
Introduc)on	
 to	
 OpenMP	

Chapter	
 5.1-­‐5.	

Bryan	
 Mills,	
 PhD	

	

Spring	
 2017	
 	

OpenMP

•  An API for shared-memory parallel
programming.

•  MP = multiprocessing
•  Designed for systems in which each

thread or process can potentially have
access to all available memory.

•  System is viewed as a collection of cores
or CPU’s, all of which have access to main
memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

A shared memory system

Copyright © 2010, Elsevier
Inc. All rights Reserved

OpenMP	

#include<omp.h>

int main(){
 printf(“The output:\n”);
#pragma omp parallel num_threads(3)
 {
 printf(“Hello World\n”);
 }
 /* Resume Serial section*/
 printf(“Done\n”);
}

The output:
Hello World
Hello World
Hello World
Done

OpenMP	

•  API that abstracts away some of the
details of pthreads
– Simple library functions
– Pragma directives (compiler hints)
– Environment variables

•  Compiler translates openmp code into
pthreads calls

•  Starts with a master thread, calls to
openmp create a team of slaves.

Pragmas

•  Special preprocessor instructions.
•  Typically added to a system to allow

behaviors that aren’t part of the basic C
specification.

•  Compilers that don’t support the pragmas
ignore them.

•  Always starts with ‘#’ in first column!

Copyright © 2010, Elsevier Inc. All rights Reserved

#pragma omp parallel num_threads(3)

OpenMp pragmas

Copyright © 2010, Elsevier
Inc. All rights Reserved

•  # pragma omp parallel

– Most basic parallel directive.
– The number of threads that run

the following structured block of code
is determined by the run-time system.

Pragma Clause

•  Text that modifies a directive.
•  The num_threads clause can be added to

a parallel directive.
•  It allows the programmer to specify the

number of threads that should execute the
following block.

Copyright © 2010, Elsevier
Inc. All rights Reserved

#	
 pragma	
 omp	
 parallel	
 num_threads	
 (
 thread_count	
)	

Specifying	
 number	
 of	
 threads	

#pragma omp parallel num_threads(3)

•  Multiple ways of specifying the number of
threads.
– Explicitly in pragma

– Environment Variable

– Call library function
export OMP_NUM_THREADS=3

omp_set_num_threads(int number)l

Easy	
 to	
 use	

void hello() {
 int my_rank = omp_get_thread_num();
 int total = omp_get_num_threads();

 printf(“Hello World from rank:%d total:%d\n”,
 my_rank,
 total);
}

int main(){
 printf(“The output:\n”);

pragma omp parallel
 hello();

 printf(“Done\n”);
}

Independent	
 Threads	

•  Just like pthreads order is not guaranteed

Hello World from rank: 1 total: 4
Hello World from rank: 3 total: 4
Hello World from rank: 2 total: 4
Hello World from rank: 0 total: 4

Or	
 any	
 combina)on:	

Hello World from rank: 0 total: 4
Hello World from rank: 2 total: 4
Hello World from rank: 3 total: 4
Hello World from rank: 1 total: 4

Of note…

•  There may be system-defined limitations on the
number of threads that a program can start.

•  The OpenMP standard doesn’t guarantee that
this will actually start thread_count threads.

•  Most current systems can start hundreds or even
thousands of threads.

•  Unless we’re trying to start a lot of threads, we
will almost always get the desired number of
threads.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Compiler Doesn’t Support
OpenMP?

Copyright © 2010, Elsevier
Inc. All rights Reserved

#include<omp.h> #ifdef _OPENMP
include <omp.h>
#endif

ifdef _OPENMP
 int my_rank = omp_get_thread_num();
else
 int my_rank = 0;
endif

int my_rank = omp_get_thread_num();

The trapezoidal rule

Copyright © 2010, Elsevier
Inc. All rights Reserved

h = (b-a) / n;
approx = (f(a) – f(b)) / 2.0;
for(int i = 1; i < n-1; i++) {
 x_i = a + i*h;
 approx += f(x_i);
}
approx = h*approx;

A First OpenMP Version

1) We identified two types of tasks:
a) computation of the areas of individual trapezoids, and
b) adding the areas of trapezoids.

