GPU Algorithms

Scan, compact and sparse matrixes

Bryan Mills, PhD

GPU Algorithms

Reduction

Scan (covered in more details earlier)

— Hillis/Steele
— Blelloch

Compact
— Using Sparse Matrixes

Sorting — Next Class

Scan

* Prefix Sum Example

Ul 1 2 34 5. 6.7 8
Sl 1 3 610 15212836

Types of Scan
M 1 2 34 5/6]7 8

e Exclusive
— Output all elements excluding the current

Sl 0 1 361015 2128

* |Inclusive

— Output all elements including the current

Sl 1 3 610 15212836

Hillis/Steele Inclusive Scan

RIS NN
P

\%l\l
XN 1 3 | 6 1015 2128 36

You nhow have the inclusive scan.

Step 1

Steps = O(log n)
Work = O(n log n) <- dimensions of rectangle above

Blelloch Exclusive Scan

* Happens in two passes:

— Reduce

* Like previous reduce steps but keep around
intermediate results

— Down sweep

* New operation

Blelloch Down Sweep Operation

* Reverse reduce step
— Same inputs (left and right)

— But two outputs also left and right

 Add L+R and put on right
e Copy down R and put it on left

Down Sweep 1 n
oomser [EMEMIEN

Blelloch Exclusive Scan

* # Steps?

— 2 log n = O(log n)
* Work?

— O(n)

Work Efficient or Step Efficient?

* Depends on the amount of work and amount
of workers/processors.

> Work
< Processors

What Work Efficient

< Work

What Step Efficient
> Processors

What Work Efficient

> Work
< Processors

Compact

* Many times you have lots of data and you only
want to perform some computation on a
subset of that data.

— Logs analysis: only look at logs containing a
certain search term or type of search term

— Graphics: only perform ray tracing on elements in
the viewport

— Big Data: Calculate histogram of incomes for
everyone with a dog

What is compact

* Given some predicate function remove those
elements which return false and “squeeze”
the data into the required space.

v EEEREAENETERT
colll
oo ENIERMIERER

Parallel Compact

e Just have each thread evaluate predicate and
copy only on true.

Predicate
Dense Output nn

Sparse is easy in parallel,
how do we get dense output
in parallel?

Parallel Compact

e Just have each thread evaluate predicate and
copy only on true.

Predicate
Dense Output nn

Sparse is easy in parallel,
how do we get dense output
in parallel?

Parallel Compact

Predicate

Look at the desired address
locations in the dense output
for each for each element in
the sparse output

Address in
— s

Parallel Compact

Predicate

Exclusive Scan

el 0 | 1 1 2 |2 /33 4
Address in

dense output 1

oo [EHIERIERIER

To get addresses for dense
output runa SCAN !'|

Parallel Compact Steps

1. Run Predicate
2. Create a scan-in array
—True =1
— False =0
3. Run exclusive scan over scan-in array

— QOutput is the scatter addresses for input

4. Scatter the input into output addresses

Sparse Matrix

e Often matrixes are full of zeros, we want a
way to squeeze out the zeros.

— Example: Page Rank

All the webpages in the world
Y

Assume each entry is the
number of times page X
references page Y

All the webpages in the world

way to squeeze out the zeros.

Sparse Matrix

e Often matrixes are full of zeros, we want a

— Example: Page Rank

All the webpages in the world

All the webpages in the world

Y

‘>
olo/lolololOJo0o|] O] 6
olololololO|0o|O0]O
ololololol/5/l0/010
ololololol 00l 0O
ololol2lo0ol0]0l 00
olololololOoO|lo0oloO0]O

Each page references few
other pages, therefore lots
of zeros.

Sparse Matrix Representation

e Compressed Sparse Row (CSR) Format

a 0 b Represent a matrix using three vectors
C d e * Row = Simply all non-zero elements
0 0 : written in order they appear in

— — matrix Left to Right Top to Bottom

 Column = For each element in row
Row abcdef indicate which column the element
appears in the original matrix
* Row Pointer = Indicate where each
Row Pointer 0 2 5 row starts in the row vector

Column 020122

Sparse Matrix Vector Multiplication

Row
Column

Row Pointer

0 b
d e
0 f

abcdef
02012 2
0 25

1.

ax + Ox + by

cy +dy + ez

| Ox+0y+fz_|

Create Segmented Scan

[ab|cde | f]

Gather from vector using column
[xzxVyzz]

Map vectors in (1) and (2) using product
[ax bz cx dy ez fz]

Perform segmented scan

[ax +bz cx + dy + ez fz]

