Parallel Software/Hardware

Chapter 2.1 & 2.2

Spring 2017

Re-cap

Parallel algorithms are key as our single processors quit
accelerating and multi-core wins the day.

Evaluate parallel algorithms using:
— Speedup —S=T(n)/ T (n)
s p

— Efficiency—E=S/p
Amdahl’s law limits speedup by amount of serial code
— Gustafson’s law says just make problem bigger
Types of Parallelism

— Data

— Task
Types of Parallel Systems

— Shared Memory
— Distributed Memory

John von Neumann

Hungarian-American mathematician
(1903-1957).

Contributions to mathematics,
economics, computer science, and
statistics.

Member of Manhattan Project and
Institute for Advanced Study.
Proposed a design for a digital
computer (EDVAC) in 1945 that later
became the von Neumann model.
Introduced cellular automata.
Designed merge sort algorithm.

The Von Neumann Model (1945)

* Control unit —responsible

CPU

for deciding which

ALU Control

e | Regston instruction should execute.
| | | | (the bOSS)
' b f * ALU (Arithmetic and logic
unit) — responsible for
merconnect actually doing the work. (the
| worker)
ﬁ * Memory:

| | | — A collection of location to
: : : store both data and
: instructions.

T, — Each location has an address.

Betty Holberton

® Programmer on ENIAC

® Invented mainframe
Sort/Merge

e Statistics package for 1950
census

“solved more problems in her
sleep than other people did
awake”

Process (task)

* An instance of a computer program being
executed.
— Memory

* Program
* Data

— Security (who, what where)
— State
* Register Values

* Program counters
* Resources (file handler, sockets)

Multitasking

 Gives the illusion that a single processor
system is running multiple programs
simultaneously.

» Each process takes turns running.
(time slice)

 After its time is up, it waits until it has a
turn again and context switches.

Copyright © 2010, Elsevier Inc. All rights Reserved

Threading

« Similar to multitasking but within a single process.
 Originally a method for hiding memory latency.

« Example, covert dot-product of two vectors x,y of length
n and covert to a 4 “threaded” environment

dp = 0; dp = 0;

for (i=0; 1 < n; i++) { for (int k=0; k < 4; k++) {
dp += x[i] * y[i] partialProd(k, k*n/4, n/4);

} }

for (int 1=0; 1 < 4; i++) {
dp += pdplil;
}

void partialProd(int k, int a, int b) {
pdp (k] = 0;
for (i=a; i<a+b; i++) {
pdp [k] += x[i]*y[i];

}

)

Create Threads

for
createThread (partialProd(k, k*n/4, n/4));

}

waitOnThreadsToComplete () ;

for
dp += pdpli];

}

void partialProd(int k, int a, int b) {
pdp (k] = 0;
for (i=a; i<a+b; i++) {

}

}

(int k=0; k < 4; k++) {

(int 1=0; 1 < 4; 1i++) {

pdp [k] += x[i]l*y[i];

Thread = Lightweight Process

* Threads within the same process
e Share the memory address space

e Each has its own registers, program counter
and stack pointer

* The OS schedules processes but a thread
library function schedules threads within a
process
— Windows/Solaris are slightly different

* Versions of linux also know about threads ©

» Kernel threads are special

Terms

the “master” thread

/ Thread

hY

7

Process /
/ Thread

starting a thread
|s called forking

Figure 2.2

Copyright © 2010, Elsevier Inc. All rights Reserved

W

terminating a thread
Is called joining

The Memory Wall

* Memory is often the bottleneck

* Memory performance measured in

— Latency — “delay”
— Bandwidth — “trunk size”

Memory Wall (example)

1 GHz processor (1 ns clock) with a multiply-add units capable of
executing a multiply/add in each cycle

The peak processor rating is 2 GFLOPS
.... 2 * 1079 floating point operation per second!

We want to compute the dot product of two vectors

n
DP = x[i]*i]
Need two operands every.ng for peak processor performance

If DRAM has a latency of 100 ns, then it can supply only one
operand every 100 cycle. Hence, can do a multiply/add (2 FLOPS)
every 200 ns. That is one FLOP every 100 ns.

Actual performance = 10 MFLOPS

Overcoming Memory Wall

* Cache: take advantage of spatial and temporal locality.

* Prefetching: Improve performance by pre-fetching. In this
case, performance depends on memory bandwidth and not
its latency. In the example above, if bandwidth is such that
one operands can be fetched every 5ns, then can do a
multiply/add every 10 ns. That is one FLOP every 5ns (200
MPFLOP) — still not enough to match the 2GFLOP processor.

* Multithreading — Do useful things while waiting.

Principle of locality

* Accessing one location is followed by an
access of a nearby location.

« Spatial locality — accessing a nearby
location.

 Temporal locality — accessing in the near
future.

Copyright © 2010, Elsevier Inc. All rights Reserved

Principle of locality
float z[1000] ;

sum = 0.0;
for (1 = 0; 1 < 1000; 1++)

sum += z[1];

Copyright © 2010, Elsevier Inc. All rights Reserved

Web Cache

Lejleldlellel]

Locating Cached Data (Go Fish)

* Questions:
— Is my data in the cache?
— How do | find it?
— What if it is not in the cache?