2) There is no communication among the tasks in
the first collection, but each task in the first
collection communicates with task 1b.

3) We assumed that there would be many more
trapezoids than cores.

So we aggregated tasks by assigning a contiguous
block of trapezoids to each thread (and a single
thread to each core).

Copyright © 2010, Elsevier
Inc. All rights Reserved

Assignment of trapezoids to threads

Copyright © 2010, Elsevier
Inc. All rights Reserved

Copyright © 2010, Elsevier Inc. All rights Reserved

Unpredictable	
 results	
 when	
 two	
 (or	
 more)	
 	

threads	
 aOempt	
 to	
 simultaneously	
 execute:	

	
 	

	
 global_result	
 +=	
 my_result	
 ;	

Race Condition

Mutual exclusion

Copyright © 2010, Elsevier
Inc. All rights Reserved

#	
 pragma	
 omp	
 cri)cal	

	
 	
 	
 global_result	
 +=	
 my_result	
 ;	

only	
 one	
 thread	
 can	
 execute	

the	
 following	
 structured	
 block	
 at	
 a	
)me	

int main(int argc, char* argv[]) {
 double global_result = 0.0; /* Store result in global_result */
 int a = 0; /* Left and right endpoints */
 int b = 10.0;
 int n = 100000; /* Total number of trapezoids */
pragma omp parallel num_threads(thread_count)
 Trap(a, b, n, &global_result);
}
void Trap(double a, double b, int n, double* global_result_p) {
 double my_result;
 int my_rank = omp_get_thread_num();
 int thread_count = omp_get_num_threads();

 double h = (b-a)/n;
 int local_n = n/thread_count;
 double local_a = a + my_rank*local_n*h;
 double local_b = local_a + local_n*h;
 my_result = (f(local_a) + f(local_b))/2.0;
 for (int i = 1; i <= local_n-1; i++) {
 double x = local_a + i*h;
 my_result += f(x);
 }
 my_result = my_result*h;

pragma omp critical
 *global_result_p += my_result;
}

Scope

•  In serial programming, the scope of a
variable consists of those parts of a
program in which the variable can be
used.

•  In OpenMP, the scope of a variable refers
to the set of threads that can access the
variable in a parallel block.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Scope in OpenMP

•  A variable that can be accessed by all the
threads in the team has shared scope.

•  A variable that can only be accessed by a
single thread has private scope.

•  The default scope for variables
declared before a parallel block
is shared.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Copyright © 2010, Elsevier
Inc. All rights Reserved

We need this more complex version to add each
thread’s local calculation to get global_result.

Although we’d prefer this.

void Trap(double a, double b, int n, double* global_result_p)
	

double Trap(double a, double b, int n)

global_result = Trap(a, b, n);

Copyright © 2010, Elsevier
Inc. All rights Reserved

If we use this, there’s no critical section!

If we fix it like this…

… we force the threads to execute sequentially.

global_result = 0.0;
#pragma omp parallel
{
 pragma omp critical
 global_result += Trap(a, b, n);
}

global_result += Trap(double a, double b, int n)

Copyright © 2010, Elsevier
Inc. All rights Reserved

We	
 can	
 avoid	
 this	
 problem	
 by	
 declaring	
 a	
 private	

variable	
 inside	
 the	
 parallel	
 block	
 and	
 moving	

the	
 cri)cal	
 sec)on	
 aWer	
 the	
 func)on	
 call.	

global_result = 0.0;
#pragma omp parallel
{
 double my_result = Trap(a, b, n);
 pragma omp critical
 global_result += my_result;
}

Reduction operators

•  A reduction operator is a binary operation
(such as addition or multiplication).

•  A reduction is a computation that
repeatedly applies the same reduction
operator to a sequence of operands in
order to get a single result.

