Parallel Programming Patterns

Bryan Mills, PhD

Spring 2017

What is a programming patterns?

* Repeatable solution to commonly occurring
problem

* |[tisn’t a solution that you can’t simply apply,
the engineer has to implement it
e Why? -
— Familiar & Understood ;S
— Tested & Optimized 3B

History of Patterns?

e Patterns date back to late 1970s but...

 Became really popular with the “Gang of Four” book
— This book described object oriented patterns
— Published in 1994

* Famous patterns: s defined by me) I)(‘sign Patterns
— Decorator S
— Observer ’
— Adaptor
— Factory
— Singleton
— Prototype
— lIterator

L]

Why Patterns?

Patterns help “structure” your code

Sharing code becomes easier
— “I’'m using a singleton here...”

Patterns have been “proven” and are understood so if
you follow one you benefit from common knowledge
Languages often “support” a particular pattern

— Ex: decorator, map, reducer

Optimization can be done without the programmers
knowledge

— Ex: parallelize a map call, copy of modify factory

Serial Patterns

The following patterns are the basis of “structured
programming” for serial computation:

Sequence
Selection
lteration
Nesting
Functions
Recursion

Random read
Random write
Stack allocation
Heap allocation
Objects
Closures

Compositions of these patterns can be used in place of
unstructured mechanisms such as “goto.”

Parallel Patterns

The following additional parallel patterns can be
used for “structured parallel programming”:

e Superscalar sequence * Partition

e Speculative selection * Segmentation

* Map e Stencil

* Recurrence e Search/match

e Scan * Gather

* Reduce * Merge scatter

e Pack/expand * Priority scatter

* Fork/join Permutation scatter
* Pipeline * Atomic scatter

Using these patterns, threads and vector intrinsic can (mostly) be
eliminated and the maintainability of software improved.

Parallel Patterns

Parallel Patterns: A recurring combination of
task distribution and data access that solves a
specific problem in parallel algorithm design.

Patterns provide us with a “vocabulary” for
algorithm design

It can be useful to compare parallel patterns
with serial patterns

Patterns are universal —they can be used in
any parallel programming system

Some Basic Patterns

* Serial: Sequence

— Parallel: Superscalar Sequence

* Serial: Iteration

—> Parallel: Map, Reduction, Scan, Recurrence...

(Serial) Sequence

A serial sequence is executed in the
exact order given:

F=£f(A);
G = g(F);
B = h(G);

Superscalar Sequence

Developer writes “serial” code:

£(a);
g(F);
h(B,G);
r(G) ;
p(F) ;
q(F) ;

s (H,R);
t(s,P,Q);

QLo vwxXxEQH

* Tasks ordered only by data
dependencies

e Tasks can run whenever input
data is ready

10

(Parallel) Fork-Join

* Fork-join: allows control flow to fork into
multiple parallel flows, then rejoin later

* Pthread examples were mostly fork-join
— Create threads to do work

— Join them back together at the end

— Main thread “processes” work
Thread 0

Main / R} \
\ ./

Thread 1

Fork-Join vs. Barrier

e Barrier cause all threads to “meet” then

continue working independently

thread func(. . .) {
for (int i=0; i < N i++) {
if (i % 1000) {
barrier () ;
// Coordinate.
}
}
}

* Fork-Join only one thread continues

Futures

#include <future>
#include <iostream>

int called from async() {

std::cout << "Async call" << std::endl;
return 5;

}

int main() {
std::future<int> fut = std::async(called from async);
std: :cout << "Message from main." << std::endl;
std: :cout << “Future is " << fut.get() << std::endl;
return 0;

std::Future and std::Promise

* New in c++11 standard library

* Future is a contract with program to provide a
value at sometime in the future.

* Promise allows you to manage your own
threads, a promise provides a future.
Promises provide the “data” exchange.

Speculative Selection

 Run multiple scenarios and pick at end.
* More expensive to wait to know which branch.

(Serial) Iteration

The iteration pattern repeats some

section of code as long as a condition
holds
while (c) {
£();
}

Each iteration can depend on values
computed in any earlier iteration.

The loop can be terminated at any point
based on computations in any iteration

(Serial) Countable Iteration

The iteration pattern repeats some
section of code a specific number of
times

for (i = 0; i<n; ++i) {
£()’

}

This is the same as

i=20;

while (i<n) {
£();
++1;

17

Parallel “Iteration”

* The serial iteration pattern actually maps to
several different parallel patterns

* |t depends on whether and how iterations
depend on each other...

