Sorting on GPU

Bryan Mills, PhD

Spring 2017

Merge Sort

1 million Merge two sorted lists at
/\ each stage

500k 500k Start with lists of size 1,
: - implicitly sorted.

2048 2048

NG T

1024 1024 1024 1024
/\ L /\
512 512 512 512
/4\ :
PN
N N e

N
N

N
N

Performance of Merge Sort

A
/n%
500k 500k
/zo& 2048
1024 1024 1024 1024 log n Steps
512 512 512 512
4 4
2/\2 P
2 2
11 1
1 11 d O(n log n)
<« > Vv

N Elements

Merge Sort using GPU

1 million Stage 3
/\ Single or small number of tasks
500k £00k Very large task
2048 2048 Stage 2
/\ /\ Bunch of tasks
1024 1024 1024 1024 Each task is medium
/\ ' ' /\ Task per block
512 512 512 512
21 4 Stage 1
Lots of little merge tasks
2/\2 2/\2 Each task is small
AN N AL N\ Use one per thread

1 11 1 1 11 1

= W | 0|

O d U1 | W | =

O o0 O U

10

Serial Merge

Hard to break up task?
Need one person to look at both lists.

Recall Parallel Compact

Predicate

Exclusive Scan

el 0 | 1 1 2 |2 /33 4
Address in

dense output 1

oo [EHIERIERIER

Demo in class

Parallel Merge

= ERETEIET

Where would each element be in the sorted list?

Parallel Merge
1]3]12/28

= EREOEIES
. .

Assigning each thread an element how could they
determine where to place the element in the final list?

List 1

Parallel Merge

List 1

Addresses

nnn Addresses

Lets look at one single element (12)
e Whereisitinits own list?
e Where would it be in the other list?

Parallel Merge

List 1

Addresses

List 2

Lets look at one single element (12)
e Whereisitinits own list? thread index

* Where would it be in the other list? binary search

Add those together (2 + 2) =4 (my address!)

N

2

N

1024

Merge Sort using GPU

1 million

N

500k

2048

512 512

4

N

1

1

2

N

1

1

1024 1024

500k

2048

N

1024

512 51

2

1

4

2/\
N

1

2

N

1

1

Stage 3

Single or small number of tasks
Very large task

HOW TO BREAK THIS UP?

Stage 2

Bunch of tasks

Each task is medium
Task per block

Stage 1

Lots of little merge tasks
Each task is small

Use one per thread

How to Merge BIG Lists

How to Merge BIG Lists

A B C D E F

G H | J K L

* Pick “splitter” elements from both large lists
* For example every 256" element

How to Merge BIG Lists

A B C

D E

F

it

S

K

* Merge these two subsets of elements

ABGHCIDKELF

A

How to Merge BIG Lists

B C

. - g

AN
1

* Pick the subsets between any two splitters and
divide that work up and send to multiple processors

ABG

HC

|IJDKELF

Note the number of elements between any
two of these can be no greater than 2x the
splitter size. In our case 2*256 = 512

How to Merge BIG Lists

A B C D E F

LAY R
! i !

* Pick the subsets between any two splitters and
divide that work up and send to multiple processors

ABGHCIJDKELF

Bitonic Sort

* Sorting Networks
* Example in Class
* Even-Odd Sorting

Sorting Networks

* Oblivious sorting algorithm

— Regardless of input the steps to produce sorted
output is always the same

Each input number is a line / Each join point move smallest number “up”
. 4

\ Example: move 2 up and 4 down.
4

]

1]
L]

Sorting Networks

* Walk thru this example.

Bitonic Sorting

* How to build this network?
— Bitonic sorting is one such method

— Previously in class we saw even-odd sorting,
which could also be adapted to sorting network

What is a bitonic sequence?

* Series which has one inflection point

Are bitonic! Are NOT Bitonic
1,4,6,7,8,2,1,0 1,4,3,7,8,9,7,1
983216 7 8 -1,-2,3,4,5,6,7,8
\/ /

In fact monotonic

Sorting Bitonic Sequence

* Overlay and compare pair-wise

/ > =

* Splitting list into high and low

N N\

* Recurse on both halves to produce sorted list

Sorting Bitonic Sequence Example

* Overlay and compare pair-wise, swapping
lower to the right

Original
15t Split
2 Split

6 4 7
31 Split 1 4 6 7

Bitonic Sort

* Once we have to bitonic sequences we can then
easily sort them using a network

* Note that any pair of numbers is bitonic
— <2,3><5,6><9,2> even<1,1>

* Two bitonic sequences placed in the “opposite”
order will create another bitonic sequence
- <2,3,5,6><5,6,9,2><2,3,9,2><9,2,2,3>

Bitonic Sort

* Two steps:
— Split input into two bitonic sequences
— Sort bitonic sequences

Create 2 Bitonic Sequences

3 Input Bitonic Sort

Sort Bitonic Sequence

|
[]
]
|

Bitonic Sort

* Note that the lines can be done in parallel

* Implemented in GPU as a series of steps at
each step one thread keeps either the
smallest or largest element, depending on

step.

3 Input Bitonic Sort

A

[—— Pl Pl Pl
@ [

|
L]
|

Each block can be done in parallel

Bitonic Sort

* Increase the size by connecting smaller sorting

networks and running the recursive bitonic merge.

8 S pe—— T
LE]\ 'II‘I —
rq‘ —— T
. - ; —
F‘:I‘ — 1 C T
. o —
rrjx —— T
. - —

Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...

Decimal | Binary

000
101
010
111
001
011
110
100

S OO W R NN O

Decimal | Binary m

S~ OO WP NN O O

10
01
11
00
01
11
10

OOHI—\HOHO

Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...

01
11
10
10
11
00
01

I—‘I—‘I—‘I—‘OOOO

Sorting by least significant bit
Maintaining original order

A OO W R NN U O

000
101
010
111
001
011
110
100

Radix Sort

Sort by looking at individual bits in the numbers

Start at least significant bit, group maintaining order, move to
second, etc...

; 3
Decimal | Binary | 1° Pass _| 2" Pass [N IINIRSI

()]

O O P P Kk kB O

- O B O O »r » O

R = = O O O O

000
100
101
001
010
110
111
011

Maintaining order from previous step

mmm

S~ OO W R NN 1 O

000
101
010
111
001
011
110
100

Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...

000
010
110
100
101
111
001
011

00
1
1
0
0
1
1
0

00
01
01
10
10
11
11

000
001
010
011
100
101
110
111

Sorting by 3" |east
significant bit

Maintaining order from
previous step

Radix Sort

e Sort by looking at individual bits in the numbers

e Start at least significant bit, group maintaining order, move to
second, etc...

mmm

O 000 000 |0QO 000 0
5 101 010 (1p0 O0OO1 1
2 010 110 (1p1 O10 2
/7 111 100 [(0p1 O11 3
1 001 101 |010 1060 4
3 011 111 (100 101 5
6 110 001 (101 110 6
4 100 011 |01 111 7

second, etc...

Decimal | Binary m

S~ OO WP NN O O

10
01
11
00
01
11
10

00
1
0
1
1
1
0
0

Radix Sort

e Sort by looking at individual bits in the numbers
e Start at least significant bit, group maintaining order, move to

01
11

OOO

00
01

111
001
011

What parallel operation have we
seen that can take a group of
numbers and product a subset?

Compact!

Radix Sort

 O(kn)
— Where k is the number of digits
— Recall that compact is O(n log n)

e Currently one of the fastest sorting algorithms on GPUS

