form for
maintenance purposes that merely clears out specific cache entries whenever theformis
run. Thefirst argument is the name of the ODBC source, the second is the username. If
no username was assigned by the ODBC administrator, an empty string (* *) must be
specified for the second argument.

cacheMenultemCheck e.g., {f= %cmd% cacheMenultemCheck} ® a HttpGetN
Force the menu items under the WebBase WebServer Option’s menu to agree with the
current state of caching. This should be used if the user is modifying the value of
%cacheOdbc% within aform to ensure that subsequent interactions with the WebBase
WebServer window accurate reflect the status of ODBC connection caching.

WebBase User’s Guide 243

Chapter 11: Expressions

canAccept e.g., {f= %cmd% canAccept} ® OrderedCollection(*Connection’ ==>
'Keep-Alive' 'User-Agent' ==> 'Mozilla/3.0 (Win95; I)' 'Host' ==> '127.0.0.1" 'Accept’
==> "image/qgif, image/x-xbitmap, image/jpeg, image/pjpeg, */*' '‘Cookie' ==>
'"WebBaselD=W14696994E161808318465B; CookieCounter=5")

Returns an ordered collection of associations of the header keys and their values. The
operation is a bit misnamed since ‘ Accept’ is only one of the keys that is returned.

clearFormsCache e.g., {f= %cmd% clearFormsCache} ® a HttpGetN
Clears all the forms from the forms cache.

clearOdbcCache e.g., {f= %cmd% clearOdbcCache} ® a HttpGetN
Clears all the connections from the ODBC connection cache. This should be used when
trying to release a database file for external modifications.

cmdStr e.g., {f= %cmd% cmdStr} ® ‘GET’
Returns the type of command issued - GET, POST, or HEAD

command e.g., {f= %cmd% command} ® ‘GET /httpcmd?argl=abc&arg2=1
HTTP/1.0°
Returns the full command up to and including the HTTP 1.0 command line terminator.

commandsString e.g., {f= %cmd% commandString} ® GET
/httpcmd?argl=abc&arg2=1 HTTP/1.0 Connection: Keep-Alive User-Agent:
Mozilla/3.0 (Win95; 1) Host: 127.0.0.1 Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, */* Cookie: WebBaselD=W14696994E161808318465B; CookieCounter=5
Returns the full command plus header variables sent by the browser.

cookieTags e.g., {f= %cmd% cookieTags} ® *; path=/"

Returns the accumulation of the %cookiePath%, %cookieDomain% and %cookieExpires%o
variables as a string that gets appended to all outgoing cookies. Because the user can set
any of these variables, the results displayed will vary depending on the current values of
the above three %cookie* % variables. Only %cookiePath% has a default which is shown
in the example above.

cookieWebBaseld e.g., {f= %cmd% cookieWebBaseld} ®
"WebBaselD=W14697403E161808318469B; path=/"

Thisis adefault cookie that WebBase always generates and sends out to the browser to
seeif it can establish a cookie connection. Thisvalueis used as the default %userNameY%
for user variables if the browser responds with the WebBasel D cookie. The example
above defines the cookie WebBasel D and has the cookieTag (with the %cookiePath%
default) appended.

enumerateHTML :titled: e.g., {f= %localVariables% ‘Local WebBase Variables’
enumerateHTML :titled:} ® <See output of %localVariablesHTML%>

Createsan HTML ... bulleted list of the dictionary or collection which
isthe first argument with the title being the second argument. 1t is used by dynamic
variables like %local VariablesHTML %, and is a useful formatting tool for displaying any
type of collection or dictionary.

flash: e.g., {f="this is a test' %cmd% flash:} ® *:: Flash: this is a test’

Writes the string argument to the little *flash’ or current command pane in the server
window below the menu bar. Returns the contents of that pane (which will have a':
Flash: ' prefixing the string passed in).

244

WebBase User’s Guide

fromVars:default: e.g., {f= {set varl 'var' ‘default’ %cmd% fromVars:default:} ®
“default’

Looks for a variable whose name is specified in the first argument (a string containing one
or more space-separated variable names). If the variableisfound, returnsit value. Itis
does not exigt, then returns the second argument. Thisis useful to help determineif a
variable exists and if not, create it and set itsinitial vaue. See also
fromNonNullVars.default: and variableExists..

fromNonNullVars:default: e.g., {f= {set varl 'var' 'default’ %cmd%
fromNonNullVars:default:} ® *default’

Thisis the same as fromVars.default:, except that if the variable is found but itsvalue is
null (either nil or an empty string), then treat it asif it does not exist and go on to the next
variable or return the default if at the end of the list of variable names. See also
fromVars.default: and variableExists..

getAnyLocalVariable: e.g., {f= ‘myLocalVar’ %cmd% getAnyLocalVariable:} ® ™’
returns the value of the first scope/local variable whose name matches the argument. The
local scoping variables are checked first, and then the local variables. If no matchis
found, returns nil and does not continue looking for another match in the user, global or
dynamic variables. If amatch isfound whose value is nil, returns an empty string.

getGlobalVariable: e.g., {f= ‘aGlobalVar’ %cmd% getGlobalVvariable:} ®

returns the value of the globa variable whose name matches the argument. If no matchis
found, returns nil and does not continue looking for another match in the dynamic
variables. If amatch isfound whose valueis nil, returns an empty string.

getLetVariable: e.g., {f= ‘myLocalVar’ %cmd% getLetVariable:} ® ”’

returns the value of the first scope variable whose name matches the argument. If no match
isfound, returns nil and does not continue looking for another match in the local, user,
global or dynamic variables. If amatch isfound whose value is nil, returns an empty
string.

getLocalVariable: e.g., {f= ‘myLocalVar’ %cmd% getLocalVariable:} ®

returns the value of the first loca variable whose name matches the argument. No local
scoping variables are checked. If no match isfound, returns nil and does not continue
looking for another match in the user, global or dynamic variables. If amatch isfound
whose value is nil, returns an empty string.

getUserVariable: e.g. {f="'myVar' %cmd% getUserVariable:} ® ”’

returns the value of the first user variable whose name matches the argument. If no match
isfound, returns nil and does not continue looking for another match in the global or
dynamic variables. If amatch isfound whose valueis nil, returns an empty string.

getVariable: e.g. {f='myVar' %cmd% getVariable:} ® ”’

Returns the contents of the variable requested or nil if the variable is not found. This
differs from smply using the variable which would result in an error being generated if the
variable were not defined. One can wrap the variable usage in the errorProtect macro but
often it is more convenient to use the above form to test for the existence of avariablein
situations where it may often be non-existent. In addition, the argument may itself be a
variable name (not enclosed in single quotes) in which case the contents of that variable
(which must be a string) will be used as the name of the variable to be fetched. This
allowsfor alevel of dynamic indirection in accessing variables. If one uses avariable to
provide the variable name and the variable does not exist, WebBase will generate an error.
If the variable exists but does not contain a string, WWebBase will return avalue of nil.

WebBase User’s Guide 245

Chapter 11: Expressions

isTrue32bit e.g., {f= %cmd% isTrue32bit} ® true
Returns true or false identifying whether the server is a 32-bit or 16-bit operating system.

logRecord e.g., {f= %cmd% logRecord} ® “127.0.0.1 - - [23/Mar/1997:19:15:56 -
0800] "GET /httpcmd?argl=abc&arg2=1 HTTP/1.0" 200 0 "" "Mozilla/3.0 (Win95; I)"

Returns the default record that will be written to the default log file if logging is enabled.
Note: thisrecord is ways available by reading logRecord on %cmd% even if writing it to
afileisdisabled or was never enabled in the first place.

mime e.g., {f= %cmd% mime} ® ‘text/ntml’

Returns the current mime type string. If the user has set up a extension to process a
command and return something other than the default "text/html" mime type, this would
return whatever was set up.

name e.g., {f= %cmd% name} ® a HttpGetN for: httpcmd
Returns the type of command created (either HttpGetN, HitpPost, HttpHead, or HttpError)
and the command name.

nextCookield e.g., {f= %cmd% nextCookield} ® W14697403E161808318469B
Returns the unique value as used in the default cookie that WebBase always generates and
sends out to the browser to seeif it can establish a cookie connection.

removeTimer: e.g., {f= anld %cmd% removeTimer:} ® anHttpGet

Removes the timer queue entry whose id is equal to the value of anld (may be a constant
integer or string or a variable name of a variable whose valueis an integer or astring). If
no such timer queue entry is found, no error isindicated. If multiple timer queue entries
have the sameid value, only the first such entry will be removed. Entries are created and
added to the timer queue using the timer macro.

search e.g., {f= %cmd% search} ® ‘argl=abc AND arg2=1’

This operation is now obsolete and is maintained for compatibility with forms developed
under previous versions. It isa precursor to the current %WHERE% variable. It returned
the arguments as a string of arg=value with the intervening & replaced with ' AND '.

startTime e.g., {f= %cmd% startTime} ® 28739920

The number of milliseconds between the previous midnight and when current command
was started. 1t isused by %elapsed% to determine elapsed time to the point where

%el apsed%s is executed.

text e.g., {f= %cmd% text}
Returns the text for the command. Thisisthe entire file being processed. Any insert files
are not included in this string.

timerQueueSQL e.g., {f= %cmd% timerQueueSQL} ® ‘OrderedCollection(
anODBCRowObject anODBCRowODbject)

Returns a collection of SQL-like OdbcRowObjects that contain the following fields: ‘id’,
‘title’, ‘created’, ‘period’, ‘date’, ‘time’, ‘count’, ‘minutes’, ‘ranDate’ and ‘ranTime'. The
“id’, ‘title’, ‘period’, ‘date’ and ‘time’ fields are those specified as keyword/value
arguments to the timer macro. The *created’ is the date/time when the entry was crested
and initialy put onto the timer queue. The ‘count’ is the number of times the form will yet
be run before it is removed from the queue. The ‘minutes’ is the number of minutes
remaining before a periodic entry will be executed again. The ‘ranDate’ and ‘ranTime’ are
the last date/time the entry was executed.

246

WebBase User’s Guide

userAgent e.g. {f= %cmd% userAgent} ® Mozilla/3.0 (Win95; 1)
Returns the string that identifies the browser.

variableExists: e.g., {f= ‘myVar’ %cmd% variableExists:} ® true

Returnstrue or false if avariable by the specified name exists. The variable precedence
order is used to determineif the variable exists (e.g., field -> local -> user -> global ->
dynamic).

vars e.g., {f= %cmd% vars} ® Dictionary(('argl' ===> 'abc’) ('CookieCounter' ==>
'5") (‘%cookieDomain%' ==>") (‘%cmd%' ==> a HttpGetN) (‘%resultLimit%' ==> 0)
(‘%accepts%' ==> OrderedCollection('image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, */*")) (‘%resultOffset%’ ==> 1) ("User-Agent’ ==> 'Mozilla/3.0 (Win95;
1)") (‘%resultCount%' ==> 0) (‘%cookiePath%' ==>"/") (*%repeatCount%' ==> 1)
(‘Cookie' ==> '"WebBaselD=W14696994E161808318465B; CookieCounter=5")
(‘%resultStart%' ==> 1) (‘Connection’ ==> 'Keep-Alive") ("Host' ==> '127.0.0.1")
('WebBaselD' ==> '"W14696994E161808318465B") (‘%theArgs%' ==>
OrderedList(‘argl' ‘arg2')) ('%browserAddress%’' ==> '127.0.0.1") (‘arg2' ==>"1")
(‘%cookieExpires%' ==> ") (‘Accept’ ==> "image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, */*'))

Returnsthe local variables dictionary.

11.35 Databaselnfo

%Databaselnfo% is a global variable that allows access to the Databasel nfo class that
provides information about ODBC sources. No instance operations are provided asit is not
possible to create an instance of thisclass. The following class operations are supported:

canConnect:user:password: e.g., {f= *‘myAccess’ ‘fred’ ‘test” %Databaselnfo%
canConnect:user:password:} ® true

Returns true or false depending on whether it is possible to connect to the given ODBC
data source.

isValidSource: e.g., {f= ‘myAccess’ %Databaselnfo% isValidSource:} ® true
Returns true or false depending on whether the specified source nameis set up as an
ODBC source.

odbcDataSources e.g., {f= %Databaselnfo% odbcDataSources} ®
SortedCollection(‘dBASE Files' ==> 'Microsoft dBase Driver (*.dbf)' 'excell’ ==>
‘Microsoft Excel Driver (*.xIs)' '‘FoxPro Files' ==> 'Microsoft FoxPro Driver (*.dbf)’
'myAccess’ ==> 'Microsoft Access Driver (*.mdb)' '‘Paradox Files' ==> 'Microsoft
Paradox Driver (*.db)" 'Text Files' ==> 'Microsoft Text Driver (*.txt; *.csv)'
‘textExample' ==> 'Microsoft Text Driver (*.txt, *.csv)’)

returns a collection of al the ODBC data sources defined on the system. The contents of
the collection are associations. The key of each association is the name of the data source;
the value is the name of the ODBC driver associated with the source. The ODBC data
sources that are returned are those that are probably associated with an actual database
file. Some ODBC drivers create “virtual” sources that do not have database files
associated with them. The full list of sources, including virtual sourcesis available using
the odbcDataSourcesRaw operation.

odbcDataSourcesRaw e.g., {f= %Databaselnfo% odbcDataSourcesRaw} ®
SortedCollection(‘dBASE Files' ==> 'Microsoft dBase Driver (*.dbf)' 'Excel Files' ==>
‘Microsoft Excel Driver (*.xIs)' ‘excell' ==> 'Microsoft Excel Driver (*.xls)' 'FoxPro

WebBase User’s Guide 247

Chapter 11: Expressions

Files' ==> 'Microsoft FoxPro Driver (*.dbf)' '"MS Access 7.0 Database' ==> 'Microsoft
Access Driver (*.mdb)' 'myAccess' ==> 'Microsoft Access Driver (*.mdb)' 'Paradox
Files' ==> 'Microsoft Paradox Driver (*.db)" 'Text Files' ==> 'Microsoft Text Driver
(*.txt; *.csv)' 'textExample' ==> 'Microsoft Text Driver (*.txt, *.csv)')

returns a collection of all the ODBC data sources defined on the system. Thislist includes
all sources set up by the user, aswell as any “virtual” sources which are set up as part of
the driver installation but are not actually associated with a database file. Thelist of
sources associated with actual filesis available using the odbcDataSources operation.

odbcDataSourcesSQL e.g., {f= %Databaselnfo% odbcDataSourcesSQL} ®
OrderedCollection(an OdbcRowObiject ...)

returns an ordered collection containing OdbcRowObjects representing each ODBC data
source. This collection can beiterated through the using forRow macro to look at the
information contained within each data source, which includes the fields
‘Data_Source_Name' and ‘Data_Source Driver’. Thisoperation is useful to obtain
information that is to be displayed within a<TABLE> construct, as in the WebBase
WebWizard ODBC Viewer utility.

odbcDrivers e.g., {f= %Databaselnfo% odbcDrivers} ® SortedCollection(*Microsoft
Access Driver (*.mdb)' ==> (‘UsageCount=6811003" 'APILevel=1"'
'‘ConnectFunctions=YYN' '‘DriverODBCVer=02.50" 'FileUsage=2" 'FileExtns=*.mdb’
'‘SQLLevel=0" ‘ConectFunctions=YYN') ...)

returns a sorted collection of associations. The key to each association is the name of the
ODBC driver; the value is a collection of strings defining the different attributes of the
driver (e.g., UsageCount, APILevel, ConnectFunctions).

odbcDriversSQL e.g., {f= %Databaselnfo% odbcDriversSQL} ®
OrderedCollection(an OdbcRowObiject ...)

returns an ordered collection containing OdbcRowObjects representing each ODBC driver.
This collection can be iterated through the using forRow macro to look at the information
contained within each driver. The attributes of each driver are set up asfields (e.g.,
UsageCount, APILevel, ConnectFunctions). This operation is useful to obtain information
that isto be displayed within a <TABLE> construct, as in the WebBase WebWizard
ODBC Viewer utility.

odbcDriversSQL2 e.g., {f= %Databaselnfo% odbcDriversSQL2} ®
OrderedCollection(an OdbcRowObject ...)

returns an ordered collection containing OdbcRowObjects representing each ODBC driver.
This collection can be iterated through the using forRow macro to look at the information
contained within each driver, which includes the fields ‘ Data_Source Driver’ and
‘Data_Source_Driver_Attributes’. This operation is useful to obtain information that isto
be displayed within a<TABLE> construct, as in the WebBase WebWizard ODBC
Viewer utility.

table:source:user:password: e.g., {f= ‘Cars’ ‘myAccess’ ‘fred’ ‘test’ %Databaselnfo%
table:source:user:password:} ® OrderedCollection(an OdbcRowObiject ...)

returns an ordered collection containing OdbcRowObjects representing each field in the
specified table and source. This collection can be iterated through the using forRow macro
to look at the information contained within each field. This operation is useful to obtain
information that is to be displayed within a<TABLE> construct, as in the WebBase
WebWizard ODBC Viewer utility.

tablesIn:user:password: e.g., {f= ‘myAccess’ ‘fred” ‘test” %Databaselnfo%
tablesIn:user:password:} ®

248

WebBase User’s Guide

OrderedCollection(OrderedCollection('C:\HTTP\WbWizard\DBEx\autos' nil ‘Cars'
"TABLE' nil) OrderedCollection("C:\HTTP\WbWizard\DBEx\autos' nil ‘LogData’
‘TABLE' nil))

return an ordered collection of database tables for the given ODBC source. Each entry in
the collection is another ordered collection containing the path of the database file, owner
qualifier, the name of the table, table type, name qualifier.

tableSource:user:password: e.g., {f= ‘myAccess’ ‘fred’ ‘test’ %Databaselnfo%
tableSource:user:password:} ® OrderedCollection(an OdbcRowObiject ...)

returns an ordered collection containing OdbcRowObjects representing each tablein the
specified source. This collection can be iterated through the using forRow macro to look at
the information contained within each table, including the fields ‘ table_name’,
‘table_owner’ and ‘table_qualifier'. This operation is useful to obtain information that is
to be displayed within a<TABLE> construct, as in the WebBase WebWizard ODBC
Viewer utility

WebBase User’s Guide 249

Chapter 12:

Features

WEB
NS

S

& Features

€ —ExperTalligance
Chapter 12

This chapter contains descriptions of the features of WebBase. It is suggested that you
occasionally check the WebBase Web site for new tips and techniques. Vauable information
can also be obtained on the WebBase Support Forum, also accessible at the WebBase Web
site.

12.1 Logging

WebBase stores information about every command that it processes or returns, unless logging
has been disabled in general or for a particular file extension. Logging can be enabled or
disabled on the WebBase Server window; by default it is enabled.

Thelog information is stored within files in the directory specified as the LogDirectory
parameter. If this parameter is not specified, then logging cannot be enabled. It is strongly
recommended that this parameter be created, and then logging be enabled or disabled viathe
WebBase Server window.

A new log fileis created each day named Wbyymmdd.log where yy=year, mm=month, and
dd=day. For example, WB970504.log isthe log file for May 5, 1997. Theselog files will
contain one entry for each query made of WebBase, and will contain information based on the
LogFormat selected. Details on each log format are included later in this section.

There are five LogFormat types supported by WebBase. The LogFormat parameter (0-4) and
the corresponding format type are shown below:

4 -- Extended Conbi ned Log Fil e Fornat

3 -- Common Log Fil e Format

2 -- Extended Common Log File Format (Default)

1 -- Extended Oiginal WebBase (EMAACS) Log Fil e Fornmat
0 -- Oiginal WbBase (EMMCS) Log Fil e Fornmat

The five logging formats and examples of each are presented below. The example text file for
each was generated by running the first two basic examples provided with WebBase.

250

WebBase User’s Guide

Common Log File Format (LogFormat=3)

The Common Log File Format is used by many of the commonly available Web anaysis
tools'. Thetext file containing the output in Common Log File Format is shown below:

Example 12.1 Common Log File Format
0.0.0.0 - - [26/Mar/1997:08:02:32 -0800] "none Start_Log HTTP/1.0" - -
0.0.0.0 - - [26/MNar/1997:08:02: 33 -0800] "none Pause_Server_-> paused HTTP/1.0" - -
0.0.0.0 - - [26/MNar/1997:08:02: 34 -0800] "none Pause_Server_-> active HTTP/1.0" - -
127.0.0.1 - - [26/Mar/1997:08:03: 41 -0800] "GET /wbw zard/ W zard. ht f ?2now=28700
HTTP/ 1. 0" 200 6136
127.0.0.1 - - [26/Mar/1997:08:03: 44 -0800] "GET /wbwi zard/ Basi cEx?now=29021 HTTP/ 1. 0"
200 491
127.0.0.1 - - [26/MNar/1997:08: 03: 45 -0800] "GET
/ wowi zar d/ basi cex/ Wbexans. ht f 2now=29024 HTTP/ 1. 0" 200 7783
127.0.0.1 - - [26/MNar/1997:08: 03: 47 -0800] "GET
/ wowi zar d/ basi cex/ WBexamil. HTF?now=29025040&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0" 200 1033
127.0.0.1 - - [26/MNar/1997:08: 03: 48 -0800] "GET
/ wbowi zar d/ basi cex/ WBexans. ht f 27now=29027020 HTTP/ 1. 0" 200 7783
127.0.0.1 - - [26/MNar/1997:08: 03: 50 -0800] "GET
[/ wbowi zar d/ basi cex/ WBexan®2. HTF?now=29028830&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0" 200 1395
127.0.0.1 - - [26/MNar/1997:08: 03: 52 -0800] "GET
/ wbowi zar d/ basi cex/ WBexans. ht f 27now=29030430 HTTP/ 1. 0" 200 7783
0.0.0.0 - - [26/Mar/1997:08:03:59 -0800] "none Pause_Server_-> paused HTTP/1.0" - -
0.0.0.0 - - [26/Mar/1997:08:04:00 -0800] "none Quitting HITP/1.0" - -
0.0.0.0 - - [26/Mar/1997:08:04: 00 -0800] "none Stop_Log HITP/1.0" - -

There are seven pieces of information displayed on each line:

remotehost — the remote host IP number. For general server entries (e.g., Start_L og,
Quitting, Stop_L og), thisvalueis entered as*0.0.0.0'.

rfc931 — the remote logname of the user. Thisinformation is not currently retrieved by
WebBase, so adash (‘-*) is output.

authuser — the username as which the user has authenticated himself viaBasic
Authentication or ‘-* if authentication has not been performed

[date] — the date and time of the request with timezone offset from GMT at theend. The
format is: [DD/Mon/YY Y'Y :hh:mm:ss [+/-|HHMM]

“request” —the request line exactly as it came from the client in the format “ method file
httpversion”. The method could be GET, HEAD, POST, or none. The file contains the
full file path and arguments of the requested file. Thefile path isrelative to the directory
containing the WebBase forms. The httpversion specifies the version number of the
HTTP specification. Thiswill generaly be ‘HTTP/1.0'.

status — the HTTP status code returned to the client (three digits) or *-* if not available.
Thisis generally 200, indicating OK.

bytes — the content-length of the document transferred in bytes or ‘*-* if not available.

