
TECHNIQUES FOR APPLICATION-AWARE

SUITABILITY ANALYSIS OF ACCESS CONTROL

SYSTEMS

by

William C. Garrison III

B.Sc. in Computer Science, Clarkson University, 2009

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

William C. Garrison III

It was defended on

November 13, 2015

and approved by

Adam J. Lee, Associate Professor, University of Pittsburgh

Panos K. Chrysanthis, Professor, University of Pittsburgh

Taieb Znati, Professor, University of Pittsburgh

Lenore Zuck, Associate Professor, University of Illinois at Chicago

Dissertation Director: Adam J. Lee, Associate Professor, University of Pittsburgh

ii

Copyright c© by William C. Garrison III

2015

iii

TECHNIQUES FOR APPLICATION-AWARE SUITABILITY ANALYSIS OF

ACCESS CONTROL SYSTEMS

William C. Garrison III, PhD

University of Pittsburgh, 2015

Access control, the process of selectively restricting access to a set of resources, is so funda-

mental to computer security that it has been called the field’s traditional center of gravity. As

such, a wide variety of systems have been proposed for representing, managing, and enforcing

access control policies. Prior work on evaluating access control systems has primarily relied

on relative expressiveness analysis, which proves that one system has greater capabilities than

another. Although expressiveness is a meaningful basis for comparing access control systems,

it does not consider the application in which the system will be deployed. Furthermore,

expressiveness is not necessarily a useful way to rank systems; if two systems are expressive

enough for a given application, little benefit is derived from choosing the one that has greater

expressiveness. On the contrary, many of the concerns that arise when choosing an access

control system can be negatively impacted by additional expressiveness: a system that is too

complex is often harder to specify policies in, less efficient, or harder to reason about from

the perspective of security guarantees.

To address these shortcomings, we propose the access control suitability analysis problem,

and present a series of techniques for solving it. Suitability analysis evaluates access control

systems against the specific demands of the application within which they will be used,

and considers a wide range of both expressiveness and ordered cost metrics. To conduct

suitability analysis, we present a two-phase framework consisting of formal reductions for

proving qualitative suitability and simulation techniques for evaluating quantitative suitability.

In support of this framework we present a fine-grained lattice of reduction properties, as

iv

well as Portuno, a flexible simulation engine for conducting cost analysis of access control

systems. We evaluate our framework formally, by proving that it satisfies a series of technical

requirements, and practically, by presenting several case studies demonstrating its use in

conducting analysis in realistic scenarios.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

