GPU Programming
with CUDA (optimizing)

Bryan Mills, PhD

Spring 2017

Parallel Reduction

e Common and important data parallel
primitive

e Easy to implement in CUDA
— Harder to get it right

e Serves as a great optimization example

— We'll walk step by step through 7 different
versions

— Demonstrates several important optimization
strategies

Parallel Reduction

 Tree-based approach used within each thread block

* Need to be able to use multiple thread blocks
— To process very large arrays
— To keep all multiprocessors on the GPU busy
— Each thread block reduces a portion of the array

 But how do we communicate partial results between
thread blocks?

Global Sync?

If we could synchronize across all thread blocks, could
easily reduce very large arrays, right?

— Global sync after each block produces its result

— Once all blocks reach sync, continue recursively

But CUDA has no global synchronization. Why?

— Expensive to build in hardware for GPUs with high processor
count

— Would force programmer to run fewer blocks (no more than #
multiprocessors * # resident blocks / multiprocessor) to avoid
deadlock, which may reduce overall efficiency

Solution: decompose into multiple kernels
— Kernel launch serves as a global synchronization point
— Kernel launch has negligible HW overhead, low SW overhead

Kernel Decomposition

* Avoid global sync by decomposing computation into
multiple kernel invocations

8 bIocks

949 Level 1:
1 block
* |In the case of reductions, code for all levels is the
same

— Recursive kernel invocation

Interleaved Addresses

__global void reduce(int *g_idata, int *g odata) ({

extern _ shared int sdatal];
// each thread loads 1 element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g idata[i];
__syncthreads();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g odata[blockIdx.x] = sdata[O0];

In

terleaved Addresses

-3

1

0 | 2

10|18 (-110|-2|]3]|]5]-1 2|17]|0]1
11|17 |-1(-2}-2|8)|5|-5 917 111

-3 1] 2 2
18 1 7 1 6 2 8 5 4 | -3 9 13 (11| 2 2
@
24 | 1 7 1 6 2 8 5 |17 3 9 13 (11| 2 2
@
41 | 1 7 1 6 2 8 5 4 3 9 13 (11| 2 2

Interleaved Addresses

__global _ void reduce(int *g idata, int *g_odata) {
extern _ shared int sdatal];
// each thread loads 1 element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g idata[i];
__syncthreads();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid & (2*s) == 0) {

sdata[tid] += sdata[tid + s]; Problem: Highly
} Divergent
__syncthreads(); Branching

}

// write result for this block to global mem
if (tid == 0) g odata[blockIdx.x] = sdata[O0];

Warps

* Once a block is assigned to an SM, it is divided
into units called warps.

— Thread IDs within a warp are consecutive and
Increasing

— Warp O starts with Thread ID 0
 Warp size is implementation specific.
 Warp is unit of thread scheduling in SMs

Warp Example

 Assume warp size of 4 in the example.

Warp 0 Warp 1 Warp 2 Warp 3

\ \ \ \

1

|

1018-_10-235T-1-_327T0102
@ @ @ & & & & &-
111117 |-1|-21]|]-2| 8| 5 |-5 9 |\ 7 111111} 2 | 2

-3

1

Warps

e Partitioning is always the same

e DO NOT rely on any execution ordering
between warps

e Each warp is executed in a SIMD fashion (i.e.
all threads within a warp must execute the
same instruction at any given time).
— Problem: branch divergence

(0p]
|
=

O 00 N o uu Ao W N P, O

e e = U SN T
au b W N L, O

N N N N N N N N N N N DN N DN DNMDN

True
False
True
False
True
False
True
False
True
False
True
False
True
False
True

False

Warp Example

Warp 0 Warp 1 Warp 2 Warp 3
J l L I

0 1 8 -1 0 -2 3 ST-]. -_3 2 7 0 1 0 2
o O O B B dd B

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid & (2*s) == 0) {
sdata[tid] += sdata[tid + s];

}

__syncthreads();

Each warp has to execute two
conditions.