18 No web analysistools are provided by ExperTelligence or as part of the WebBase application. There are anumber of web analysis tools from other
vendors available viathe web that support one or more of the log file formats provided by WebBase.

WebBase User’s Guide 251

Chapter 12: Features

Extended Common Log File Format (LogFormat=2)

The Extended Common Log File Format is also acceptable to many of the commonly available
Web analysistools. If no LogFormat parameter is specified, thisis the default log format
style. Thetext file containing the output in Extended Common Log File Format is shown

below:

Example 12.2 Extended Common Log File Format
0.0.0.0 - - [26/MNar/1997:07:58:09 -0800] "none Start_Log HTTP/1.0" - - "" ""
0.0.0.0 - - [26/Mar/1997:07:58:10 -0800] "none Pause_Server_-> paused HTTP/1.0" - -
0.0.0.0 - - [26/Mar/1997:07:58:10 -0800] "none Pause_Server_-> active HTTP/1.0" - -
127.0.0.1 - - [26/ Mar/1997:07:58: 20 -0800] "GET /wbwi zard/ HTTP/1.0" 200 527 ""
"Mzilla/3.0 (Wn95; 1)
127.0.0.1 - - [26/Mar/1997:07:58:21 -0800] "GET /wbwi zard/ W zard. ht f 2now=28700
HTTP/ 1. 0" 200 6135 "" "Mbozilla/3.0 (Wn95; I)"
127.0.0.1 - - [26/ Mar/1997:07:58: 24 -0800] "GET /wbwi zar d/ Basi cEx?now=28700 HTTP/ 1. 0"
200 490 "http://127.0.0. 1/ wowi zard/ W zar d. ht f 2now=28700" "Modzilla/3.0 (Wn95; 1)"
127.0.0.1 - - [26/ Mar/1997:07:58: 25 -0800] "GET

/ wbowi zar d/ basi cex/ Wbexans. ht f 27now=28704 HTTP/ 1. 0" 200 7782

"http://127.0.0. 1/ wowi zard/ W zar d. ht f 2now=28700" "Mozilla/3.0 (Wn95; I|)"

127.0.0.1 - - [26/MNar/1997:07:58: 27 -0800] "GET

/ wbowi zar d/ basi cex/ WBexamil. HTF?now=28705050&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0" 200 1032
"http://127.0.0. 1/ wowi zar d/ basi cex/ Whexans. ht f 2now=28704" "Mdzilla/3.0 (Wn95; I)"
127.0.0.1 - - [26/MNar/1997:07:58:29 -0800] "GET

/ wbwi zar d/ basi cex/ WBexans. ht f 27now=28707790 HTTP/ 1. 0" 200 7782

"http://127.0.0. 1/ wowi zar d/ basi cex/ WBexaml. HTF?now=28705050&useBACKbut t on. XX=doUSEi t "
"Mozilla/3.0 (Wn95; |)"

127.0.0.1 - - [26/MNar/1997:07:58: 31 -0800] "GET

[/ wbowi zar d/ basi cex/ WBexan®2. HTF?now=28709720&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0" 200 1394
"http://127.0.0. 1/ wowi zar d/ basi cex/ WBexans. ht f 2now=28707790" "Mzilla/3.0 (Wn95; 1)"
127.0.0.1 - - [26/MNar/1997:07:58: 41 -0800] "GET

/ wbowi zar d/ basi cex/ WBexans. ht f ?7now=28711690 HTTP/ 1. 0" 200 7783

"http://127.0.0. 1/ wowi zar d/ basi cex/ WBexanm2. HTF?now=28709720&useBACKbut t on. XX=doUSEi t "
"Mozillal/3.0 (Wn95; 1)

0.0.0.0 - - [26/Mar/1997:07:58:52 -0800] "none Pause_Server_-> paused HTTP/1.0" - -
0.0.0.0 - - [26/Mar/1997:07:58:54 -0800] "none Quitting HTTP/1.0" - - "" ""
0.0.0.0 - - [26/Mar/1997:07:58:54 -0800] "none Stop_Log HTTP/1.0" - - "" ""

Extended Common Log File Format is the same as Common Log File Format with the addition
of two items at the end of each line:

refer —the referer to this page (Referer) or “-“ if none.
user-agent — the browser requesting this page (User-Agent) or “-* if not available
Extended Combined Log File Format (LogFormat=4)
The Extended Combined Log File Format is a so acceptable to many of the commonly

available Web analysistools. The text file containing the output in Extended Combined Log
File Format is shown below:

252 WebBase User’s Guide

Example 12.3 Extended Combined Log File Format

0.0.0.0 - - [26/Mar/1997:08:14:14 -0800] "none Start_Log HTTP/1.0" - - "" ""

0.0.0.0 - - [26/MNar/1997:08:14:15 -0800] "none Pause_Server_-> paused HTTP/1.0" - -
0.0.0.0 - - [26/MNar/1997:08:14:16 -0800] "none Pause_Server_-> active HITP/1.0" - -
127.0.0.1 127.0.0.1 - [26/ Mar/1997:08: 14: 48 -0800] "GET /wbw zard/ HTTP/1.0" 200 473
""" "Mzilla/3.0 (Wn95; 1)"

127.0.0.1 127.0.0.1 - [26/ Mar/1997:08: 14: 49 -0800] "GET /wbw zard/ W zard. ht f 2now=29688
HTTP/ 1. 0" 200 6136 "" "Mozilla/3.0 (Wn95; I)"

127.0.0.1 127.0.0.1 - [26/Mar/1997:08: 14: 51 -0800] "GET /wbwi zard/ Basi cEx?now=29689
HTTP/ 1. 0" 200 491 "http://127.0.0. 1/ wbwi zard/ W zard. ht f 2now=29688" "Mbzilla/3.0
(Wno5; 1)

127.0.0.1 127.0.0.1 - [26/NMar/1997:08: 14: 52 -0800] "GET

/ wbowi zar d/ basi cex/ Wbexans. ht f 27now=29691 HTTP/ 1. 0" 200 7783

"http://127.0.0. 1/ wowi zard/ W zar d. ht f 2now=29688" "Modzilla/3.0 (Wn95;)"

127.0.0.1 127.0.0.1 - [26/NMar/1997:08: 14: 54 -0800] "GET

[/ wowi zar d/ basi cex/ WBexaml. HTF?now=29692500&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0" 200 1033
"http://127.0.0. 1/ wowi zar d/ basi cex/ Whexans. ht f 2now=29691" "Mdzilla/3.0 (Wn95; I)"
127.0.0.1 127.0.0.1 - [26/NMar/1997:08: 14: 56 -0800] "GET

/ wbowi zar d/ basi cex/ WBexans. ht f 27now=29694800 HTTP/ 1. 0" 200 7783

"http://127.0.0. 1/ wowi zar d/ basi cex/ WBexaml. HTF?now=29692500&useBACKbut t on. XX=doUSEi t "
"Mozilla/3.0 (Wn95; |)"

127.0.0.1 127.0.0.1 - [26/NMar/1997:08: 14: 58 -0800] "GET

[/ wowi zar d/ basi cex/ WBexan®2. HTF?now=29696340&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0" 200 1395
"http://127.0.0. 1/ wowi zar d/ basi cex/ WBexans. ht f 2now=29694800" "Mzilla/3.0 (Wn95; 1)"
127.0.0.1 127.0.0.1 - [26/NMar/1997:08: 14: 59 -0800] "GET

/ wbowi zar d/ basi cex/ WBexans. ht f 27now=29698100 HTTP/ 1. 0" 200 7783

"http://127.0.0. 1/ wowi zar d/ basi cex/ WBexanm2. HTF?now=29696340&useBACKbut t on. XX=doUSEi t "
"Mozilla/3.0 (Wn95;)"

0.0.0.0 - - [26/MNar/1997:08:15:05 -0800] "none Pause_Server_-> paused HTTP/1.0" - -
0.0.0.0 - - [26/Mar/1997:08:15:06 -0800] "none Quitting HTTP/1.0" - - "" ""
0.0.0.0 - - [26/Mar/1997:08:15:06 -0800] "none Stop_Log HTTP/1.0" - - "" ""

Extended Combined Log File Format is the same as Extended Common Log File Format
except that the ‘rfc931" entry has been replaced with the server address.

serverAddress —the server's IP address. This can be useful if multiple domains are being
used as the log records applicable to a particular domain can be identified.

Original WebBase (EMWACS) Log File Format (LogFormat=0)

The Original WebBase (EMWACYS) Log File Format was derived from the EMWACSHTTP
Server. Thisformat is not compatible with many of the Web analysistools. This format is
provided for compatibility with previous releases of WebBase; it may not be supported in
future releases. It is strongly recommended that the Common Log File Format, Extended
Common Log File Format or Extended Combined Log File Format be used. The text file
containing the output in Original WebBase (EMWACS) Log File Format is shown below:

WebBase User’s Guide 253

Chapter 12: Features

Example 12.4 Original WebBase (EMWACS) Log File Format

Wed 26 Mar 1997 08:24:07 0.0.0.0 0.0.0.0 ***** Start Log *****

Wed 26 Mar 1997 08:24:08 0.0.0.0 0.0.0.0 ***** Pguse Server -> paused ****x

Wed 26 Mar 1997 08:24:08 0.0.0.0 0.0.0.0 ***** Pguse Server -> active **x*xx

Wed 26 Mar 1997 08:24:36 127.0.0.1 127.0.0.1 GET /wbwi zard/ HTTP/ 1.0

Wed 26 Mar 1997 08:24:36 127.0.0.1 127.0.0.1 CGET /wbwi zard/ W zard. ht f 2now=30276

HTTP/ 1.0

Wed 26 Mar 1997 08:24:39 127.0.0.1 127.0.0.1 GET /wbwi zard/ Basi cEx?now=30277 HTTP/ 1.0
Wed 26 Mar 1997 08:24:40 127.0.0.1 127.0.0.1 GET

[/ wowi zar d/ basi cex/ Wbexans. ht f 2now=30279 HTTP/ 1.0

Wed 26 Mar 1997 08:24:42 127.0.0.1 127.0.0.1 GET

/ wbowi zar d/ basi cex/ WBexaml. HTF?now=30280250&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0
Wed 26 Mar 1997 08:24:43 127.0.0.1 127.0.0.1 GET

/ wowi zar d/ basi cex/ WBexans. ht f 27now=30282450 HTTP/ 1. 0

Wed 26 Mar 1997 08:24:45 127.0.0.1 127.0.0.1 GET

/ wbowi zar d/ basi cex/ WBexan®2. HTF?now=30283820&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0
Wed 26 Mar 1997 08:24:47 127.0.0.1 127.0.0.1 GET

/ wowi zar d/ basi cex/ WBexans. ht f 27now=30285420 HTTP/ 1.0

Wed 26 Mar 1997 08:24:57 0.0.0.0 0.0.0.0 ***** Pause Server -> paused *****
Wed 26 Mar 1997 08:24:58 0.0.0.0 0.0.0.0 ***** Quitting *****

Wed 26 Mar 1997 08:24:58 0.0.0.0 0.0.0.0 ***** Stop Log *****

There are four pieces of information displayed on each line:

date — the date and time of the request.
The format is: XXX MMM DD YYYY HH:MM:SS

server —the server's IP number. For general server entries (e.g., Start_L og, Quitting,
Stop_L og), thisvalueis entered as 0.0.0.0.

remoteHost — the remote host 1P number. For general server entries (e.g., Start_L og,
Quitting, Stop_L og), thisvalueis entered as 0.0.0.0.

request — the request line exactly as it came from the client in the format

method file httpversion. The method could be GET, HEAD, POST, or none. Thefile
contains the full file path and arguments of the requested file. The file path isrelativeto
the directory containing the WebBase forms. The httpversion specifies the version
number of the HTTP specification. Thiswill generally be HTTP/1.0.

Extended Original WebBase (EMWACS) Log File Format
(LogFormat=1)

The Extended Origina WebBase (EMWACS) Log File Format is the same as the Original
WebBase (EMWACYS) Log File Format with the addition of asingle extravaue in each line.
Thisformat is not compatible with many of the Web analysistools. Thisformat is provided
for compatibility with previous releases of WebBase; it may not be supported in future
releases. It isstrongly recommended that the Common Log File Format, Extended Common
Log File Format or Extended Combined Log File Format be used. The text file containing the
output in Extended Original WebBase (EMWACY) Log File Format is shown below:

254 WebBase User’s Guide

Example 12.5 Extended Original WebBase (EMWACS) Log File Format

Wed 26 Mar 1997 08:26:56 0.0.0.0 0.0.0.0 ***** Start Log *****

Wed 26 Mar 1997 08:26:56 0.0.0.0 0.0.0.0 ***** Pguse Server -> paused *****
Wed 26 Mar 1997 08:26:57 0.0.0.0 0.0.0.0 ***** Pguse Server -> active **xxx
Wed 26 Mar 1997 08:27:02 0.0.0.0 0.0.0.0 ***** Pguse Server -> paused ****x
Wed 26 Mar 1997 08:27:03 0.0.0.0 0.0.0.0 ***** Quitting *****

Wed 26 Mar 1997 08:27:03 0.0.0.0 0.0.0.0 ***** Stop Log *****

Wed 26 Mar 1997 08:27:12 0.0.0.0 0.0.0.0 ***** Start Log *****

Wed 26 Mar 1997 08:27:13 0.0.0.0 0.0.0.0 ***** Pguse Server -> paused *****
Wed 26 Mar 1997 08:27:13 0.0.0.0 0.0.0.0 ***** Pguse Server -> active **xxx
Wed 26 Mar 1997 08:27:32 127.0.0.1 127.0.0.1 CET /wbwi zard/ HTTP/ 1.0 <473>
Wed 26 Mar 1997 08:27:33 127.0.0.1 127.0.0.1 GET /wbwi zard/ W zard. ht f 2now=30453

HTTP/ 1.0 <6136>
Wed 26 Mar 1997 08:27:36 127.0.0.1 127.0.0.1 GET /wbwi zar d/ Basi cEx?now=30453 HTTP/ 1.0

Wed 26 Mar 1997 08:27:36 127.0.0.1 127.0.0.1 GET

/ wowi zar d/ basi cex/ Wbexans. ht f ?now=30456 HTTP/ 1.0 <7783>

Wed 26 Mar 1997 08:27:38 127.0.0.1 127.0.0.1 GET

/ wowi zar d/ basi cex/ WBexamil. HTF?now=30456620&useBACKbut t on. XX=doUSEit HTTP/ 1. 0 <1033>
Wed 26 Mar 1997 08:27:39 127.0.0.1 127.0.0.1 GET

/ wbowi zar d/ basi cex/ WBexans. ht f 27now=30458430 HTTP/ 1.0 <7783>

Wed 26 Mar 1997 08:27:40 127.0.0.1 127.0.0.1 GET

[/ wowi zar d/ basi cex/ WBexan®2. HTF?now=30459810&useBACKbut t on. XX=doUSEi t HTTP/ 1. 0 <1395>
Wed 26 Mar 1997 08:27:42 127.0.0.1 127.0.0.1 GET

/ wbwi zar d/ basi cex/ WBexans. ht f 27now=30460850 HTTP/ 1.0 <7783>

Wed 26 Mar 1997 08:27:46 0.0.0.0 0.0.0.0 ***** Pause Server -> paused *****

Wed 26 Mar 1997 08:27:47 0.0.0. 0.0.0 ***** Quitting *****

Wed 26 Mar 1997 08:27:47 0.0.0. 0.0.0 ***** Stop Log *****

o o

0
0

Extended Origina WebBase (EMWACY) Log File Format is the same as Original WebBase
(EMWACSYS) Log File Format with the addition of one item at the end of each line:

<bytes> — the content-length of the document transferred in bytes or O if not available.
12.2 Caching

Caching is storing information into local memory so that if the information needs to be used in
the future it will be readily accessible. There are severa variables of caching used by or
affecting WebBase: browser-side caching of forms, WebBase forms caching, and WebBase
ODBC Connection caching.

Browser-Side Caching

When a browser sends a URL to a server, it caches the full URL and the results returned from
the URL. If the URL isrequested again, the browser simply displays the contents from the
cache instead of making the request of the server again. Thisworks fine for static pages. But
the true power of WebBase isin being able to provide dynamic pages. This section addresses
how to circumvent browser-side caching to always provide the latest information on a page to
auser.

The first approach isto provide information to the browser about when the information in its
cacheisno longer valid. This can be done by setting the %expire% variable, which causes the
Expires header parameter to be set. The value of %expire% in seconds is added to the current
timein GMT and returned to the browser. Thisvalue defaultsto 0. If %expire% is set to -1,
the Expires header parameter is not generated; the form will never expire. If the valueis set to
-2, the Expires header parameter is set to 12:00:01 on January 1, 1900. It isrecommended
that %expire% be set to -2 to cause forms to be marked as expired.

WebBase User’s Guide 255

Chapter 12: Features

However, experience has shown that most browsers do not honor this Expire header parameter
unless the page was accessed using the POST command. Pages accessed viaa GET seem to
ignore this feature. WebBase sends the expiration information in the header regardless of the
command used to request the page.

The second approach isto generate unique command lines. Browsers typically cache pages
based on the command line sent to the server. For a page referenced as http://<x>/foo.htf, it
can also be referenced via http://<x>/foo.htf ?x=1 where the x=1 is an argument that the page
should ignore but it is part of what the browser uses to identify the pagesin its cache. For
example,

http://<addr>/foo. htf
http://<addr>/foo. htf?x=1
http://<addr>/fo0. ht f ?x=2

would all be considered different pages as far as the browser's cache is concerned. If the page
is not dependent upon the argument X, they should all return the same result as

http://<addr>/foo. htf

Here are some examples of how to create a unique URL using command line arguments. Each
of these includes a variable called “now” whose value is set to %seconds%. Since the number
of secondsis going to be always changing, thiswill keep the form from being cached at the
browser so the latest information will always be retrieved and displayed for your users.

For an anchor:
<A HREF="f or n2. ht f ?ar gl=val 1&now={ %seconds% " Next page </ A>

For a<FORM> construct:

<FORM METHOD="GET" ACTI ON="fornR. htf">

...sone input statenents...

<I NPUT TYPE="HI DDEN' NAME="now' VALUE="{%seconds%" >
</ FORW>

For aredirect:

{redirect2 fornR. htf}
now={ ¥%seconds%
{/redirect 2}

There is no requirement that form2.htf actually has to do anything with the “now” argument
passed in. It issimply being used to override browser caching. If you run the WebBase
examples, you'll notice this"now=###" construct showing up on lots of the examples.

This"trick" is only required when you are working with dynamic pages whose contents are
expected to change. But since that's what \WWebBase is designed for -- allowing a user to create
dynamic pages from database information -- it's a very useful trick to master.

Forms Caching

Forms are the files read and processed by WebBase. By default, they are .htf files although
other files can a so be specified to be processed by WebBase. When afile to be processed is
specified in aURL, WebBase locates the file on disk, reads the information into it, and
generates an internal tree structure representing the WebBase macros and variables. Once the
tree structure is built, WebBase then processesit. The appropriate value of each variableis

256

WebBase User’s Guide

substituted, any operations are performed, and the results are added into the stream that is
finally returned to the browser. This stream contains only text and HTML tags; all WebBase
constructs have been removed.

WebBase is set up by default to perform forms caching. The internal tree structure that is
built is placed into the form cache. If thefile is subsequently referenced, the internal structure
is removed from the cache and re-used. The forms are re-entrant — only the associated
variables and fields differ. This provides a performance advantage is that WebBase does not
have to hit the disk to read the form each time it is accessed, nor does it have to parse the text
each time.

There are two variables affecting caching: %cacheEnabled% and %cacheTimeCheck%. Both
of these can be modified via the WebBase WebServer menus. By default, both variables are
set to true. The %cacheEnabled% variable indicates that forms caching isto be used. Itis
strongly recommended that this variable always be set to true, as it provides a performance
improvement with no associated limitations.

The %cacheTimeCheck% variable is only active when forms caching is enabled. If set to true,
which is the default, WebBase will check to seeif the form on disk has been modified
subsequent to the version that was added to the cache. If so, the form on disk is opened, read
and the new contents are placed into the cache. This should be set to true in a highly
interactive devel opment environment. In a pure production environment this should be turned
off as checking the time stamp involves open file overhead, athough less than allocating
buffers and actually reading and reparsing the file as when caching is off al together.

Creating a form containing the following line can clear al of the formsin the cache:
{f= %nd% cl ear For nsCache}

ODBC Connection Caching

Thefirst time a user makes arequest of a database, a new ODBC connection is made for that
source name and username. When the request is finished, the connection is put into the cache
and marked that it isidle. If multiple users are accessing the same database at the same time,
then multiple connections will be made and cached since each connection can only handle a
singlerequest a atime. If you wereto look at the %ODBCcacheHTML % variable, you might
find several entriesin the cache for the same source and username. These are there because
multiple users have been making requests at the sametime.

It is recommended that ODBC connection caching be enabled to improve performance. If
ODBC caching is disabled, each database query will take longer to be made since a new
connection hasto be created. After the query is complete, the connection goes away. You can
turn caching off by creating a global variable %cacheODBC% and setting its value to false. If
you have multiple databases, this will turn caching off for all of them.

It is possible to control when an ODBC connection is generated using the cache keyword on
the sgl macro. A value of ‘false’ will cause the connection for that particular sgl query to not
be cached. If the keyword is not specified, the connection is cached.

All of the current ODBC connections can be cleared either using the Clear ODBC Cache
option on the WebBase WebServer window, or by creating a form containing the following
line:

WebBase User’s Guide 257

Chapter 12: Features

{f= %% cl ear CdbcCache}

Additional information about the ODBC connection cache in included in the section on
Database Administration in Chapter 14.

12.3 WHERE Clause & Variable Name Suffixes

The %WHERE% variable was designed to automatically create an SQL WHERE clause from
the variables found in the GET or POST command string.

