
Introduction to High
Performance Computing

CS 1645 | CS 2045

Spring 2017

1

Administrivia
Me:
Dr. Bryan Mills, bmills@cs.pitt.edu
My Office:
Sennott Square 6148 - Tuesday 6-7, Wednesday 4-5
Course Website:
http://people.cs.pitt.edu/~bmills/pages/cs1645.html

Teaching Assistant:
Fan Zhang, zhenjiangfan@cs.pitt.edu

Several slides from book provided slides Elsevier Inc. All rights Reserved. Slides marked as such.
Some images from wikipedia. Special thanks to Rami Melhem and Meneses Rojas for both slides

and content. 2

mailto:bmills@cs.pitt.edu
http://people.cs.pitt.edu/~bmills/pages/cs1645.html

History of Parallel Computing

● I/O Channels and DMA
● Instruction Pipelining
● Supercomputers!

○ Massively parallel processors (MPPs)
● Distributed Computing

○ Internet, Clusters, Cloud
● Multicore Technology
● GPUs

3

What is a Supercomputer?
“A supercomputer is a computer with a high-level computational capacity
compared to a general-purpose computer.” - Wikipedia
“a large very fast mainframe used especially for scientific computations” -
Webster Dictionary

Lets just say a supercomputer is…
● is fast (measured in FLOPS)
● is expensive (TaihuLight cost $273 Million)
● is shortlived (~5 years)
● introduces massive leap in computational ability

4

https://en.wikipedia.org/wiki/Supercomputer
http://www.merriam-webster.com/dictionary/supercomputer

FLoating-point Operations Per Second (FLOPS)

Name Abbrevation FLOPS

kiloFLOPS kFLOPS 103

megaFLOPS MFLOPS 106

gigaFLOPS GFLOPS 109

teraFLOPS TFLOPS 1012

petaFLOPS PFLOPS 1015

exaFLOPS EFLOPS 1018

zettaFLOPS ZFLOPS 1021

yottaFLOPS YFLOPS 1024

5

https://en.wikipedia.org/wiki/Kilo-
https://en.wikipedia.org/wiki/Mega-
https://en.wikipedia.org/wiki/Giga-
https://en.wikipedia.org/wiki/Tera-
https://en.wikipedia.org/wiki/Peta-
https://en.wikipedia.org/wiki/Exa-
https://en.wikipedia.org/wiki/Zetta-
https://en.wikipedia.org/wiki/Yotta-

FLoating-point Operations Per Second (FLOPS)

Name Abbrevation FLOPS

kiloFLOPS kFLOPS 103

megaFLOPS MFLOPS 106

gigaFLOPS GFLOPS 109

teraFLOPS TFLOPS 1012

petaFLOPS PFLOPS 1015

exaFLOPS EFLOPS 1018

zettaFLOPS ZFLOPS 1021

yottaFLOPS YFLOPS 1024

Sunway TaihuLight, fastest
computer in the world
clocks in at 93.01 PFLOPS

Intel i7 Core, 980 XE
clocks in at 109 MFLOPS

Nvidia Tesla C2050 GPU
515 GFLOPS

6

https://en.wikipedia.org/wiki/Kilo-
https://en.wikipedia.org/wiki/Mega-
https://en.wikipedia.org/wiki/Giga-
https://en.wikipedia.org/wiki/Tera-
https://en.wikipedia.org/wiki/Peta-
https://en.wikipedia.org/wiki/Exa-
https://en.wikipedia.org/wiki/Zetta-
https://en.wikipedia.org/wiki/Yotta-
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/Nvidia_Tesla

Bigger = Better?
Top500
● Ranks the world’s

fastest
supercomputers

● Uses LINPACK, a
linear algebra
benchmark, to
measure max
number of FLOP/s.

7

http://top500.org/

Who Cares?

● Supercomputers lead the way but all of
computing is moving to parallel processing

● Serial programs work fine?
○ Faster is always better

■ To go faster you must “think in parallel”
● Web Programming?

○ AJAX, Dependency Injection, Parallel Page Loads,
WebSockets, NodeJS, Go, …………

8

Single Processor Performance

9

Multicore Design

■ Instead of designing and building faster
microprocessors, put multiple processors
on a single integrated circuit.