See that each warp must have both

because the conditional is true &
false in each warp.

Branch Divergence in Warps

* When threads
branch this causes
warps to be
branched, all
threads still execute
but some do
nothing.

Branch

o

RRRRRRY
ERRRRRY

Path A

Path B

PR
ool

ERRRRRY

50% reduction in performance

Fixing Branch Divergence

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];
}

__syncthreads();

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads();

wn
"
=

O 00 N o uu Ao W N P, O

e e = U SN T
au b W N L, O

N N N N N NN N N N N N DN N DN DNDDN

co o ~ N O

10
12
14
16
18
20
22
24
26
28
30

Branch Divergence

True
True
True
True
True
True
True
True
False
False
False
False
False
False
False

False

10| 1 8 -1 0| -2
CHEDEDN
11| 1 7 |-11|-2]|-2

for(unsigned int s=1; s < blockDim.x; s *= 2) {
2 * s * tid;

int index =

if (index < blockDim.x) {

sdata[index] += sdata[index + s];

}

__syncthreads();

e By shifting work to other threads we can
‘group’ conditional checks together.

e Allowing warps to not contain branching

conditionals

e All threads in warp can not execute same

instruction.

wn
i
N

O 00 N o uu Ao W N P, O

e e = U SN T
au b W N L, O

e i I e . T ~ S S S S S S R~ T ~ TR N

12
16
20
24
28
32
36
40
44
48
52
56
60

Branch Divergence

True
True
True
True
False
False
False
False
False
False
False
False
False
False
False

False

11 1 | 7 | -1 |-2]-2]| 8 | ees

o
=

11,17 (-1|-2|-2| 8 |°*°

for (unsigned int s=1; s < blockDim.x; s *= 2)
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads();

Fixing Branch Divergence

10| 1

8

-1

0

-2

3

5

-1

-3

2

7

0

11

0

2

ODDODOE N"dmdrawhere
VN SNT— .
11| 1 7 1] -2 -2 8 5 -51-3 9 7 11111} 2 2
0 1 2 3
_>

18| 1 7 -1 6 -2 8 5 4 | -3 9 7 13111 2 2
Vv '
< 0 > 1

>
24 | 1 7 -1 6 -2 8 5117 | -3 9 7 13111 2 2
41 | 1 7 -1 6 -2 8 5 4 | -3 9 7 13111 2 2

Fixing Branch Divergence

10| 1

8

-1

0

-2

3

5

-1

-3

2

7

0

11

0

2

R N
VN SN~ N
1117 |(-1,-2|-2|8|5|-5(-3[9 |7 |11|11| 2 | 2
0 1 2 3
_>

18(1|7 |-1|16|-2|18|5|4|-3(9]|713|11]| 2| 2
vy '
0 1

Divergence Doesn’t start until here

>

241 1|7 1|-1|6|-2|8|51|17|-3|]9 |7 (13|11 2| 2
41117 |-1|6|-2|8 |54 |-3|/9]|7|13[|11] 2 | 2

Shared Memory

* Parallel Memory Architecture
— Memory is divided into banks

* Each bank can service one address per cycle

— Each bank can be accessed simultaneously

e Multiple simultaneous accesses to the same
bank result in a bank conflict.

— Conflicts = Serialized Access

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Sequential Addressing

Values (shared memory)

Thread
IDs

Values

Thread
IDs

Values

10 | 1

-1

11

Thread 7

IDs
Values

Thread
IDs

Values

21|20 (13 | 13 2 | -3 11
41|20 (13 | 13 2 | -3 11

Sequential Addressing

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads();

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}

_syncthreads();

Idle Threads

Problem:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}

_syncthreads();

}

Half of threads are idle on first iteration!

Do Add During Load

// each thread loads 1 element from global

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g_idata[i];

_syncthreads () ;

// perform first level of reduction,

int tid = threadlIdx.x;

unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
sdata[tid] = g _idata[i] + g_idata[it+blockDim.x];
__syncthreads();