A smple example:

CET test. htf?l D=1234&nanme=CGeor ge

yields

{ WWHERE% ® WHERE | D = 1234 AND nane = ' Geor ge'

The ID= and name= fields in the command line would typically come from <INPUT
NAME="ID" VALUE...> dementsin aform. One could a so specify thisinformation in an
anchor as ...

It may not always be desirable to have all of the fields in a command line be used in the
creation of the WHERE clause nor will al the tests be the = (equal) operator. WebBase has
taken this into account by providing a scheme for encoding a suffix on the variable name field
to dter the way in which the %WHERE% variable is constructed.

Here is another example. The <INPUT> statements within the <FORM> construct requesting
variable values are:

<I NPUT TYPE="TEXT"” NAME="|D. GI" VALUE="1234">
<I NPUT TYPE="TEXT” NAME=" NAME. %.| KE% VALUE=" Ceorge” >

The command line generated using these two input variables and their valuesis shown below.
Note that the browser has performed the necessary encoding on the non-al phanumeric
characters (e.g., the ‘%’ and ‘.’):

CET test. htf?l DYBEGT=1234&name¥BEYR5L1 KEY25=CGeor ge& code¥BEXX=wxyz
The resulting WHERE%Y variableis:
VWHERE | D > 1234 AND nane LIKE ' %eor ge%

In this example, a> (greater than) test was done on the ID field and a LIKE (case-insensitive
comparison) test on the name field using wild carding. The variable name suffixes that can be
used to modify a %WHERE% clause, their functions and an example of their usage are:

.EQ eg.ID.EQ=123® ID =123
adds the field to the WHERE clause using an equal operator (the default if no suffix is
specified).

.EQN eg. ID.EQN=123® ID =123
same as .EQ but coerces the value to a number using asNumber.

EQS eg.ID.EQS=123® ID ='123'
same as .EQ but coerces the value to a string using asString and encloses the field in
single quotes.

258

WebBase User’s Guide

.GE eg. ID.GE=123 ® ID >=123
adds the field to the WHERE clause using a greater than or equal operator.

.GEN eg. ID.GEN=123 ® ID >=123
same as .GE but coerces the value to a number using asNumber.

.GES eg. ID.GES=123 ® ID >="123'
same as .GE but coerces the value to a string using asString and encloses the field in
single quotes.

.GT egq. ID.GT=123® ID > 123
adds the field to the WHERE clause using a greater than operator.

.GTN eg. ID.GTN=123 ® ID > 123
same as.GT but coerces the value to a number using asNumber.

.GTS eg. ID.GTS=123 ® ID > '123'
same as .G T but coerces the value to a string using asString and encloses the field in
single quotes.

.LE eg. ID.LE=123 ® ID <= 123
adds the field to the WHERE clause using a less than or equal operator.

.LEN eg. ID.LEN=123 ® ID <=123
same as .LE but coerces the value to a number using asNumber.

.LES eg. ID.LES=123 ® ID <="123'
same as .LE but coerces the value to a string using asString and encloses the field in single
quotes.

.LIKE e.g. name.LIKE=George ® name LIKE 'George'

adds the field to the WHERE clause with a LIKE operator. Thisisvery similar to using
‘='. However, the value of LIKE iswhen the user is allowed to type in the % character as
part of the input: thus positioning the ‘wildcard’” somewhere in the input text rather than
just at the beginning and/or the end of the string. Even if the wildcard character is to be at
the beginning or the end, the user who is entering the text has control over where the %
character islocated and not the devel oper of the Web page.

20LIKE% eg. name.%LIKE%=George ® name LIKE '%George%'
adds the field to the WHERE clause with a LIKE operator and includes wild carding at
both ends of the string.

20LIKE e.g. name.%LIKE=George ® name LIKE '%George’

adds the field to the WHERE clause with a LIKE operator and includes wild carding at the
beginning of the string.

.LIKE% e.g. name.LIKE%=George ® name LIKE 'George%'

adds the field to the WHERE clause with a LIKE operator and includes wild carding at the
end of the string.

LT eg.ID.LT=123® ID <123
adds the field to the WHERE clause using a less than operator.

.LTN eg. ID.LTN=123 ® ID < 123
same as .L T but coerces the value to a number using asNumber.

WebBase User’s Guide 259

Chapter 12: Features

LTS eg.ID.LTS=123® ID < '123'
same as.L T but coerces the value to a string using asString and encloses the field in single
quotes.

.NEQ eg. ID.NEQ=123 ® ID =123
adds the field to the WHERE clause using a not equal operator.

.NEQN eg. ID.NEQN=123 ® ID !=123
same as .NEQ but coerces the value to a number using asNumber.

.NEQS eg. ID.NEQS=123 ® ID I="123'
same as .NEQ but coerces the value to a string using asString and encloses the field in
single quotes.

NLT eg. ID.NLT=123 ® ID <123
adds the field to the WHERE clause using a not less than operator.

NLTN eg. ID.NLTN=123 ® ID 1< 123
same as .NLT but coerces the value to a number using asNumber.

NLTS eg. ID.NLTS=123 ® ID I<'123'
same as .NLT but coerces the value to a string using asString and encloses the field in
single quotes.

NGT eg. ID.NGT=123 ® ID !> 123
adds the field to the WHERE clause using a not greater than operator.

NGTN eg. ID.NGTN=123 ® ID !> 123
same as .NGT but coerces the value to a number using asNumber.

NGTS eg. ID.NGTS=123 ® ID !> '123'
same as .NGT but coerces the value to a string using asString and encloses the field in
single quotes.

XX eg. code.XX=sample ®
skips this field name when constructing the WHERE clause.

12.4 ISMAP Features

WebBase can handle ISMAP images but does not make use of a.MAP file. The HREF
specified in the anchor surrounding the ISMAP imageis not a.MAP file but smply another
.htf file. Thisfile can access the variables %x% and %y% to determine the x and y coordinates
returned when the user clicked over the ISMAP image. Using the {if ...} {else}{/if} or {case
...;{match...}{/case} features of WebBase, one can determine how to respond to aclick at a
given x,y coordinate and either present information directly from the current pseudo-.MAP
form or use the reDirect macro to point the user to another location to handle that coordinate
mouse click.

The example presented below in Fig. 12.6 tests for the x coordinate being between 100 and
150 and the y coordinate being between 200 and 300. If this condition istrue the user is
redirected to another web page. Inline HTML can also be returned as part of the appropriate
if/elsefend-if structure.

260

WebBase User’s Guide

Fig. 12.6 Example ISMAP image code

{if 100 150 %% between: and: 200 300 %% bet ween: and: &}
{reDirect "url..."}

{/if}

A more detailed example using an ISMAP image is presented with the WebBase WebWizard
More Examples table.

WebBase User’s Guide 261

Chapter 13: Security

WEB

oo

e .
5% Security

ExparTeiligance

Chapter 13

This chapter discusses how WebBase forms can be made secure using Basic Authentication
and directory browsing. Information on configuring firewallsto alow WebBase accessis aso
presented.

13.1 Basic Authentication

Basic Authentication is used by browsers for authenticating access to files and/or directories.
Upon receipt of an unauthorized request for a URL, the server responds with a challenge
requesting authorization. To receive authorization, the client sends a user name and password.
If an improper or invalid user name/password pair is sent to the server, an error code of ‘401,
Unauthorized' is returned by the server.

Before addressing how authorization should be set up using WebBase, the user must first
decide which page(s) require authorization before the user can view them. Any page requiring
authorization should include something similar to the code presented in Fig. 13.1 at the top of
each page:

Fig. 13.1 Example code checking for authorization

{set %out put % f al se}

{if "Authorization %nd% getVariable: isN I}
{reDirect '"login.htf"}
{exit}

{/if}

The user must specify the file referenced by the redirect macro; there is no requirement that it
be cdled ‘login.htf” asin the example code above. This authorization check can be included in
a separate insert file (e.g., checkAuth.htf), so that only the following would have to be added
on each page requiring authorization:

{insert ‘checkAuth.htf’}
Figure 13.2 is an example of aform that requests authentication via the browser:

262

WebBase User’s Guide

Fig. 13.2 Form requesting authentication

{conment }

Check if authentication has been performed yet. The variable
“Aut horization” will be nil if authentication has not yet been
performed. When the variable *Authenticate’ is set to hold a non-
enpty string, WbBase will informthe browser that authentication
shoul d be perforned. The string associated with the Authenticate
variable, along with the entered IP address, is used in the
aut henti cati on w ndow.

{/ comrent }
{if "Authorization' %nd% getVariable: isN I}

{set Authenticate 'User Verify'}

{el se}
{set Authenticate ''}

{conment }

The aut hUser Nane and aut hPassword operations extract the usernane
and password fromthe Authorization variable; these are the entries
made by the user in the authentication process.

{/ comrent }
{set thenane Authorization authUser Nane}
{set thepass Authorization aut hPassword}

{coment} Check the database to see if a match was found. The
speci fic source, user and password nust be set up by each user site.
Note that the {sql} macro is wapped within the {errorProtect} macro
in case a problemoccurs accessing the table of usernanes and
passwords. The specific action to be taken is site-specific; in this
case the user is redirected to the form* error.htf’ which may sinply
indicate that the site is currently unavail abl e.

{/ comrent }

{errorProtect}

{sgl to results source 'users' user 'db_username' password
" db_password' }
SELECT * FROM USER TABLE WHERE USER_NAME = ' {t henane sql =true}'
AND USER PWD = ' {t hepass sql =true}’
{/sql}
{onError}
{reDirect "error.htf"}
{/errorProtect}

{conment }
Use the {case} nacro to determ ne the next form based on whet her
the user entered a valid usernane and password.
{/ comrent }
{case results size}
{match 0}
{conment }

User does not exist. This will cause the browser to informthe
user that authentication failed and see if they want to try again.
If they cancel at this point, the text within this portion of the
case block is displayed. The specific HIM.L to be displayed to the
user on cancel is user-specific; the following is just an exanple.

{/ comrent }

<HTML><HEAD><TI TLE>LOG N FAl LED! </ Tl TLE></ HEAD>
<BODY>

<CENTER><H1>LOd N HAS FAI LED! </ H1><P></ P>

WebBase User’s Guide 263

Chapter 13: Security

TRY AGAI N</ A><P></ P>
</ BODY>
</ HTML>
{set Authenticate 'User Verify'}
{exit}
{ot herw se}
{conment }
A match was found in the database, so allow the user to go to a
“protected” page
{/ comrent }
{reDirect 'protectedPage. htf'}
{exit}
{/ case}

{/if}

{conment }
The user pressed the Cancel button on the initial Authentication
wi ndow. Display some appropriate HTM. to the user.
{/ comment }
<HTML><HEAD><TI TLE>LOG N FAl LED! </ Tl TLE></ HEAD>
<BODY>
<CENTER><H1>LOd N HAS FAI LED! </ H1><P></ P>
TRY AGAI N</ A><P></ P>
</ BODY>
</ HTM_>

Setting the variable 'Authenticate' tells WebBase to send the browser:

HTTP/ 1.0 401 Unaut hori zed
WAV Aut hent i cate: Basic real m="User Verify"

The value returned by authentication in the variable 'Authorization' looks like
' Basi ¢ V@&kt Dpt DWl x3Q="

To more easlly test for valid username and password matches, the following operations are
available. Thesewould all be sent to the variable Authorization created as outlined above.

authValid

returns true if the string isin fact a‘Basic’ authentication encoded string, otherwise false.
It checks for the existence of the required ‘Basic * prefix and the colon ‘' separator
required between the user name and password portions of the returned data.

authUserName

returns a string containing the User Name portion of the authorization. The statement { set
uname Authorization authUserName} will decode the returned Authorization variable and
extract the User Name portion, storing it in the variable uname.

authPassword

returns a string containing the Password portion of the authorization. The statement { set
upass Authorization authPassword} will decode the returned Authorization variable and
extract the Password portion, storing it in the variable upass.

The above operations utilize the authDecode operation that smply decodes the encoded
authorization information in the Authorization variable into a string containing the username,
acolon (:), and the password. Thus, an Authorization string of the form 'Basic

264 WebBase User’s Guide

GdkL kkdn34e9dkL kdj6' might yield an authDecode string of the form 'Joe User:password';
authUserName would return 'Joe User' and authPassword would return ‘password'.

A complimentary authEncode method exists that, when sent to a string such as 'Joe
User:password' would return the string 'Basic GdkL kkdn34e9dkLkdj6'.

The storage and maintenance of the user ids and passwords used for Basic Authentication is
entirely at the discretion of each user. It is recommended that a database be created with at
least two fields; one for the username and one for the password. Using an appropriate
SELECT statement, the database is queried using the username and password entered by the
user. If amatch isfound, accessisgranted. If no match isfound, accessis denied.

Thereis a caveat that needs to be stressed when using Basic Authentication. Once a browser
has performed Basic Authentication, the browser will continue to send authentication
information to the server with each request until the browser is stopped. It isnot possible to
clear out the authentication information so that a user can be authenticated differently within
another portion of a database.

Although it is possible for a user to create their own user authentication form, an advantage of
using Basic Authentication is that the username and password entered by the user are sent in
an encrypted format to the server. WebBase does not currently support any other mechanism
for having information generated at the browser sent to the server in an encrypted fashion.

13.2 Directory Browsing

WebBase can allow directory browsing of files and subdirectories in the path defined by the
Directory parameter of the machine hosting WebBase. By default, directory browsing is
disabled. To enable this feature, a global variable %directoryBrowse% must be created with
the value ‘true’. See Chapter 9 for information on adding and editing global variables.

Setting this variable to true enables the directory browsing capability within WebBase. When
the user references a directory pathname via a browser, WebBase will return alisting of the
files and subdirectoriesin that directory if it does not find a default file present to return and if
browsing has been enabled.

To enable directory browsing but restrict access to specific directories, afile named
‘NOBROWSE' (note: no extension) is created in the directory to be restricted. The contents of
thisfile are immaterial -- the existence of afile with the name NOBROWSE is what restricts
WebBase from displaying the directory contents of the containing directory. The parent
directory entry and any subdirectory entries that contain NOBROWSE files within them will
cause these entries to not be shown in the listing of the directory being browsed.

If auser should explicitly reference a directory containing a NOBROWSE file and general
directory browsing is enabled via the %directoryBrowse% variable being set ‘true’, the
following message is displayed at the browser:

403 Browsing is not permtted in that directory
13.3 Firewalls

The purpose of afirewall isto limit accessto anetwork. Thisis often done by limiting access
to ports. If multiple HTTP servers will be used and access to users outside the firewall is
desired, it is necessary for the site network administrator to modify the firewall to alow access

WebBase User’s Guide 265

Chapter 13: Security

to each port that is used by an HTTP server. For example, if WebBase is using port 8000 and

Microsoft Internet Information System is using port 80, the firewall must be modified to allow
access to port 80 and 8000.

The Late Breaking News window shows information about new releases, bug fixes, and
documentation updates available from ExperTelligence. The information comes from a server
at ExperTelligence. If your WebBase server is behind afirewall, you can alow WebBase to
get through the firewall by adding the following parameters:

HTTP_Proxy: firewall proxy host name

HTTP_ProxyPort: firewall proxy port number

If these parameters are defined when you launch WebBase, the query to get Late Breaking
News passes through the indicated firewall.

266

WebBase User’s Guide

WebBase User’s Guide 267

Chapter 14: Database Issues

WED
%% Database Issues

ExparTeiligance

Chapter 14

This chapter presents information about database and ODBC issues. It aso includes sections
on specific databases that have unique characteristics.

14.1 ODBC Driver/Database Engine Errors

It is possible to send requests to an ODBC driver and/or database engine that will result in an
error occurring within that driver or engine - not actually within the WebBase application code
itself. Thiserror will be reported back as an “ODBC/driver/database”’ error with the
corresponding sgl macro provided as part of the error text. Thisis done to help indicate
specifically which macro call was involved should there be more than one in the pertinent form.

Some situations are handled gracefully within the ODBC driver and/or database engine and
result in an error message being returned to WebBase that WebBase then presents to the user.
Other error conditions result in an Operating System error which, although returned to
WebBase, does not necessarily leave the ODBC driver and/or the database engine in a state to
allow the server to continue. Some such errors are ‘ Protection Violation” and ‘GPF (general
protection fault) errors. If one were to examine the error.log file created in the directory
containing the WebBase.exe application, one would see a traceback indicating an ODBCDLL
AP call was made just prior to the error.

It isimpossible for WebBase itself to prevent errors such as the ‘ Protection Violation' or
‘GPF errors noted above. However, WebBase will not terminate with such errors. Rather, it
will ‘trap’ these errors and report them to the user in a graceful manner that allows for
continued operation of the server.

We have been able to reproduce some * Protection Violation’ and ‘GPF errorsin house. One
particular way to generate the error was to request a very large amount of data be processed by
the database - in one case approximately 40 million records. Although the specific sgl macro
specified amax of 10 records be returned, the SELECT statement specified a WHERE clause
that all the records in the database satisfied - and an ORDER BY clause that requested the
ODBC driver sort al these records before returning the first 10 results. Detailed debugging of
this situation determined that the * Protection Violation' that occurred was during the execution
of the SELECT statement - the ODBC driver was called with the indicated query and
ultimately returned the ‘ Protection Violation'. In this case the database was simply overloaded

268

WebBase User’s Guide

in trying to sort al the records in the database to be able to respond to the SELECT request
and return only the desired 10 records.

WebBase itself has no concept of what is being requested by an sql macro - the enclosed text
is merely processed for WebBase variables and then passed to the ODBC driver. Nor doesit
have any concept of the structure and size of the database being addressed. Because of this,
WebBase cannot prevent such conditions that result in these ODBC driver and/or database
engine errors. In some cases, properly screening input from the user before substituting such
values into the sql macro can minimize the possibility of these types of errors occurring. The
above in-house situation had aWHERE FIELD LIKE ‘%%’ clauseinits SELECT statement
meaning any value in the FIELD column would satisfy the request. If the form had required all
input fields to contain values, this error could have been prevented.

WebBase specifically identifies errors of this type as being “ODBC/driver/database” errors
and provides the full query that was passed into the ODBC driver as part of the error message
text. If such errors are encountered, the user should be able to better analyze such situations
and redesign the queries, where possible, to avoid such error situations.

14.2 Database Administration

In many implementations of WebBase, the database files will be accessed and updated
primarily viaforms developed for and processed by WebBase. However, there are occasions
when it is necessary to edit the database directory or even completely replace the database file.
If ODBC caching is enabled, this can cause error messages to be displayed to the user when
they attempt to edit or replace the database.

Database administration is a very delicate operation, and becomes even more so if it isto be
doneremotely. If it isdesired to replace the existing database file with a new one, between the
time that the database file is copied to your location, any necessary editing changes made, and
the file returned back to the server system, people may have added new records to the database.
These will then be lost when the new version is copied onto the server.

Clearing Caches

If ODBC connection caching is disabled, then access to the database file should not present
any praoblems. However, it is recommended that ODBC connection caching be used if at all
possible with WebBase to improve performance. 1f ODBC connection caching is enabled, all
connections to the database must be released before the database is accessible.

Chapter 12 provides details about ODBC connection caching, including how to clear the
cache. In order to update afile, it is necessary to turn caching off aswell as clear the cache.

If you clear the cache without turning caching off, then any connections currently in use are
restored to the cache when the request is completed. Because these connections are in use
(either active or back in the cache), you will not be able to access the database. In addition,
any users making new reguests of pages that access the particular source/username will have
new connections generated and cached. This again prevents database modifications from being
made.

During form devel opment, changes to a database will often need to be made. With ODBC
connection caching enabled, these connections can be cleared out by smply doing selecting to
‘Clear ODBC Cache' viathe WebBase WebServer window. The database can be edited and
then form development and testing can continue.

WebBase User’s Guide 269

Chapter 14: Database Issues

There are also occasions when a production database needs to be modified. Thisis more
difficult to handle since it is not possible to control who is attempting to access aweb site. The
code in Figure 14.1 can be used to provide forms-based control of caching. Thisform would
be executed to turn off caching and clear the cache. Any necessary database modifications
would be done. Then the form would be re-executed to turn caching back on.

Figure 14.1 Example forms-based database updating code

{! Display the state of the ODBC cache upon entry !}
ODBC Cache state before: {%acheODBC%

{! Display the contents of the ODBC cache !}
{ ¥%6oDBCcacheHTM.%

{! Toggle the state of the ODBC cache !}
{setd obal %acheODBC% %cacheODBC% not }

{! dear the cache. Toggling the state only sets a flag; it does not
renpve any existing connections !}
{f== %nmd% cl ear GdbcCache}

{! Force the nmenu itenms under the WbBase WbServer Option’s nenu to
agree with the current state of caching. The cache flag was changed
above but this does not cause the nmenu itemto be updated !}

{f== %nmd% cacheMenul t enCheck}

{! Display the new state of the caching flag !}
ODBC Cache state after: {%acheODBC%

{! Should display that the cache is now enpty !}
{ ¥%6oDBCcacheHTM.%

It is strongly recommended that forms such as these be protected with some form of
authorization (e.g., Basic Authentication), so that access to them is restricted to appropriate
personnel.

Note:

Turning the cache off does not prevent someone else from hitting your site and
accessing that database after you have turned the cache off - they will simply
create a connection to the database and release that connection as soon as they are
done with it. Timing is the issue here - it is possible for someone to hit your site
after you've turned the cache off but before the database file modifications have
been completed. Protecting the database from access while caching is off can be
done as described in the following section.

SQL Protect using Global Variables

In order to do database administration, it is necessary for the forms designer to give some
thought to how best to protect the database yet till allow it to be modified. One suggestion is
to use aglobal variable that indicates whether the database is OK to useinasgl cal. If so,
then execute the sgl statement. If not, output a message that the database is unavailable.

For example, create a global variable called myDBAvailable and set it to true. Then on each
{sql} call, implement it like:

270

WebBase User’s Guide

Fig. 14.2 Example code to test database availability

{if myDBAvai l abl e}
{errorProtect}
{sqgl source ...}
| NSERT/ SELECT st at enent
{/sql}
{onError}
Qops! A database error occurred.
{/errorProtect}
{el se}
Sorry, database is currently unavailable. Please try again |later.

{/if}

14.3

When it istime to perform maintenance on the file, either localy or remotely, set the global
variable to false, reload the global variables, and then users will get the message that the
database is unavailable. After the maintenance is completed, which can bein 1 minute or 1
hour, the value of the global variable is changed to true and users can again access the
database successfully.

Think of it as sort of an "sgl protect” macro -- you're not checking for errors as much as you're
checking for the availability of the database.

