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Summary

 Pthreads

— Simple threading (ie strassen)

— Shared Data and Critical Sections
* Busy-Wait
e Locks (mutex)

* Semaphore
* Read/Write Locks



Supercomputer Etiquette

* Always use your credentials to login.
* Do not run parallel jobs on login nodes!!

* Do not abuse allocations.
— Only use for class assignments

— Never request more nodes that assignment specifies

— Never request more than 10 minutes in your submission
script.

— Never request more than 32 cores in interactive session
— Never request more than an hour of interactive session.
— Always exit interactive sessions when done.
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SIMD

 Single Instruction, Multiple Data

— Parallelism achieved by dividing data among
the processors.

* One Instruction is repeatedly applied to
different data.

« Data parallelism



SIMD example

for (1 = 0; 1 < n;

X[1] += y[1];

control unit

i++)

v v

X[1] X[2]
ALU, ALU,
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n data items
n ALUs

X[n]

ALU




SIMD

« What if we don’ t have as many ALUs as
data items?

* Divide the work and process iteratively.
« Ex. m=4ALUs and n =15 data items.

Round3 AW, ___ALU, AU, AW,

1 X[0] X[1] X[2] X[3]
2 X[4] X[5] X[6] X[7]
3 X[8] X[9] X[10] X[11]
4

X[12] X[13] X[14] \

Idle ALU
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SIMD drawbacks

* All ALUs are required to execute the same
Instruction, or remain idle.

* In classic design, they must also operate
synchronously.

 The ALUs have no instruction storage.

 Efficient for large data parallel problems,
but not other types of more complex
parallel problems.
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Vector processors

« Example of SIMD

» Operate on arrays or vectors of data while
conventional CPU’ s operate on individual
data elements or scalars.

— Also known as array processors

* Vector registers.

— Capable of storing a vector of operands and
operating simultaneously on their contents.

Vectorized and pipelined functional units.

— The same operation is applied to each element in
the vector (or pairs of elements).
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Vector processors

o 1 2 3 4 5 6 7 8 9 10 11

X 317(10]1(4]1]0]0|4]|]5(3|]1)0
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for (i = 0; i < n; i++)

X[1] += y[1];



Interleaved Memory

Multiple “banks” of memory, which can be accessed more or less
independently.

Distribute elements of a vector across multiple banks, so reduce or
eliminate delay in loading/storing successive elements.

Strided memory access and hardware scatter/gather.
— The program accesses elements of a vector located at fixed intervals.

Memory Controller




Vector processors
Pros 0\3
« Fast and Easy to use.

« Vectorizing compilers are good at identifying code to exploit.

« Compilers also can provide information about code that
cannot be vectorized.

* High memory bandwidth.
« Uses every item in a cache line.

Cons -
« They don’ t handle irregular vV
data structures as well as other N\

parallel architectures.

« Avery finite limit to their ability to handle ever larger problems.
(scalability)
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Vector Processors

* Born out of supercomputers in the 60s and
became very popular in the 80s and 90s.

e Several modern CPUs make some use of
vector processors or have similar techniques

— Cell processor (IBM, Sony, Toshiba)
 Combines one general CPU with 8 vector processors

e Used in Playstation 3



Graphics Processing Units (GPU)

* Real time graphics application
programming interfaces or API’ s use
points, lines, and triangles to internally

represethe surface @n object.
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GPUs

* A graphics processing pipeline converts
the internal representation into an array of
pixels that can be sent to a computer
screen. /

* Several stages of this pipeline -
(called shader functions) are
programmable.

— Typically just a few lines of C code.
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GPUs

» Shader functions are also implicitly
parallel, since they can be applied to
multiple elements in the graphics stream.

« GPU’ s can often optimize performance by
using SIMD parallelism.

« The current generation of GPU’ s use
SIMD parallelism.

— Although they are not pure SIMD systems.
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MIMD

* Multiple Instruction, Multiple Data

— Supports multiple simultaneous instruction
streams operating on multiple data streams.

— Typically consist of a collection of fully
iIndependent processing units or cores, each

of which has its own control unit and its own
ALU.