* Most parallel patterns arising from iteration
require a fixed number of invocations of the
body, known in advance

Map

* Map replicates a function
over every element of an
index set

* The index set may be abstract
or associated with the
elements of an array.

for (i=0; i<n; ++i) {

£(Aa[1]);
Examples: gamma correction and }
thresholding in images; color space
conversions; Monte Carlo sampling; ray * Map replaces one SpECIfIC
tracing. usage of iteration in serial

programs: independent
operations.

19

Reduction

8 8 * Reduction combines every
element in a collection into
one element using an
associative operator.

b=20;

for (1i=0; i<n; ++1i) {
b += £(B[1i]);

C }

* Reordering of the operations
is often needed to allow for

Examples: averaging of Monte Carlo
samples; convergence testing; image

comparison metrics; matrix operations. parallelism.
* A tree reordering requires

associativity.

20

Re-ordering Computions

* Associative
(AXB)XC=AX(BXC)
— You can re-group but not re-order

— Tree based reduction requires this

* Commutative
AXB=BXA

— You can re-group or re-order

Scan

Serial Scan Parallel Scan

0000000 Crrrrrrinl
L. LR BRI
. EE
L i L
L s
L. EEELLELEIT]
[

Scan

© 0000 0000 9000)

e Scan computes all partial
reductions of a collection
A[0] = B[0] + init;
T\ ﬁ

for (i=1l; i<n; ++i) {
0 A[i] = B[1i] + A[i-1];
" }
® O efelsfele
L e Operator must be (at least)

associative.

e Diagram shows one possible
parallel implementation using
three-phase strategy

* Scan is a special case of serial

Examples: random number generation,
pack, tabulated integration, time series
analysis fold pattern

23

Geometric Decomposition/Partition

Examples: JPG and other macroblock
compression; divide-and-conquer

matrix multiplication; coherency
optimization for cone-beam recon.

* Geometric decomposition
breaks an input collection
into sub-collections

* Partition is a special case
where sub-collections do not
overlap

* Does not move data, it just
provides an alternative
“view” of its organization

24

Stencil

u LJ LJ u u . Stencflapplies a
N VIV I INYINYINYT function to

neighbourhoods of a
“TTTT T (e

W W * Neighbourhoods are
given by set of relative
offsets.

Examples: signal filtering including * Boundary conditions
need to be considered,
but majority of
computation is in
interior.

convolution, median, anisotropic
diffusion

25

Implementing Stencil

QQQOOOOO J

B

1

00000000

L OOODOOOP

T T I1Trr

Vectorization can
include converting

regular reads into a set
of shifts.

Strip-mining reuses
previously read inputs
within serialized chunks.

26

nD Stencil

* nD Stencil applies a function

to neighbourhoods of an nD

array

* Neighbourhoods are given by

set of relative offsets

* Boundary conditions need to

| be considered

Examples: image filtering including
convolution, median, anisotropic
diffusion; simulation including fluid flow,

electromagnetic, and financial PDE
solvers, lattice QCD

27

Recurrence

* Recurrence results from
loop nests with both input
and output dependencies
between iterations

* Can also result from
iterated stencils

Examples: Simulation
including fluid flow,
electromagnetic, and

financial PDE solvers, lattice
QCD, sequence alignment
and pattern matching

28

for (int 1

Recurrence

for (int

Al1]

1; 1 < N; i++) |
1; 3 < M; J3++) |
(

Recurrence Hyperplane Sweep

* Multidimensional
recurrences can always

be parallelized

* Leslie Lamport’s
hyperplane separation

theorem:
* Choose hyperplane with
inputs and outputs on
‘ opposite sides
e Sweep through data
)) p perpendicular to
E g y g > hyperplane

30

Rotated Recurrence

* Rotate recurrence to
see sweep more
clearly

Tiled Recurrence

* Can partition
recurrence to get a
better compute vs.
bandwidth ratio

* Show diamonds here,
could also use paired
trapezoids

Tiled Recurrence
<

e Remove all non-
redundant data
dependences

Recursively Tiled Recurrences

 Rotate back: same
recurrence at a
different scale!

* Leads to recursive
cache-oblivious divide-

and-conquer algorithm

* Implement with fork-
join.

34

Skewed Recurrence

N

O\ e Let’s just clean up the

iiiii:iiiii:::::::____j::j::‘ " eaienunthe
RN il
CeNNYG epeies e

__________________ §

Skewed Recurrence

* This is a useful
memory layout for
implementing
recurrences

* Let’s now focus on
one element

* Look at an element

away from the
boundaries

36

Recurrence = lterated Stencil

- -

b

b

T

* Each element
depends on certain
others in previous
iterations

* An iterated stencil!