SQL Selects & Timing

If ODBC connection caching is used, asisthe default, it has been discovered that a problem
can occur when an INSERT, UPDATE or DELETE of the database is done immediately
followed by a SELECT in which the changed information is to be reflected. Users who force
the connection to be closed following the INSERT, UPDATE or DELETE consistently find
their new or updated data in the subsequent SELECT. Closing the connection flushes any
pending INSERT or UPDATE operations that are apparently performed in an asynchronous
fashion.

It is possible to close the connection following an INSERT, UPDATE or DELETE (or a
SELECT for that matter) by including the ‘ cache false’ keyword value pair in the sql macro.
This tells WebBase that regardless of whether a cached or a new connection was used for the
SQL statement, the connection that was used is to be closed and released following its use.

14.4 Microsoft Access Database Issues

ODBC Driver Bug/Workaround

The ODBC driver for MS Access included in ODBC Driver Pack #3 for Windows-NT and
Windows-95 systems has a bug that Microsoft isworking on correcting. The symptom of this
bug is that WebBase will crash or simply quit with no error indication whatsoever. If you
experience these problems, are running on Windows NT 4.0, and are using Microsoft Access,
it is recommended that you implement this workaround.

Accessing an MS Access database via ODBC while running under Windows NT 4.0 presents
a problem when one attempits to free the memory associated with the first alocated ODBC
connection handle. In most cases attempting to free this area of memory resultsin a GPF or

WebBase User’s Guide 271

Chapter 14: Database Issues

Protection Violation error. This may not occur the first time, but it will usually occur within
the first three or four times that same memory areais allocated and freed.

WebBase uses ODBC to access its databases and must alocate a connection handle when first
connecting to a database. Under default conditions, this handle is retained in the WebBase
ODBC cache dfter its dlocation and remains in cache until the WebBase server is shut down
or the user explicitly clears the ODBC cache. Under either of these conditions it is probable
that the above-described GPF error will then occur. If auser has disabled the ODBC cache, it
is highly likely that the GPF will occur as soon as a WebBase .htf form that accesses an
Access database is processed.

The solution to the above problem isin alocating the first connection handle, then closing the
connection and not freeing the handle. Thisis deliberately creating a smal memory leak by
leaving the handle's memory allocated. This not only prevents the GPF from occurring on this
first handle allocation but makes this area of memory unavailable for reuse in subsequent
ODBC cdls and thus prevents the GPF from occurring on any of these calls. The problem
seems to be very specifically related to the first and only the first allocated ODBC connection
handle.

For users of the WebBase server this means that one must

1. have away of specifying that the connection handle associated with an sql macro call
NOT be freed after use

2. have away of ensuring such an sql macro call will be made before any other sql macro
call to an Access database can occur. In other words, there must be away to ensurethisis
the first alocated connection handle that is being marked for NOT being released.

Item #1 is accomplished through the use of the new keepHandle keyword on the sql macro.
The only purpose of this keyword is to support this workaround. It is anticipated that once
Microsoft corrects this problem and a new ODBC driver pack is available that this keyword
and workaround will be eliminated. By default the value of the keepHandle keyword isfalse
the handle is NOT kept following the SQL statement (unless, of course, the handle is being
cached in the ODBC connection cache).

Setting the keyword keepHandle to true indicates that the handle allocated for the ODBC
connection to the Data Source is not to be freed following use. In addition, even if the ODBC
cache is enabled, the connection handle associated with this SQL statement will NOT be
placed in the ODBC cache following use but will be disconnected but NOT freed. Thiswill
ensure that this handle will not cause a GPF as aresult of this SQL statement. 1t will also
ensure that a GPF will not be caused as aresult of clearing the ODBC cache in the future
either explicitly or as aresult of the cleanup action taken when the server is shut down.

For this keepHandle keyword to be effective against the GPF problem it must be associated
with the first ODBC connection made to the database. For this reason the SQL statement
containing this option must be executed before any other SQL statement can be executed.

Item #2 is accomplished through the specification of a startup form. To ensure that the above
SQL statement is executed before any other WebBase .htf form is run that might contain an
SQL statement, a Startup Form isused. The Startup Form is a .htf form that WebBase will
automatically run each time that the server is started and before it begins processing any
browser commands.

272 WebBase User’s Guide

WebBase runs the Startup Form asiif it had been CALLed by the call macro. The only
differenceis that the Startup Form is CALLed by the WebBase Server itself and NOT by
another .HTF form. This CALLed Startup Formis CALLed asif wait true were indicated; the
server waits for the form to complete before going on to process other forms. It accepts any
number of returned parameters passed back from either areturn or exit macro in the CALLed
Startup Form.

Since there is no browser involved in the running of this Startup Form, the output returned
from this form is displayed in the WebBase WebServer window. An example of such output is:

Runni ng StartupForm ' Startup.htf'.
01: 'K
StartupForm ' Startup.htf' conplete.

The Startup Form isidentified and the 01: 'OK' was the first (and only) parameter returned by
this form. Additional returns would be displayed as02: ..., 03: ... etc.) If the CALLed Startup
Form would have returned text to a browser (if CALLed from another .HTF form initiated by
a browser command) that text will be displayed following the above in the same WebBase
WebServer window. This output can be used to visualy verify that the Startup Form executed
as expected. An example is shown below using an errorProtect macro sending both normal and
error return codes back to the server as appropriate.

WebBase will run a Startup Form each time it is launched if one is specified as a WebBase
parameter and the specified file exists at the indicated location within the server's Directory
structure.

If the StartupForm parameter is not specified when WebBase is launched or if no file is found
at the indicated |ocation, then the Startup Form will not be executed. If StartupForm parameter
is specified but the file cannot be found, a message to that effect will be posted to the WebBase
WebServer window. The absence of the file will not cause processing to stop or any other
error to be indicated.

Since each user will have their own ODBC Data Sources, it is necessary for each user to
provide an SQL statement that will connect to one of these sources using the new keepHandle
keyword. This alocates the connection handle in away that will ensureit is not rel eased
following the ODBC call. To insure this specific call is made each time WebBase is launched
before any .htf form containing an SQL statement addressing an Access database is processed
the {sql ... keepHandle true ...} macro should be placed in a Startup Form as described above.
It is not necessary to make a specific type of SQL statement (SELECT, INSERT, UPDATE,
or DELETE) nor isit necessary to submit/retrieve any data to/from the database. The most
efficient way of utilizing this workaround is to specify a SELECT that will return no matches.
It is merely the act of connecting to and not releasing the connection handle after disconnecting
from the database that circumvents the problem.

Below is a sample Startup Form used to solve this problem. The referenced databaseis the
WebBase Autos.mdb Used Cars example database that we distribute with WebBase. The
Autos.mdb fileitself isan MS Access 2.0 file but if one was to accessit using the MS Access
7.0 ODBC driver under Windows NT 4.0, it becomes a candidate for generating the GPF error
described above.

WebBase User’s Guide 273

Chapter 14: Database Issues

Fig. 14.3 Example Startup Form to handle Access Workaround

{set %out put % f al se}
{conment }

This is a startup form This formis being used explicitly as a
wor karound for the problem associated with accessing an M5 Access
dat abase via ODBC whil e running under Wndows NT 4.0. The preceding
{set %utput% false} will prevent any text generated within this form
(newines, etc.) frombeing sent back to the WbBase server - all
such out put would normally be displayed in the WbBase WbSer ver
window in lieu of a browser as is done for normal .htf forns.
{/ comrent }

{errorProtect}
{sgl to tenp source 'nyAccess' user 'fred' password 'test’
keepHandl e true}
SELECT * FROM Cars WHERE ID = 0

{/sql}

{conment }

The above SELECT will always return zero records since we know
that no entry in the database has an ID of 0. The follow ng exit
macro will report to the WbBase WebServer wi ndow the fact that the
above SQ. statenment conpleted wi thout an error.

{/ comrent }

{exit "K'}
{onError}

{conment }

If an error occurs while attenpting to process the above SQ
statenent we will conme to this onError clause of the errorProtect
macro. Below we will extract the nessageText fromthe error instance,
turn the %out put % back on, and di splay that nmessage text in the
"browser output™ which in this case will result in it being displayed
in the WebBase WebServer window. We will also explicitly return the
word 'Error' in place of the 'OK as done above.

{/ comrent }

{set text %error% nmessageText}
{set %out put%true}

Error: {text}
{return "Error'}
{/errorProtect}

We believe the above workaround is a reasonable solution for a problem that we hope will be
fixed by afuture ODBC and/or Windows NT 4.0 Service Pack.

The added SQL macro keepHandle keyword will more than likely be removed in a future

release of WebBase when it is confirmed that such afix has been implemented and sufficient
time has elapsed to alow our users to obtain and install the fix.

Too Many Client Tasks Error

WebBase was designed so that database connections would be cached to improve
performance. When asgl macro is processed, the ODBC connection cache is checked to see if

274 WebBase User’s Guide

there is a connection handle for the specified source and username. If so, the handle is reused.
If not, a connection handle is created and then stored in the cache after the sgl call is
compl eted.

The following error may occur when caching is enabled:

"ODBC API call: '"connect:' returned the follow ng error nessage:
[Mcrosoft][ODBC M crosoft Access 7.0 Driver] Too many client
tasks. "

The above error has been noted by a number of WebBase users and is based upon the fact that
Microsoft's Jet database engine versions 1.1, 2.0, and 2.5 can only be used by 10 client
applications simultaneoudly on any one machine. WebBase, to boost database performance,
caches ODBC connections by default and can quickly cause more than 10 simultaneous
connections to be established with M S databases using this Jet database engine.

Note again, this limitation is with the total number of simultaneous connections via the Jet
database engine, not to any one data source. This Jet database engine is used for MS Access,
MS dBase, MS Excel, MS FoxPro, MS Paradox, and MS Text ODBC Driver interfaces so
any combination of the above data sources are included in this limitation.

We have confirmed that this is not an issue with the Microsoft ODBC Desktop Driver Pack
3.0 (Jet 3.0). During testing, we were able to access many more than 10 data sources viathis
driver with simultaneous (cached) connectionsin WebBase!

Microsoft ODBC Desktop Driver Pack 3.0 (and later releases), however, are targeted for
Windows 95 and Windows NT 4.0 Operating Systems only. User's running earlier versions
(Windows 3.1, Windows for Workgroups or Windows NT 3.5x) cannot take advantage of this
fix.

To assist WebBase users on these earlier operating systems, WebBase has been modified to
aleviate (although not totally eliminate) this " Too many client tasks" limitation without
requiring users to disable the ODBC Connections Cache.

Usersfacing this "Too many client tasks" limitation can set a variable called
%clearCacheAndRetryOnConnectionError% to true (the default condition is to assume this
variable is set to false including when the variable itself does not exist). Thismay be aloca
variable defined within a given .htf form or a globa variable set in the System Registry or
WebVars.ini file. If set asaloca variable, the condition will apply for that one form only; if
asaglobal variable, for al forms (unless overridden locally).

When WebBase attempts to make a new ODBC connection because it did not find an
available, appropriate connection in its ODBC Connections Cache, the above "Too many client
tasks" error is returned when thislimit isreached. At thistime, if
%clearCacheAndRetryOnConnectionError% is found to be set to true, WebBase will clear the
ODBC Connections Cache of al cached connections and try making the requested new
connection a second time. Assuming the ODBC Connections Cache contained at least oneidle
connection to an ODBC source serviced by the Jet database engine, clearing the cache will
make available the needed connection and the second attempt should succeed. If either the
variable %clearCacheAndRetryOnConnectionError% was not found to be set to true or the
second attempt at connecting to the data source fails, the error will be returned to the user as
are all other ODBC API errors.

WebBase User’s Guide 275

Chapter 14: Database Issues

This process does introduce some inefficiency in that WebBase is unaware of the fact that the
requested data source requires the Jet database engine since dl it hasis the ODBC data source
name, user name, and password values. It does not attempt to interrogate the cached
connections to see if they are Jet-engine-based ODBC driver connections. Althoughiit is
possible for WebBase to be a bit more selective when clearing the cache, it was felt that the
above-described implementation is a reasonable attempt to address a problem that in essenceis
associated with operating systems that Microsoft itself has obsoleted. The net effect isto
introduce additional disconnect and connect overhead only when triggered by the "Too many
client tasks" error and not for every data source access as required when ODBC Connections
Cacheistotally disabled.

145 Microsoft Excel Database Issues

Microsoft Excel spreadsheets can aso be accessed via WebBase and ODBC drivers.
However, it's a bit more involved than with other databases. Here's how to go about setting up
ODBC access of Excel spreadsheets:

1. You canonly have 1 sheet in aworkbook.

2. The sheet must be set up so that row 1 contains all the field names, rows 2-n contain the
data records.

3. Once you have your data set up, select all the cells you want to consider asa“table”. This
must include the field namesinrow 1. Y ou can include empty rows which will give you
room to insert new records. Within Excel, from the Insert pull-down menu, select Name
and then select Define. Enter an appropriate name for your “table” (e.g., Employees).

4. Close the workbook.

5. Set up your Excel ODBC source following the general instructions in Chapter 3, and point
it to the workbook file.

6. Write your htf file to access the source name entered in step #5 and the “table’ name
entered in step #3.

7. Invokethe htf file and you should be able to access the records!

Y ou cannot have any empty columnsin the selected table (columns without a field name for
them). Y ou can have empty cells within a column, but the column must have a name in row #1.

It is also recommended to include empty rows at the bottom of the table. Thisis equivaent to
having null records in the database that can be filled in at a later date WITHOUT having to go
back into Excel and redefine the “table”’ to contain new records that may have been added via
an INSERT.

14.6 FoxPro Database Issues

The FoxPro database does not support the DELETE command in the same fashion as other
databases. Instead of actually deleting the record from the database, it smply flags the record
asbeing deleted. Thisflag isimplemented as just another field in the record. When
performing a SELECT, the ODBC driver does not check this particular ‘delete-flag-field’
when returning records that match the select criteria. Thus, records which have been marked

276

WebBase User’s Guide

for delete may be returned as part of a collection retrieved viaa SELECT statement. The
database needs to be compressed before “ deleted” records are actually removed.

WebBase User’s Guide 277

Chapter 15: WebBase Q&A

WEB

/A B
%% WebBase Q&A

£ ExperTailigance
Chapter 15

This chapter includes some frequently asked questions and their answers. Ingtallation
problems are addressed in Chapter 3. Additional information may be found on the WebBase
Web site and in the WebBase Support Forum on the WebBase Web site.

How do | upgrade?
Check the WebBase Web site for instructions on how the latest version of WebBase can
be acquired.

I launch WebBase and try the dateTime command to test the program but get a 404
The requested URL was not found error.

For any file name or internal command sent to WebBase, WebBase will first try and
locate the directory specified in the Directory parameter. 1f WebBase cannot |ocate the
directory, it reports the ‘404 - file not found’ error. Check your startup parameters to
verify that the Directory parameter specified actually exists.

Why can’t | get the database examples to run? 1 see the source of Dbexam1.htf form
when | open this file.

This happens when you do an open file on Dbexaml.htf. Many browsers allow you to
view local file system files - and thisis what you are doing. To process the file you must
do an Open Location using a URL and not merely an Open File using the file pathname.
Also, the Database Examples require that you have set up the Autos.mdb database file to
be accessible via ODBC; see Chapter 3 for instructions on how to set up the data source,
username and password for this example.

How can | display images or pictures from a database?

WebBase does not currently support retrieving binary data from database fields. Asthere
are many people interested in being able to save and retrieve images, the solution that we
provide is to store the binary image information in external filesin adefined location and
then identify the location within the database field. For example, alocal, user or global
variable could be defined such as:

278

WebBase User’s Guide

{set inmagesDir 'images\'}

This directory would be relative to the directory containing forms, which is normally
c:\nttp. Within the database, there would be afield to contain the location of the image
file. Anentry in thisfield would look something like:

{imagesDir}JBOX3A. G F

The curly braces are used to indicate that the ‘imagesDir’ is a variable name. When the
record containing thisfield is retrieved, the image can be displayed using:

<IM5 SRC="{f= PictureField %nmd% asHTF: }">

The 'asHTF:' operation causes the {imagesDir} variable to be resolved into ‘images\'.
Thus, the source of the image to be displayed is 'images\jbox3a.gif'. Absolute path
references can aso be used, including accessing the image files via another server! For
example, you might want to have both 11S and WebBase running on your site. WebBase
could handle any forms needing database processing. Any image files could be returned
viallS. To handle this, you would ssimply create your variable using something like:

{set inmagesDir 'http://ww. yourSite.com 8000/i mages/'}

How do | replace a database when users are actively posting requests?

Thereis not away to put WebBase into a‘non-service' state but you might consider
simply protecting all your database accesses. Chapter 14 presents details on how to do
Database Administration.

How can | find out the type of browser accessing WebBase?

The header variable User-Agent is passed in from the browser and identifies the type and
version of the browser in use. For example, a Netscape 3.0 browser on a Windows-95
system will return:

Mozilla/3.0 (Wn95; I)

A MSIE 3.0 browser on the same system will return:
Mozillal/2.0 (conpatible; MSIE 3.01; Wndows 95)

Can you use stored procedures in \WebBase?

WebBase provides you a means of issuing an SQL statement via ODBC to your database.
If the query language supports stored procedures and the ODBC driver supports stored
procedures, then WebBase will support stored procedures. The ‘text’ between the{sql ...}
and {/sql} macros is defined by the ODBC SQL - you should be able to access your stored
procedures as defined by the SQL query language for your database. For example, if there
isastored query called qryQueryl, it would be used in WebBase as:

{sgl to Istqueryl source 'ODBC Connect' user "" password ""}
SELECT * FROM qryQueryl
{/sql}

However, WebBase does not currently support passing parameters into stored procedures.

WebBase User’s Guide 279

Chapter 15: WebBase Q&A

Can | use a formatted text file with WebBase and ODBC?

The ODBC Driver packs provided with WebBase include a Microsoft Text Driver. Via
ODBC you select MS Text File Driver, and specify a directory in which your text file
resides. Specify thefiletypeif necessary. Select the ‘ Define Format’ option within the
ODBC Text Driver Setup window, and select the text file to be used. Identify the type of
delimiters, and set up the column information. The result is a Schema.ini file. You can
then write an .htf file that accesses this source and perform database interactions as with
other relational databases.

Any suggestions on improving performance when using WebBase?

The most expensive part of the ODBC interface processisthe ‘binding’ of the returned
results to the WebBase data structures. Y ou should only retrieve the fields to be used in
computations/display within a SELECT statement. If al fields are retrieved, more
complex data structures have to be built within WebBase that require both time and
memory. If you avoid bringing back some fields by specifying exactly what fields you
want instead of using the "*" you should see a performance improvement. The bigger the
gap between what you are asking for versus what you would get with "*", the bigger the
improvement.

How can | make database search results clickable references?

Simply wrap a around the field you are displaying. Y ou can include
information in the HREF string to specifically identify the field being clicked on. For
example, assume the field name isin {fName}

{f Nane} </ A>

Now when one clicks on the value displayed by {fName}, the form someForm.htf will be
caled and it will have aloca variable named item with the value of {fName}. The
encode=true is necessary only if fName might contain non-a phanumeric characters since
browsers do not encode the HREF strings like they do the values of <INPUT ...> items
within a<FORM ...> which is how one usually calls other forms passing in arguments.
The encode=true will NOT hurt anything if the fName field does NOT contain any special
characters or spaces so in general it isagood ideato use it when including {...} fields
within an HREF string.

Inasimilar fashion, it is possible to create graphical or text-based buttons to perform the
submit and reset functions just like a post or get. Just place an anchor - ...
 - around your button and include the same information that would be in the
command line were a submit button used. For example,

HREF="form ht f ?val uel=t hi s&val ue2=that&. .."

How can | use the logging feature?

If the user has enabled the WebBase logging feature, information on each command
processed or returned by WebBase iswritten to alog file. The greatest power of
WebBase is its database access facilities. Given this, one of the best way of performing
‘log analysis at a \WebBase supported site is to use WebBase to log your "hits’ to a
database rather than using the default flat log files.

You can set up any number of log databases, each specifically designed to collect that data
that might be relevant to a particular web page or collection of web pages a user visits.

280

WebBase User’s Guide

Y ou can then use WebBase .htf forms to read these databases and provide you with
meaningful statistics relative to that database. These can be run from any browser so you
can perform your analysis from aremote site (with appropriate logon authorization to keep
users out of these forms).

You can create a single file for one log database that performs the database write and
insert or call thisfile from each page that you wish to have logged. Thus you do not add a
lot of code to each of your pages. In addition, if you have avery busy site, you can create
aUser Variables dictionary into which you accumulate log information, then write this
information out to disk every <nn> times the dictionary is accessed to reduce the required
disk accesses. Again, al this can be donein asingle file so very little needs be done to
each of your web pages besides an insert of or call to thisfile.

The WebBase WebWizard Database Example #3 provided with WebBase performs
automatic logging of each database query to another database.

The Web analysis tools that are now available as shareware or commercia systems can be
used with the log files generated by WebBase. These tools are useful for determining the
number of hitsto asite, as well as much more information.

WebBase User’s Guide 281

Chapter 16: E-Merge

WEB

oo

(NS
5% E-Merge

ExparTeiligance

Chapter 16

16.1

WebBase E-Merge is an add-on product to WebBase that allows awebmaster to search a
database and send mail-merge letters that are individualized and customized by criteria. Fields
from the database can be merged into e-mails, and paragraphs can be conditioned on
calculations. E-mails may aso be sent to arbitrary selections of the database as the result of
an event, and even queued for delayed delivery. WebBase E-Merge supports normal and
timed e-mail, aswell as attachments. An additiona licensed features key is required before a
user can use E-Merge. Contains sales@expertelligence.com for information on obtaining this
LicensedFeatures key.

Configuration

WebBase E-Merge does not require a separate installation; the necessary software is included
when WebBase isingtalled. Before WebBase E-Merge can be used, the user must specify
severd initialization parameters as described below.

E-Merge Parameters

Aswith the WebBase initiaization parameters, the WebBase E-Merge initiaization
parameters are stored in the System Registry. Adding in or changing the E-Merge parameters
will have no effect on arunning WebBase application. To effect a change for any entry, you
must stop and restart WebBase after editing the parameter.

The name of each parameter is case senditive and must be entered exactly as shown below. If
a parameter name is entered incorrectly, WebBase will not be able to accessit or use its vaue.
The values for string input fields are not case senditive.

The following are the required WebBase E-Merge parameters. They should be added to the
System Registry following the instructions provided in Chapter 4 for adding or editing
parameters.