2.0 BACKGROUND AND RELATED WORK 11

2.1 Modeling access control . 11

2.2 Access control analysis . 13

3.0 THE NEED TO MOVE BEYOND EXPRESSIVENESS 21

3.1 Introduction . 21

3.2 Motivating Scenarios . 23

3.3 Analysis Workflow Overview . 26

3.4 Key Challenges . 27

3.4.1 Workloads and Application-Aware Expressiveness Analysis 28

3.4.2 Conducting Cost Analysis . 30

3.4.3 Application-Aware Expressiveness Metrics 31

3.4.4 Wider Security Applications . 32

3.5 Summary . 32

4.0 INSTANTIATING SUITABILITY ANALYSIS 34

4.1 Introduction . 34

4.2 The Suitability Analysis Problem . 36

4.3 Phase 1: Expressiveness Analysis . 39

4.4 Phase 2: Cost Analysis . 42

4.4.1 Trace Generation . 42

4.4.2 Calculating the Costs of Traces . 47

4.4.3 Simulation Procedure . 49

vi

4.5 Case Study . 52

4.5.1 Workload and Candidate Systems 52

4.5.2 Qualitative Analysis . 58

4.5.3 Quantitative Analysis . 75

4.5.4 Summary of Findings . 79

4.6 Requirements, Redux . 80

4.7 Summary . 81

5.0 Portuno: AN ACTOR-BASED SIMULATOR FOR ACCESS CON-

TROL SUITABILITY ANALYSIS . 82

5.1 Introduction . 82

5.2 Simulating for Cost Analysis . 83

5.2.1 Solution Requirements . 84

5.2.2 Key Processes . 85

5.2.3 Simulator Design . 85

5.3 Trace Generation . 99

5.3.1 Summary . 103

5.4 Calculating Cost of Traces . 104

5.4.1 Cost Functions . 105

5.5 Drivers for ACCostEvalMC . 109

5.6 Case Study . 112

5.6.1 Workloads Operational Component 112

5.6.2 Cost Analysis . 115

5.7 Summary . 119

6.0 CASE STUDY: DISSEMINATION-CENTRIC SYSTEMS FOR

GROUP-CENTRIC SHARING . 120

6.1 Introduction . 121

6.2 The g-SIS Models . 123

6.3 Instantiations of g-SIS . 125

6.3.1 The g-SIS0 Model . 125

6.3.2 Extrema Systems . 128

vii

6.3.3 Workloads . 130

6.4 Expressiveness Analysis . 132

6.4.1 Security Guarantees . 133

6.4.2 Dissemination-Centric Systems . 134

6.4.3 Expressiveness via System Reductions 134

6.4.4 Expressiveness via Implementations 145

6.4.5 Summary of Results . 147

6.5 Cost Analysis . 147

6.5.1 Cost Measures . 149

6.5.2 Selected Results . 150

6.6 Discussion and Future Work . 154

6.6.1 Dissemination-centric vs. Group-centric 154

6.6.2 In Support of Suitability . 156

6.6.3 Towards an Expressiveness Taxonomy 156

6.7 Summary . 157

7.0 BEYOND POINT STATES: UNDERSTANDING THE COSTS OF

DYNAMIC CRYPTOGRAPHIC ACCESS CONTROL IN THE

CLOUD . 158

7.1 Introduction . 159

7.2 Background . 162

7.3 Threat Models and Assumptions . 164

7.3.1 System and Threat Models . 164

7.3.2 Cryptographic Primitives . 166

7.4 Implementation . 168

7.4.1 A Strawman Construction . 168

7.4.2 Design Considerations . 170

7.4.3 Detailed IBE/IBS Construction . 173

7.4.3.1 Overview and Preliminaries 173

7.4.3.2 Full Construction . 176

7.4.4 PKI Construction Overview . 177

viii

7.5 Analysis . 177

7.5.1 Qualitative Analysis . 177

7.5.2 Algebraic Costs . 178

7.5.3 Experimental Setup . 178

7.5.4 Experimental Results . 181

7.6 Discussion . 183

7.6.1 Alternate Threat Models . 184

7.6.2 Future Directions . 185

7.6.3 Lessons Learned for More Expressive Systems 186

7.7 Summary . 188

8.0 DECOMPOSING, COMPARING, AND SYNTHESIZING ACCESS

CONTROL EXPRESSIVENESS SIMULATIONS 190

8.1 Introduction . 191

8.2 Motivating Examples . 192

8.3 Implementable Expressiveness Reductions 194

8.3.1 Implementability Requirements . 194

8.3.2 Expressiveness Mappings . 195

8.4 Expressiveness Reduction Properties . 197

8.4.1 Overview of dimensions of properties 197

8.4.2 State correspondence properties . 199

8.4.3 Command mapping properties . 201

8.4.4 Query decider properties . 206

8.4.5 Reachability . 209

8.5 Positioning Existing Reductions . 210

8.5.1 Expressiveness using Reduction Properties 210

8.5.2 Decomposing Expressiveness Reductions to Properties 211

8.5.3 Example Decomposition . 212

8.5.4 Results . 216

8.6 Selecting New Sets of Properties . 219

8.6.1 Interactions Between Dimensions 219

ix

8.6.2 Interpreting the Dimensions . 220

8.6.3 Studying Canonical Usages . 224

8.7 Summary and Future Work . 226

9.0 CASE STUDY: THE OTHER STATE-MATCHING REDUCTIONS 227

9.1 Introduction . 227

9.2 The State-Matching Reduction . 231

9.3 Variants of the State-Matching Reduction 233

9.4 Preserving Compositional Security Properties 235

9.5 Overview of Reduction Findings . 241

9.6 Expressiveness Results Using Variants of the State-Matching Reduction . 243

9.7 Summary and Discussion of Results . 246

10.0 CONCLUSIONS . 249

10.1 Contributions . 249

10.2 Future Work . 252

APPENDIX A. INFEASIBLE REDUCTION 254

APPENDIX B. DECOMPOSITION PROOFS 256

B.1 TL State-Matching Reduction . 256

B.2 HMG+ Parameterized Expressiveness Simulation 259

B.3 AC-Preserving HMG+ Parameterized Expressiveness 261

B.4 Monotonic HMG+ Parameterized Expressiveness 262

B.5 Admin-Preserving HMG+ Parameterized Expressiveness 264

B.6 SMG Simulation . 265

B.7 Ganta Simulation . 267

B.8 CDM Weak Simulation . 270

B.9 CDM Strong Simulation . 273

BIBLIOGRAPHY . 276

x

LIST OF TABLES

1 Algebraic costs of RBAC operations using IBE 179

2 Overview of datasets . 182

3 Decompositions of the state-matching reduction and its variants 234

xi

LIST OF FIGURES

1 Workflow of an application-aware suitability analysis framework for access control 26

2 Overview of an application-aware analysis framework for access control 37

3 Example invocational structures . 46

4 An example role hierarchy implementing the PC workload in RBAC1 61

5 Program Committee invocation: Author actor machines 75

6 Program Committee invocation: Reviewer actor machines 76

7 Program Committee invocation: Chair actor machines 76

8 Program Committee invocation: Workflows 77

9 Conference workload cost analysis results using ACCostEvalSim and 200 runs 78

10 Overview of the architecture of our suitability analysis simulator 86

11 A summary of the Portuno components discussed thus far 103

12 Example accesses in a single group in g-SIS 124

13 Expressiveness analysis results . 135

14 An example role hierarchy implementing top g-SIS in RBAC1 142

15 An example role hierarchy implementing bottom g-SIS in RBAC1 143

16 An example role hierarchy implementing the PSP workload in RBAC1 146

17 Program Committee actor machines . 148

18 Playstation Plus actor machines . 149

19 Extrema system actor machines . 150

20 Group-centric cost analysis results, PlayStation Plus 151

21 Group-centric cost analysis results, rgSIS and bgSIS 152

22 Group-centric cost analysis results, Program Committee 153

xii

23 System Diagram . 165

24 Implementation of RBAC0 using IBE/IBS . 174

25 Implementation of RBAC0 using PKI . 175

26 Administrative mix of actions . 180

27 Results . 181

28 The general form of an implementable expressiveness mapping. 196

29 An overview of the dimensions of expressiveness reduction properties 198

30 A graphical representation of semantic lock-step 204

31 Results of decomposing notions of access control reduction from the literature 213

32 Lattice of state correspondence, command dependence, and query dependence

with positioned surveyed reductions . 217

33 Partial lattice of canonical usage . 225

xiii

LIST OF ALGORITHMS

1 ACCostEvalSim: A simulation procedure for application-aware cost analysis of

access control . 50

2 ACCostEvalMC: A Monte Carlo driver for ACCostEvalSim 109

3 ACCostEvalCI: A confidence-bounding driver for ACCostEvalSim 110

xiv

1.0 INTRODUCTION

Access control, the process of selectively restricting access to a set of resources, is one of

the most fundamental aspects of computer security. In essence, an access control system

consists of a policy describing which active entities, or subjects, can access which resources,

or objects, and in which ways (i.e., using which rights). This policy is then enforced by a

trusted reference monitor. Physical access control systems have existed throughout history.

Gates have been guarded by humans playing reference monitor, and later lock/key systems

delegated this authority to a trusted mechanism. The development of digital equivalents to

these physical systems has been of great concern since the advent of timesharing. Access

control has been called the traditional center of gravity of computer security [5], due to the

reliance that most other security mechanisms have on the basic premise of restricting access

to various resources.

As such a longstanding, important area in computer security, a wide variety of systems

have been proposed for representing, managing, and enforcing access control policies (e.g., [9,

10, 13,22,23,36,39,57,58, 67,101–104]). A class of systems that have grown to epitomize the

field utilize an access matrix (see, e.g., [57]), a large table with a row for each subject and a

column for each object. Cell 〈s, o〉 in this table is populated with the rights that subject s

can employ in accessing o. In practice, each object o can be stored alongside its column from

the access matrix (i.e., its access control list), possibly using a sparse representation where

appropriate. Alternatively, each subject s can manage a (tamper-proof) copy of its row from

the matrix (i.e., its capability list). This introduces a trade-off in efficiency: both options are

able to efficiently answer single requests (e.g., should subject s be granted right r to object

o?), but for bulk queries (e.g., what subjects can access object o?), their behavior is quite

different, since access control lists are indexed by object, and capability lists are indexed by

1

subject. In addition, since a subject manages their own capability list, revocation in these

environments becomes non-trivial [21].

Further developments in access control models incorporated various features to enable a

wider range of policy management techniques. The Bell–LaPadula model [9, 10] enables a

form of mandatory access control, where subjects are assigned clearances, and no subject

can be granted access to information classified higher than their own clearance. Role-based

access control [36,103,104] introduces a level of indirection in the policy between subjects

and objects. Roles are sets of permissions that are commonly assigned together to users

with a particular job description, allowing them to be assigned and revoked as a unit. Trust

management [13,67] introduced the concept of delegating trust, allowing the expression of

access conditions such as, “allow access to object o only for subjects that authority a grants

credential c.” Attribute-based access control [68,99,116,118] assigns permissions based on

attributes assigned to subjects and objects. Relationship-based access control [22, 23, 39]

allows subjects in a social networking environment to specify permissions based on their

relationships to the requesting subjects. This is hardly an expansive list of access control

models and systems, but even this small sample demonstrates the wide range of techniques

for representing and managing policies.

As we have noted, even the decision between access control lists and capability lists

carries practical consequences in terms of the costs of various operations. It stands to reason

that this issue is exacerbated when considering the completely unwieldy decision between the

dozens of different access control models proposed in the literature. Besides the efficiency of

operations, which access control system should be used in a particular scenario may depend

on the ease of proving a policy’s correctness, the effort required to specify the policy, and the

flexibility the system has in adjusting when the policy must evolve. When considering this

wide range of issues, and the full range of access control options available, it becomes clear

that the act of choosing which access control system to use in a given scenario is impossible

without analysis techniques to evaluate them.

This need arises in a number of situations. First, consider the task of deploying a system

(software and/or hardware) that requires an access control solution. We refer to such a

system as an access control application. An access control application can range from a

2

family’s personal computer that requires separation of parents’ files from their children’s, to

a company network housing millions of resources distributed between thousands of servers

accessible by tens of thousands of employees and millions of customers. Choosing an access

control system can be a decision made at deployment time (e.g., “which software package

should I install?”) or development time (e.g., “which access control model should I use in this

program?”). Furthermore, it is common for an application’s needs to evolve over time, and

thus administrators of an access control application are often continuously deciding whether

to migrate to another solution. Finally, the techniques used in evaluating access control

systems can guide the development of new access control systems; it is desirable to show that

a newly-developed system is better-suited to certain scenarios than the existing alternatives.

As such, there has been a vast body of work on the formal analysis of access control

systems (e.g., [2, 3, 11,21,41,77,85,89,101,105–107,113,114]). The first step in these works

is developing a mathematical representation of access control systems; the most common

such formalism is the state machine. In the state machine representation of an access control

system, the set of states represents the possible organizations of the system’s data structures

(i.e., all possible static policies). In order to interpret these states, a state machine must also

include a procedure for determining which authorization requests are granted in a given state

(in some cases, additional queries are also included). Finally, a set of commands allows the

machine to transition between states (i.e., these commands formalize the ways in which the

policy can be manipulated by the system’s administrators).