* Convert iterated
stencils into tiled
recurrences for
efficient
implementation

37

Nesting Pattern

: E

e A= =TT T

: :

Nesting Pattern: A compositional pattern. Nesting allows
other patterns to be composed in a hierarchy so that any
task block in the above diagram can be replaced with a
pattern with the same input/output and dependencies.

38

(Serial) Recursion

* Recursion: dynamic form of nesting allowing
functions to call themselves

— Tail recursion is a special recursion that can be
converted into iteration

— Replace recursive stack with new call.

Tail Recursion Example

* Factorial
11=1
21 =2 * 11
31=3%*2lI

nl=n*(n-1)!

unsigned int fact(unsigned int n)

{

if (n == 0) return 1;

return n*fact(n-1);

}

Tail Recursion Example

unsigned int factTail(
unsigned int n, unsigned int a)

{
1if (n == 0) return a;
return factTR(n-1, n*a);

}

unsigned int fact(unsigned int n)

{

return factTail(n, 1);

}

Parallel Data Management Patterns

* To avoid things like race conditions, it is
critically important to know when data is, and

isn’t, potentially shared by multiple parallel
workers

* Some parallel data management patterns help
us with data locality

* Parallel data management patterns: pack,

pipeline, geometric decomposition, gather,
and scatter

Parallel Data Management Patterns:

Gather

e Gather reads a collection of data given a collection of

indices

* Think of a combination of map and random serial reads

* The output collection shares the same type as the input
collection, but it share the same shape as the indices

collection
1

0

2 3 4 5 6 7

JPEPO0| 0P0Oed)

43

Shift

* Just a special version of a gather

| /[,/////%

* Variants depending on how you handle
boundary conditions.

Zip and Unzip

* Another special version of gather

Parallel Data Management Patterns:
Scatter

* Scatter is the inverse of gather

 Asetof input and indices is required, but each
element of the input is written to the output at the
given index instead of read from the input at the
given index

e Race conditions can occur when we have two writes
to the same location!

@B@ELCD0EE)
ig i 58800 [@ecoeea)]

O 1 2 3 4 5 6 7

46

Parallel Data Management Patterns:
Pack

Pack is used eliminate unused space in a collection

Elements marked false are discarded, the remaining
elements are placed in a contiguous sequence in the

same order

Useful when used with . 00O ® .
map AEOOORE®

Unpack is the inverse Y Vv
X X
B

and is used to place

elements back in their /

original locations (8) (©) (F) () (M)

47

Implementation of Pack

* How would you implement pack?

OO0 OO®
@@@@@@@@
>4 X X

5) ()

dhiis

Parallel Data Management Patterns:
Pipeline

* Pipeline connects tasks in a producer-
consumer manner

* Alinear pipeline is the basic pattern
idea, but a pipeline in a DAG is also

possible

* Pipelines are most useful when used
with other patterns as they can multiply
available parallelism

49

Se ey

A,
<9/~e //@/

O |

Pipeline

* Parallelize pipeline by
* Running different stages in
parallel
* Running multiple copies of
stateless stages in parallel

* Running multiple copies of
stateless stages in parallel

requires reordering of outputs

* Need to manage buffering
between stages

50

Parallel Data Management Patterns:
Geometric Decomposition
* Geometric Decomposition — arranges data into
subcollections

* Overlapping and non-overlapping decompositions
are possible

* This pattern doesn’t necessarily move data, it just
gives us another view of it

00000000| [COOODOOO00| [CoCOoBooOo
00000000| (CcOCPOoooo| |[DooocEooo
00000000| (00000000l (Co00Cooo
000000 00| (COCDO000| |(000Coo0o
00000000| ([COCDOOOo0| |([O0CO0COOO0
00000000| (COC0OO000| |(0ooCEooo
0000C0000| |(COCDOCOO| |(0oCCEoOo
00000000, |(0ooooooo |[cocoooog

Superscalar sequence

Speculative selection

g

Parallel Patterns: Overview

Geometric decomposition

00000000
00000000
00000000

Fork-Join

Pipeline

Gather

012 3 45867
APQODEPOH @GOG G G]
E

Reduction

00000000

>
BEAOCOC

Scatter

|

O0oe0c@2@]
0123456867

O
[N
@
Q
]
2
Pl
@
a
(=
2
3
=1

0
0]olnlnlolo]0]o)]
onlnlolulelnlo]
olojolnlelalu]o)]
0lojojolaln]n]n)

Pack Split

@)

Citation

Slides for this lecture are

based upon the following: Structured Parallel
Programming

Structured Parallel

Programming: Patterns for

Efficient Computation

— Michael McCool
— Arch Robison
— James Reinders

 www.parallelbook.com