LicensedFeatures -- a LicensedFeatures key is similar to the License parameter. The License
parameter enables WebBase; the LicensedFeatures key enables different add-on options within
WebBase. If you purchase a new add-on option, you will receive a new LicensedFeatures key
that hasto beinstalled. WebBase E-Merge or any other add-on product will not work until
the appropriate LicensedFeatures parameter is entered.

282

WebBase User’s Guide

16.2

SMTP_Server -- identifies the host machine that is to process the mail you wish to send via
WebBase E-Merge. Thisentry is either afully qualified name accessible viaa Domain Name
Server (e.g. mail.myhost.com), or the |P address of the mail server host (e.g. 11.22.33.44)

The Mail Log

The Mailer maintains alog of all mail processed and any error messages encountered while
trying to process that mail. Thislog is similar to the standard WebBase log in that daily log
files are created in the location specified in the LogDirectory parameter just asis done for
WebBase. The mail log files are preceded with the prefix WM (for WebBase Mail) rather
than the WB used for the default WebBase logs.

Menu items in the WebBase Server window's Option menu allow the user to enable/disable the
mail log and flush the mail log.

Note:

One must specify a LogDirectory parameter to have mail logging available. One
can provide such a parameter, then disable normal logging if only mail logging is
desired.

Shutting Down WebBase

If WebBase is shut down, either normally or abnormally, any messages in the mail queue that
have not yet been delivered will be lost. The mail queue is strictly a memory-only queue with
no backup to disk support. If you are going to frequently generate mail messages within
WebBase that must be delivered, it is recommended that your messages be queued in the mail
gueue as well as saved within a database. After a message has been sent, it can be removed
from the database. If WebBase terminates, your messages are saved in the database. Y ou can
then write appropriate WebBase forms to determine if any messages need to be requeued after
WebBase isrestarted. Thisisagood example of the type of functionality that can be included
in aWebBase startup form.

E-Merge Windows

WebBase Mail Service Window

The Mailer is the process within WebBase that manages the accumulation and sending of mail
at the appropriate time. The Mailer is represented by the WebBase Mail Service Window that
displays some mail status information and has menu items to exit the mail process, start and
stop (suspend) the mailing of queued mail messages, and flush the mail queue.

The WebBase Mail Service Window is displayed by selecting the Mailer option from the Edit
menu on the WebBase WebServer Window. The WebBase Mail Service Window is also
automatically opened each time the Mailer detects that there is a mail message in the queue
that needs to be sent. An example of the WebBase Mail Server Window is shown below.

WebBase User’s Guide 283

Chapter 16: E-Merge

Figure 16.1 WebBase Mail Service Window
EWehBase h6 Mail Service [100 linez) =] 3
File Edit Status
1 <=> Service active as of Fri 11 Apr 1997 11:34:22 . -

-
] | ap

If the WebBase Mail Service Window is explicitly closed, it will be reopened the next time a
message is to be sent. The sockets interface used by mail to send messagesisinternally
connected to the WebBase Mail Service Window. If the window is closed, processing
overhead is required to re-establish the sockets interface. It is recommended that the window
be left open and iconified.

When amail message is submitted to the queue for immediate ddlivery or if the delivery date of
an envelope in the queue has arrived, an entry is made on the WebBase Mail Service Window:

Starting Mail Service #

The # specified is the unique process number assigned to handle the piece of mail; it may be
displayed with other information in the window (e.g., if messages are being traced). This
identification number is automatically assigned to the process. Once the process is completed,
subsequent processes may reuse the number.

Menu Options

The following are the options available from the pull-down menu bar at the top of the
WebBase Mail Service Window.

File->Exit -- if this menu option is selected, the WebBase Mail Service Window is closed.
The WebBase Mail Service Window will automatically be opened whenever a message
from the Mail Queue isremoved and sent. If the window is explicitly closed, it will be
reopened the next time amessage isto be sent. It is recommended that the window be
kept open and iconified to reduce the processing overhead required to set up the sockets
interface associated with the window and the sending of mail messages.

Edit>Cut -- this menu option provides the same functionality as described for the
WebBase Transaction Service Window.

Edit->Copy -- this menu option provides the same functionality as described for the Late
Breaking News Window.

284 WebBase User’s Guide

Edit>Clear All -- this menu option provides the same functionality as described for the
WebBase Transaction Service Window. Note that this only clears the display and does not
have any effect on entriesin the MailQueue.

Edit->Find -- this menu option provides the same functionality as described for the Late
Breaking News Window.

Edit->Find Again -- this menu option provides the same functionality as described for the
Late Breaking News Window.

Edit>Set Lines -- this menu option provides the same functionality as described for the
WebBase Transactions Service Window. The global variable %mailMaxLines% can aso
be set to specify the number of lines on this window.

Status>Posting enabled -- If this option is selected, information will be written to the
window. If the option isturned off (no check mark is displayed next to the option), no data
will be written to the window. For example, the user can select the Show Stats option and
nothing will be displayed in the window if posting isdisabled. However, mail will sill be
sent and, if mail logging is enabled, log records will be written to disk. The display below
shows the information displayed on the WebBase Mail Service Window when the Posting
Enabled option is turned off and then back on. The variable %mail PostingEnable% can be
used to control whether Posting is enabled or disabled; by default it is enabled. If the user
islogging to disk and not actualy sitting at the server, there is probably no need to post
mail transactions and the variable can be set to false to disable posting. Posting does add
overhead because of the 1/O required to display information on the window.

Figure 16.2 Enabling/Disabling Posting Display
EWEhBase 56 Mail Service [100 lines) =] 3
File Edit Status
3 <=> Service active as of Fri 11 Apr 1997 11:44:29 . -

2 <=> Service active as of Fri 11 Apr 1997 11:44:25 - window disabled .
1 <=> Service active as of Fri 11 Apr 1997 11:34:22 .

| ‘»fd

Status>Start Mailer -- This option is only available if the Stop Mailer option was
previoudy selected. If selected, the checking of mail in the queue is resumed.

Status>Stop Mailer -- this option isonly available if the mail serviceis currently active.
If selected, the checking of mail in the queue is stopped. Any in-process mail is completed.
This option does not affect the status of writing to the WebBase Mail Service Window. If
one stops the service, any mail in process will continue being sent and any messages being
posted as a result of thisin-process mail will continue to be written to the window if
Posting is enabled. The mail service can be resumed by using the Start Mailer option.

WebBase User’s Guide 285

Chapter 16: E-Merge

However, if the Mailer is stopped and the WebBase Mail Service Window is closed, the
Mailer is automatically started the next time the WebBase Mail Service Window is
manually opened. The display below shows the information displayed on the WebBase
Mail Service Window when the Stop Mailer option is selected followed by the Start Mailer
option. Notice that two lines of information are displayed when the mail serviceis
restarted — one to indicate the status of the service and the other to provide information
about what isin the queue. In this case, there were no messages in the queue to be

processed.
Figure 16.3 Starting and Stopping Mail Service Display
EWEbBase 56 Mail Service [100 linez) Mi=] B
Fil= Edit Status
6 <=> Queue empty. -

b <=> Service active as of Fri 11 Apr 1997 11:48:02 .

4 {=» Service stopped as of Fri 11 Apr 1997 11:48:00 .

3 <=> Service active as of Fri 11 Apr 1997 11:44:29 .

2 <=» Service active as of Fri 11 Apr 1997 11:44:25 - window disabled .
1 <= Service active as of Fri 11 Apr 1997 11:34:22 .

| _;jlj

Status>Set Mail Limit -- If this option is selected, the dialog shown in Fig. 16.4 is
displayed. The user is prompted to enter a number that how many mail processes will be
created and used. If O (zero) is entered, there are unlimited mail processes. Eachtime a
new mail message is generated, a mail processis created to handle the sending. Itis
possible to saturate amail server by sending it hundreds of simultaneous mail messages.
WebBase E-Merge handles mail in an asynchronous fashion, so each mail message is sent
without waiting for a previous message to finish. The number of mail processes must be
set to accommodate the specific mail server in use. If the parameters of your mail server
are set up to restrict its input handling but WebBase E-Merge does not have alimit on the
number of mail processes (or the number istoo large), the WebBase Mail Service Window
will show numerous error replies that the server istoo busy. When this happens,
WebBase E-Merge requeues each mail that has not been delivered, resendsiit, gets
another ‘too busy’ error, requeues the message, and so on. Setting a limit of concurrent
mail in process eliminates these problems. If you are not familiar with your mail server’s
capabilities, experiment with the server and the mail process limit. Too big a number of
processes when sending alarge volume of mail will result in the WebBase Mail Service
Window reporting many error returns from the server. The variable
%concurrentMailLimit% defines the number of mail processes; it defaultsto O which
means unlimited.

286 WebBase User’s Guide

Figure 16.4 Number of Mail Processes Dialog

I ~ |
Enter max processes [0<= n] O=none:

@ |

114 Cancel]

Status>Show Mail Queue -- This option isonly active if there are entries in the mail
queue. If sdlected, the first line added to the window indicates the number of entries
currently in the queue. Subsequent lines display for each message in the queue the current
date, the date the message isto be sent, who the message is from, who the message isto
and the subject of the message. Figure 16.5 shows the results of the Show Mail Queue
option when there is a single envelope in the queue. To present this display, a mail
message was queued for delivery at alater date to keep it in the queue. If the mail service
is not busy, mail messages may not be in the queue long enough to see them asthey are
immediately sent from WebBase E-Merge to the mail service for processing.

Figure 16.5 Show Mail Queue Display

£S5 webBase 56 Mail Service (100 lines) =] E3
File Edit Status
17 <=> Queue: Fri 11 Apr 1997 11:57:19 dt: 04/11/97 11:54:53 fr: vendor@companyB.com =

to: customeri®companyA.com re: Order Confirmation
16 <=> Queue has 1 entry.

o)
« | v

Status>Flush Mail Queue -- Thisoption is only active if there are entries in the mail
gueue. A confirmation dialog is presented indicating the number of mail messages that will
be deleted. If so confirmed, all entries are removed from the mail queue.

Status>Show In Process Mail -- If selected, the first line added to the window indicates
the number of entries currently being processed (mail processes have been created but the
process has not yet completed sending the mail). Subsequent lines display for each
message being processad in the queue the current date, the date the message is to be sent,
who the message is from, who the message is to and the subject of the message. The
display at the end of this section shows the information displayed if there is in-process
mail.

Status>Show Stats -- if selected, the number of messages that have been received in the
mail queue, the number that are currently being processed, and the number of errors that
have occurred while sending messages are displayed in the WebBase Mail Service
Window, as shown in Fig. 16.6 below.

WebBase User’s Guide 287

Chapter 16: E-Merge

Figure 16.6

Mail Statistics Display

K5 webBase 56 Mail Service (100 lines) M=l E3

Eile Edit Statuz
8 <=>» Mail stats -In: 1 In Process: 1 Errors: 0 -

an L

Figure 16.7

Status>Trace Mail Commands -- thisis atoggle option that turns on trace information in
the mail window. By default, this option isdisabled. If selected, acheck mark is
displayed next to this option on the pull-down menu. If selected, it shows each write that
is done and the reply code received from the server. The writes include things like HELO,
RECP TO, DATA, and QUIT; replies are merely numbers like 200 (OK). The variable
%mail Trace% can be used to automatically enable or disable this feature; by default it is
disabled.

Status>Full Trace -- this option is only active if the Trace mail commands option has
been enabled. If selected, extensive trace information on each mail transaction is displayed
in the WebBase Mail Service Window. Thisincludes the entire stream of information that
issent out (all the send to addresses, the full text of the mail, etc.) and the entire reply from
the server which usually is quite lengthy and includes server name, status, id numbers, etc.
The display below shows the results of afull trace for amessage. The information
returned by the mail server has been removed from the display; it is normally displayed on
the window. The variable %mailFull Trace%o can be used to automatically enable or disable
this feature; by default it is disabled.

Full Mail Trace of Single Message
ﬁWebBase 56 Mail Service [100 lines) M=l E3
Fil= Edit Status
16 <=> 10reply: <{message back from mail server> -

15<=> 10 send: QUIT <CrLf>
14<=> 10reply: <message back from mail server>
13 <=> 10 send: MIME-Version: 1.0 Date: Fri. 11 Apr 1997 12:04:22 0100 From: vendor@CompanyB.com
To: customer@CompanyA.COM Subject: Order Confirmation
Content-Type: text{plain; charset=us-ascii Content-Transfer-Encoding: 7hit
{text portion of message>{CrLf>
12 <=> 10reply: <message back from mail server>
11 <=> 10 send: DATA <CrLf>
10<=> 10reply: <message back from mail server>
9 <=> 10 send: RCPT TO: customer@Companyh.com <CrLf>
8 <=> 10 reply: <{message back from mail server>
7 <=> 10 send: MAIL FROM:vendor@CompanyB.com <CrLf>
6 <=> 10 reply: <messaqge back from mail server>
5<=» 10 send: HELO <CrLf>
4 <=> 10 reply: <message back from mail server>
3 <=> Mail: Fri 11 Apr 1997 12:26:49 dt: 04{11/97 12:04:22 fr: vendor@CompanyB
to: customer@®CompanyA.com re: Order Confirmation
2 <=> Queue mail: Fri 11 Apr 1997 12:26:49 dt: 04{11/97 12:04:22 fr: vendor@CompanyB.com
to: customer@CompanyA.com re: Order Confirmation|
1 <=> Service active as of Fri 11 Apr 1997 12:26:39 .

-
4 L3

288

WebBase User’s Guide

Figure 16.8

WebBase Server Window

When the WebBase E-Merge utility in WebBase is enabled, the WebBase Server Window
includes some additional menu options.

Menu Options

The following are the WebBase E-Merge options available from the pull-down menu bar at
the top of the WebBase Server window.

Edit->Mailer -- If this menu option is selected, the WebBase Mail Service Window is
opened. Note that this window will also be opened if mail has been sent out since
WebBase was started.

Enable Mail Log File -- If this option is selected, one of the dialogs shown in Fig. 16.8
will be displayed. The dialog on the left is displayed if mail logging is currently on; the
dialog on the left is displayed if there logging has been disabled. Mail log files will be
generated for each WebBase E-Merge transaction if a user has aso defined the
LogDirectory parameter. If logging is enabled, amail log fileis created each day to record
all mail activity with WebBase. Each log entry contains a timestamp, the date the
message was to be sent, who the message is from, who the message is to, and the subject
of the message. The actual text of the message is not included. If this option is turned off,
mail log fileswill not be generated. Note that it is possible to have mail log files but not
WebBase log files, or vice versa. It is suggested that you specify the LogDirectory
parameter, and then turn logging on or off either dynamically viathis menu item or by
setting the %omailLogEnabled% variable. If mail logging is on, a check mark is displayed
next to thisitem.

Mail Log Enable/Disable Dialogs

Pleaze Confirm i Pleaze Confirm i

e Clicking *res" will:) Clicking **res" will
* gtop logging mail ransactiong, and * open a mail log file, and

cloze the current mail lag file. start logging mail tranzactions.

Stop logging mail Tranzactions? Start logging mail Tranzactions?

16.3

Flush Mail Log File -- Information to be written into the mail log file is buffered until
sufficient data has been obtained, at which point it iswritten to the mail log file on disk. If
this option is selected, any information in the buffer iswritten to disk. This ensures that
the information the user views in the mail log fileis all that has been generated.

WebBase Macros

A specia macro has been provided with WebBase E-Merge to alow one to conveniently send
mail directly from a WebBase .htf form.

WebBase User’s Guide 289

Chapter 16: E-Merge

{mail <args>} {/mail}

The mail macro allows the user to send mail from a WebBase .htf form. Keywordsin the
mail macro specify information about when and where the mail is to be sent while the text
between the {mail ...} and the {/mail} statements becomes the text or body of the mail
message. Note that the text provided may contain WebBase variables, macros, and database
field references so one can dynamically construct the body of the mail message just as one can
dynamically construct Web pages with WebBase.

The mail macro contains a number of required and optional keywords used to direct the
sending of the mail message. Each keyword is followed by a single value, either a string
congtant (with the exception of the send keyword as described below), a WebBase variable or
aWebBase expression.

to -- Thiskeyword is required and is the address or addresses of where the mail messageis
to be sent. It will appear in the header of the message as

“To: * ... * *

The format for this value (and the from, cc, and bcc fields below with exceptions as noted)
isastring such as ‘you@yourCompany.com’. As noted above, this value may be specified
explicitly asastring, or as the value of avariable or the result of evaluating an expression.
Multiple addresses can be specified by separating each with a comma.

from -- Thiskeyword is also required. It isthe address of the sender of the message; the
location to which areply would be sent if appropriate. Unlike the to, cc, and bee values,
this field will accept only asingle address value. This value will appear in the header of
the message as:

“From

subject -- an optional keyword, this identifies the subject of the message. It isa string that
will be placed in the header of the message as:

“Subject: * ... * *

attach —this keyword is optional and specifies attachments to be included with the mail
message. The value must be a constant, variable, or expression that evaluates to a string
that can be parsed at space, comma or semicolon into a collection of strings, or a collection
of strings. Each string must be afully qualified DOS pathname of alocally accessible file
to be sent as an attachment.

cc -- this keyword is optional and is the address or addresses of where copies of the mail
message are to be sent. The format of the cc value is the same as that of the to value. It
will appear in the header of the message as:

“Ce: ¢ ... "
bce -- an optional keyword that is the address(es) of where copies of the mail message are

to be sent that will not appear in the header of the message. The format of the bce valueis
the same as that of the to value.

reply —an optional keyword that is the address to be included in the Reply-To: header
field. Theformat of the reply value is the same as that of the from value.

290

WebBase User’s Guide

organization — an optional keyword that is the name of the company or organization to be
included in the Organization: header field.

id -- thisisan arbitrary string you may provide to help identify the mail message and/or
provide a search mechanism for locating the message on the MailQueue using the
findByID: operation described later in this chapter. If present, thisid value is shown in the
header of the message as

“1o. oLt

send -- Thisisan optiona keyword. If used, itsvalueis a Universal Time object indicating
when the mail isto be sent. The default value is the value that would be returned by the
%dateTime% variable at the time the mail macro is processed. To queue the mail for
future sending, set a variable to the current time plus some number of seconds, e.g. { set
time 600 %dateTime% addSeconds:} for 10 minutes from now, then use this variable
name as the value for the send keyword.

The send keyword a so recognizes two string values, ‘now’ which means send the mail
immediately (same as the default), and ‘queue’ (or just ‘q’) which means queue the mail
but do not send it. In fact, the mail is marked for sending approximately 1 year from the
date of queuing, for al practical purposes, never.

As noted above, the attach keyword can be used to specify attachments to be sent along
with e-mail message. If the pathname has an extension of txt, htf, or hti, it will be sent as
atext attachment; al others will be sent as a base64 encoded (binary) attachment.

Fully qualified pathnames may be preceded by aflag to specify some error and encoding
information, using the format i@ where i isa single digit integer between O and 7. For
example,

"3@:\http\... .txt’
The prefix flags are:

no prefix - an error is generated if the specified attachment is not found at mail macro
merge time or at mail send time and the mail is not sent.

0@ -or- 4@ prefix - same as no prefix above.

1@ -or- 5@ prefix - the existence of the attachment is checked at mail send time and
if missing an error is generated and the mail is not sent.

2@ -or- 6@ prefix - the existence of the attachment is checked at mail send time and
if missing atext attachment to that effect is sent instead.

3@ -or- 7@ prefix - the existence of the attachment is checked at mail send time and
if missing the attachment isignored (as if never specified).

No prefix and values 0 through 3 use the pathname extension to determineif thefileisa
text attachment (.txt, .htf, .hti). If not, the contents of the file are encoded in base64
encoding and sent.

Prefix values 4 through 7 can be used to indicate that for files sent as base64 encoded files,
the file contents have already been so encoded and thus can be sent ‘asis. Thiscan bea
very efficient way of attaching a non-text (binary) file that is to be attached to many

WebBase User’s Guide 291

Chapter 16: E-Merge

emails. It can be encoded once and the overhead of encoding it for each and every email
can be diminated. The base64encodefileito: operation on String alows one to perform
such encoding of a source file to a destination file specifying the two files as pathname
strings. Example 16.2 shows how attachments can be done within a mail macro.

Example 16.1 Mail Macro

{sgl to addressees source 'business' ...}
SELECT Email, Nane, Titl e, Product FROM clients
VWHERE Order Status = '| N _HOUSE
{/sql}

{if O addressees size >}
{f or Row aRow on addressees}
{set subj ' is in!" Product ,}
{mail to Email subject subj
from' O der Entry@est Company. comni
bcc ' Sal es@est Conpany. com }
Dear {Title} {Name},
W're glad to informyou that the {Product}
you ordered is now in stock and ..

{/mail}
{/f or Row}
{/if}

Example 16.2 Mail Macro with Attachments

{! Encode a gif file for sending to multiple people. This makes the
sending nore efficient since it does not have to be encoded for each
person it is sent to !}

{f==false ‘c:\http\wowi zard\Wzard.gif’ ‘c:\tenp\encoded. gif’
base64encodeFi l e: to:}

{! Cenerate the e-mail nessages !}
{mai |l to 'you@onpanyA. com them@ConpanyA. comni
from' ne@onpanyB. com
organi zation ' Conpany B, Inc.'
subj ect 'sending attachnents
attach 'c:\http\wbw zard\defaul t. htf
c:\ http\wbw zar d\ dbex\ aut os. ndb
c:\http\wbw zard\ W zard. gi f
4@:\tenmp\ encoded. gi f'}
I am sending you 4 attachnments - 1 text file, 1 Access database file,
and 2 gif imges. The second image is a "previously base64 encoded"
file. 1t is the sane as the first image. During the processing and
sending of the mail, the first image woul d be encoded EACH tine it
was sent out. The second i mage was encoded prior to the mail macro
and does not have to be encoded with each sending.

{/mail}

16.4 E-Merge Variables
There are anumber of dynamic variables specificaly for WebBase E-Merge that are
described below

292 WebBase User’s Guide

Dynamic Variables

The WebBase E-Merge dynamics variables are included on the list of the WebBase dynamic
variables displayed in the WebBase Server window when WebBase is started. The WebBase
E-Merge dynamic variables include:

%MailerStatus% e.g. (idle)
returns one of the following values as a string:
" unavailable - the WebBase E-Merge feature is not available because it has not been
enabled viaavalid LicensedFeatures parameter
inactive - mailer has not been started or was exited by the user
idle - mailer was started but is currently idle (no envelopes on the queue)
stopped - mailer was stopped by the user
active - mailer is currently active (sending mail from the queue)

%MailQueue% eg. (MailList())

the actual mail queue. A MailList isaspecial type of SortedList that responds to specific
messages related to mail. The queue contains envelopes relating to mail that is waiting to
be sent. %M ail Queueds responds to the size message, returning the number of envelopes
currently on the queue. It can aso be placed in a{forRow ... } loop to process the
individual envelope entries.

