

Homework #8
Due: Monday, April 2, 2018

CS 1645/2045
Spring 2018

Skeleton code for this problem can be found here:
https://github.com/bryanmills/hpc-course-2017/tree/master/hw8

You need to modify particles.c to contain your implementation of the parallel algorithm
described below. I’ve provided you with a serial implementation and skeleton code for the
parallel implementation.

You are required to write a report (several pages) comparing this algorithm with various sized
problems and cluster sizes. Write this as if you are submitting it as a workshop paper. Submit
your report along with your code as a PDF.

Since this homework requires large-scale data, you need to start the assignment early. Large
jobs may spend up to 24 hours in the scheduler’s queue before running. Therefore, it is crucial
to finish the coding and debugging days before the deadline, so you allow enough time for the
runs to complete.

Be responsible in using the common pool of service units in our allocation. In particular, do not
submit a job for more than 5 minutes if you are using more than 256 cores.

Consider using interactive job submissions for developing and debugging your code:
srun --partition=debug --pty --nodes=1 --ntasks-per-node=24 \

 -t 00:30:00 --wait=0 --export=ALL /bin/bash

To gather the experimental results, in particular the large-scale data, modify and use the
provided example batch scripts:
sbatch submit_mpi.batch

This homework will be worth double the points of previous homework (total: 40 points), it
will be graded roughly 50% code correctness and 50% report.

https://github.com/bryanmills/hpc-course-2017/tree/master/hw8

Particle Interaction

A very common problem in scientific simulations is to solve a n-body problem. Such problem
involves a system of particles interacting with each other via ​van der Waals​ forces, using a
simplified model, in a 2D world. The calculation for the force f between particles hx1, y1i and
hx2, y2i is given by the following formulas:

where A and B are constants.

There will be an odd number of processors. Each processor will own a subset of the total
particles. Each particle has a <x, y> position, mass, and force associated with it. The MPI
program calculates the force on each particle. The processors will be arranged in a ring such
that it will only receive messages from the previous processor and send to the next processor
(with the exception of the last step). The particles are initialized with random locations and
forces unless those values are contained in a provided text file.

If an input file is provided, rank 0 will be the only one reading the particle information. You must
use collective communication operations to distribute the particles among the processors.
Similarly, after the simulation is finished, rank 0 will collect all particles and output their
information. Again, collective communication operations must be used to collect particles.

The simulation algorithm is composed of the following steps:

1. Each processor sends its particles to the next processor (location, mass, and running
total of forces so far).

2. Upon receiving a set of particles, a processor calculates the resulting forces from the
local particles to the remote particles. You must call function compute interaction with
locals and remotes (in that order).

3. Each processor updates total force on local particles and remote particles.
4. Each processor sends the remote particles, along with the calculated forces, to the next

processor.
5. Repeat previous steps for (p − 1)/2 stages.
6. Each processor sends remote particles back to their original processor.
7. Each processor calculates the forces resulting from its own particles. You must call

functions merge and then compute self interaction (in that order).
8. Each processor finishes execution.

Figure 1 presents an overview of the algorithm. The system contains 5 processors in this case
and each processor is represented by a circle with a distinctive color. Messages carrying
particles are rectangles with a vertical line representing the particles being transferred in a
message. Horizontal lines in a message represent the effect of other particles whose effect has

been calculated. For instance, the message in Figure 1 going from the red to the green
processor is carrying the purple particles and has collected the effect of interacting with the red
particles.

Figure 1: Overview of parallel algorithm for n-body problem.

The format of messages requires the following information for each particle to be passed:

● Location: x and y.
● Running sum of forces in x and y
● Mass.

The program should take at least one command line parameter:
./particles N [<filename>]

where N is the number of particles. The program should divide N as evenly as possible among
the total number of processors.

Report

You should create a report with the following sections, at least ~2-3 pages with tables:
1. A general strategy of the parallelization effort. Why did you choose those MPI operations

to parallelize the program?
2. A speedup analysis. Using an interesting value of N, the number of particles, report the

speedup for a number of cores ranging from {63,127,255,511,1023}. Repeat each
experiment at least 3 times and report the average value.

3. An efficiency analysis. Using an interesting values of N, number of particles, report the
efficiency for a number of cores ranging from {63,127,255,511,1023}.Repeat each
experiment at least 3 times and report the average value.

4. A description of the performance bottlenecks. What is preventing the program from
getting higher speedup?

Submit all code and report via dropbox, note the report should be typed up!