* Two broad solutions:
— Cache items can go anywhere in cache (associative)
* Must have some method of looking up

— Each memory location in certain locations (direct)
« Must have “rule” of mapping

Cache mappings

 Full associative — a new line can be
placed at any location in the cache.

* Direct mapped — each cache line has a
unique location in the cache to which it will
be assigned.

* n-way set associative — each cache line
can be place in one of n different locations
in the cache.

Copyright © 2010, Elsevier Inc. All rights Reserved

Cache Eviction

* When more than one line in memory can
be mapped to several different locations in
cache we also need to be able to decide
which line should be replaced or evicted.
— First in First Out (FIFO)

— Least Recently Used (LRU)
— Least Frequently Used (LFU)

Example

Cache Location
Memory Index || Fully Assoc | Direct Mapped | 2-way
0 0.1.2 or3 0 Oorl
1 0.1.2.0r3 1 20r3
2 0.1,2,0r3 2 Oorl
3 0,1,2,0r3 3 2o0r3
4 12,063 0 Oorl
S 0,1,2,0r3 1 Zor3
6 0,1.2.0r3 o Oorl
7 0,1,2,0r3 3 2or3
8 0,1,2,0r3 0 Oorl
0 0.1 .2 or3 1 2or3
10 0.1.2.0r3 2 Oorl
11 0.1,2,0r3 3 2or3
2 0,1,2,0r3 0 Oorl
13 12,063 1 2or3
14 0,1,2,0r3 o Oorl
15 0,1.2.0r3 3 Z2or3

Table 2.1: Assignments of a 16-line main
memory to a 4-line cache

Copyright © 2010, Elsevier Inc. All rights Reserved

Cache lines

double A[MAX][MAX]., x[MAX]. yv[MAX]:
f* Initialize A and x, assign y = 0 =/

/+ First pair of loops =%/

for (i = 0; 1 <« MAX: i++) ,
:)) , Cache Line Elements of &
for (7 = 0; j < MAX: j++) 5 STOREIT AR T RGeS
y[i] += A[i][i1*x[]1]; = = L
N] Af11(01 (A1) [2) | Af1Y[2] | ALX] 3]
/* Assign y = 0 %/ 2 A[Z21[0] | Af2]1[1] [A[Z2][2] | A[Z2][3]
3 A[3]1[0] | A[3][1] |A[3][2] | A[3][3]

;’*-Séc‘nnd pair of loops =/
for (7 = 0; j < MAX: j++) .
for (i = 0: i — wax: 1++4) Gache Line — Store more than
vlil += ali]l31+=x[3]; just a single address, instead
we store x addresses “line of

data”.

Copyright © 2010, Elsevier Inc. All rights Reserved

Data Layout and Cache Lines

for (j = 0; 7 < 1000; J++)
column sum[j] = 0.0;
for (1 = 0; 1 < 1000; i+4+)
column suml[j] += bl[1i] [J];

* The code fragment sums columns of the matrix b into a vector
column_sum.

* The vector column_sum is small and easily fits into the cache
 The matrix b is accessed in a column order

* With row major storage, strided access results in very poor
performance.

Image Source Wikipedia

Writing to Cache

* When a CPU writes data to cache, the
value in cache may be inconsistent with
the value in main memory.

* Write-through caches handle this by
updating the data in main memory at the
time it is written to cache.

* Write-back caches mark data in the cache
as dirty. When the cache line is replaced
by a new cache line from memory, the dirty
line is written to memory.

Copyright © 2010, Elsevier Inc. All rights Reserved

Levels of Data Access

Small = Faster L1 ‘9
1ns

L2

4ns

Larger = Slower

L3 10ns %

Main Memory

100ns

SSD
16,000ns

Spinning Disks
2,000,000ns

Virtual memory

 If we run a very large program or a program that
accesses very large data sets, all of the instructions
and data may not fit into main memory.

* Virtual memory
functions as a cache
for secondary storage.

* It exploits the principle Ly main memory
of spatial and i‘
temporal locality. -

° It Only keepS the aCtIVG program B
parts of running
programs in i‘ program C
main memory. S i‘

Copyright © 2010, Elsevier Inc. All rights Reserved

Virtual memory

* Swap space - those parts that are idle are
kept in a block of secondary storage.

« Pages — blocks of data and instructions.
— Usually these are relatively large.

— Most systems have a fixed page
size that currently ranges from _

4 to 16 kilobytes.

Copyright © 2010, Elsevier Inc. All rights Reserved

Virtual page numbers

 When a program is compiled its pages are assigned
virtual page numbers.

* When the program is run, a table is created that maps
the virtual page numbers to physical addresses.

* A page table is used to translate the virtual address
Into a physical address.

