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Course Website:
http://people.cs.pitt.edu/~bmills/pages/cs1645.html

Teaching Assistant:
Fan Zhang, zhenjiangfan@cs.pitt.edu
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History of Parallel Computing

● I/O Channels and DMA
● Instruction Pipelining
● Supercomputers!

○ Massively parallel processors (MPPs)
● Distributed Computing

○ Internet, Clusters, Cloud
● Multicore Technology
● GPUs
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What is a Supercomputer?
“A supercomputer is a computer with a high-level computational capacity 
compared to a general-purpose computer.” - Wikipedia
“a large very fast mainframe used especially for scientific computations” - 
Webster Dictionary

Lets just say a supercomputer is…
● is fast (measured in FLOPS)
● is expensive (TaihuLight cost $273 Million)
● is shortlived (~5 years)
● introduces massive leap in computational ability
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FLoating-point Operations Per Second (FLOPS)

Name Abbrevation FLOPS

kiloFLOPS kFLOPS 103

megaFLOPS MFLOPS 106

gigaFLOPS GFLOPS 109

teraFLOPS TFLOPS 1012

petaFLOPS PFLOPS 1015

exaFLOPS EFLOPS 1018

zettaFLOPS ZFLOPS 1021

yottaFLOPS YFLOPS 1024
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Name Abbrevation FLOPS
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Sunway TaihuLight, fastest 
computer in the world 
clocks in at 93.01 PFLOPS

Intel i7 Core, 980 XE 
clocks in at 109 MFLOPS

Nvidia Tesla C2050 GPU 
515 GFLOPS
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Bigger = Better?
Top500
● Ranks the world’s 

fastest 
supercomputers

● Uses LINPACK, a 
linear algebra 
benchmark, to 
measure max 
number of FLOP/s.
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Who Cares?

● Supercomputers lead the way but all of 
computing is moving to parallel processing

● Serial programs work fine?
○ Faster is always better

■ To go faster you must “think in parallel”
● Web Programming?

○ AJAX, Dependency Injection, Parallel Page Loads, 
WebSockets, NodeJS, Go, …………
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Single Processor Performance
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Multicore Design

■ Instead of designing and building faster 
microprocessors, put multiple processors 
on a single integrated circuit.
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Why we’re building parallel systems

■ Up to now, performance increases have 
been attributable to increasing density of 
transistors.

■ But there are
inherent 
problems.
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A little physics lesson
■ Smaller transistors = faster processors.
■ Faster processors = increased power consumption.
■ Increased power consumption = increased heat.
■ Increased heat = unreliable processors.
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Solution 
■ Move away from single-core systems to 

multicore processors.
■ “core” = central processing unit (CPU)

Copyright © 2010, Elsevier Inc. All rights Reserved

Parallelism for all!
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Supercomputer in your Pocket?

iPhone X uses A11 processor has 4 cores
Pixel 2 uses Snapdragon 835 has 8 cores
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Need to write parallel programs?

■ Running multiple instances of a serial 
program often isn’t very useful.

■ Think of running multiple instances of your 
favorite game.

■ What you really want is for
it to run faster.

Copyright © 2010, Elsevier Inc. All rights Reserved 15



Approaches to the serial problem
■ Rewrite serial programs so that they’re 

parallel.
■ Write translation programs that 

automatically convert serial programs into 
parallel programs.
■ This is very difficult to do.
■ Success has been limited.

Copyright © 2010, Elsevier Inc. All rights Reserved 16



More problems
■ Some coding constructs can be recognized by an 

automatic program generator, and converted to a parallel 
construct.

■ However, it’s likely that the result will be a very inefficient 
program.

■ Sometimes the best parallel solution is to step back and 
devise an entirely new algorithm.

Copyright © 2010, Elsevier Inc. All rights Reserved 17



Example
■ Compute n values and add them together.
■ Serial solution:

Copyright © 2010, Elsevier Inc. All rights Reserved 18



■ We have p cores, p much smaller than n.
■ Each core performs a partial sum of 

approximately n/p values.

Copyright © 2010, Elsevier Inc. All rights Reserved

Each core uses it’s own private variables
and executes this block of code
independently of the other cores

19

Example (cont.)



■ After each core completes execution of the 
code, it’s private variable my_sum contains 
the sum of the values computed by its calls 
to Compute_next_value.

■ Ex., 8 cores, n = 24, then the calls to 
Compute_next_value return:

Copyright © 2010, Elsevier Inc. All rights Reserved

1,4,3,   9,2,8,    5,1,1,   5,2,7,   2,5,0,   4,1,8,   6,5,1,   2,3,9
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Example (cont.)

■ Once all the cores are done computing 
their private my_sum, they form a global 
sum by sending results to a designated 
“master” core which adds the final result.

Copyright © 2010, Elsevier Inc. All rights Reserved 21



Example (cont.)
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Example (cont.)