The state machine representation of an access control system enables a powerful means

of comparing two or more systems: relative expressiveness analysis. This is conducted by

constructing a mapping between two access control state machines S and T called a reduction.

A reduction shows how T can represent each of the policies that S can represent, and in

doing so proves that T is at least as expressive as S. This has been used in the literature to

show that T can be used in place of S [85, 89,101,107].

Although expressiveness is a meaningful basis for comparing access control systems, it is

not without its shortcomings. It is well known that access control is not an area in which

one size fits all [63]. The best access control system for the example applications described

above, a family computer and the corporate network, are overwhelmingly unlikely to be the

3

same system. Yet, expressiveness analysis can only reveal that T can do everything S can

do. This analysis result is independent of any particular usage, and as such cannot give full

consideration to the needs of any particular application.

Furthermore, expressiveness is not necessarily a useful way to rank access control systems.

When deciding between two systems that are both capable of representing the policies that

the application requires (i.e., two systems that are expressive enough), little benefit is derived

from choosing the one that has greater absolute expressiveness. Many of the concerns detailed

above are unaddressed, such as efficiency, flexibility, and ease of policy specification. In fact,

additional expressiveness can often negatively impact these other measures: a system that is

too complex is often harder to specify policies in, and a system with more features is often

harder to reason about from the security guarantees standpoint.

In this dissertation, we show that relative expressiveness analysis is not sufficient for

evaluating access control systems relative to how they will be used in practice. We then

support the argument that a better type of analysis is possible by justifying the following

thesis statement:

We can develop techniques to evaluate access control systems against the specific

demands of the application in which they will be used, while considering a wide range

of both expressiveness and ordered cost metrics.

To support this thesis, we will first discuss in detail why expressiveness analysis is

insufficient for the analysis goals set forth in this thesis statement. In doing so, we make the

following contributions.

• We present the first discussion of the shortcomings of current, application-agnostic access

control evaluation methods.

• We discuss the key analysis questions that need to be considered in order to conduct a

more expansive analysis of access control systems, which we call suitability analysis. We

propose a general workflow for conducting suitability analysis, the components of which

will be fleshed out in detail in later chapters.

• We identify the key challenges in instantiating a full suitability analysis framework. Of

particular note, we motivate the development of a formalism for access control workloads,

4

a novel concept that we introduce to capture an application’s specific access control needs.

Furthermore, we describe the range of access control cost measures that are desirable to

consider, and thus that suitability analysis frameworks must be able to represent and

utilize when evaluating access control systems.

Next, we use these motivations to formally define the suitability analysis problem, which

formalizes the type of analysis question referred to in our thesis. Further, we propose the

first suitability analysis framework to conduct such analyses. We accomplish this through

the following contributions.

• We formalize the access control suitability analysis problem and articulate a set of

requirements that should be satisfied by frameworks that aim to provide solutions to it.

• We develop the first two-phase suitability analysis framework. Utilizing this framework

first establishes whether candidate systems are expressive enough to safely implement the

functionality of the workload via reduction. It then utilizes a constrained, actor-based

representation of the workload to sample usage patterns and drive a simulation-based

cost analysis to explore the expected costs of deployment.

• We evaluate our framework formally by proving that our simulation procedure is fixed-

parameter tractable, and practically via a case study demonstrating how our framework

can be effectively used to gain insight into a realistic scenario based on an academic

conference management system.

Armed with the context of the general suitability analysis framework, we describe in

detail Portuno, a Java-based simulation engine for conducting the cost analysis portion of

suitability analysis.

• To enable the generation of traces of representative workload usage, we present a way to

represent constrained, actor-based workloads within Portuno, allowing analysts to encode

the behavior of the entities that will use the access control application.

• We present an extensible, multi-component measurement system for Portuno that can

measure the wide variety of costs incurred by each candidate access control system when

executing the generated traces.

5

• Portuno enables analysts to explore trends in costs using the Monte Carlo driver, or to

determine a particular expected cost to within a specific confidence interval using the

confidence-bounding driver.

• To demonstrate the usage of Portuno, we discuss the aforementioned conference manage-

ment case study with details regarding its implementation within the Portuno framework.

To demonstrate further that suitability analysis enables application-sensitive evaluations

of access control systems between which the previous work is unable to distinguish, we present

a broader case study into the effectiveness of classic (so-called dissemination-centric) access

control systems when applied to group-centric workloads. In doing so, we answer the following

open questions [71,72] from the literature.

• Which systems based on the group-centric information sharing (g-SIS) models can be

safely implemented within, or emulated by, dissemination-centric access control systems?

• How strong are the security properties that can be guaranteed by dissemination-centric

systems when implementing workloads based on the g-SIS models?

• How efficiently can dissemination-centric systems implement workloads based on the

g-SIS models?

• What practically interesting instantiations of the g-SIS models cannot by safely and

efficiently implemented by dissemination-centric access control systems?

To demonstrate our suitability analysis framework’s ability to effectively solve the desired

analysis problem in other security domains, we present an additional case study that explores

a fundamentally different scenario. In particular, we investigate the suitability of constructions

based on identity-based encryption schemes for enforcing dynamic access controls on an

untrusted cloud storage provider. Through this analysis, we use our suitability analysis

framework to make the following contributions.

• We develop constructions using either IBE/IBS or public-key cryptographic paradigms to

enable outsourced role-based access controls and prove that these constructions correctly

implement the RBAC0 specification. In an effort to lower-bound deployment costs, we

make design choices in our constructions that emphasize efficiency over the strongest

possible security.

6

• We use real-world RBAC datasets and stochastic models of administrative behavior to

quantify the costs of using our constructions in the desired application. Our findings

demonstrate scenarios in which IBE/IBS and public key cryptography are effective means

of implementing RBAC access controls, and many situations in which severe overheads

are incurred through the use of these techniques. We show that the inflection points

in performance are a function of organization size, role density, and administrative

operational mix.

• Our findings provide a number of insights into promising future research directions that

could lead to better support for cryptographic access controls in dynamic environments.

We then note the flexibility of our framework in terms of cost metrics, and the relative

inflexibility of the existing notions of expressiveness. Although many types of expressiveness

reductions have been proposed, they are difficult to compare, and there is little guidance for

which notion of reduction to use for a particular analysis. To allow a similarly wide range of

expressiveness metrics as we do cost metrics, we define a minimal set of properties for an

access control reduction to be used in practical scenarios and then define a wide range of

properties spread across several dimensions that can be enforced on top of this minimum

definition. These properties define a taxonomy that can be used to compare existing types of

expressiveness reduction as well as craft new types of expressiveness reduction. In proposing

this properties lattice, we make the following contributions.

• We propose a general definition of an implementable access control mapping that is broad

enough to encompass much of the wide range of existing access control reductions, yet

precise enough to guarantee implementability. Intuitively, an implementable reduction

from S to T shows that T can accomplish everything S can, and deterministically shows

how.

• We decompose and expand upon the properties enforced by various access control

reductions from the literature, forming a lattice relating the range of access control

reductions to one another. This lattice allows us to formally compare the guarantees

offered by existing notions of access control reduction (many of which were not formerly

known to be comparable) and points to unexplored combinations of properties that can

7

yield different expressiveness results.

• We construct formal proofs positioning existing notions of access control reduction within

our lattice of reduction properties, including a comparative discussion of reductions

that previously seemed incomparable. We thus systematize the formal relationships

between previously-published reductions, allowing reconciliation of previously disparate

expressiveness knowledge and enabling analysts to make informed choices about which

notion of reduction to use for their analyses.