Operational Variables

The following WebBase E-Merge dynamic variable can be modified by accessing the Options
menu on the WebServer window. However, the change made by selecting this menu option is
only valid for the current session. When WebBase is stopped and restarted, the default value
will berestored. If you want to permanently change the value of thisvariable, it is
recommended that you add a global variable with the desired vaue following the instructionsin
Chapter 9. The default value is shown in parentheses.

%mailLogEnabled% e.g. (true)

indicates that the mail log file functionality of WebBase is to be enabled. Thisvariableis
very similar to the %logEnabled% WebBase parameter. It is suggested that you specify
the WebBase LogDirectory parameter, and then turn mail logging on or off by setting this
variable or using the menu option on the WebBase Server window.

Special Variables

%mailMaxLines% e.g., (100)

this variable defines the number of lines of information to be displayed in the WebBase
Mail Service Window. By default, 100 lines are displayed. If Y%omailMaxLines% is
created as agloba variable with a value between 10 and 10000, this defines how many
lines will be displayed in the window.

%mailPostingEnable% e.g., (true)

this variable enables or disables posting of information into the WebBase Mail Service
Window. If set to ‘false’, it will cause posting into the WebBase Mail Service Window to
be disabled when the window is opened (either automatically when a mail messageis
processed manually via the Edit menu).

%concurrentMailLimit% e.g., (0)
this variable determines the number of concurrent mail processes that will be created. The

WebBase User’s Guide 293

Chapter 16: E-Merge

16.5

default value of O indicates that there is no limit on the number of processes. Some mail
servers have alimit on the number of mail requests they can handle. See the previous
section for more information on mail processes.

%mailTrace% eg., (false)
this variable determines whether each mail command processed will have trace information
displayed in the WebBase Mail Service window. By default, tracing is disabled.

%mailFullTrace% e.g., (fase)

this variable works in conjunction with %omail Trace%. If %omail Trace% is disabled, then
thisvalueis not used. If %omail Traceo is true, then the value of this variable determines
how much trace information will be displayed.

E-Merge Operations

There are two classes provided with WebBase E-Merge: Mail Lists and Envelopes. The
operations that users can make use of within forms devel opment are described below.

Mail Lists

A malil list isa special type of sorted collection that contains only envelopes, each holding a
mail message.

Mail List Instance Operations

In addition to the operations that can be performed by sorted lists, the following messages can
be sent to the %Mail Queueds or any other variable holding a Mail List. Each message below
will return aMailList object with 0, 1 or many entries depending on how many envelopes
match the specified criteria.

findByDate: e.g., {f= %dateTime% %MailQueue% findByDate:}

returns aMail List containing entries whose ‘send’ field matches the date in the argument.
Note: the send field expects a Universal Time such asis returned by the %dateTime%
global variable.

findByFrom: eg., {f= ‘WebMaster@ExperTelligence.com’ %MailQueue%
findByFrom:}
returns aMail List containing entries whose ‘from’ field matches the argument.

findByID: eg., {f=‘anID’ %MailQueue% findByFrom:}
returns aMail List containing entrieswhose ‘id’ field matches the argument.

findByTo: eg., {f= ‘Fred@companyA.com’ %MailQueue% findByTo:}
returns aMail List containing entries whose ‘to’ field matches the argument.

findBySubject: e.g., {f= ‘New Product Announcement’ %MailQueue% findBySubject:}
returns aMail List containing entries whose ‘ subject’ field matches the argument.

294

WebBase User’s Guide

16.6

Envelopes
An envelope contains a mail message that has been queued in amail list. It contains the mail
message along with all the necessary addressing and time-to-be-sent information accumul ated
from both the mail macro and the body of the mail message.

Envelope Instance Operations

The following operations can be sent to any entry in a Mail List.

maillD eg., {f= %MailQueue% first maillD}
returns the value of the ‘id’ field of the mail message.

mailTo eg., {f= %MailQueue% first mailTo}
returns the value of the ‘to’ field of the mail message.

mailCC e.g., {f= %MailQueue% first mailCC}
returns the value of the ‘cc’ field of the mail message.

mailBCC eg., {f= %MailQueue% first mailBCC}
returns the value of the ‘bec’ field of the mail message.

mailFrom eg., {f= %MailQueue% first mailFrom}
returns the value of the ‘from’ field of the mail message.

mailSubject e.g., {f= %MailQueue% first mailSubject}
returns the value of the *subject’ field of the mail message.

mailDate e.g., {f= %MailQueue% first mailDate}
returns the value of the ‘send’ field of the mail message.

E-Merge Examples

The WebBase WebWizard includes several examples showing how to queue a message using
E-Merge, aswell as how to query the mail queue and delete messages from the mail queue.

WebBase User’s Guide 295

Appendix A: Software License Agreement

WEB

. wg -
3@ Software License

f.ffmrhfﬁpﬂ'cl

Appendix A Ag reement

WebBase™ Software License Agreement

This agreement is a legal contract. Please read it carefully before installing your copy of the
WebBase software. Completion of the installation process indicates acceptance of the terms
of this agreement.

Upon acceptance of the terms of this agreement, you are hereby authorized to receive and use a
single copy of the computer software package known as WebBase ("the Program™), which
includes (1) object code computer software and (2) related end-user documentation. All right,
title, and interest in and to the Program is retained by ExperTelligence, Inc. (*Company"), and
is disclosed to you only for use in accordance with the terms of this agreement.

1.

Y ou are granted a personal, nonassignable, nonexclusive, fully revocable license to ingtall
the Program in asingle server.

The Program is a commercially valuable, proprietary product of Company, the design and
development of which reflect the efforts of development experts and the investment of
considerable time and money. The Program is based on substantial trade secrets of
Company, and Company claims and reserves all rights and benefits afforded under federal
copyright law and international copyright treaties in the Program as published work.

You are required to devote your best efforts to prevent any use or disclosure of the
Program or of any trade secret embodied or reflected in the Program. Y ou agree that no
copies shal be made of the Program or any portion thereof and that you shall not reverse
engineer or decompile the object code of the Program into source code. It is understood
that the foregoing shall not apply to information that (1) isin the public domain through no
fault of your own at the time of its disclosure to you, (2) isindependently developed by you
or others without reliance on the information, media, and materials provided to you
hereunder, or (3) subsequent to disclosure hereunder, is disclosed to you without restriction
by a person having the right to make such a disclosure without breach of an obligation of
confidentiality.

The terms of this agreement regarding the protection and security of the Program shall
remain in full force and effect for so long as you continue to use, process, or have access
to the Program, including any trade secrets embodied or reflected therein.

296

WebBase User’s Guide

5. TheProgram is provided and COMPANY SHALL HAVE NO LIABILITY FOR ANY
WARRANTY, TRAINING, OR INSTALLATION SERVICES, OR USE OF THE
PROGRAM OR ITSOUTPUT.

© 1995-7, ExperTelligence, Inc. All Rights Reserved.

WebBase User’s Guide 297

Appendix B: Special Configuration Issues
WEB
f g\\" % -
|I I = |
¥& Special
€ —ExperTalligance

Appendix B CO nfi g u rati on
Issues

B.1 16-bit Systems

This section provides details on how to set up WebBase parameters, extensions, aliases and
global variablesin their respective initidization files. Thisinformation is only applicable to
16-bit systems running Windows 3.1 and Windows for Workgroups 3.11. This information
for 32-bit systems (Windows NT, Windows-95) is provided in Chapter 4 and Chapter 9.

Installation

For 16-bit systems, WebBase accesses its parameters from a WebBase.ini file. WebBase uses
thisfile to access information about the environment in which it will be executing. Chapter 4
describes these parametersin detail; the remainder of this appendix covers how the
WebBase.ini file can be edited. During installation, Figure B.1 prompts for these parameters
and creates the WebBase.ini file in the ‘ Destination Directory’.

298 WebBase User’s Guide

Figure B.1 WebBase Parameters Dialog

= WebBase.INI File ¥alues

WebB aze requirez the following “Hequired parameters™
be zet in the WebBase_INI File before it will execute.

Fived parameiers. ..
AppDirectory: C-\WehB ase [not editable)
Application: (i vy yop R ase\WebBase.exe Mot editable]
Reguired paramelers. . PortNo: {gq

Directory: |C-AHTTP Browsze

emorLogFile: [C:\webBase\LOGS5\WebEror.log

Oolional paramelers. ..
LogDirectory: [C:\webBase\LOGS | Browse |
Default:
Extension:
Licenze:
[createmmiFiie | | DontcreatemiFiie | | Abort |

The PortNo parameter specifies which port WebBase will use to communicate with a
browser. This port must be unique within your Windows environment (i.e., not assigned to
another application). The default valueis set to 80.

The Directory parameter specifies where in your local directory structure browsers can access
formsviaWebBase. This directory location corresponds to a browser referencing * http://host-
address/’. Placing a‘default. HTF or ‘default. HTM’ file in this directory will cause WebBase
to return that form if abrowser references * http://host-address/” .

The errorLogFile parameter specifies the name of afile that WebBase can create and write
error messages into. These messages can be helpful in diagnosing problems you might
encounter while WebBase executes. The file need not exist at this time, but the directory
specified must exist before executing WebBase so the file can be created as specified.

The LogDirectory parameter specifies where in your local directory structure WebBase can
writelog files. WebBase creates alog file each day and records the requests it processes.
These files are written into the directory you specify here. Log files are named using the
following scheme: WByymmdd.LOG where yy=year, mm=month, and dd=day. For example,
the log file for November 23, 1995 would be named WB951123.LOG. Leaving thisentry
blank will cause WebBase to skip the logging process. Y ou can specify this Log Directory
and still disable logging viathe WebBase Options menu if so desired. Y ou cannot enable
logging, however, if you have not specified a Log Directory here.

The Default parameter is the name of the default file to be used when a directory is referenced.
The automatic defaults are *default. HTF and ‘default. HTM’ in that order. You can enter a

WebBase User’s Guide 299

Appendix B: Special Configuration Issues

single file name, or a series of files to be searched for in the order presented
(index.HTM,index.HTML) separated by commas. If you enter an empty string then no default
filewill be searched for.

The Extension parameter specifies the default extension (or extensions) to append to afile
name should the user enter what appears to be afile reference without an extension. Default
valueis ‘htf’,”htm’ in that order.

The License parameter specifies the value of your license number. This parameter will be
prompted for the first time the application starts unlessit is provided here.

At the bottom of the window is a button labeled ‘Don’t Create .INI File'. This button should
be selected only during an upgrade so that your WebBase.INI file will not be modified or if
you want to manually edit thisfile to set up al the necessary parameters at alater date. Itis
strongly recommended that the user alow the WebBase.INI file to be created or updated
during the installation process.

Since Windows 3.1 and Windows for Workgroups do not provide for time zone support, you
must provide WebBase some information about your time zone for it to effectively
communicate with browsers which may be executing in atime zone different from yours. The
information entered in the dialog shown in Fig. B.2 is being requested in a format compatible
with that of Windows NT and Windows 95 Registry support for time zones.

Figure B.2 TimeZone Parameters

|= Time Zone Support

WebB aze requires the following Time Zone items to be able to
convert between syzstem ime and GMT for browser control.

Standard Bias iz the number of minutes behind GMT.
standardBias:§ 360 [for C5T. standardBias = 360]

Daylight Bias iz the number of minutes daylight zavings time iz
behind the standard time.

dayhghtBias: i_Eu [for CST, daplightBias = -60]
Daplight Start Month iz the start of daylight zavings time.
daylight5 tartM onth: i 4 [1=lan. 12=Dec or D=None |

Standard Start Month is the end of daylight savings time.
standard5tartMonth: i 10 [1=dan...12=Dec or O=Naone |

Standard Name ig the standard imezone name.
standardMame: ;Eentral Standard Time

Daylight Hame iz the daylight savings himezone name.
daylightName: |Central Daylight Time

| createmniFile | | Dontcreate NiFile | | Abort |

The standardBias parameter is the number of minutes your time zone is behind GMT. The
default for this parameter is 360.

300

WebBase User’s Guide

The daylightBias is the number of minutes Daylight Savings Time in your local areais behind
Standard Time. In most areas, Daylight Savings Time differs from Standard Time by 1 hour,
so the default value of -60 is acceptable. If your locale does not adjust for Daylight Savings
Time, enter O.

The daylightStartMonth parameter is the month in which Daylight Savings Time beginsin
your locale. Months are represented by an integer: 1 for January through 12 for December. |If
you locale does not observe Daylight Savings Time, enter a 0 (zero) here.

The standardStartMonth is the month in which Daylight Savings Time ends and Standard
Time begins again in your locale. Months are represented by an integer: 1 for January through
12 for December. If your locale does not observe Daylight Savings Time, enter a0 (zero)
here.

The standardName parameter is the name typically used to identify the time zone in your
locale during either that time of the year when Daylight Savings Timeis not in effect or the
entire year if your locale does not adjust to Daylight Savings Time. Examples of Standard
Time Zone names from the USA are Eastern Standard Time, Central Standard Time and
Pecific Standard Time. The first |etters of these names are accessed to produce an
abbreviation attached to the result of sending the dateTime built-in command to WebBase, as
in: ‘Date: Mon, 04 Dec 1995 02:48:11 PM CST’. If you wish, you may enter just the
abbreviation for your locale here with no embedded spaces.

The daylightName parameter is the name typically used to identify the time zone in your
locale during either that time of the year when Daylight Savings Timeis in effect. If your
locale does not adjust to Daylight Savings Time, this field should contain the same value as the
standardName field. Examples of Daylight Savings Time names from the USA are Eastern
Daylight Time, Central Daylight Time, and Pacific Daylight Time. Thefirst letters of these
names are accessed to produce an abbreviation attached to the result of sending the dateTime
command to WebBase, asin: ‘Date: Mon, 08 Apr 1996 02:48:11 PM EDT’. If you wish, you
may enter just the abbreviation for your locale here with no embedded spaces.

NOTE:
If the above time zone information is not supplied, WebBase will operate as if the

local time is GMT and no time conversion will take place when sending the current
time and forms expiration time to browsers.

Editing Parameters

WebBase parameters are provided for Windows 3.1 and Windows for Workgroupsin the file
WebBase.ini. Thisfile must reside in the same directory as the WebBase application (e.g.,
c:\webbase). The WebBase.ini file must contain the WebBase parameters described in Chapter
4, aswell asthe parameters listed above. The following is an example of a WebBase.ini file.

WebBase User’s Guide 301

Appendix B: Special Configuration Issues

Figure B.3 Example WebBase.ini file

[WebBase 4.10 INI file]

[Requi red Paranet ers]

Por t No = 80
Directory = c:\WebBase
Li cense = 12345-67890

[Optional Paraneters]
LogDirectory c:\ WebBase
errorLogFile c:\WebBase\ WbError. | og

Def aul t default. htf,default. htm
Ext ensi on htf, htm
Host Addr ess 1.2.3. 4

[Ti e Zone Support]

st andar dBi as = 360

dayl i ght Bi as = -60

st andar dNane = Central Standard Tine
dayl i ght Name = Central Daylight Tine
daylightStartMonth = 3

standardStart Month = 10

Itemsin square brackets, [], are comments. The parameter name to the left of the=signis
CASE SENSITIVE while the value to the right is not.

Extensions

For Windows 3.1 and Windows for Workgroups, the optional WebExtns.ini file definesthe
extensions within the WebBase environment. 1f no extensions are to be defined by the user,
then this file does not have to exist. When extensions are defined, the WebExtns.ini file must
be located in the directory containing the WebBase application (e.g., c:\webbase). The same
format is used in the WebExtns.ini file asin the WebBase.ini file shown above. The following
is an example of a WebExtns.ini file.

Figure B.4 Example WebExtns.ini file

[WebBase 4.10 WebExtns. INl file]

htf = ;{text/htn}

Aliases

For 16-bit systems, the optional WebAlias.ini file defines the aliases within the WebBase
environment. |If aliases are not to be used, then this file does not have to exist. When aiases
are defined, the WebAlias.ini file must be located in the same directory as the WebBase
application (e.g., c:\webbase). The same format is used in the WebAlias.ini file asin the
WebBase.ini file shown above. The following is an example of a WebAlias.ini file.

302 WebBase User’s Guide

Figure B.5 Example WebAlias.ini File
[WebBase 4.10 Alias file]

f oobar = f:\foo\bar

Global Variables

Globa variables on Windows 3.1 and Windows for Workgroups are defined in thefile
WebVars.ini. Thisfileis optiona; the user should create it only if global variables are to be
defined. The WebVars.ini file must be located in the same directory as the WebBase
application (e.g., c:\webbase). The same format is used in the WebVars.ini file asin the
WebBase.ini file shown above. Thefollowing isan example of a WebVars.ini file.

Figure B.6 Example WebVars.ini File
[WebBase 4.10 WebVars.INl file]

%li r ect or yBr owse% t r ue
%her eAndOr %" AND

B.2 Editing the System Registry

The 32-bit systems store WebBase parameters, extensions, aliases, multiple domains and
global variables in the System Registry. ThisisaWindows utility that is used by many
different applications. In general, it is recommended that the WebBase WebWizard
Registration Database option be used to add or modify WebBase entriesin the System
Registry. However, if it is not possible to start WebBase or if an entry needs to be deleted,
that can only be done by directly editing the System Registry. This section includes details on
how to access and edit the registry.

Accessing the System Registry

All of the WebBase parameters, aliases, etc. are maintained in the same location within the
System Registry. The following steps should be taken regardless of what type of WebBase
information is to be added, edited or deleted in the registry.

1. Runthe Registry Editor. On WindowsNT thisisREGEDT32.EXE; on Windows 95 this
iISREGEDIT.EXE.

2. Open HKEY_LOCAL_MACHINE\SOFTWARE\ExperTelligence,
Inc.\WebBase\4.10\

3. All WebBase parameters are stored within this key. If thisfull path does not exist, create
each key using the exact information presented above.

WebBase User’s Guide 303

Appendix B: Special Configuration Issues

Parameters

1. Select the Parameters entry®®. Enter any new WebBase parameters as a string or
DWORD (integer) value. Each parameter name is spelling and case sensitive, so be sure
to enter them exactly as described in Chapter 4. The value of any parameter can also be
modified. Parameters can also be deleted, but care should be taken before deleting a
parameter as it may affect the ability of WebBase to be restarted.

Extensions

1. If no extensions have been defined, create ‘ Extensions' as a New Key. Note that the key
must be entered exactly as indicated.

2. Select the Extensions entry. Creste any new extensions as String Values, with the
appropriate key (extension type) and value (mimetype). Existing extensions may be edited
or deleted. Any changesto extensionswill not take effect until WebBase is stopped and
restarted.

Aliases

1. If no diases have been defined, create ‘ Aliases’ as aNew Key. Note that the key must be
entered exactly asindicated.

2. Select the Aliases entry. Create any new extensions as String Va ues, with the appropriate
key (alias name) and value (pathname). Existing aliases may be edited or deleted. Any
changesto aliases will not take effect until WebBase is stopped and restarted.

Multiple Domains

1. If no domains have been defined, create ‘Domains as aNew Key. Note that the key must
be entered exactly as indicated.

2. Select the Domains entry. Create a New Key for each desired domain address. This key
must be the |P address of the domain (e.g., 1.2.3.4).

3. Select the new IP address subkey. Any parameters specific to this domain are entered
within thiskey. Any extensions or aliases for this domain are entered in subkeys called
‘Extensions and ‘Aliases, respectively. Chapter 4 provides details on the parameters that
can be specified for each domain, as well as how to define extensions and aliases for
multiple parameters. Existing multiple domain parameters, extensions or aliases may be
edited or deleted. Any changes to multiple domains will not take effect until WWebBase is
stopped and restarted.

Global Variables

1. If no diases have been defined, create ‘Variables asaNew Key. Note that the key must
be entered exactly as indicated.

¥ The ‘ Parameters entry will exist if the user selected to store the WebBase parameters entered during installation into the System Registry (defaullt).
If thi skey does not exist, createit asaNew Key. Note that the spelling and case must be exact.

304 WebBase User’s Guide

2. Select the Variables entry. Create any new global variables as String or Dword Values,
with the appropriate key (global variable name) and value. Existing global variables may
be edited or deleted. Unlike with WebBase parameters, extensions, aliases and multiple
domains, it is possible to update a running WebBase application with global variable
modifications. From the WebBase WebServer window, select the ‘ Load Global Variables
option.

WebBase User’s Guide 305

Appendix C: Header Variables

WEB

= -
5% Header Variables

€ —ExperTalligance

Appendix C

This appendix describes the header variables that may be included with a request from a client
browser. These header variables are defined inthe HTTP 1.1 specification. If new
specifications are approved, additional header information may be defined. The actual header
variables received from a client browser are dependent on the implementation of HTTP
supported by the browser. It isaways best to determine if a header variableis received from a
browser before expecting it to be there.

WebBase does not currently support all the HTTP 1.1 functionality. However, incoming
header parameters that are part of the HTTP 1.1 specification will still be received by
WebBase and created as local header variables.

HTTP 1.1 Input Header Variables

Accept —can be used to specify certain media types that are acceptable for the response.
Accept headers can be used to indicate that the request is specifically limited to a small set
of desired types, asin the case of arequest for an in-line image. If no Accept header field
is present, then it is assumed that the client accepts all mediatypes. If an Accept header
field is present, and if the server cannot send a response that is acceptable according to the
combined Accept field value, then the server SHOULD send a 406 (not acceptable)
response.

Accept-Charset —can be used to indicate what character sets are acceptable for the
response. Thisfield alows clients capable of understanding more comprehensive or
specia-purpose character setsto signal that capability to a server that is capable of
representing documents in those character sets. The 1SO-8859-1 character set can be
assumed to be acceptable to all user agents. If no Accept-Charset header is present, the
default isthat any character set is acceptable. If an Accept-Charset header is present, and
if the server cannot send a response which is acceptable according to the Accept-Charset
header, then the server SHOULD send an error response with the 406 (not acceptable)
status code, though the sending of an unacceptable response is aso allowed.

Accept-Encoding —similar to Accept, but restricts the content-coding values which are
acceptable in the response. 1f no Accept-Encoding header is present in a request, the
server MAY assume that the client will accept any content coding. If an Accept-Encoding

306

WebBase User’s Guide

header is present, and if the server cannot send a response that is acceptable according to
the Accept-Encoding header, then the server SHOULD send an error response with the 406
(Not Acceptable) status code.