Copyright © 2010, Elsevier Inc. All rights Reserved 10

Why we’re building parallel systems

■ Up to now, performance increases have
been attributable to increasing density of
transistors.

■ But there are
inherent
problems.

Copyright © 2010, Elsevier Inc. All rights Reserved 11

A little physics lesson
■ Smaller transistors = faster processors.
■ Faster processors = increased power consumption.
■ Increased power consumption = increased heat.
■ Increased heat = unreliable processors.

Copyright © 2010, Elsevier Inc. All rights Reserved 12

Solution
■ Move away from single-core systems to

multicore processors.
■ “core” = central processing unit (CPU)

Copyright © 2010, Elsevier Inc. All rights Reserved

Parallelism for all!

13

Supercomputer in your Pocket?

iPhone X uses A11 processor has 4 cores
Pixel 2 uses Snapdragon 835 has 8 cores

14

Need to write parallel programs?

■ Running multiple instances of a serial
program often isn’t very useful.

■ Think of running multiple instances of your
favorite game.

■ What you really want is for
it to run faster.

Copyright © 2010, Elsevier Inc. All rights Reserved 15

Approaches to the serial problem
■ Rewrite serial programs so that they’re

parallel.
■ Write translation programs that

automatically convert serial programs into
parallel programs.
■ This is very difficult to do.
■ Success has been limited.

Copyright © 2010, Elsevier Inc. All rights Reserved 16

More problems
■ Some coding constructs can be recognized by an

automatic program generator, and converted to a parallel
construct.

■ However, it’s likely that the result will be a very inefficient
program.

■ Sometimes the best parallel solution is to step back and
devise an entirely new algorithm.

Copyright © 2010, Elsevier Inc. All rights Reserved 17

Example
■ Compute n values and add them together.
■ Serial solution:

Copyright © 2010, Elsevier Inc. All rights Reserved 18

■ We have p cores, p much smaller than n.
■ Each core performs a partial sum of

approximately n/p values.

Copyright © 2010, Elsevier Inc. All rights Reserved

Each core uses it’s own private variables
and executes this block of code
independently of the other cores

19

Example (cont.)

■ After each core completes execution of the
code, it’s private variable my_sum contains
the sum of the values computed by its calls
to Compute_next_value.

■ Ex., 8 cores, n = 24, then the calls to
Compute_next_value return:

Copyright © 2010, Elsevier Inc. All rights Reserved

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

20

Example (cont.)

Example (cont.)

■ Once all the cores are done computing
their private my_sum, they form a global
sum by sending results to a designated
“master” core which adds the final result.

Copyright © 2010, Elsevier Inc. All rights Reserved 21

Example (cont.)

Copyright © 2010, Elsevier Inc. All rights Reserved 22

Example (cont.)

Copyright © 2010, Elsevier Inc. All rights Reserved

Core 0 1 2 3 4 5 6 7
my_sum 8 19 7 15 7 13 12 14

Global sum
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

Core 0 1 2 3 4 5 6 7
my_sum 95 19 7 15 7 13 12 14

23

Better parallel algorithm
■ Don’t make the master core do all the work; share it

among the other cores.
■ Pair the cores; core 0 adds its result with core 1’s result.
■ Core 2 adds its result with core 3’s result, etc.
■ Work with odd and even numbered pairs of cores.
■ Repeat the process now with the evenly ranked cores.
■ Core 0 adds result from core 2.
■ Core 4 adds the result from core 6, etc.
■ Now cores divisible by 4 repeat the process, and so forth,

until core 0 has the final result. 24

Tree-based Parallel Sum

Copyright © 2010, Elsevier Inc. All rights Reserved 25

Analysis
■ In the first example, the master core

performs 7 receives and 7 additions.
■ In the second example, the master core

performs 3 receives and 3 additions.
■ The improvement is more than a factor of

2.

Copyright © 2010, Elsevier Inc. All rights Reserved 26

Analysis (cont.)
■ The difference is more dramatic with a

larger number of cores.
■ If we have 1000 cores:

■ The first example would require the master to
perform 999 receives and 999 additions.

■ The second example would only require 10
receives and 10 additions.