• We observe that many of the dimensions upon which our reduction property lattice is

built have implications for the use of reductions for satisfying real-world requirements

using existing access control systems (e.g., required storage, whether data structures

must be locked for concurrent usage). Thus, in addition to positioning existing notions of

reduction within our lattice of properties, we assist in creating new notions of reduction

by selecting the properties that should be enforced in an expressiveness analysis based

upon the scenario in which an eventual access control deployment will occur. To this

end, we discuss in detail various interactions between reduction properties, the results

of enforcing different properties, and how a specific deployment scenario dictates which

properties are relevant.

Finally, we further support our lattice of reduction properties as a fine-grained tool

for choosing a type of reduction for an analysis. We conduct a case study considering the

state-matching reduction [113, 114], a recent type of expressiveness reduction that has all

but superceded prior notions due to its preservation of a very expressive analysis question.

We compare the security analysis questions preserved by both the state-matching reduction

and several alternative forms of reduction that we introduce. In this case study, we make the

following contributions.

• We present several alternative reductions to the state-matching reduction represented

within the framework of implementable mappings and reduction properties lattice. These

variants highlight design decisions that were made by Tripunitara and Li with the state-

matching reduction that are not explicitly discussed, that are newly apparent given this

lattice of reduction properties.

8

• We show that each of our variants of the state-matching reduction can be shown to satisfy

the characteristic that was previously thought to be the defining strength of the original:

its preservation of compositional security properties. We propose an accompanying variant

on strong security preservation for each of our alternative reductions, thus showing what

it means to preserve compositional security analysis instances within the context of each.

This shows the relative imprecision of using preservation of security questions to evaluate

a notion of reduction, and shows that our properties lattice is able to more precisely

separate expressiveness metrics.

• To show that these separations are meaningful, we investigate the effects on expressiveness

results of different reductions that are equally capable of preserving the same security

questions. We show that considering a slightly different notion of reduction can yield

vastly different expressiveness results, even if those perturbations that do not alter the

security analysis questions that are preserved. In particular, we show that within the

context of the alternative reductions to the state-matching reduction (which also preserve

compositional security), several main conclusions proved using the original are false.

• We identify the reduction properties that seem to have the greatest impact on expressive-

ness results based on our case study and prior work. That is, we identify those dimensions

of properties whose values have the greatest effect on whether a particular reduction is

possible or not. We discuss how each changes the meaning of an expressiveness result

from the perspective of the application, highlighting the application-based issues that are

ignored entirely when evaluating the state-matching reduction in an application-agnostic

way (i.e., considering only preserved security questions).

The remainder of this dissertation is organized as follows. In Chapter 2, we describe in

detail the history of formal analysis of access control systems, particularly relative expressive-

ness analysis, to give context for the rest of the dissertation. In Chapter 3, we justify the

shortcomings inherent in relying on expressiveness analysis for choosing an access control

system for an application, and propose a general workflow for conducting a more appropriate

analysis. We then formally define the suitability analysis problem in Chapter 4 and propose a

more formal framework for conducting suitability analysis. In Chapter 5, we present Portuno,

a simulation engine that enables the cost analysis phase of suitability analysis. In Chapters 6

9

and 7, we present case studies, investigating the suitability of dissemination-centric access

control systems for group-centric sharing workloads, and the suitability of identity-based

encryption for enforcing cryptographic access controls in cloud storage systems, respectively.

To enable a wider range of expressiveness metrics, in Chapter 8 we propose the notion of

implementable access control mapping and a set of reduction properties that can be enforced

atop it. In Chapter 9, we conduct a case study on the state-matching reduction and prove that

using our reduction properties is more precise and fine-grained than relying on preservation

of security questions, in ways that have a great impact on expressiveness results. Finally, we

present our conclusions and directions for future work in Chapter 10.

10

2.0 BACKGROUND AND RELATED WORK

In this chapter, we provide necessary background for context in interpreting the remainder

of this dissertation. Section 2.1 presents the prerequisite formalism for representing access

control systems, based on state machines. This formalism enables relative expressiveness,

the primary form of access control evaluation described in the literature up to now. This is

accomplished through the construction of reductions between two systems. In Section 2.2,

we detail the history of access control expressiveness analysis, focusing on the ways in which

the proposed expressiveness reductions have gotten more and more rigorous.

2.1 MODELING ACCESS CONTROL

An access control model formalizes the way in which a class of access control systems will store

and interpret information to make access control decisions. Its data structures are formalized

as a set of access control states, and its methods for determining whether to allow or deny

accesses as a set of authorization requests. The value of all requests in a state (whether they

are allowed or denied) defines the access control policy, or theory, being enforced in that state.

Definition 1 (Access Control Model). An access control model is defined as M = 〈Γ,R〉,
where Γ is the set of states and R is the set of authorization requests, where each request

r ∈ R is a function Γ → {true, false}. The entailment (`) of a request is defined as

γ ` r , r(γ) = true. ♦

As an example, we consider the model to which RBAC0 [103,104], the simplest form of

11

role-based access control, belongs.

Example 1. The RBAC0 model is defined as 〈ΓR,RR〉. Its states, ΓR, are defined by the sets

〈U,R, P, UR, PA〉, where:

• U is the set of users

• R is the set of roles

• P is the set of permissions

• UR ⊆ U ×R is the user-role relation, which describes users’ membership in roles

• PA ⊆ R× P is the role-permission relation, which describes permissions’ assignment to

roles

A request in RR is of the form 〈u, p〉, in which u ∈ U requests access to p ∈ P , and is defined

as true in γ = 〈Uγ, Rγ, P γ, URγ, PAγ〉 ∈ ΓR when ∃x ∈ R : 〈u, x〉 ∈ URγ ∧ 〈x, p〉 ∈ PAγ

and false otherwise. ♦

An access control system expands on a model by providing methods of transforming the

current state and additional methods of querying states. These additional queries allow the

user to ask additional boolean questions of the system for which a value of true does not

indicate an authorization was granted.

Definition 2 (Access Control System). Given access control model M = 〈Γ,R〉, an access

control system within M is a state transition system, S = 〈Γ,Ψ, Q〉, where Ψ is the set of

commands, each command ψ ∈ Ψ is a function Γ→ Γ, Q ⊇ R is the set of queries, and each

query q ∈ Q is a function Γ→ {true, false}. ♦

We use the notation next(γ, ψ) to denote the state resulting from executing ψ in γ (that

is, ψ(γ)), and terminal(γ, ψ1 ◦ . . . ◦ ψn) to denote the final state produced by repeatedly

applying next to the commands ψ1, . . . , ψn starting from state γ: next(. . . next(γ, ψ1), . . . , ψn).

The RBAC0 model from Example 1 encompasses the following RBAC0 system.

Example 2. Given the RBAC0 model 〈ΓR,RR〉, the RBAC0 system is defined as 〈ΓR,ΨR, QR〉.
Its commands, ΨR, include all of the following forms, which follow the convention that the

first parameter is the executing entity.

• addUser(a, u): U ← U ∪ {u}

12

• removeUser(a, u): U ← U \ {u}

• addRole(a, r): R← R ∪ {r}

• removeRole(a, r): R← R \ {r}

• addPermission(u, p): P ← P ∪ {p}

• removePermission(u, p): P ← P \ {p}

• assignUser(a, u, r): UR← UR ∪ {〈u, r〉}

• revokeUser(a, u, r): UR← UR \ {〈u, r〉}

• assignPermission(a, r, p): PA← PA ∪ {〈r, p〉}

• revokePermission(a, r, p): PA← PA \ {〈r, p〉}

Its queries QR include the requests RR as well as “user in role?” queries of the form 〈u, r〉,
which are true if and only if 〈u, r〉 ∈ UR. ♦

This state-machine representation of access control enables much of the formal study in

the literature. In the next section, we overview such formal analysis techniques.