Accept-Language — similar to Accept, but restricts the set of natural languages that are
preferred as aresponse to the request.

Authorization -- A user agent that wishes to authenticate itself with a server--usually, but
not necessarily, after receiving a 401 response--MAY do so by including an Authorization
request-header field with the request. The Authorization field value consists of credentials
containing the authentication information of the user agent for the realm of the resource
being requested. See the section on Basic Authentication for more information on
authentication and authorization.

Cache-Control -- used to specify directives that MUST be obeyed by all caching
mechanisms aong the request/response chain. The directives specify behavior intended to
prevent caches from adversely interfering with the request or response. These directives
typically override the default caching algorithms. Note — this variable does not impact
WebBase caching.

Connection -- allows the sender to specify options that are desired for that particular
connection and MUST NOT be communicated by proxies over further connections.

Date -- the date and time at which the message was originated. An exampleis
Date: Tue, 15 Nov 1994 08:12:31 GVI

From -- if given, thisfield SHOULD contain an Internet e-mail address for the human user
who controls the requesting user agent. This header field MAY be used for logging
purposes and as a means for identifying the source of invalid or unwanted requests. It
SHOULD NOT be used as an insecure form of access protection. An exampleis:

From webmaster @3.org

Host -- specifies the Internet host and port number of the resource being requested, as
obtained from the original URL given by the user or referring resource (generally an
HTTP URL). The Host field value MUST represent the network location of the origin
server or gateway given by the original URL. This alows the origin server or gateway to
differentiate between internally-ambiguous URLS, such as the root "/* URL of a server for
multiple host names on asingle IP address.

If-Match -- used with amethod to make it conditional. A client that has one or more
entities previously obtained from the resource can verify that one of those entitiesis
current by including alist of their associated entity tags in the If-Match header field. The
purpose of this featureisto allow efficient updates of cached information with a minimum
amount of transaction overhead. It is also used, on updating requests, to prevent
inadvertent modification of the wrong version of aresource.

If-Modified-Since -- used with the GET method to make it conditional: if the requested
variant has not been modified since the time specified in thisfield, an entity will not be
returned from the server; instead, a 304 (not modified) response will be returned without

any message-body.

If-None-Match -- used with a method to make it conditional. A client that has one or more
entities previously obtained from the resource can verify that none of those entitiesis

WebBase User’s Guide 307

Appendix C: Header Variables

current by including alist of their associated entity tagsin the If-None-Match header field.
The purpose of this feature isto alow efficient updates of cached information with a
minimum amount of transaction overhead. It is aso used, on updating requests, to prevent
inadvertent modification of aresource that was not known to exist.

If-Range -- if aclient has a partial copy of an entity in its cache, and wishes to have an
up-to-date copy of the entire entity in its cache, it could use the Range request-header with
aconditional GET (using either or both of I1f-Unmodified-Since and If-Match.) However, if
the condition fails because the entity has been modified, the client would then have to make
a second request to obtain the entire current entity-body.

If-Unmodified-Since -- used with a method to make it conditional. If the requested
resource has not been modified since the time specified in this field, the server should
perform the requested operation as if the If-Unmodified-Since header were not present.

Max-Forwards -- may be used with the TRACE method to limit the number of proxies or
gateways that can forward the request to the next inbound server. This can be useful when
the client is attempting to trace a request chain that appears to be failing or looping in mid-
chain.

Pragma -- used to include implementation-specific directives that may apply to any
recipient along the request/response chain. All pragma directives specify optional behavior
from the viewpoint of the protocol; however, some syssems MAY require that behavior be
consistent with the directives.

Proxy-Authorization -- allows the client to identify itself (or its user) to a proxy that
requires authentication. The Proxy-Authorization field value consists of credentials
containing the authentication information of the user agent for the proxy and/or realm of
the resource being requested.

Range -- HTTP retrieval requests using conditional or unconditional GET methods may
request one or more sub-ranges of the entity, instead of the entire entity, using the Range
request header, which applies to the entity returned as the result of the request.

Referer -- alows the client to specify, for the server's benefit, the address (URI) of the
resource from which the Request-URI was obtained (the "referrer”, although the header
field is misspelled.) The Referer request-header allows a server to generate lists of back-
links to resources for interest, logging, optimized caching, etc. It also allows obsolete or
mistyped links to be traced for maintenance. Example:

Referer: http://ww. webbase. org/defaul t. htf

Transfer-Encoding -- indicates what (if any) type of transformation has been applied to
the message body in order to safely transfer it between the sender and the recipient. This
differs from the Content-Encoding in that the transfer coding is a property of the message,
not of the entity.

Upgrade -- alows the client to specify what additional communication protocols it
supports and would like to use if the server finds it appropriate to switch protocols.

User-Agent -- contains information about the user agent originating the request. Thisis
for statistical purposes, the tracing of protocol violations, and automated recognition of

user agents for the sake of tailoring responses to avoid particular user agent limitations.
User agents SHOULD include this field with requests. The field can contain multiple

308

WebBase User’s Guide

product tokens and comments identifying the agent and any subproducts that form a
significant part of the user agent.

Via -- used by gateways and proxies to indicate the intermediate protocols and recipients
between the user agent and the server on requests, and between the origin server and the
client on responses. It isintended to be used for tracking message forwards, avoiding
request loops, and identifying the protocol capabilities of al senders along the
request/response chain.

WebBase User’s Guide 309

Index

WEB
NS

5% Obsolete

€ —ExperTalligance

Appendix D Com pOnentS

D.

This appendix describes macros, variables and parameters which are still supported by
WebBase but are considered obsolete. These macros, variables and parameters may
be dropped from future versions of WebBase. It is recommended that forms designers
review any existing formsto ensure that these macros, variables and parameters are
not used.

1 Obsolete macros

{include file}

The include macro serves the same purpose as the insert macro. Its syntax is
dightly different in that when the filename is not presented as a string (enclosed in
single quotes), it is treated as afilename as, for example, file. HTF -or-
subdir/file. HTF.

{include '../address. htf'}

{print <args>} {/print}

The text contained within the print macro is not processed by \WebBase but is
inserted into the output HTML exactly as encountered. Variables and other macro
keywords are not processed but are printed with their enclosing { } charactersas
entered in the .htf file. This macro has been superseded by the output macro.

If the optional argument convert is specified, al < and > characters are converted
to the character sequences & It; and & gt; respectively, so that HTML forms can be
printed as part of the text rather than being interpreted by the browser.

An optional keyword/value argument include filename indicates that the print
macro isto take its text from another file (see the include macro for a description
of the filename specification options). This facility allows one to print the contents
of an included file rather than including the file to be processed by WebBase.

Note: since the purpose of the print macro isto insert text that is to be printed
and not processed by WebBase, WebBase does not parse the information within
the {print} ... {/print} area. For this reason, after encountering the opening
{print} keyword, WebBase scans for the first occurrence of an ending {/print}
keyword. WebBase does not support nested print blocks.

310

WebBase User’s Guide

The example below would print <TITLE> {systemName} </TITLE> at the
browser and NOT set the browser’ stitle to the value of the variable systemName.

{print convert}
<TlI TLE> {systenNane} </ Tl TLE>

{/print}

D.2 Obsolete dynamic variables

%A0L%

aBoolean indicator of whether the calling browser is accessing the server through
AOL. If auser needsto present information for a specific type of browser, it is
recommended that the User-Agent header variable be examined to determine the
browser type.

%debugAddresses%o
returns the same value as %serverAddress?o

%errorVariableNotFound%

By defaullt, if the user accesses a variable that has not been defined, an error is
generated and an error message is returned to the browser. In most cases, thisis
the desired action while the user is developing .htf files. There are some
circumstances, however, when .htf files must determine if a variable does exist and
take appropriate action if it does not rather than returning an error message.
Setting this variable to false as shown above will suppress the error message and
allow the user to query variables with an isNull or notNull message.

Severa operations are available for the user to test to seeif avariableisin
existence. Instead of using %eerrorV ariableNotFound%, the user should explicitly
check for avaue of avariable if there isthe possibility that it will not exist. To
check for the value of avariable, use:

{if ‘varNanme’ %nd% vari abl eExi sts:}

This returns either true or false, which can cause the appropriate branch within the
{if} macro to be invoked. Other operations on HttpCommand that can be used are
fromVars.default and fromNonNullV ars.default.

%Microsoft%

a Boolean indicator of whether the calling browser is Microsoft Internet Explorer.
If auser needs to present information for a specific type of browser, itis
recommended that the User-Agent header variable be examined to determine the
browser type. While this dynamic variable can be used, the information returned
in the User-Agent variable may change as new versions of browsers become
available. This dynamic variable also does not indicate version information (e.g.,
MSIE 2.0 or 3.0).

%Netscape%o

a Boolean indicator of whether the calling browser is a Netscape browser. If a user
needs to present information for a specific type of browser, it is recommended that
the User-Agent header variable be examined to determine the browser type. While
this dynamic variable can be used, the information returned in the User-Agent
variable may change as new versions of browsers become available. This
dynamic variable also does not indicate version information (e.g., Netscape 2.0 or
3.0).

WebBase User’s Guide 311

Index

D.3 Obsolete variable parameters

at

specifies an index into atable of rows returned by a database query. Thisis used
in conjunction with the in parameter. For example, using the collection of records
returned by a SELECT statement and stored in the variable myCltn, a specific
field could be retrieved using:

NaneField in=nydtn at=1

This could also be used within aforRow macro and the value of the at parameter
would be a variable with an integer value indexing into the collection.

The recommended aternative to this parameter is to use the forRow or with
macros to identify particular records or fields, and then use field variables to
display the desired information.

in

specifies the name of arow variable from aforRow macro that contains the data
from arow of adatabase query result. This notation alows for nesting of forRow
macro statements where the rows returned from 2 or more simultaneous database
gueries may contain the same field name. Using the notation NameField
in=RowOne ... and NameField in=RowTwo ... dlows for explicit accessing of the
correct field and row.

312 WebBase User’s Guide

WebBase User’s Guide 313

Index

WEB
B

(&) P
L

€ ExporTolligence

Index

-+ 172, 179, 207

$

$bell - 207
$bs - 207
$er - 207
$esc - 207
$ff - 207

$If - 207
$null - 207
$space - 207
$tab - 207

%

%%accessed%% - 161

%%al1%% - 161

%%created%% - 160
%Yexpires¥% - 161
%%remove%% - 161
%allUserVariables% - 126
%allUserVariablesHTML% - 126
%allUserVarNamesHTML% - 127
%AO0L% - 312

%Array% - 124, 186

%A ssociation% - 124, 204
%base% - 127

%browserAddress% - 127, 164
%build% - 127

%cacheEnable% - 258
%cacheEnabled% - 52, 55, 135, 147
%cacheODBC% - 53, 56, 148, 258
%cacheTimeCheck% - 55, 148, 258
%cmd% - 127, 244

%command% - 127
9%commandCounter% - 127
%commandsHTML% - 127
%comment% - 128
%concurrentMailLimit% - 287, 294
%concurrentUsers% - 128
%cookieDomain% - 104, 122, 128

%cookieExpires?% - 104, 122, 128
%cookielnVariables¥o - 128
%cookielnVariablesHTML% - 129
%cookieOutV ariables¥% - 129
%cookieOutVariablesHTML% - 129
%cookiePath%o - 104, 123, 129
%cookies% - 130
%cookieVariables¥% - 130
%copyright% - 130
%Databaselnfo% - 124, 248
%date%o - 210

%Date% - 124, 214

%dateTimedo - 218
%debugAddresses¥o - 312
%defaultExtensionsHTML% - 131
%Dictionary% - 124, 207
%Directory% - 124, 230
%(directoryBrowse%o - 148, 266
%disableAlllnternal Commands% - 149
%domainDirectory% - 131
%domai nExtensionsHTML% - 131
%domainsHTML% - 132

%dumpV ariablesOnError% - 149
%dynamicV ariableNamesHTML% - 132
%enabl ePrivatel nternal Commands% - 149
%EQ% - 133

%errd01% - 133

%errd03% - 133

%errd04% - 133

%err500% - 134

%err501% - 134

%err503% - 134

%error% - 90, 133
%errorMacroLines% - 149
%errorUseColor% - 149
%errorVariableNotFound% - 312
%errorWrapperLines% - 149
%expire% - 134, 256

%Filedo - 124, 226

%filler% - 135

%Float% - 124, 178

9%form% - 135

%formDirectory% - 135

9%FORM Scache¥o - 135

%FORM ScacheHTML% - 135
%Fraction% - 124, 179
%fullHostAddress% - 135
%fullHostName% - 37, 44, 135

314

WebBase User’s Guide

%GE% - 95, 135

%gfmt% - 135

%oglobal Variables¥% - 136
%oglobal VariablesHTML% - 136
%gmt% - 136

%GT% - 136
%headerVariables¥ - 121, 136
%headerVariablesHTML% - 121, 137
9%heartbeatI nterval% - 67, 149
%heartbeatMaxLines% - 67, 149
%heartbeatPostingEanble% - 67
%heartbeatPostingEnable% - 150
%heartbeatReply Time%o - 68, 150
%heartbeatResetTCP% - 68, 150
%heartbeatSound% - 68, 150
%heartbeatWindow% - 65, 150
%host% - 137
%inputVariables% - 137
%inputVariablesHTML% - 137
%Il nteger% - 124, 176, 178
%lastModified% - 150

%LE% - 137

%l eftBrace% - 84, 137

%loca% - 138
%localVariables% - 138
%locaVariablesHTML% - 138
%Il ogEnabled% - 56, 148, 294

%Il ogRecord% - 138

%LT% - 138

%MailerStatusyo - 294

%mail Full Trace% - 295

%mailL ogEnabled% - 290, 294
%mailMaxLines% - 286, 294
%mail PostingEnable% - 286, 294
%Mail Queue - 294, 295

%mail Trace%o - 295

%max% - 150

%M icrosoft% - 312
%milliseconds%o - 138
%mimeTyped - 151

%name% - 138

%NEQ% - 139

%Netscaped - 312
%newAscendingList% - 139, 203
%newDescendingList% - 139, 203
%newList% - 139
%nextCookield% - 139
%nextCookiel D% - 160
%NGT% - 139

%NLT% - 139

%Numberd% - 124
9%0ODBCcache% - 139
9%odbcCacheHTML% - 258
%0ODBCcacheHTML% - 139
9%ODBCdrivers% - 139
%ODBCdriversHTML% - 140
%ODBCsources% - 140
%ODBCsourcesHTML% - 141
%OrderedCollection% - 124, 186, 202
%OrderedList% - 125, 186, 202

%0s% - 141

%output% - 102, 141
%passwordd% - 107, 151
%Point% - 125, 181

Y%priority% - 141

%random? - 141
%ReadStream% - 125, 233, 234
%ReadWriteStream% - 125, 233, 235
%RegistrationDatabase% - 125, 243
%reservedWords% - 115, 142
%resevedWordsHTML% - 142
%results?% - 93, 107, 143
%returns% - 143

%rightBrace% - 84, 143

%root% - 143

%rootDirectory% - 143
%rowCount% - 109, 143
%rowCounter% - 93, 143
%rowHeader% - 143

%search% - 143

%seconds%o - 143

%self% - 144

%selfDirectory% - 144
%serverAddress¥ - 43, 144
YoserverAverage% - 144
YoserverAverageHTML% - 144
%serverElapsedTime% - 144
%serverHostName% - 37, 44, 144
%serverStartTimedo - 144
%server Throughput% - 144
%server ThroughputHTML% - 145
%skipCookies% - 151
%skipHeaderComment% - 128, 151
%SortedCollection% - 125, 186, 202
%SortedList% - 125, 186, 203
%source% - 107, 151
%sqlBufferSize% - 151

%start% - 151

Yostatistics%o - 145

%statusCode% - 152

%String% - 125, 186, 197
%theArgsyo - 152

%time% - 145, 216

%Time% - 125, 217
%timeStamp% - 145

oetitledo - 145
%transactionsMaxLines% - 59, 153
%transactionsWindow% - 58, 153
%Universal Time% - 125, 223
%updateStats¥ - 153

%user% - 107, 153
%userExpires¥% - 145, 161
%userLimit% - 145, 161
%userName%o - 145, 160
%userVariables¥ - 146
%userVariablesHTML% - 146
%varList% - 153

%version% - 146

%WHERE% - 146, 259
%whereAndOr% - 147

WebBase User’s Guide

315

Index

%whereMultiAndOr% - 147 /I - 172, 180
%whileCounter% - 112, 147
%whileLimit% - 111, 154

9%WriteStream% - 125, 233, 234 \

%x% - 147, 261

%y% - 147, 261 \.172, 180
& I
& - 170, 209 | - 170, 209
* +
*.172 + 172, 180, 207
, <
, - 170, 182, 207 <.172, 180, 187, 203, 207, 210, 216, 218, 223
<=.172, 180, 187, 203, 208, 210, 216, 218, 223
<FORM> - 80, 118
<INPUT> - 80, 118
<SELECT> - 80, 153
Y%LIKE - 260 <TEXTAREA> - 80
Y%LIKEY% - 260
.EQ - 259
.EOQN - 259 =
.EQS - 259
.GE - 260 =.172, 180, 182, 203, 208, 210, 216, 218, 223, 228
.GEN - 260
.GES - 260
.GT - 260 >
.GTN - 260
.GTS - 260 > . 172, 180, 187, 204, 208, 210, 216, 218, 224
.LE - 260 >=.172, 180, 187, 204, 208, 210, 216, 218, 224
.LEN - 260
.LES- 260
LIKE - 260 4
.LIKE% - 260
LT -260 404 File Not Found - 39, 41
.LTN - 260
LTS 261
NEQ - 261 5
NEON - 261
.NEQS - 261 503 The Server is Too Busy - 50
.NGT - 261
.NGTN - 261
NGTS- 261 A
NLT - 261
.NLTN - 261 abs - 172, 180
NLTS - 261 Accept - 64, 307
XX - 261 Accept-Charset - 307
Accept-Encoding - 307
Accept-Language - 308
/ add: - 198, 205, 241
add:after: - 198
/172,180 add:afterlndex: - 198
316 WebBase User’s Guide

add:before; - 198
add:beforelndex: - 198
addAll: - 199, 205
addAllFirst: - 199

addAllLast: - 199

addDays: - 210, 219
addDictionary: - 205

addFirst: - 199

addLast: - 199

addSeconds: - 219

addTime: - 216

after: - 199

Aliases - 42

Aliases - 45, 58, 303, 305
align parameter - 155

aign: - 187

alignDallar: - 172, 187, 236
alignLeft: - 188

alignLeft:fill: - 188
aignRight: - 188
aignRight:fill: - 188

Anchor - 5

Anchors - 120, 156

AND operation - 170

and: - 176

AppDirectory parameter - 38
appendFilename: - 188
Application parameter - 38
arcCos - 173

arcSin - 173

arcTan - 173

argList - 244

argstring - 244

asArray - 182, 205

asArrayOf Substrings - 188
asArrayOf SubstringsSeparatedBy: - 188
asBoolean - 176

asBoolean: - 173, 189, 210
asCapitalized - 189

ascending - 199

asCharacter - 176, 189, 208
asciiValue - 208
asCodedHtml - 189
asCookieDateTime - 219
asDate - 189, 219
asDateTime - 219, 224
asDateTimel2 - 219, 224
asDateTimel2withPicture: - 219
asDateTimel2WithPicture: - 224
asDateTime24 - 219, 224
asDateTime24withPicture: - 219
asDateTime24WithPicture: - 224
asDateTimewithPicture: - 219
asDateTimeWithPicture: - 224
asDatewithPicture; - 219
asDateWithPicture: - 224
asDoubleQuoteString - 189
asFieldName - 118, 189
asFieldNameName - 118, 189
asFloat - 176, 178, 179, 189

asHeaderDateTime - 219
asHTF: - 95

asHTF: - 244

asinteger - 173, 189, 208
asKeys - 205

asL ogFileTimeStamp - 220
asLowercase - 190, 208
asMailDateTime - 220
asNonEmptyString - 190, 224
asNumber - 173, 190
asOptions: - 190, 199
asOptions:field: - 199

asOrderedCollection - 182, 205

asPairs - 205
asPrintableHTML - 190

asSeconds - 210, 216, 220, 224

associationAt: - 205
asSortedCollection - 182, 205
asSqlString - 190, 210
asStream - 190
asString - 170
asSymbol - 190
asTime - 190, 220
asTimel2 - 220
asTime24 - 220
asUniversaTime - 224
asUnsigned - 176
asUppercase - 190, 208
asUseableHTML - 190
asValues - 205

at parameter - 313

at: - 190, 199, 205, 236, 239, 241

at:put: - 190, 199, 205, 241
atAllPut: - 183

atEnd - 231

authDecode - 191, 208, 265
authEncode - 177, 191, 266

Authorization - 308

authPassword - 191, 265
authUserName - 191, 265
authvalid - 191, 265
average - 183

B

base64decodeFileTo: - 191
base64EncodeFileto: - 191
Basic Authentication - 263
beep - 244

beep:for: - 244

before: - 200

Benefits - 1

between:and: - 173, 181, 204, 208, 210, 217, 220

bitlnvert - 177

bitShift: - 177

brace macro - 84
Browser - 5

Browser Caching - 256

WebBase User’s Guide

317

Index

Build - 47, 49, 58

build built-in command - 27
buildString built-in command - 27
Built-in Commands - 58

C

Cache ODBC Connections (Menu Option) - 56
Cache-Control - 308

cacheFreeForm: - 244
cacheFreeSource:user: - 245
cacheMenultemCheck - 245

Caching - 256
calendarForMonth:year: - 214

call macro - 84, 101

canAccept - 245
canConnect:user:password: - 248

case macro - 88

ceiling - 173

CGl - 3,5,10

changeM odeOf:to: - 226
characterConstant - 191

Class: 9

classCaddr - 191

classesRoot - 243

Clear All (Menu Option) - 59, 66, 286
Clear All Caches (Menu Option) - 51
Clear All News (Menu Option) - 48
Clear All(Menu Option) - 64

