

Homework #9
Due: ​April 9, 2018 ​April 11, 2018

CS 1645/2045
Spring 2017

We have discussed the use of a scan pattern to parallel code that has a loop carried
dependency. Such as the following.

 out[0] = in[0];

 for (int i = 1; i < n; i++)

 out[i] = out[i-1] + in[i];

The code above implements what is called a prefix sum, the input is an array ​in​ and the output
is the array ​out​, where element ​i​ of ​out​ will contain the summation of all the numbers ​in[0]
thru ​in[i]​. If the operator in the loop is associative (in this case it is) then a scan pattern can
be applied to parallelize the above loop.

A scan pattern takes a one-dimensional array as input and produces a one-dimensional array of
the same size as its output. Every element of the output array is a reduction of all the elements
of the input array up to the position of that output element. One way to parallelize a scan is to
form a reduction tree for every output element, then merge the redundant elements of all those
trees. This is known as Hillis & Steele algorithm and was presented during class on the lecture
for parallel scan.

Hillis/Steele parallel implementation of prefix sum.

This algorithm performs the operation on the order of O(n log n), each row executes the
operation O(n) times and there are O(log n) steps. Pseudocode for such an implication would
look like this:

for d = 1 to log​
2​ n do

 for all k in parallel do

 if k >= 2​d​ then
 x[k] = x[k – 2​d-1​] + x[k]

This algorithm also assumes you have as many processors as elements in the array. This isn’t
the case even in GPUs, since it is very likely that one would have very large arrays far
exceeding the number of cores available. Even if we limit the array size to 1024 elements the
GPU will divide the work up into warps, which will execute in any order the GPU scheduler sees
fit.

To solve this problem one uses a double buffered array, which assumes that each row reads
from one array but writes to the other. Then the next iteration will read from the previous write
point and overwrite the previous read point since it’s no longer needed. Pseudocode for such an
implication would look like this:
for d = 1 to log​

2​ n do

 // Flip in/out around.

 for all k in parallel do

 if k >= 2​d​ then
 x[out][k] = x[in][k – 2​d-1​] + x[in][k]
 else

 x[out] = x[in][k]

This implementation will only work for the maximum number of threads allowed within a single
thread block (1024 on our implementation). If you try to increase the number of threads beyond
1024 the GPU will chunk up the runs and destroy your algorithm.

Part 1:​ Implement this simple scan using the double buffered array described above, assume
that the array is always exactly 1024 elements. This assumption is baked into the skeleton
code, implement your code in ​par_scan ​kernel function.

Part 2: ​Verify that your function works for any size array upto 1024. What happens if you
exceed 1024? Try it out! Describe what happens, why?

Part 3:​ Using ​par_scan​ as a building block propose a solution for parallelizing arbitrarily large
arrays. Write the Pseudocode for this proposed solution. In the next homework we will have to
implement this algorithm.

Assignment

Implement part 1 in prefix_sum.cu, which already contains the skeleton code for this
implementation. I’ve also provided a serial implementation for easy testing.

Provide answers for parts 1 and 2 in the README.txt file.

All source code can be found here:
https://github.com/bryanmills/hpc-course-2017/tree/master/hw9

To debug and write code in interactive mode do the following.

1. Start an interactive session on a compute node:
srun --partition=gpu --gres=gpu:k80:4 --pty --nodes=1

--ntasks-per-node=24 -t 00:30:00 --wait=0 --export=ALL /bin/bash

2. Load the cuda kernel module:
module load cuda

3. Compile your program:
nvcc -o prefix_sum prefix_sum.cu

4. Execute your program:
./prefix_sum

Your program must compile and execute cleanly on comet, we will use the following steps to
grade and verify your assignment.

1. Load the cuda kernel module:
module load cuda

2. Compile the program:
make

a. Note this is just running nvcc on your cu file.
3. Submit your job in batch mode:

sbatch submit.batch

Hint

This assignment was roughly derived from here:
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html
I give you this because a simple search would reveal this link. However, be careful copying this
code, it’s full bugs, uses parts of CUDA we’ve not covered, and implements the more complex
Blelloch algorithm. So, if you want to dive deep on this go for it but you might be better suited to
just implement the algorithm.

https://github.com/bryanmills/hpc-course-2017/tree/master/hw9
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