Copyright © 2010, Elsevier Inc. All rights Reserved

Core 0 1 2 3 4 5 6 7
my_sum 8 19 7 15 7 13 12 14

Global sum
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

Core 0 1 2 3 4 5 6 7
my_sum 95 19 7 15 7 13 12 14

23



Better parallel algorithm
■ Don’t make the master core do all the work; share it 

among the other cores.
■ Pair the cores; core 0 adds its result with core 1’s result.
■ Core 2 adds its result with core 3’s result, etc.
■ Work with odd and even numbered pairs of cores.
■ Repeat the process now with the evenly ranked cores.
■ Core 0 adds result from core 2.
■ Core 4 adds the result from core 6, etc.
■ Now cores divisible by 4 repeat the process, and so forth, 

until core 0 has the final result. 24



Tree-based Parallel Sum

Copyright © 2010, Elsevier Inc. All rights Reserved 25



Analysis
■ In the first example, the master core 

performs 7 receives and 7 additions.
■ In the second example, the master core 

performs 3 receives and 3 additions.
■ The improvement is more than a factor of 

2.

Copyright © 2010, Elsevier Inc. All rights Reserved 26



Analysis (cont.)
■ The difference is more dramatic with a 

larger number of cores.
■ If we have 1000 cores:

■ The first example would require the master to 
perform 999 receives and 999 additions.

■ The second example would only require 10 
receives and 10 additions.

■ Improvement of almost a factor of 100.
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Speedup and Efficiency (page 58)

For a problem A of size n, assume to it takes:
■ Ts(n) time to execute in serial
■ Tp(n) time to execute with P processors

Speedup is, S = Ts(n) / Tp(n) 
Efficiency is, E = S / P

Speedup is between 0 and p; Efficiency is between 0 and 1
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Speedup

Linear speedup assumes that as we apply 
more processors we can always go faster.
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S

p

Program is perfectly 
scalable if the speedup 
is independent of the 
problem size.



Amdahl’s law

Unless “all” of a serial program is parallelized, the possible 
speedup is going to be very limited.
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Amdahl’s law - Example

■ We can parallelize 90% of a serial 
program.

■ Parallelization is “perfect” regardless of 
the number of cores p we use.

■ Ts = 20 seconds

■ Tp = (0.9*Ts)/p + 0.1 * Ts= (18 / p) + 2
31



Amdahl’s law - Example
■ We can parallelize 90% of a serial program.
■ Parallelization is “perfect” regardless of the 

number of cores p we use.

Ts = 20 seconds

Tp = (0.9*Ts)/p + 0.1 * Ts= (18 / p) + 2
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Amdahl’s law - Example
Tp = (0.9*Ts)/p + 0.1 * Ts= (18 / p) + 2
S = Ts / Tp =

33

Ts

(0.9*Ts)/p + 0.1 * Ts

=
20

18/p + 2

What is the maximum Speedup?



Gustafson’s Law

Increase the size of the problem and the size 
of the serial portion decreases.

Just make the problem bigger and parallel 
algorithms will perform better.

This assumes that the serial work are things 
like setup, config, etc that doesn’t increase as 
the problem grows.
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Efficient Parallel Sum (4 processors)

1. Divide work by 4.
2. Each processor works on 

their numbers
3. Then adds theirs and their 

neighbors
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1+2 5+6 9+10 13+14

+3

+4

+7

+8

+11

+12

+15

+16

10+26 42+48

36+100

Computes 16 numbers in 5 steps.
  Speedup: 16/5 = 3.2
Computes 1024 numbers in 255 + 2 steps.
  Speedup: 1024/257 = 3.9

How long to compute n numbers?

What is the speedup?

Time



How do we write parallel programs?

■ Task parallelism 
■ Partition various tasks carried out solving the 

problem among the cores.
■ Data parallelism

■ Partition the data used in solving the problem.
■ Each core carries out similar operations on it’s 

part of the data.

Copyright © 2010, Elsevier Inc. All rights Reserved 36



Professor P

Copyright © 2010, Elsevier Inc. All rights Reserved

15 questions
300 exams

TA#1 TA#2 TA#3
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Data Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#
1

TA#
2

TA#
3100 exams

100 exams

100 exams
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Task Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#
1

TA#
2

TA#
3Questions 1 - 5

Questions 6 - 10

Questions 11 - 15
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Data Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved 40



Task Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

Tasks
1)Receiving
2)Addition 
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Coordination
■ Cores usually need to coordinate their work.
■ Communication – one or more cores send their current 

partial sums to another core.
■ Load balancing – share the work evenly among the 

cores.
■ Synchronization – because each core works at its own 

pace, make sure cores do not get too far ahead of the 
rest.
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Type of parallel systems

Copyright © 2010, Elsevier Inc. All rights Reserved

Shared-memory Distributed-memory
43



Type of parallel systems
■ Shared-memory

■ The cores can share access to the computer’s 
memory.

■ Coordinate the cores by having them examine and 
update shared memory locations.

■ Distributed-memory
■ Each core has its own, private memory.
■ The cores must communicate explicitly by sending 

messages across a network.
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What will we be doing?
● Learning how to write parallel algorithms.
● Writing parallel algorithms (primarily C)

○ Distributed Memory
■ MPI

○ Shared Memory
■ PThreads, OpenMP

○ GPUs
■ CUDA

○ Higher Level Constructs (if time permits)
■ Map/Reduce
■ Go
■ Dependency Injection
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Terminology 

Concurrent Computing

Parallel Computing Distributed Computing

Tightly Coupled.
Primary goal of performance.
Think supercomputers.

Loosely Coupled
Primary goal of ease of use:

● Reliability
● Accessibility
● Security

Think Internet
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