* Different types of MIMDs depending on
memory architecture and address space
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Memory Architecture

CPU CPU CPU CPU

Pthreads are ] | | |
an example

Interconnect

I I
Memory Memory

Global, shared memory architecture (Symmetric Multi-Processors — SMP)

Mem Mem Mem Mem
I | | | CPU CPU CPU CPU
cpu | | cru | | cru | | cpu ' ' ' '
Mem Mem Mem Mem
I | I I | | | |
Interconnect Interconnect

Distributed memory architecture MPI



Shared Memory Addresses

CPU CPU CPU CPU

Interconnect

Memory

* Most widely available shared memory systems use one
or more multicore processors.
 (multiple CPU’ s or cores on a single chip)
« Each CPU accesses the memory using the same

address
* Address XXXX on CPU, is same on CPU,
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Distributed Memory Addresses

CPU CPU CPU CPU

Memory Memory Memory Memory

Interconnect

* Clusters
» A collection of commodity systems
« Connected by a commodity interconnection network.
* Nodes of a cluster are individual computations units joined by a
communication network.
* Requires Message Passing between individual computational units.
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Multicore Memory Access

Chip 1 Chip 2
* Uniform Memory Access (UMA) | [Cor ] | Core2 Core 1 | | Core?
« Time to access all the memory
locations will be the same for all T———
the cores.
Memory
= et e Non-uniform Memory Access
Core 1 Core 2 Core 1 Core 2
(NUMA)
1 | « A memory location a core is
nterconnect nterconnect .
directly connected to can be
- - accessed faster than a
emory emory .
memory location that must be
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accessed through another
chip.



Interconnection networks

 Affects performance of both distributed
and shared memory systems.

* Two categories:
— Shared memory interconnects
— Distributed memory interconnects
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Bus Interconnect

* A collection of parallel communication wires together
with some hardware that controls access to the bus.

« Communication wires are shared by the devices that
are connected to it.

 As the number of devices connected to the bus

increases, contention for use of the bus increases, and
performance decreases.

9000
hihEhEhi

Control Lines
Address Lines
Data Lines
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Crossbar

 Allows simultaneous
communication
among different
devices.

 Faster than buses.

 But the cost of the
switches and links Is
relatively high.

« Simultaneous
memory accesses by
the processors
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Distributed memory interconnects

* Two groups
— Direct interconnect

« Each switch is directly connected to a processor
memory pair, and the switches are connected to
each other.

— Indirect interconnect

« Switches may not be directly connected to a
Processor.
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Direct interconnect
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Indirect interconnects

« Simple examples of indirect networks:
— Crossbar
— Omega network

« Often shown with unidirectional links and a
collection of processors, each of which
has an outgoing and an incoming link, and
a switching network.

Copyright © 2010, Elsevier Inc. All rights Reserved



Crossbar interconnect for distributed
memory
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An omega network

o ,Q,
E .'\6‘.
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Network Topologies

bus
1D-mesh 1D-torus (rin * *

2D-mesh 2D-torus star

i @

ourtesy of Esteban Men




Torus

2D Animation here

3d Torus



Network Topologies

crossbar butterfly
tree

0D-cube 1D-cube

o OO

Slide courtesy of Esteban Meneses



Network Topologies
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Fat Tree Dragon Fly

Images from http://hpc-opinion.blogspot.com/



Interconnect Properties

* The following characteristics of a network affect its
performance and its feasibility.

Degree: maximum number of edges incident on any vertex. It
determines the number of communication ports per node.

Average distance: average length of shortest paths between pairs of
nodes.

Diameter: maximum distance between any pair of nodes. It
determines the maximum communication delay between nodes.
Bisection width: smallest number of edges whose removal splits
network into two disconnected, equally-sized parts. It determines the
ability to support simultaneous global communication.

Edge length: maximum physical length of any wire. It may be constant
or variable as number of nodes changes.

Slide courtesy of Esteban Meneses



The bisections bandwidth

= A measure of network quality.

= Instead of counting the number of links joining
the halves, it sums the bandwidth of the links.
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Example

star * Nodes?
ep+1
* Degree?
*p
 Diameter?
¢ 2
* Bisection Width
e ]
* Edge Length
* Constant




2D-mesh

Example

* Nodes?
° p2

* Degree?
e 4

* Diameter?
* 2(p-1)

e Bisection Width
°p

* Edge Length
* Constant



Top 500

Rank | Machine Location Network
1 Sunway China Bi-section Tree
2 Tianhe-2 (MilkyWay) China Fat Tree
3 Titan US - ORNL 3D-torus
4 Sequoia US - LLNL 3D-torus
5 K Computer Japan 6D-torus
6 Mira US - Argonne | 3D-torus
7 Piz Daint Switzerland Dragonfly
8 Shaheen I Saudi Arabia | 3D-torus
9 Stampede US - Austin Fat Tree
10 JUQUEEN Germany 3D-torus
11 Vulcan US - LLNL 3D-torus
12 CS-Storm US - LANL Fat Tree




Interconnect Family System Share

Top 500

@ Infiniband
® 106
Custom Interconnect
@ Gigabit Ethernet
@ Cray Interconnect

@ Proprietary Network



Multiple Interconnects

* Today’s systems commonly have multiple
iInterconnects
* Intrepid (system at Argonne) has 5 interconnects

* High Performance
* Collective
* Barrier
e |/O
* Service



Topology Mapping

* Find a mapping from one topology to a another topology
e Often done in software and mapped onto a physical network graph.