2.2 ACCESS CONTROL ANALYSIS

The formal study of access control systems began with a seminal paper by Harrison, Ruzzo,

and Ullman [57]. This paper formalized the general access matrix model that has since been

called the HRU model. States in this model are represented by a set, R, of access rights;

a set, S, of subjects; a set, O, of objects; and an access matrix, P , with a row for each

subject s ∈ S and a column for each object o ∈ O. Each cell P (s, o) contains a subset of

R, designating which access rights to o are possessed by s. Each system based on the HRU

model defines a series of commands, each of which accepts a list of parameters, checks a

conjunction of preconditions (rights that must be in certain cells of P for the command to be

executed), and executes a sequence of primitive operations. The primitive operations in the

HRU model include entering/removing rights in P and creating/destroying subjects/objects.

Harrison, Ruzzo, and Ullman went on to consider the analysis question of simple safety

(presented here in simplified form as per Li, Mitchell, and Winsborough [75]):

13

Definition 3 (Simple Safety Analysis). Given access control system S = 〈Γ,Ψ, Q〉 based on

model M = 〈Γ,R ⊂ Q〉, a simple safety question is one of the following form:

Does there exist a state γ1 reachable from state γ0 ∈ Γ via commands Ψ in which

request r ∈ R is granted? ♦

The work concluded that simple safety was undecidable in the general HRU model, a fact

that was proved using a construction whereby the potentially-complex commands allowed in

an HRU system could be used to simulate general computation (with the detection of rights

leakage reducing to the halting problem). However, they also showed that simple safety was

decidable if the commands were restricted to executing at most one primitive operation each.

Shortly after, Lipton and Snyder [80] analyzed the simpler Take-Grant access control

model. States in this system are typically visualized as directed graphs, where subjects and

objects are vertices, and edges are labeled with the rights that the origin vertex has over the

destination vertex. If a subject has the take right over an object, the subject can receive a

copy of any permission that the object has. If a subject has the grant right over an object,

the subject can give the object a copy of any permission that the subject has. Lipton and

Snyder showed that, in this system, simple safety was not only decidable, but decidable in

linear time.

These two results from the latter half of the 1970s have epitomized the notion that

the most expressive system is not always the right choice—that restricting our system can

yield higher efficiency and greater ease in solving relevant security problems. However, this

high-level insight seemed to have little effect on the direction of research in access control

evaluation; as we will see, expressiveness continued to be the primary focus of such works for

decades.

From this point, there have been a number of results investigating the relative expres-

siveness of various access control systems. A relative expressiveness result is typically of the

form, “System T is at least as expressive as system S.” Informally, this means that T can

emulate the behavior of S, and is meant to assure us that we can use T in any scenario in

which S can be used. The primary way of proving such a statement is by constructing a

mapping from S to T , and writing a formal proof that the mapping satisfies the requirements

14

for a particular form of reduction. Various notions of reduction in the literature have enforced

very different properties (e.g., What type of behavior must be simulated? How closely must

T represent the information in S?), and as a result have been used to prove qualitatively

different types of expressiveness results.

The works of Sandhu, Ganta, Munawer, and Osborn [85,89,101,105–107] include some of

the earliest access control reductions. In these works, a reduction from S to T must show

that a permission can be granted in S if and only if the corresponding permission can also be

granted in T . This concept is expressed as follows.

Definition 4 (SMG Reduction). An access control model N subsumes modelM if, for every

system S which can be specified in M, we can construct a system T in model N and a

mapping σ such that subject s can have access r to object o in S if and only if subject σ(s)

can have access σ(r) to object σ(o) in T . ♦

A variety of relative expressiveness results have been proved using this notion of reduction.

The Schematic Protection Model [100] was shown to emulate the Bell–LaPadula multilevel

security model [9, 10], the take-grant model [80], and grammatical protection systems [101].

The typed access matrix model (TAM) [102] is shown to be as expressive as the augmented

typed access matrix model (ATAM) [105], which allows testing for the absence of rights), and

thus it is concluded that the testing for absence of rights is theoretically unnecessary [105].

In support of role-based access control, it was shown to be capable of emulating strict

discretionary access control [107], the augmented typed access matrix [85], and mandatory

access control [89].

No formal properties beyond Definition 4 are enforced by these early reductions, though

in some cases additional properties become part of the de facto definition of reduction. For

instance, while there is no requirement for T to have a state equivalent to each S state (merely

for T to be able to grant each access that S does, in some state), the example reductions

all include methods for mapping each S state to a T state (as this is the simplest way to

show the required property). In addition, although the definition does not prohibit the use

of an unbounded number of T commands to simulate a single S command, Sandhu and

Munawer [107] only use reductions in which an S command is simulated using a constant

15

number of T commands. We note that Sandhu recognized this underspecification [101],

stating that:

The actual constructions given. . . establish equivalence in a stronger sense than [Def-

inition 4]. It is beyond the scope of this paper to give a formal definition of “stronger”

in this context. The intuition is that “stronger” means “behavioral equivalence.” That

is, every state transition in S, say from state α to state β, can be mimicked by one or

more state transitions in T which applied to state σ(α) result in state σ(β).

Ganta’s PhD dissertation [41] attempts to formalize a more rigorous notion of expressive-

ness reduction. In his form of reduction, the state correspondence is explicit, requiring that

each state in S have a corresponding state in T that grants all the same accesses (at least, all

those that exist in S—those that exist in T but not in S are unconstrained). In addition, to

ensure that T cannot grant accesses that S cannot, any state that can be entered in T must

also have a corresponding reachable state in S. Finally, to ensure accesses in T cannot be

combined in ways that cannot occur in S, the following restriction is made: when simulating

a T command in S, multiple commands may be used, but each state along the way must

allow either a subset of the accesses of the start state or a subset of the accesses of the end

state. Thus, no two accesses can be allowed in the same state in T that are not allowed in a

single state in S.

Ammann, Lipton, and Sandhu [2, 3] took a different (and much more strict) approach to

more rigorously defining a reduction. First, they describe a strict state correspondence that

requires T to represent its states with the same sets and relations as S, and for these sets to

have identical contents in corresponding T and S states.

Definition 5 (ALS State Correspondence). A state in system S, an original system, and a

state in system T , a simulating system, correspond if and only if the graph defining the state

in S is identical to the subgraph obtained by taking the state in T and discarding all nodes

and edges of any type not defined in S. ♦

In other words, T cannot include additional elements of any type that S uses (although

additional, distinct types may be stored). For example, one could simulate the state {U =

{a, b}, V = {c}} with state {U = {a, b}, V = {c},W = {〈a, d〉, 〈b, d〉}}, but not with

16

{U = {a, b}, V = {c, d}}. Given this notion of state correspondence, the ALS reduction must

shows that T can reach a state corresponding to each reachable S state, and cannot reach

any state that does not have a reachable corresponding state in S.

Definition 6 (ALS Reduction). System T emulates system S if and only if the following

conditions hold:

1. For every state s reachable by S, there exists some state t reachable by T such that s

and t correspond.

2. For every state t reachable by T , either:

a. The state s that corresponds to t is reachable by system S, or

b. There exists some successor state t′ of t such that the state s′ that corresponds to t′

is reachable by system S. ♦

This strict notion of reduction is used to show that monotonic, multi-parent systems are

more expressive than monotonic, single-parent systems (e.g., there are monotonic multi-parent

systems that cannot be simulated by any monotonic single-parent system).

Chander, Dean, and Mitchell [21] restrict the definition of reduction in yet a different way.

Rather than force a more strict state correspondence (the static portion of the reduction),

they more tightly restrict the way the reduction handles the system as it executes (i.e., the

command mapping). In these reductions, the state correspondence is comparatively lax: to

simulate an S state, a T state must allow and deny all the same authorization requests as

its corresponding S state. Additional requests can exist in T and are unconstrained, but all

requests corresponding to those in S must have the same value in corresponding states.

Definition 7 (CDM State Access-Containment). Given access control models M1 and M2,

and states γ1 and γ2, we say that γ1 is access-contained in γ2 if for any subject s in γ1, the

access decisions γ1 ` s→ (o, r) and γ2 ` s→ (o, r) yield the same result. ♦

However, the process for simulating an S command using T commands must be indepen-

dent of the state: it cannot, e.g., execute a T command for each user, or otherwise inspect

the state when determining what commands should be executed.

