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Performance of Merge Sort
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Merge Sort using GPU

1 million Stage 3
/\ Single or small number of tasks
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Serial Merge

Hard to break up task?
Need one person to look at both lists.



Recall Parallel Compact
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Demo in class




Parallel Merge
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Where would each element be in the sorted list?



Parallel Merge
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Assigning each thread an element how could they
determine where to place the element in the final list?

List 1




Parallel Merge

List 1

Addresses

nnn Addresses

Lets look at one single element (12)
e Whereisitinits own list?
e Where would it be in the other list?




Parallel Merge

List 1

Addresses

List 2

Lets look at one single element (12)
e Whereisitinits own list? thread index

* Where would it be in the other list? binary search

Add those together (2 + 2) =4 (my address!)
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Merge Sort using GPU
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Stage 3

Single or small number of tasks
Very large task

HOW TO BREAK THIS UP?

Stage 2

Bunch of tasks

Each task is medium
Task per block

Stage 1

Lots of little merge tasks
Each task is small

Use one per thread



How to Merge BIG Lists




How to Merge BIG Lists
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* Pick “splitter” elements from both large lists
* For example every 256" element




How to Merge BIG Lists
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* Merge these two subsets of elements
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How to Merge BIG Lists
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* Pick the subsets between any two splitters and
divide that work up and send to multiple processors
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Note the number of elements between any
two of these can be no greater than 2x the
splitter size. In our case 2*256 = 512



How to Merge BIG Lists

A B C D E F

LAY R
! i !

* Pick the subsets between any two splitters and
divide that work up and send to multiple processors
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Bitonic Sort

* Sorting Networks
* Example in Class
* Even-Odd Sorting



Sorting Networks

* Oblivious sorting algorithm

— Regardless of input the steps to produce sorted
output is always the same

Each input number is a line / Each join point move smallest number “up”
. 4

\ Example: move 2 up and 4 down.
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Sorting Networks

* Walk thru this example.




Bitonic Sorting

* How to build this network?
— Bitonic sorting is one such method

— Previously in class we saw even-odd sorting,
which could also be adapted to sorting network



What is a bitonic sequence?

* Series which has one inflection point

Are bitonic! Are NOT Bitonic
1,4,6,7,8,2,1,0 1,4,3,7,8,9,7,1
983216 7 8 -1,-2,3,4,5,6,7,8
\/ /

In fact monotonic




Sorting Bitonic Sequence

* Overlay and compare pair-wise

/ > =

* Splitting list into high and low

N N\

* Recurse on both halves to produce sorted list




Sorting Bitonic Sequence Example

* Overlay and compare pair-wise, swapping
lower to the right

Original
15t Split
2 Split

6 4 7
31 Split 1 4 6 7




Bitonic Sort

* Once we have to bitonic sequences we can then
easily sort them using a network

* Note that any pair of numbers is bitonic
— <2,3><5,6><9,2> even<1,1>

* Two bitonic sequences placed in the “opposite”
order will create another bitonic sequence
- <2,3,5,6><5,6,9,2><2,3,9,2><9,2,2,3>



Bitonic Sort

* Two steps:
— Split input into two bitonic sequences
— Sort bitonic sequences



Create 2 Bitonic Sequences

3 Input Bitonic Sort

Sort Bitonic Sequence
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Bitonic Sort

* Note that the lines can be done in parallel

* Implemented in GPU as a series of steps at
each step one thread keeps either the
smallest or largest element, depending on

step.



3 Input Bitonic Sort
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Each block can be done in parallel




Bitonic Sort

* Increase the size by connecting smaller sorting

networks and running the recursive bitonic merge.
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Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...

Decimal | Binary

000
101
010
111
001
011
110
100
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Decimal | Binary m
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Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...

01
11
10
10
11
00
01

I—‘I—‘I—‘I—‘OOOO

Sorting by least significant bit
Maintaining original order
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Radix Sort

Sort by looking at individual bits in the numbers

Start at least significant bit, group maintaining order, move to
second, etc...
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Maintaining order from previous step
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Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...
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Sorting by 3" |east
significant bit

Maintaining order from
previous step



Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...

mmm

O 000 000 |0QO 000 0
5 101 010 (1p0 O0OO1 1
2 010 110 (1p1 O10 2
/7 111 100 [(0p1 O11 3
1 001 101 |010 1060 4
3 011 111 (100 101 5
6 110 001 (101 110 6
4 100 011 |01 111 7




second, etc...

Decimal | Binary m
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Radix Sort

e Sort by looking at individual bits in the numbers
e Start at least significant bit, group maintaining order, move to

01
11

OOO

00
01

111
001
011

What parallel operation have we
seen that can take a group of
numbers and product a subset?

Compact!



Radix Sort

 O(kn)
— Where k is the number of digits
— Recall that compact is O(n log n)

e Currently one of the fastest sorting algorithms on GPUS