Clear Forms Cache (Menu Option) - 52
Clear ODBC Cache (Menu Option) - 53, 258, 270
clearFormsCache - 245
clearOdbcCache - 245

close - 225, 231

Close All Connections (Menu Option) - 51
cmdStr - 245

collapse - 192

col TypeOf: - 236, 239

columncbCol Defs - 239
columnDisplaySizes - 239
columnLengths - 239

columnNames - 236, 239

columnSqgl Types - 236, 240
colWidthOf: - 237

comma operator - 170

comma parameter - 155

command - 245

command counter - 57

Command line arguments - 81, 98, 118, 137, 257
commandString - 245

comment macro - 89

Common Geteway Interface - See CGI
Common Log File Format - 36, 252
concat - 183

concatenation - 170

concatFrom:to: - 183
concatFrom:to:with: - 183
concatWith: - 183

concurrent commands in process - 57
Connection - 308
containsAnyString: - 192
containsAnyStringlgnoreCase: - 192
containslnteger - 173, 192
containsNumber - 173, 192
containsString - 192
containsStringChecked: - 192
containsStringlgnoreCase - 192
contents - 231

Content-type - 39

Cookie - 5

Cookie variables - 99, 104, 122
cookieTags - 245
cookieWebBaseld - 245

copy - 170

Copy (Menu Option) - 48, 53, 59, 64,

copy:to: - 226
copyFrom:in:toiin: - 243
copyFrom:to: - 183, 231
copyReplaceFrom:to:with: - 183
copyWith: - 183
copyWithout: - 183

cos- 173

countBlanks - 231
cr-234

create - 228

create: - 230

crstring - 233

currency parameter - 155
current - 230

66, 285

Current User News (Menu Option) - 49, 57

currentDisk - 230
currentUser - 243
Cut (Menu Option) - 59, 64, 66, 285

D

Data types - 165
Data Types

Numbers - 172
Database Administration - 270
Database field names - 117
Database server - 6
date - 220, 225
Date - 308
date fields - 74, 109
dateAndTime - 220, 225
dateAndTimeNow - 214, 217
dateFromString: - 220
dateTime built-in command - 26, 27
day - 211, 220
day:month:year: - 214
dayIndex - 211, 220
dayName - 211, 221
dayNames - 214
dayOfMonth - 211, 221
dayOfWeek: - 214

318

WebBase User’s Guide

dayOfYear - 211, 221
daysinMonth - 211, 221
daysinMonth:forYear: - 214
daysinYear - 211, 221
daysinYear: - 214
daysLeftinMonth - 211, 221
daysLeftinYear - 211, 221
decimal parameter - 155
decode - 86, 192

Default parameter - 19, 36, 43
default.htf - 36, 43
default.HTF - 228, 235
default.htm - 36, 43

default. HTM - 226
degreesToRadians - 173
DELETE -7, 77, 82
denominator - 173
descending - 200
describeHTML Record - 237
describeHTML Record: - 237
describeVHTMLTable - 200
describeVHTMLTable: - 200
Destination Directory - 17
digitValue - 208

directory - 225

Directory Browsing - 266
Directory parameter - 18, 36, 43
DNS -6

Domains - 6

dotProduct: - 181

drive - 228

drive:path:file: - 226
drivePathName - 228
drivePrefix - 228

drives - 230

Dynamic HTML - 83
Dynamic variables - 115
Dynamic Variables - 58, 126, 294

equalsignoreCase; - 193

eqv: - 210

Error handling - 81

error.log - 36

errorLogFile parameter - 19, 36

errorProtect macro - 89, 90, 91, 106

escape macro - 90, 91

even - 173

execute: - 226

exists: - 226, 230

existsin: - 227

Exit (Menu Option) - 48, 53, 59, 63, 66, 285

exit macro - 86, 91

exp - 174

Expires - 134, 256

exponent - 178

Expressions - 165

Extended Combined Log File Format - 36, 253

Extended Common Log File Format - 36, 253

Extended Original WebBase (EMWACS) Log File
Format - 36, 255

Extension parameter - 19, 37, 43

Extensions - 39, 45, 303, 305

E

elapsedDaysSince: - 211, 221
elapsedMonthsSince: - 211, 221
elapsedSecondsSince: - 211

€lapsedTime built-in command - 27
elementsEqual: - 206

E-Merge - 283

Enable Cache Read (Menu Option) - 54
Enable Cache TimeCheck (Menu Option) - 55
Enable Log File (Menu Option) - 56

Enable Mail Log File (Menu Option) - 290
Enable Transactions Pane (Menu Option) - 54
encode - 86, 192

encode parameter - 120, 155

ensure macro - 89

entryValues - 241

enumerateHTML :titled: - 246

equals: - 192

F

f=macro - 92
== macro - 92
factoria - 177
False - 209
Features - 1
Field variables - 82, 115, 116
file- 235
File DSN - 29
File Streams

Instance Operations - 235
file: - 228
fileExtension - 193
fileFullExtension - 193
fileName - 193
fileName:extension: - 227
fileNameL essPath - 193
fileNamePath - 193
fileReadOnly: - 228
filesNamed: - 228
Find (Menu Option) - 48, 53, 59, 64, 66, 286
Find Again (Menu Option) - 49, 54, 59, 64, 67, 286
findByDate: - 295
findByFrom: - 295
findByID: - 295
findBySubject: - 295
findByTo: - 295
Firewalls - 37, 38, 48, 266
first - 184
firstDaylnMonth - 211, 221
firstDayOfMonth - 211, 221
firstSundayln: - 211, 221
firstSundaylnMonth - 212, 222

WebBase User’s Guide

319

Index

flash: - 246

floor - 174

flush - 225, 235

Flush Log File (Menu Option) - 57
Flush Mail Log File (Menu Option) - 290
Flush Mail Queue (Menu Option) - 288
forlndex macro - 91, 92

format: - 174, 193

formatted - 228

Formatted Text Files - 281
formatted: - 229

Forms cache - 54, 55, 148, 257
Forms Cache - 51, 52

forRow macro - 9, 82, 91, 93, 116
FoxPro - 277

fraction - 225

freeDiskSpace - 229

From - 308

fromArrayOf Substrings: separatedBy: - 197
fromDays. - 214

frominteger: - 178
fromNonNullVars.default: - 246
fromSeconds: - 217

fromString: - 178, 215, 217
fromString:decimal Separator: - 179
fromString12: - 218

fromString24: - 218
fromVars.default: - 246

Full Trace (Menu Option) - 289
fullDirName - 229
fullHTMLRecord - 237

fullHTML Record: - 237
fullPathName: - 227

fullRecord - 237

HEAD - 64

header - 238

Header variables - 121

HeartBeat (Menu Option) - 54
HKEY_CLASSES ROQT - 240
HKEY_CURRENT_USER - 240
HKEY_LOCAL_MACHINE - 240
HKEY_USERS - 240

Host - 37, 121, 144, 308
HostAddress parameter - 37, 66
HostName parameter - 37, 44, 135
hours - 217, 222
hours.minutes:seconds: - 218
HREF - 281

htf Files - 6

htf macro - 94

HTML -6, 10, 63, 155

HTML Editor - See WebberActive
HTTP Root Directory - 17, 36
HTTP server - 6, 10

HTTP_Proxy - 267

HTTP_Proxy parameter - 37
HTTP_ProxyPort - 38, 267
Hypertext Markup Language - See HTML

G

ged: - 177

GET - 6, 57, 64, 80, 97, 115, 124, 244, 245, 259
getAnyLocaVariable: - 246

getFileTime - 225

getGlobal Variable: - 246

getLetVariable: - 246

getLocaVariable: - 246

getMessage - 238

getUserVariable: - 247

getVariable: - 247

Global variables - 54, 100, 104, 115, 124, 304
Global Variables - 58, 305

gmt - 222, 223

gmt built-in command - 27

H

hasMessage - 170, 184, 238
hasNetworkName - 229
hasSubdirectory - 229

if macro - 9, 82, 95
I1f-Match - 308
I1f-Modified-Since - 308
1f-None-Match - 308
If-Range - 309
If-Unmodified-Since - 309
in parameter - 313
include macro - 311
includes:; - 184, 206
includesKey: - 206, 241
indexFor: - 238
indexOf: - 184, 231
indexOfCollection: - 184
indexOfLowercase: - 231
indexOfMonth: - 215
indexOfString: - 193
indexOf String:startingAt: - 193
Indirection - See Variable indirection
Initialization - 35
Input Forms - 6, 80
INSERT - 7, 75, 82
insert macro - 84, 95
Install.log - 13
Installation

Custom - 22

NT Service - 32

ODBC Drivers - 28

ODBC Sources - 28

Standard - 14

Testing - 25
Instance - 9

320

WebBase User’s Guide

integerCos - 174
integerSin - 174
intSart - 177

IP address - 43, 57, 135
IP Address - 6
isAlphaNumeric - 208
isArray - 170
isAssociation - 170
isBoolean - 170
isCharacter - 170
isCollection - 170
isCurrencyCal: - 238
isDictionary - 170
isDigit - 208
isDirectory - 171
isEmpty - 184, 206, 231
isFloat - 171
isFraction - 171
islnteger - 171
isLetter - 209

isList - 171
isLowercase - 209
isLowerCase - 209
ISMAP - 7, 147, 261
isNil - 171

isNull - 171, 312
isNumber - 171
isNumeric: - 238, 240
isPoint - 171
isSeparator - 209
isSortedList - 171
isStream - 171
isString - 171

Issue single heartbeat (Menu Option) - 68

isSymbol - 171
isTrue32bit - 247
isUppercase - 209
isUpperCase - 209
isvalidDirectory - 193
isvalidFile - 193
isvValidlPaddr - 194
isvalidSource: - 249
isVowel - 209
isWhitespace - 209
isYesNo: - 238, 240

keyName - 241
keys - 242

L

last - 184
LastModified - 150
lastSundayln: - 212, 222
lastSundaylnMonth - 212, 222
L ate Breaking News Window - 47
lem: - 177
leapYear: - 215
leapY earsTo: - 215
License - 58
License Agreement - 15
License parameter - 18, 36
Licensewri - 13
LicensedFeatures parameter - 19, 283
lineDelimiter - 231
lineDelimiter: - 231
In-174
Load Global Variables (Menu Option) - 54, 124
Local variables - 81, 99, 100, 103, 105, 115, 118
localMachine - 243
Location - 64
log: - 174
LogDirectory parameter - 19, 36, 251, 294
LogFormat parameter - 36, 62
LogFormat Parameter - 251
Logging - 56, 251
Mail - 284, 290
logical AND - 170
logical OR - 170
logRecord - 247

J

JavaScript - 94
JOIN - 74

K

key - 204

key: - 204
key:value: - 204
keyAtValue: - 206

M

Macro format - 83

Mail - See E-Merge

mail macro - 291

mailBCC - 296

mailCC - 296

mailDate - 296

Mailer - 284

Mailer (Menu Option) - 290
mailFrom - 296

maillD - 296

mail Subject - 296

mailTo - 296

makeCurrent - 229

map: - 184

map:for: - 184

map:with: - 184

max - 185

max: - 174, 181, 204, 209, 212, 217, 222, 225
Max-Forwards - 309

Message - 9

WebBase User’s Guide

321

Index

Method - 10

Microsoft Access - 272

Microsoft Excel - 277
millisecondClockValue - 218
milliseconds built-in command - 27
mime - 247

min - 185

min: - 174, 181, 204, 209, 212, 217, 222, 225

minutes - 217, 222

monthlndex - 212, 222
monthName - 212, 222
monthNameFromString: - 215
monthNames - 215

Multiple Domains - 43, 58, 305

N

name - 225, 247
nameOfDay: - 215
nameOfMonth: - 215
negated - 174, 181
negative - 174

new - 202, 207, 243

New Window (Menu Option) - 63
new: - 202, 243
newAscending - 203
newDay:month:year: - 215
newDay:year: - 215
newDescending - 203
newFile: - 227, 229
newFilein: - 227

next - 233, 235

next: - 231

nextCookield - 247
nextinteger - 231
nextLine - 232
nextMatchFor: - 232
nextPut: - 234
nextPutAll: - 234
nextWord - 232
nonempty - 194
nonempty parameter - 156
not - 210

notEmpty - 185, 206
notNil - 171

notNull - 171, 312

now - 218, 223

numerator - 174
numerator:denominator: - 179
numeric fields - 74, 109
nums - 185

ODBC connection cache - 53, 56, 148, 270

ODBC Connection Cache - 51, 258
ODBC Drivers - 28, 269, 272
ODBC Sources - 28
odbcDataSources - 249
odbcDataSourcesRaw - 249
odbcDataSourcesSQL - 249
odbcDrivers - 249
odbcDriversSQL - 249
odbcDriversSQL2 - 250
OdbcRowObjects - 198

odd - 174

on: - 233

onlyDigits - 194

Open DataBase Connectivity - See ODBC

Open Location (Menu Option) - 63

Open Transactions Window (Menu Option) - 54

openin: - 227
Operations - 165

OR operation - 170
ORDER BY clause - 73

Origina WebBase (EMWACS) Log File Format - 36,

254
output macro - 96

)

Object - 10
occurrencesOf: - 185, 206
OoDBC -7, 71

P

padchr parameter - 156
parallel macro - 97
Parameters - 35, 305
parseAt: - 194
parseAt:into: - 194
parseAtAny: - 194
parseAtAny:into: - 194
passEncode: - 194
pathName - 226, 229, 235
pathName: - 227, 230
pathNamein: - 227
pathnameDOS - 194
pathNameReadOnly: - 227
pathNameReadOnly:in: - 227
pathnameUNIX - 194
pathToday: - 216

Pause Server (Menu Option) - 50
peek - 232

peekFor: - 232

pi - 179

PortNo parameter - 18, 35
position - 232

position: - 232

positive - 174

POST - 6, 57, 64, 80, 97, 115, 124, 244, 245, 259
Posting enabled (Menu Option) - 60, 67, 286

Pragma - 309

prefix parameter - 156
previousWeekday: - 212
print macro - 311
printColumnDashes - 240

322

WebBase User’s Guide

printColumnNames - 240
printField:on: - 238

printFraction: - 174, 175
printFraction:decimal Separator: - 175
printHierarchy - 243
printHierarchyOn: - 242, 243
printHierarchyOn:indent: - 242
printHRecord - 238
printHTMLTable - 200
printlnFormat:twoDigitY ear: - 212
printOn: - 171

printOn:base: - 177
printOn:base:showRadix: - 177
printOn:decimal Separator: - 178
printOn:inFormat:twoDigitY ear: - 212

printOn:inFormat:twoDigitY ear:dateSeparator: - 212

printOn:withPicture: - 213
printOn12Hr: - 217
printOn24Hr: - 217
printPaddedTo: - 177
printPaddedWith:to:base: - 177
printPRETable - 201
printRecord - 239
printRounded: - 175
printStringRadix: - 177
printTable - 201
printTHColumnNamesOn: - 239
printVHTMLTable - 201
printVHTMLTable: - 201
printWithPicture: - 213
Proxy-Authorization - 309
publicKeys - 242

Q

Quitting WebBase - 284
quo: - 175
quote - 195

R

radiansToDegrees - 175
radix: - 177
radix:showRadix: - 177
raisedTo: - 175
raisedTolnteger: - 175
Range - 309
readBuffer:atPosition: - 226
readFrom: - 178, 197
readFromFile - 195
Receiver - 10, 165
reciprocal - 175

Records - 7

reDirect macro - 97
reDirect2 macro - 98, 120
Referer - 121, 309
Registry Editor - 304

rejectComments - 195
rejectControls - 195
regjectHTML - 195
Relational database - 72
Reload - 64

Reload (Menu Option) - 64
rem: - 175

remove - 229

Remove All User Variables (Menu Option) - 51, 161

remove macro - 98

remove: - 201, 227, 230
removeAll - 201, 206
removeAll macro - 99
removeAll: - 201, 230
removeAssociation: - 206
removeCookie macro - 99, 123
removeFirst - 201
removeGlobal macro - 100, 124
removeHeader macro - 100
removelndex: - 202
removeKey: - 206, 242
removelLast - 202

removelocal macro - 100
removeString: - 195
removeStringlgnoreCase: - 195
removeTimer: - 247
removeUser macro - 100
rename:to: - 228

replace:with: - 196

replaceCharacter:from:to:withString: - 196

replaceFrom:to:with: - 165, 185
replaceFrom:to:with:startingAt: - 185

replaceFrom:to:with:startingWith: - 185

replaceFrom:to:withObject: - 185
replaceNewlinesWithString: - 196
replaceString:with: - 196

reset - 232

return macro - 86, 101

reverse - 186

reverseContents - 232

rounded - 175, 181

roundTo: - 175

RPN - 165, 166, 168

S

scope macro - 98, 101, 120
Scope variables - 99, 101
search - 247

seconds - 217, 222

seconds built-in command - 27

SELECT -7, 72, 90, 110, 153, 195, 200, 201, 235

Set heartbeat interval (Menu Option) - 67
Set heartbeat reply time (Menu Option) - 67
Set heartbeat reset TCP (Menu Option) - 68
Set heartbeat sound (Menu Option) - 68

Set Lines (Menu Option) - 59, 67, 286
set macro - 103, 120

WebBase User’s Guide

323

Index

Set Mail Limit (Menu Option) - 287
setCookie macro - 104, 122

setGlobal macro - 104, 124

setHeader macro - 105

setl.ocal macro - 105, 120

setString macro - 105

setToEnd - 232

setUser macro - 106, 163
shortNameOfDay: - 216
shortNameOfMonth: - 216

Show In Process Mail (Menu Option) - 288
Show Mail Queue (Menu Option) - 288
Show Server Status (Menu Option) - 61
Show Stats (Menu Option) - 288

Show TCP/IP Status (Menu Option) - 61
sign - 175

signal Error macro - 106

significand - 178

sin- 175

size - 186, 206, 226, 232

size parameter - 156

skip: - 232

skipSeparators - 232

skipTo: - 232

skipToWhitespace - 233
skipWhitespace - 233

SMTP_Server parameter - 284
Software License Agreement - 297
sortAscendingAt: - 196
sortDescendingAt: - 197

space - 234

Splash Screen - 7

QL -7, 72

sgl macro - 8, 71, 81, 90, 107, 235, 258
sql parameter - 109, 156

sart - 176

squared - 176

Start heartbeat service (Menu Option) - 67
Start Mailer (Menu Option) - 286

Start Transaction Writing (Menu Option) - 60
startTime - 248

StartupForm parameter - 37

status - 57

Stop heartbeat service (Menu Option) - 67
Stop Mailer (Menu Option) - 286

Stop Transaction Writing (Menu Option) - 60
Stored procedures - 280

strictlyPositive - 176

stripQuotes - 197

Structured Query Language - See SQL
subdirectories - 229

subtractDate: - 213

subtractDays: - 213

subtractTime: - 217

suffix parameter - 157

sum - 186

symbolConstant - 197

System DSN - 29, 33

System Parameters - 58

System Registry - 35, 38, 304

T

tab - 234

tab: - 234
table:source:user:password: - 250
tablesln:user:password: - 250
tableSource:user:password: - 250
tableWidth - 239

tan - 176

text - 248

text fields - 74, 109

time - 222, 225

timeFromString: - 222
timeFromStringl2: - 223
timeFromString24: - 223

timer macro - 110, 247
timerQueueSQL - 248
timesTwoPower: - 176

title built-in command - 27
titleString built-in command - 27
today - 216

Total View (Menu Option) - 54
total Seconds - 218

Trace Incoming Headers (Menu Option) - 60
Trace Mail Commands (Menu Option) - 289
Trace Outgoing Headers (Menu Option) - 61
Transfer-Encoding - 309
transpose - 181

trimBlanks - 197

True - 209

truncate - 235

truncated - 176, 181

truncateTo: - 176

U

Uniform Resource Locator - See URL
UPDATE - 7, 76, 82

Upgrade - 309

upTo: - 197, 233

upToWhitespace - 233

URL - 7, 84, 207, 263

urlArgString - 207

User DSN - 29

User variable dictionaries - 159

User variables - 52, 101, 106, 115, 124, 159
userAgent - 248

User-Agent - 121, 280, 309

users - 244

\Y

V32BAS20dll - 13
V32THK20.dll - 13

324

WebBase User’s Guide

V32u202.dll - 13
V32vm20dil - 13
V32VM20.exe - 13, 26
valid - 229

validDrive - 229
validFile: - 229
validHtmlChar - 209
value - 204, 242

value: - 242

valueAt: - 239

values - 243

Variable indirection - 103
Variable Name Suffixes - 259

Variable Precedence Order - 115, 163

variableExists: - 248
vars - 248

Version - 47, 49, 58
Via- 310

volumeL abel - 230

W

Warranty - ii
WBSetup.exe - 12
WBUpdate.exe - 23
Web Browser - See Browser
Web document - See Web page
Web page - 7
Web server - See HTTP server
WebAlias.ini - 303
WebBase Data Types
Arrays - 186
Associations - 203
Booleans - 209
Characters - 207
Collections - 182
Databaselnfo - 248
Dates - 210
Dictionaries - 204
Directories - 228
Envelopes - 296
File Streams - 235
Files - 225
Floats - 178
Fractions - 179
HttpCommand - 244
Integers - 176
Mail Lists - 295
ODBCRowHeaders - 239
ODBCRowObjects - 235
OdbcTimeStamp - 223
Ordered Collections - 198
Ordered Lists - 202
Points - 179
Read Streams - 233
Read Write Streams - 235

Registration Database - 240

Sorted Collections - 202
Sorted Lists - 203
Streams - 230

Strings - 186

Symbols - 198

Times - 216

Universal Times - 218
Write Streams - 234

WebBase Heartbeat Window - 65

WebBase macro forms - See htf Files
WebBase Mail Service Window - 284
WebBase output forms - See htf Files

WebBase Parameters - 58
WebBase Server - 10

WebBase Server Window - 49, 290
WebBase Total View Window - 62
WebBase Transactions Service Window - 58

WebBase WebWizard - 13, 22
Basic Examples - 94, 162
Data Sources - 116

Database Examples - 108, 282

Java Examples - 81

Registration Database - 35, 38, 41, 42, 44, 125

Sample Sites - 126

starting - 47
WebBase.bat - 13
WebBase.bmp - 13
WebBase.exe - 13
WebBase.ico - 13
WebBase.ini - 302
WebBasel D - 123, 160
WebberActive - 79
WebExtens.ini - 303
WebVars.ini - 304
WHERE clause - 73, 77, 94
WHERE Clause - 259
while macro - 111

Windows NT Service Parameters - 38

with macro - 112, 116
with: - 186

with:with: - 186
with:with:with: - 186
with:with:with:with: - 186
withCrs - 197

writeBuffer:of Size:atPosition: - 226

writeFile macro - 113
WSAEADDRINUSE - 26
WSANO_RECOVERY - 26

X

x - 181
X: - 181
xy: - 181
xor: - 210

WebBase User’s Guide

325

Index

Y Z

y 181 zapCrs - 197

y: 181 zoneName - 223
year - 214, 223

326 WebBase User’s Guide