3 - o0
{ : =-p

* The goal is to retain the distances found in the software
mapping to the one in the physical hardware.

Slide courtesy of Esteban Meneses



Graph Embedding Problem

* Function ¢ maps nodes in the source graph G(V,, E,)
to nodes in the target graph G,(V,, E,); &: V. ->V,

* An edge in G, is mapped to a path in G,

* Load: maximum number of nodes V, mapped to the
same node in V,

* Congestion: maximum number of edges in E,
mapped to paths containing the same edge in E,

* Dilation: maximum distance between any two nodes
¢d(u) and P(v), such that <d(u), d(v)>isin E,

Slide courtesy of Esteban Meneses



Graph Embedding

* Finding optimal mapping ¢ is NP-complete;
heuristic algorithms are used to find a good
mapping.

* Load has to be as uniform as possible, to balance
work across processors.

* Decreasing congestion improves the use of available
bandwidth of network links.

 Decreasing dilation keeps nearest-neighbor
communications in source graph as short as possible
in target graph.

* The best embedding has load, congestion, and
dilation equal to 1; it may not be always possible.

Slide courtesy of Esteban Meneses



Graph Embedding Examples

OO0 O0OO0OO0OO0O0O0

O O O O
O O
O O
O o O
O O
O O
O O O O
ring into 2D-mesh binary tree into 2D-mesh
load=1 load=1
congestion=1 congestion=1
dilation=1 dilation=2 l(»-1)/21-1

Slide courtesy of Esteban Meneses

ring into hypercube
load=1

congestion=1
dilation=1



Graph Embedding Example

* Find a graph embedding for a star topology with 9
nodes into a 2D-mesh.
* What is the congestion and dilation?



Hypercubes

* Connection with low diameter and a large bisection
* A hypercube of dimension d is built with two
hypercubes of dimension (d-1) [animation]
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Slide courtesy of Rami Melhem



Hypercu bes

3
 For a hypercube of dimension d, calculate

*  Number of nodes = 24
. Degree

. Diameter

. Bisection

. Edge Width

Slide courtesy of Rami Melhem



Routing

* Mechanism to send messages between nodes that are not
directly connected.
* Properties of message routing algorithms:

* Minimal or non-minimal, depending on whether shortest
path is always taken.

e Static or dynamic, depending on whether same path
between a pair of nodes is always taken.

* Deterministic or randomized, depending on whether path
is chosen systematically or randomly.

* Circuit-switched or packet-switched, depending on
whether entire message goes along reserved path or is
transferred in segments that may not all take the same
path.

Slide courtesy of Esteban Meneses



Routing messages 1n 2D mesh networks

The problem: 0)—0.0—C0—G)
e Assume that each switch in an n x n mesh is labeled

by (x,y), where 0 < x <n-1and 0<y < n-1. OD)—D)—CD—GD)
* Assume also that each message has a header which

contains the address, (x,, y,), of its destination. @2 62 /@ @2
* A routing algorithm determines at any

intermediate node, (x_, y.), where to send the 03) @ @ G

message next.
X-Y routing: X4V,
1) If x. < x, then send the message to the East port message message

body header

elseif x.> x,then send it to the West port

2) If y. <y, then send the message to the North port
elseif y,.> y, then send it to the South port

3) Deliver the message to the local node

East

Messages travel along the x-direction Local node  y South
before traveling along the y-direction

Slide courtesy of Rami Melhem



Dimension-order routing

Current Node = CN = Cy,C(y ), --.. € (bit vector)
Destination Node = DN =Dy,D 4 4y, --.. Dy

» If CN == DN, keep the message
 Else { Find the largest k such thatd, # ¢, ;

Send the message to the neighbor across dimension £ }

Slide courtesy of Rami Melhem



Hypercube Communication

 Example of using hypercube for all-to-all
communication.

— Ex: sum numbers and share with all nodes

Hypercube (myid, input, logp, output) {
state input;
for 1 0 to logp — 1 {
dest = myid XOR 271
send state to dest
recv message from dest
state = Add(input, message)
}
output = state

}



Tree Network topology

El\ Level 2 switches
Sk 1-- | S Level 1 switches

01- 10- :| 11- Level 0 switches

@1 ‘ ‘ \ n = 29 processors
0

P5
10 011 100 101 110 111

000
* The route between a source node, Syl Sy and a destination
node,d, ,, ..., d, canbe expressed as a sequence of up moves

(U) followed by a sequence of right (R) and left (L) moves.
* Example: the route between 001 and 101 1s UUURLR

 What is the bisection width of a tree with n leave nodes?

