

•

•
–
–

•
–

•
–
–

•
–
–

•

•

•

•

•
•

•

•

•
–

–

Betty Holberton

●
●

●

•

–
•
•

–
–

•
•
•

Multitasking

• Gives the illusion that a single processor
system is running multiple programs
simultaneously.

• Each process takes turns running.
 (time slice)

• After its time is up, it waits until it has a
turn again and context switches.

Copyright © 2010, Elsevier Inc. All rights Reserved

• Similar to multitasking but within a single process.
• Originally a method for hiding memory latency.
• Example, covert dot-product of two vectors x,y of length

n and covert to a 4 “threaded” environment
dp = 0;
for (i=0; i < n; i++) {
 dp += x[i] * y[i]
}

dp = 0;
for (int k=0; k < 4; k++) {
 partialProd(k, k*n/4, n/4);
}
for (int i=0; i < 4; i++) {
 dp += pdp[i];
}
void partialProd(int k, int a, int b) {
 pdp[k] = 0;
 for (i=a; i<a+b; i++) {
 pdp[k] += x[i]*y[i];
 }
}

dp = 0;

for (int k=0; k < 4; k++) {
 createThread(partialProd(k, k*n/4, n/4));
}

waitOnThreadsToComplete();

for (int i=0; i < 4; i++) {
 dp += pdp[i];
}

void partialProd(int k, int a, int b) {
 pdp[k] = 0;
 for (i=a; i<a+b; i++) {
 pdp[k] += x[i]*y[i];
 }
}

•
•
•

•

– Windows/Solaris are slightly different
• Versions of linux also know about threads ☺

• Kernel threads are special

Terms

Copyright © 2010, Elsevier Inc. All rights Reserved

Figure 2.2

the “master” thread

starting a thread
Is called forking

terminating a thread
Is called joining

•
•

–
–

•

•
…

•

•
•

•

•

•

•

Principle of locality

• Accessing one location is followed by an
access of a nearby location.

• Spatial locality – accessing a nearby
location.

• Temporal locality – accessing in the near
future.

Copyright © 2010, Elsevier Inc. All rights Reserved

Principle of locality

Copyright © 2010, Elsevier Inc. All rights Reserved

float z[1000];

…

sum = 0.0;

for (i = 0; i < 1000; i++)

 sum += z[i];

• Questions:
– Is my data in the cache?
– How do I find it?
– What if it is not in the cache?

• Two broad solutions:
– Cache items can go anywhere in cache (associative)

• Must have some method of looking up
– Each memory location in certain locations (direct)

• Must have “rule” of mapping

Cache mappings
• Full associative – a new line can be

placed at any location in the cache.
• Direct mapped – each cache line has a

unique location in the cache to which it will
be assigned.

• n-way set associative – each cache line
can be place in one of n different locations
in the cache.

Copyright © 2010, Elsevier Inc. All rights Reserved

• When more than one line in memory can
be mapped to several different locations in
cache we also need to be able to decide
which line should be replaced or evicted.
– First in First Out (FIFO)
– Least Recently Used (LRU)
– Least Frequently Used (LFU)

Example

Copyright © 2010, Elsevier Inc. All rights Reserved

Cache lines

Copyright © 2010, Elsevier Inc. All rights Reserved

Cache Line – Store more than
just a single address, instead
we store x addresses “line of
data”.

•

•
•
•

for (j = 0; j < 1000; j++)
 column_sum[j] = 0.0;
 for (i = 0; i < 1000; i++)
 column_sum[j] += b[i][j];

Writing to Cache
• When a CPU writes data to cache, the

value in cache may be inconsistent with
the value in main memory.

• Write-through caches handle this by
updating the data in main memory at the
time it is written to cache.

• Write-back caches mark data in the cache
as dirty. When the cache line is replaced
by a new cache line from memory, the dirty
line is written to memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

Levels of Data Access

Virtual memory
• If we run a very large program or a program that

accesses very large data sets, all of the instructions
and data may not fit into main memory.

• Virtual memory
functions as a cache
for secondary storage.

• It exploits the principle
of spatial and
temporal locality.

• It only keeps the active
parts of running
programs in
main memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

Virtual memory

• Swap space - those parts that are idle are
kept in a block of secondary storage.

• Pages – blocks of data and instructions.
– Usually these are relatively large.
– Most systems have a fixed page

size that currently ranges from
4 to 16 kilobytes.

Copyright © 2010, Elsevier Inc. All rights Reserved

Virtual page numbers
• When a program is compiled its pages are assigned
virtual page numbers.

• When the program is run, a table is created that maps
the virtual page numbers to physical addresses.

• A page table is used to translate the virtual address
into a physical address.

Copyright © 2010, Elsevier Inc. All rights Reserved

Translation-lookaside buffer (TLB)
• Using a page table has the potential to

significantly increase each program’s overall
run-time

• A special address translation cache in the
processor.

• It caches a small number of entries (typically
16–512) from the page table in very fast
memory.

• Page fault – attempting to access a valid
physical address for a page in the page table
but the page is only stored on disk.

Copyright © 2010, Elsevier Inc. All rights Reserved

Instruction Level Parallelism (ILP)
• Attempts to improve processor performance

by having multiple processor components or
functional units simultaneously executing
instructions.

• Pipelining - functional units are arranged in
stages.

• Multiple issue - multiple instructions can be
simultaneously initiated.

Copyright © 2010, Elsevier Inc. All rights Reserved

Pipelining example

Copyright © 2010, Elsevier Inc. All rights Reserved

Add the floating point numbers
9.87×104 and 6.54×103

Pipelining example

• Assume each operation takes one nanosecond.
– 7 operations per addition.
– This for loop takes about 7000 nanoseconds.

float x[1000], y[1000], z[1000];

for (int i=0; i < 1000; i++)
 z[i] = x[i] + y[i]

Pipelining
• Divide the floating point adder into 7 separate pieces of

hardware or functional units.
• First unit fetches two operands, second unit compares

exponents, etc.
• Output of one functional unit is input to the next.

Copyright © 2010, Elsevier Inc. All rights Reserved

Numbers in the table are subscripts of operands/results.

Pipelining example

• Each operation still takes one nanosecond.
– 7 operations per addition (still 7ns per addition)

• How long will 1000 operations take?
– 1006ns with pipelining!

float x[1000], y[1000], z[1000];

for (int i=0; I < 1000; i++)
 z[i] = x[i] + y[i]

Multiple Issue
• Multiple issue processors replicate

functional units and try to simultaneously
execute different instructions in a
program.

Copyright © 2010, Elsevier Inc. All rights Reserved

for (i = 0; i < 1000; i++)
 z[i] = x[i] + y[i];

Multiple Issue

• VLIW – Very long instruction word -
functional units are scheduled at compile
time (static scheduling).

• Superscaler - functional units are
scheduled at run-time (dynamic
scheduling).

Speculation
• In order to make use of multiple issue, the system must find

instructions that can be executed simultaneously.
•

Copyright © 2010, Elsevier
Inc. All rights Reserved

z = x + y;

if (z > 0)

 w = x;

else

 w = y;

•
–
–
–

•
–
–
–

•

•
–
–
–

•
–
–

•
–
–

•
–

•
•
•
•
•