•  All of the intermediate results of the
operation should be stored in the same
variable: the reduction variable.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Copyright © 2010, Elsevier
Inc. All rights Reserved

A	
 reduc)on	
 clause	
 can	
 be	
 added	
 to	
 a	
 parallel	

direc)ve.	

+, *, -, &, |, ˆ, &&, ||

reduction(<operator>: <variable list>)

global_result = 0.0;
#pragma omp parallel reduction(+: global_result)
global_result += Trap(a, b, n);

Parallel for

•  Forks a team of threads to execute the
following structured block.

•  However, the structured block following
the parallel for directive must be a for loop.

•  Furthermore, with the parallel for directive
the system parallelizes the for loop by
dividing the iterations of the loop among
the threads.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Copyright © 2010, Elsevier
Inc. All rights Reserved

h = (b-a)/n;
approx = (f(a) + f(b)) / 2.0;
for (int i = 1; i < n-1; i++)
 approx += f(a + i*h);
approx = h*approx;

h = (b-a)/n;
approx = (f(a) + f(b)) / 2.0;
#pragma omp parallel for reduction(+: approx)
for (int i = 1; i < n-1; i++)
 approx += f(a + i*h);
approx = h*approx;

Parallel for

Legal forms for parallelizable for
statements

Copyright © 2010, Elsevier
Inc. All rights Reserved

Caveats

•  The variable index must have integer or
pointer type (e.g., it can’t be a float).

•  The expressions start, end, and incr must
have a compatible type. For example, if index
is a pointer, then incr must have integer type.

•  The expressions start, end, and incr must not
change during execution of the loop.

•  During execution of the loop, the variable
index can only be modified by the “increment
expression” in the for statement.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Data dependencies

Copyright © 2010, Elsevier
Inc. All rights Reserved

1	
 1	
 2	
 3	
 5	
 8	
 13	
 21	
 34	
 55	

1	
 1	
 2	
 3	
 5	
 8	
 0	
 0	
 0	
 0	
 this	
 is	
 correct	

but	
 some)mes	

we	
 get	
 this	

fibo[0] = fibo[1] = 1;
for(i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

fibo[0] = fibo[1] = 1;
#pragma omp parallel for num_threads(2)
 for(i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

note	
 2	
 threads	

What happened?
1.  OpenMP compilers don’t check for dependences

among iterations in a loop that’s being
parallelized with a parallel for directive.

2.  A loop in which the results of one or more
iterations depend on other iterations cannot, in
general, be correctly parallelized by OpenMP.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Estimating π

Copyright © 2010, Elsevier
Inc. All rights Reserved

double factor = 1.0;
double sum = 0.0;
for (k = 0; k < n; k++) {
 sum += factor/(2*k+1);
 factor = -factor;
}
pi_approx = 4.0 * sum;

OpenMP solution #1

Copyright © 2010, Elsevier
Inc. All rights Reserved

loop	
 dependency	

double factor = 1.0;
double sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for (k = 0; k < n; k++) {
 sum += factor/(2*k+1);
 factor = -factor;
}
pi_approx = 4.0 * sum;

OpenMP solution #2

Copyright © 2010, Elsevier
Inc. All rights Reserved

double factor = 1.0;
double sum = 0.0;
#pragma omp parallel for reduction(+:sum) \
 private(factor)
for (k = 0; k < n; k++) {
 sum += factor/(2*k+1);
 factor = -factor;
}
pi_approx = 4.0 * sum; Insures	
 factor	
 has	
 	

private	
 scope.	

The default clause

•  Lets the programmer specify the scope of
each variable in a block.

•  With this clause the compiler will require
that we specify the scope of each variable
we use in the block and that has been
declared outside the block.

Copyright © 2010, Elsevier
Inc. All rights Reserved

default(none)

The default clause

Copyright © 2010, Elsevier
Inc. All rights Reserved

double factor = 1.0;
double sum = 0.0;
#pragma omp parallel for reduction(+:sum) \
 default(none) private(factor)
for (k = 0; k < n; k++) {
 sum += factor/(2*k+1);
 factor = -factor;
}
pi_approx = 4.0 * sum;