Slide courtesy of Rami Melhem



Fat tree networks
Eliminates the bisection bottleneck of a binary tree

ADAD

Slide courtesy of Rami Melhem




A 16-node fat tree network
0 1 2 3 stage
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A fat tree networks using }‘5‘

2x2 bidirectional switches — y

Processors switches

Routing in fat trees??



A 16-node fat tree network
0 1 2 3 stage
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A fat tree networks using 15

2x2 bidirectional switches | Y ’

Processors switches

Slide courtesy of Rami Melhem

Routing in fat trees??



Multistage Networks

Processors Memory bank:
o — 0]
Kl 1]

. Stage 1 ) Stage 2 . Stage n
ol — —

The schematic of a typical multistage interconnection
network.

Slide courtesy of Rami Melhem



Multistage Omega Network

A nxn Omega network consists of:

- log n stages,

- each stage has n/2, 2x2 switches
- Perfect shuffle connection between stages

I connects to 2i
[ connects to 2i+1-n

000

001

010

011

100

101

110

111

Slide courtesy of Rami Melhem

0

fori =0, ...
fori=p/2, ..., n-1

0

, n/2-1

000 = left_rotate(000)
001 =left rotate(100)
010 = left rotate(001)
011 =left rotate(101)
100 = left rotate(010)
101 = left_rotate(110)

110 = left_rotate(011)

111 =left rotate(111)



Multistage Omega Network

000 000
001 —— 001
010 —— 010 >
011 — o011
100 — 100
101 — 101
> 110 — 110
111 111

An 8x8 omega network

« costgrows as nlogn
* Unique route between a source, s, and a destination, d.

Slide courtesy of Rami Melhem



Routing in an OMEGA network

000 O —O 000
001 —O 001
010 O —(O 010
011 —QO 011
100 O —0O 100
101 —0O 101
110 —Q 110
111 O— —0O 111

To route from source 101 to destination 110 = Lower>Lower>Upper
Configure network based upon destination alone, if 1 = Lower, if 0 = Upper
Works regardless of source ©

Slide courtesy of Rami Melhem



Routing in an OMEGA network

000 O —(O 000
001 —O 001
010 —(O 010
011 —QO 011
100 O —QO 100
101 —0O 101
110 —(O 110
111 O— —0O 111

Example: to route from source 010 to destination 100

Slide courtesy of Rami Melhem



The Omega Network 1s blocking

000 —— 000
001 —— 001
010 —— 010
D11 \ \ B, |\ 011
100 \\\ // A N ————— 100
101 IR ) ———— 101
1o ~ Vo 1o
111 s ——— 111

Example: one of the messages (010 to 111 or 110 to 100) is
blocked at link AB.

Slide courtesy of Rami Melhem



More definitions
» Any time data is transmitted, we're

interested in how long it will take for the
data to reach its destination.

» Latency

— The time that elapses between the source’ s
beginning to transmit the data and the
destination’ s starting to receive the first byte.

 Bandwidth

— The rate at which the destination receives data
after it has started to receive the first byte.

Copyright © 2010, Elsevier
Inc. All rights Reserved



Message transmissiontime =1+n/b

=

length of message (bytes)

latency + startup cost (seconds)

bandwidth (bytes per second)

Example: what is the transmission time for a message of
length 256 Bytes if the network delay is 500 nsec and
bandwidth is 100 MB/sec?

Copyright © 2010, Elsevier
Inc. All rights Reserved



Routing Types

e Store-and-forward: entire message is received
and stored at each node before being forwarded
to next node on path:

T=(l+n/b)D
where D is the number of hops in path.

e Cut-through (or wormhole): message broken into
segments that are pipelined through network,
with each segment forwarded as soon as it is
received:

T=(l+n/b) + yD
where is the y incremental time per hop

Slide courtesy of Esteban Meneses



Routing Types

source target

®-O-6-C-@

© ®®

®
©
store-and-forward cut-through

Slide courtesy of Esteban Meneses



Communication Concurrency

A node may or may not be able to:

— send a message while receiving another
simultaneously on the same communication link.

— send message on one link while receiving
simultaneously on different link.

— send or receive, or both, simultaneously on multiple
links.
e Concurrency of the communication system has a
high impact on performance. The time required

for each step of communication is effectively
multiplied by a factor.

Slide courtesy of Esteban Meneses



Communication Overhead

* Communication might require processor time
which means that could eat into your power
and computation.
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