Definition 8 (CDM Weak Reduction). Given systems S and T within modelsM1 andM2,

respectively, S is weakly simulated by T if the access containment relation between S and T

17

is a many-step simulation (i.e., if γ1 is access-contained in γ2 and γ′1 is reachable from γ1 via

action α, then there exists γ′2 such that reachable from γ2 via sequence of actions f(α), and

γ′1 is access-contained in γ′2). ♦

In addition, in the strong form of reduction, each S command must be simulated with a

single T command.

Definition 9 (CDM Strong Reduction). Given systems S and T within models M1 and

M2, respectively, S is strongly simulated by T if the access containment relation between S
and T is a one-step simulation (i.e., if γ1 is access-contained in γ2 and γ′1 is reachable from

γ1 via action α, then there exists γ′2 such that reachable from γ2 via single action f(α), and

γ′1 is access-contained in γ′2). ♦

Chander, Dean, and Mitchell use these definitions to compare the expressiveness of

access control lists, trust management, and two forms of capability systems (each of which

is considered in forms with and without revocation and delegation). Of particular note,

capabilities in the form of unforgeable bit strings are shown to be as expressive as the

access matrix when not considering revocation, but strictly less expressive when revocation is

considered.

Tripunitara and Li [113,114] noted that the existing notions of reduction did not correspond

directly to any particular safety analysis questions, and thus a reduction of any of these

types does not make any particular safety guarantees. They formalize compositional security

analysis (intuitively, determining whether a certain set of access control queries will always,

never, or sometimes become true in any reachable state), which is a generalization of simple

safety analysis (Definition 3).

Definition 10 (Compositional Security Analysis). Given an access control system 〈Γ,Ψ, Q〉,
a compositional security analysis instance has the form 〈γ, φ, ψ,Π〉, where γ ∈ Γ is a state,

φ is a propositional formula over Q, ψ ∈ Ψ is a state-transition rule, and Π ∈ {∀,∃} is a

quantifier.

An instance 〈γ, φ, ψ, ∃〉 is said to be existential : it asks whether there exists state γ1 such

that γ
∗7→ψ γ1 and γ1 ` φ.

An instance 〈γ, φ, ψ,∀〉 is said to be universal : it asks whether for every state γ1 such

18

that γ
∗7→ψ γ1, γ1 ` φ. ♦

They then present a notion of reduction tailor-made to preserve these types of analysis

questions. Their reduction, called the state-matching reduction, considers a broader range of

queries than only authorization requests, placing the strictness of its state correspondence

somewhere between the work of Ammann, Lipton, and Sandhu and that of Chander, Dean,

and Mitchell. The state-matching reduction maps each query qS in S to a single query qT in

T , and the reduction must determine the value of qS in any state in T by checking the value

of qT . Finally, reachability constraints ensure that T can reach a state corresponding to each

reachable S state, and cannot reach any state that does not have a reachable corresponding

state in S.

Definition 11 (State-Matching Reduction). Given a mapping from S to T , σ : (ΓS ×
ΨS) ∪ QS → (ΓT × ΨT) ∪ QT , we say that two states γS and γT are equivalent under the

mapping σ when, for every qS ∈ QS , γS ` qS if and only if γT ` σ
(
qS
)
. A mapping σ from

S to T is said to be a state-matching reduction if, for every γS ∈ ΓS and every ψS ∈ ΨS ,

〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
has the following two properties:

1. For every state γS1 in S such that γS
∗7→ψS γ

S
1 , there exists a state γT1 such that γT

∗7→ψT γ
T
1 ,

and γS1 and γT1 are equivalent under σ.

2. For every state γT1 in T such that γT
∗7→ψT γ

T
1 , there exists a state γS1 such that γS

∗7→ψS γ
S
1 ,

and γS1 and γT1 are equivalent under σ. ♦

Tripunitara and Li prove that this notion of reduction preserves compositional security

analysis instances: that is, if there exists a state-matching reduction from S to T , then any

compositional security analysis instance has the same truth value in both systems. They then

use this reduction to prove a series of expressiveness results, including the first formal evidence

of a limit to the expressive power of HRU, a limit to the expressive power of a role-based

access control system in comparison to a discretionary access control system, and a proof that

ATAM is indeed more expressive than TAM. Tripunitara and Li’s reductions have since been

used to analyze role-based access control [77] and prove that a newly-proposed tag-based

access control system is more expressive than SDCO, ARBAC97, and the Bell–LaPadula

model [58].

19

Although there is a wide variety of work in relative expressiveness of access control

systems in the literature, there is little consideration for additional metrics beyond this

measure of raw capabilities, or for the specific demands that an application will place on

these systems. In the remainder of this dissertation, we will develop techniques to fill these

voids. Specifically, we will justify the need to consider analysis techniques beyond relative

expressiveness (Chapter 3), and define a framework to conduct what we call the suitability

analysis (Chapter 4). We will then present techniques within this framework for evaluating

the suitability of access control systems for their intended usage, including fine-grained,

application-sensitive metrics for both cost analysis (Chapter 5) and expressiveness analysis

(Chapter 8). We will also present several case studies (Chapters 6, 7 and 9) to demonstrate

the potential that these techniques have to enable analyses that are not possible given only

the existing work on application-agnostic relative expressiveness.

20

3.0 THE NEED TO MOVE BEYOND EXPRESSIVENESS

Access control is an area where one size does not fit all. However, previous work in access

control analysis has focused primarily on expressiveness as an absolute measure. Thus, in

this chapter we discuss and justify a central premise of our thesis statement: a new type of

evaluation framework is needed for access control systems, one that is application-aware and

considers both expressiveness and costs. To this end, we apply previous work in access control

evaluation, as well as lessons learned from evaluation frameworks used in other domains.

We describe the analysis components that are required by such a framework, the challenges

involved in building it, and the general workflow upon which it can be based.1

3.1 INTRODUCTION

In Chapter 2, we have overviewed a wide range of existing work on the formal analysis of

access control systems. all of which focused on comparing the relative expressive power of two

or more access control systems. Although expressive power is an interesting and meaningful

basis for comparing access control systems, in practice it is not a sufficient indicator of

suitability to any particular application. That is, the knowledge that a T is more expressive

than another system S provides no assurance that T is the best access control system for use

within a particular real-world application context. It could be the case, for instance, that S
is expressive enough for a particular application and also has lower administrative overheads

than T would in the same situation. Furthermore, as was noted in a recent NIST report,

access control is not an area with “one size fits all” solutions and, as such, systems should

1The material presented in this chapter was first published as [45].

21

be evaluated and compared relative to application-aware metrics [63]. This report notes a

variety of possible access control quality metrics, but provides little guidance for actually

applying these metrics and carrying out practical analyses of access control systems.

Given these considerations, we discuss the need for an application-aware evaluation

paradigm for access control systems. Informally, we might state the problem behind

application-aware access control evaluation as follows.

Given a description of an application’s access control needs and a collection of access

control systems, which access control system best meets the needs of the application?

Instances of this question can arise in many different scenarios, encompassing both the

deployment of new applications and the reexamination of existing applications as assumptions

and requirements evolve. Modern software applications are complex entities that may control

access to both digital (e.g., files) and physical (e.g., doors) resources. Given that organizations

are typically afforded little guidance in choosing appropriate security solutions, application-

aware analysis of access control could help developers sort through the myriad available

security frameworks (e.g., WPL [82], Spring [111], Shiro [6], etc.) and the multiple access

control systems embedded in each.

Despite the vast differences in approach between existing access control expressiveness

evaluation and the application-aware evaluation process that we propose (in this chapter and

this dissertation as a whole), expressiveness must remain a key component in the process.