■ Improvement of almost a factor of 100.
27

Speedup and Efficiency (page 58)

For a problem A of size n, assume to it takes:
■ Ts(n) time to execute in serial
■ Tp(n) time to execute with P processors

Speedup is, S = Ts(n) / Tp(n)
Efficiency is, E = S / P

Speedup is between 0 and p; Efficiency is between 0 and 1

28

Speedup

Linear speedup assumes that as we apply
more processors we can always go faster.

29

S

p

Program is perfectly
scalable if the speedup
is independent of the
problem size.

Amdahl’s law

Unless “all” of a serial program is parallelized, the possible
speedup is going to be very limited.

30

Amdahl’s law - Example

■ We can parallelize 90% of a serial
program.

■ Parallelization is “perfect” regardless of
the number of cores p we use.

■ Ts = 20 seconds

■ Tp = (0.9*Ts)/p + 0.1 * Ts= (18 / p) + 2
31

Amdahl’s law - Example
■ We can parallelize 90% of a serial program.
■ Parallelization is “perfect” regardless of the

number of cores p we use.

Ts = 20 seconds

Tp = (0.9*Ts)/p + 0.1 * Ts= (18 / p) + 2

32

Parallel Part Serial Part

Amdahl’s law - Example
Tp = (0.9*Ts)/p + 0.1 * Ts= (18 / p) + 2
S = Ts / Tp =

33

Ts

(0.9*Ts)/p + 0.1 * Ts

=
20

18/p + 2

What is the maximum Speedup?

Gustafson’s Law

Increase the size of the problem and the size
of the serial portion decreases.

Just make the problem bigger and parallel
algorithms will perform better.

This assumes that the serial work are things
like setup, config, etc that doesn’t increase as
the problem grows.

34

Efficient Parallel Sum (4 processors)

1. Divide work by 4.
2. Each processor works on

their numbers
3. Then adds theirs and their

neighbors

35

1+2 5+6 9+10 13+14

+3

+4

+7

+8

+11

+12

+15

+16

10+26 42+48

36+100

Computes 16 numbers in 5 steps.
 Speedup: 16/5 = 3.2
Computes 1024 numbers in 255 + 2 steps.
 Speedup: 1024/257 = 3.9

How long to compute n numbers?

What is the speedup?

Time

How do we write parallel programs?

■ Task parallelism
■ Partition various tasks carried out solving the

problem among the cores.
■ Data parallelism

■ Partition the data used in solving the problem.
■ Each core carries out similar operations on it’s

part of the data.

Copyright © 2010, Elsevier Inc. All rights Reserved 36

Professor P

Copyright © 2010, Elsevier Inc. All rights Reserved

15 questions
300 exams

TA#1 TA#2 TA#3

37

Data Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#
1

TA#
2

TA#
3100 exams

100 exams

100 exams

38

Task Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

TA#
1

TA#
2

TA#
3Questions 1 - 5

Questions 6 - 10

Questions 11 - 15

39

Data Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved 40

Task Parallelism

Copyright © 2010, Elsevier Inc. All rights Reserved

Tasks
1)Receiving
2)Addition

41

Coordination
■ Cores usually need to coordinate their work.
■ Communication – one or more cores send their current

partial sums to another core.
■ Load balancing – share the work evenly among the

cores.
■ Synchronization – because each core works at its own

pace, make sure cores do not get too far ahead of the
rest.

42

Type of parallel systems

Copyright © 2010, Elsevier Inc. All rights Reserved

Shared-memory Distributed-memory
43

Type of parallel systems
■ Shared-memory

■ The cores can share access to the computer’s
memory.

■ Coordinate the cores by having them examine and
update shared memory locations.

■ Distributed-memory
■ Each core has its own, private memory.
■ The cores must communicate explicitly by sending

messages across a network.

44

What will we be doing?
● Learning how to write parallel algorithms.
● Writing parallel algorithms (primarily C)

○ Distributed Memory
■ MPI

○ Shared Memory
■ PThreads, OpenMP

○ GPUs
■ CUDA

○ Higher Level Constructs (if time permits)
■ Map/Reduce
■ Go
■ Dependency Injection

45

Terminology

Concurrent Computing

Parallel Computing Distributed Computing

Tightly Coupled.
Primary goal of performance.
Think supercomputers.

Loosely Coupled
Primary goal of ease of use:

● Reliability
● Accessibility
● Security

Think Internet
46