Virtual Address
Virtual Page Number Byte Offset
31130 --- (13 (1211 |10)---[1]0
1 (0 [e | X |4 0 | & | eea (X))

Virtual Address Divided into Virtual Page Number and Byte Offset

Copyright © 2010, Elsevier Inc. All rights Reserved

Translation-lookaside buffer (TLB)

* Using a page table has the potential to
significantly increase each program’s overall
run-time

* A special address translation cache in the
processor.

* |t caches a small number of entries (typically

16—512) from the page table in very fast
memory.

* Page fault — attempting to access a valid

physical address for a page in the page table
but the page is only stored on disk.

Copyright © 2010, Elsevier Inc. All rights Reserved

Instruction Level Parallelism (ILP)

« Attempts to improve processor performance
by having multiple processor components or
functional units simultaneously executing
instructions.

* Pipelining - functional units are arranged in
stages.

* Multiple issue - multiple instructions can be
simultaneously initiated.

Copyright © 2010, Elsevier Inc. All rights Reserved

Pipelining example

Add the floating point numbers
9.87x10%and 6.54x10°

Time Operation Operand 1 | Operand 2 Result
] Fetch operands 0.87 x 10* | 6.54 x 10°
2 Compare exponents || 9.87 x 10* | 6.54 x 10°
3 || Shift one operand 90.87 x 10° | 0.654 x 10*
4 Add 0.87 x 10° | 0.654 x 10* | 10.524 x 10"
5 Normalize result 0.87 x 107 | 0.654 x 10* | 1.0524 x 10°
6 || Round result 0.87 x 107 | 0.654 x 10* | 1.05 x 10°
7 || Store result 9.87 x 10* | 0.654 x 10* | 1.05 x 10°

Copyright © 2010, Elsevier Inc. All rights Reserved

Pipelining example
float x[1000], yI[1000], =z[1000];

for (int 1=0; 1 < 1000; 1i++)
z[1] = x[i] + yI[i]

« Assume each operation takes one nanosecond.
— 7 operations per addition.

— This for loop takes about 7000 nanoseconds.

Pipelining
* Divide the floating point adder into 7 separate pieces of

hardware or functional units.

 First unit fetches two operands, second unit compares
exponents, etc.

« Output of one functional unit is input to the next.

| Time || Fetch | Compare | Shift | Add | Normalize | Round | Store |

0 0

1 1 0

2 2 1 0

3 3 2 1 0

4 4 3 2 1 0

5 5 4 3 2 I 0

6 6 5 4 3 2 1 0
999 999 998 997 | 996 995 994 993
1000 999 998 | 997 996 995 994
1001 999 | 998 997 996 995
1002 999 998 097 996
1003 999 098 997
1004 999 998
1005 999

Numbers in the table are subscripts of operands/results.
Copyright © 2010, Elsevier Inc. All rights Reserved

Pipelining example
float x[1000], yI[1000], =z[1000];

for (int 1=0; I < 1000; 1i++)
z[1] = x[i] + yI[i]

« Each operation still takes one nanosecond.
— 7 operations per addition (still 7ns per addition)

* How long will 1000 operations take?
— 1006ns with pipelining!

Multiple Issue

» Multiple issue processors replicate
functional units and try to simultaneously
execute different instructions in a
program.

for (i = 0; i < 1000; i++)
z[i] = x[i] + yI[i];

HorD— 2(3] 2[4] DD

adder #1 adder #2

Copyright © 2010, Elsevier Inc. All rights Reserved

Multiple Issue

* VLIW - Very long instruction word -
functional units are scheduled at compile
time (static scheduling).

* Superscaler - functional units are
scheduled at run-time (dynamic
scheduling).

Speculation

 In order to make use of multiple issue, the system must find
instructions that can be executed simultaneously.

* In speculation, the compiler or the processor makes a guess about
an instruction, and then executes the instruction on the basis of

the guess.
Z = X + Y;
if (z > 0) Z will be
W o= X; positive
else
W = ¥i

If the system speculates incorrectly,
it must go back and recalculate w =y.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Multi-threading

Provides a means to continue doing useful work when the
currently executing task has stalled (ex. wait for long memory
latency).
Lighter weight than multi-tasking because context switching is
usually more costly than thread-switching.*
» Software-based multi-threading (Posix Threads)

— Hardware still traps on long-latency processes

— Software handles thread context switch

— Issues with overhead and “multi-level” control

 Hardware-based multi-threading
— User defines threads (or kernel)
— Hardware “helps” in context switch
— Ex: IBM Power5, Pentium-4

Hardware Multi-threading

Provides a means to continue doing useful work when the
currently executing task has stalled (ex. wait for long memory
latency)

Fine-grain multithreading

— Switch threads after each cycle

— Interleave instruction execution

— If one thread stalls, others are executed

Coarse-grain multithreading
— Only switch on long stall (e.g., L2-cache miss)
— Simplifies hardware, but doesn’t hide short stalls (such as the stalls
resulting from data hazards)
SMT in multiple-issue dynamically scheduled processor
— Schedule instructions from multiple threads

— Instructions from independent threads execute when function units are
available

Summary

* Von Neumann model
— Memory bottleneck and overcoming it

* Process vs Threads
* Cache

* Virtual Memory

* Pipelining

* Multi-threading