Specifically, we propose to use expressiveness-based techniques for ensuring that the access

control systems considered for an application possess the necessary capabilities. That is,

unlike prior work, we evaluate the expressiveness of an access control system only for the

purposes of showing it is expressive enough to satisfy the needs of a particular application,

rather than considering its expressiveness relative to the other candidates. Furthermore, we

study techniques used for cost analysis in other domains to formulate requirements for a

formal notion of an access control workload and offer guidelines for workload construction

and access control cost analysis.

Thus, in this chapter, we motivate the development of an application-aware access control

evaluation framework. We first describe motivating scenarios for this type of analysis. We

22

then give an informal overview of the desired workflow for use in analyzing access control

systems with respect to a particular application. We refer to this process as suitability

analysis. Finally, we consider the challenges that the remainder of this dissertation needs to

address in order to develop a more formal framework inspired by this workflow. In particular,

we discuss the following key challenges.

• We must develop a mathematical formalism for representing the access-control-relevant

needs of an application. This formalism will be used to prove that candidate access

control systems are expressive enough to satisfy the application’s requirements.

• We must develop a series of analysis techniques for determining the expected costs of using

each candidate access control system within the context of the application in question.

• Given the wide range of notions of expressiveness reduction, we need techniques for

determining which should be used for the current analysis. In the event that none of the

existing reductions is appropriate for the analysis, it should be possible to craft a new

notion of reduction specifically to the requirements of the application.

• We consider the task of extending these ideas to develop similar techniques and tools in

the broader security domain.

The remainder of this chapter will be structured as follows. In Section 3.2, we describe

scenarios that motivate the development of an application-aware access control evaluation

framework, and reiterate the reasons why past work in access control expressiveness evaluation

is insufficient for these scenarios. In Section 3.3, we describe an overview of the application-

aware access control evaluation workflow, which we call suitability analysis. In Section 3.4,

we consider the challenges mentioned above that the remaining chapters of this dissertation

will address. Finally, we summarize in Section 3.5.

3.2 MOTIVATING SCENARIOS

In this section, we present several scenarios to motivate an application-aware analysis of

access control, and discuss why past work is insufficient for addressing these scenarios.

23

One such scenario is the establishment of new access control applications : systems with

access control components. For example, suppose a new academic conference is created,

and its organizers are considering the various access control needs of their submission and

review system. We will refer to this application as the program committee (PC) workload.

In this scenario, authors should be able to submit papers and access their submissions and

reviews thereof (though the latter may not be available until a particular notification time).

The program committee should be able to submit reviews on their assigned submissions,

and these reviews should be accessible to the program chair and other assigned reviewers.

Discussion about papers in contention may take place among the committee at large, which

will require members who have a conflict of interest with this submission to temporarily lose

access to this wider discussion. An application-aware access control analysis framework would

enable the organizing committee to formalize the requirements of their academic conference

workload, as well as the available candidate security packages’ mechanisms, and use these

formalizations to choose the package that best meets their needs with minimal overheads.

We note that none of the most popular access control systems is an obvious best fit for

this scenario. Access matrix systems are capable of enforcing most static policies, but the

program committee workload is highly dynamic—both papers and reviews are added over

time, access to which must be assigned to potentially large numbers of users. Granting these

accesses in an access matrix system must be done individually for each (subject, object) pair.

A common solution to this is to utilize the concept of roles or groups, which provide a level of

abstraction between users and resources. This allows multiple accesses to be granted at once.

However, it is difficult to assign roles in this environment, since each user may have access to a

completely different set of resources due to conflicts of interest and different assigned reviews.

Relative expressiveness analysis may reveal, e.g., that a particular role-based system is more

expressive than a particular access matrix system, but this knowledge does not necessarily

assist analysts in using these additional capabilities in this particular application.

Another scenario that highlights the need for application-aware evaluation for access

control is re-evaluating the access control needs of existing applications whose requirements

or operating assumptions have evolved. For example, two MITRE technical reports [60, 115]

have highlighted the fact that the Bell–LaPadula access control system relied upon by the

24

U.S. Armed Forces is beginning to show signs of age. In particular, [60] cites several examples

of improper and unauthorized out-of-band data sharing that have occurred because it is

“easier to ask for forgiveness than for permission,” given the high delays and human costs

associated with utilizing the proper channels. Further, [115] posits that this phenomenon is a

byproduct of an increasingly dynamic military that relies on a dizzying array of data sources

and ever-changing coalitions, but bases access decisions on a static classification system. In

short, the changing military workload has led to confidentiality breaches due to an ill-fitting

access control system. An application-aware analysis could help identify the root causes of

these failures and assess the utility of alternate access control approaches.

As we noted in Section 2.2, it has been known for quite some time that the most expressive

access control system is not always the right choice—that restricting our system can yield

higher efficiency and greater ease in solving relevant security problems. The latter was

made easily apparent by noting that, in the very expressive HRU model, simple safety in

undecidable [57], while in the more restricted take-grant system, simple safety is decidable in

linear time [80].

Unfortunately, this means that, despite the wide range of reduction-based techniques

for relative expressiveness, the most we can learn from them is an absolute ranking in

expressiveness, irrespective of the requirements of the application; none can support a

comparison of access control systems with regards to their ability to perform well within any

particular environment. It is unclear whether there is any benefit to expressiveness beyond

“expressive enough,” and these existing techniques do not even provide us with a method for

ensuring that a system is expressive enough for an application, since the application is not

considered at all. Thus, it seems clear that a new, application-aware access control evaluation

paradigm is needed.

The need for application-aware evaluation of access control systems was reinforced by

a recent NIST report, which states that “when it comes to access control mechanisms, one

size does not fit all” [63]. The report bemoans the lack of established quality metrics for

access control systems, going so far as to list numerous possibilities, but stopping short of

explaining how one might choose between them or evaluate systems with respect to one’s

specific requirements. In the next section, we describe an informal workflow for conducting

25

Formalize
workload

Formalize
systems

Alter
systems

Drop
systems

Qualitative
analysis

Quantitative
analysis

Choose
system

Change
guarantees

Change
cost measures

Figure 1: Workflow of an application-aware suitability analysis framework for access control

this type of analysis, in order to assist us in identifying the key challenges that must be

addressed in subsequent chapters of this dissertation.

3.3 ANALYSIS WORKFLOW OVERVIEW

Figure 1 presents an overview of the steps involved in the type of application-aware access

control evaluation that we envision. First, the application’s access-control-relevant properties

and requirements are formalized as an access control workload. The workload formalism

must contain two components. The operational component specifies the capabilities that the

application requires of its access control solution. This component will allow the analyst to

determine whether an access control system is expressive enough for an application. The

invocational component, then, describes the usage pattern under which the access control

system will be expected to perform. This component will allow the analyst to determine

the expected cost of using each access control system under the particular usage that is

anticipated within the application.

Next, the access control systems to be evaluated are formalized. We will use the well-

established state machine formalism described in Definition 2. In qualitative analysis, each

access control system (formalized as a state machine) must be shown to be expressive

26

enough to implement the required capabilities described by the operational component of the

workload. This will be accomplished using a variant of access control reduction that maps

from a workload to a system (rather than the more traditional system-to-system).

In quantitative analysis, the costs are evaluated of using each (expressive enough) access

control system within the context of the application. Cost analysis must be done relative

to the usage pattern as specified by the invocational component of the workload. This

workload usage can be translated into actions in each candidate system using the reductions

constructed during qualitative analysis. The cost of executing the traces in each access control

system is evaluated, yielding a cost for each system. Given our application-aware motivation,

the cost measures used may vary between applications, from operational costs such as data

management overheads, to human-centric costs such as administrative overhead.

At this point, it is possible that the analysis has yielded enough insight to choose a

system. However, we also include in our workflow several possible methods of feedback that

may refine the analysis to collect more information or consider additional options. Systems

may be dropped from consideration and/or added to the analysis. The guarantees required

by the expressiveness reductions used can be altered (e.g., if the cost results are too high, the

analyst may consider weakening the security requirements to acquire a feasible compromise).

The cost measures under consideration may also be changed, possibly to consider additional

information and “break ties,” or to take into account other changes made (such as newly

introduced systems) in the analysis.

This workflow represents what we call suitability analysis. We will formally define the

suitability analysis in Chapter 4 based on insights motivated by the remainder of this chapter.

3.4 KEY CHALLENGES

In this section, we identify the key challenges in instantiating the workflow described informally

in Section 3.3 into a framework that can be used to conduct practical suitability analyses.

These challenges will be addressed in subsequent chapters of this dissertation.

27

3.4.1 Workloads and Application-Aware Expressiveness Analysis

A main challenge in instantiating suitability analysis is developing a formalism for representing

the demands of the application: the access control workload. This structure also needs to

facilitate application-aware expressiveness analysis, the process that demonstrates an access

control system is expressive enough to be used in a particular application. Here, we describe

the intuition behind the structure of a workload and the basic process of using it in application-

aware expressiveness analysis, leaving the formal details for Chapter 4, where we instantiate

our suitability analysis framework.

The operational component of an access control workload must describe the set of

capabilities that a suitable access control system needs to support in order to properly operate

within the application of interest. Thus, it should describe, at a high level, the following

components.

• The policy information that the system must maintain

• The procedures that the system requires for modifying the policy

• The access control questions that the system needs to answer based on the policy

We note that we can satisfy these requirements naturally by describing an abstract access

control system that meets the applications’ requirements. We note that, while access control

workloads and systems can be formalized using the same mathematical structure, they differ

in their intention: a system represents a functioning piece of software, while a workload’s

operational component is built by the analyst to represent the higher-level desired functionality

of a system, without necessarily being appropriate for direct implementation.

The structural similarity between a workload’s operational component and an access

control system will enable us to construct mappings from the former to the latter. We call this

type of mapping an implementation of a workload in a candidate system. Implementations

will serve a related role to that of expressiveness reductions: the existence of such a mapping

(and proof that it preserves certain required properties) shows that the system is capable

of satisfying the application described by the workload. Furthermore, an implementation

should provide a “recipe” that describes how to use the system to satisfy the requirements of

the workload.

28

Given their close relationship to relative expressiveness reductions, and the mathematical

similarities between the representations of operational components and systems, it is natural

to consider using existing notions of reduction to represent implementations. In subsequent

chapters, we will describe the precise requirements for a notion of reduction to be used as an

access control implementation.

Describing the capabilities that an application requires of its access control system via

the operational component will allow us to decide which systems are capable of operating

within the application under consideration. However, it does not offer full insight into which

is most suitable for the application. Towards this goal, an access control workload should

also contain an invocational component describing the ways in which the capabilities of the

workload are to be used.

The main role of the invocational component in suitability analysis is to provide sets

of traces of access control actions that are typical for the application in question, and as

such this component will need to be able to accurately formalize a representative picture

of workload usage. At a minimum, the invocation component should be able to dictate the

order in which commands are executed and which queries are asked during which paths of

execution. We identify the set of actions as the set of commands combined with the set of

queries (i.e., the full set of operations that can be executed within the access control system).

A simple invocation structure, then, might simply describe the probability distribution among

actions. Unfortunately, this does not allow us to describe many realistic scenarios, such as

sequences of actions that are often executed together. Another option for an invocation

structure is a set of recorded traces of actions. However, it is not clear that this is always

realistic to obtain, and past traces may not necessarily be representative of future usage.

Given the lack of access control evaluation tools that are application-aware, there is little

work in the field for generating traces that are representative of usage within an application.

Thus, for inspiration in designing the first access control workload invocational components,

we turn to work in other domains.

In the field of disk benchmarking, Ganger [40] tests several methods for generating

synthetic traces of usage, ranging from simple (primarily using measured averages) to

interleaved (interleaving several traces, each generated using a Markov model with measured

29

transition rates). The key observation was that, in most scenarios, interleaved workloads

provided the most accurate approximation of recorded traces. Thus, we postulate that

mechanisms for representing workload invocational components must be capable of simulating

the interleaved actions of multiple actors.

This view is reenforced by the design of IBM’s SWORD workload generator for stream

processing systems [4,18]. This work also points out that synthetic workloads need to replicate

both volumetric and contextual properties of an execution environment in order to provide an

accurate indication of a system’s performance within that environment. Thus, we conjecture

that a formalism for access control workloads as well may need to be capable of expressing

not only volumetric statistics such as number of documents created, but also contextual

statistics such as the type of content in created documents. In Chapter 4, we will need to

consider the best way of representing the invocational component that takes these factors

into account.

3.4.2 Conducting Cost Analysis

In order to conduct cost analysis of access control, one must first formalize the relevant

measure (or measures) within which to evaluate the cost. Our formalism for cost measures

must remain flexible enough to encode the wide variety of possible access control cost metrics,

including those noted in a recent NIST report on the assessment of access control systems [63].

This includes costs such as “steps required for assigning and dis-assigning user capabilities”

and “number of relationships required to create an access control policy.” Additional desirable

costs may include metrics for human work such as “personnel-hours per operation” and

“proportion of administrative work to data-entry work,” and computational costs such as

maximum memory usage and storage overhead. For applications in which multiple metrics

are relevant, vectors of cost measures may be needed.

In order to calculate the cost of a particular implementation of a workload, we will need

to determine the cost of a trace of actions in the implementing system, which necessitates our

determining the costs of executing the system’s individual commands and queries. In addition

to these cost functions for determining individual actions’ costs, cost analysis will require

30

methods for combining this information with the representative workload traces generated by

the invocation component to determine a total expected cost for each implementation. To

accomplish this, the sequence of actions generated by the workload’s invocation component

must be translated into actions in each of the implementing systems, using the specification

of each system’s implementation of the workload. The resulting actions can then be executed

(or simulated) in each system, accruing costs using the corresponding cost functions, and

tracking changes to the system’s state. An algorithm for conducting this series of analysis

steps will be developed in Chapter 4.

3.4.3 Application-Aware Expressiveness Metrics

We have noted that we can use some existing notions of reduction to satisfy the implementation

structure, and that our unified framework for suitability analysis will include minimum

required properties that a notion of reduction must satisfy to be used in such a scenario.

However, we might desire that this mapping be flexible enough to allow a wide variety of

expressiveness metrics that are application-aware in the same way that a flexible notion

of costs allows application-aware cost measures. In the context of implementations, this

flexibility may include selecting which reduction properties should be required for evaluation

with respect to a particular application, based on which properties represent security issues

to which the application is sensitive.

Thus, on top of a minimal set of requirements that an implementation must satisfy, we

will develop a fine-grained representation of the wide range of expressiveness mappings based

on the properties that each enforces on top of this minimum. This fine-grained representation

will allow us to decompose and formally compare existing notions of reduction, assisting

analysts in choosing which of these notions is appropriate for a particular analysis. In addition,

this will assist analysts in crafting new notions of reduction specific to the requirements of the

desired analysis. We present this flexible, fine-grained taxonomy of expressiveness reductions

in Chapters 8 and 9.

31

3.4.4 Wider Security Applications

We note that there is a range of computer security problems that follow a similar structure to

suitability analysis: solutions first need to be formally proven to be capable of satisfying the

application’s needs, then experimentally evaluated with regards to their expected costs while

operating within that application. As such, we will investigate the feasibility of applying the

techniques developed for use in the suitability analysis workflow to these more general security

problems, allowing analysts to model the application as a workload, candidate solutions as

systems, and the execution of the former using the latter as an implementation.

For instance, given the rise of cloud computing, we consider the challenges of enforcing

access controls for the scenario in which the provider is (partially) untrusted. There has been

much discussion about how to achieve access control on the cloud, but in situations where

confidentiality or integrity with respect to the cloud provider itself is necessary, cryptographic

systems are a natural—if not the only—solution. This represents a shift from traditional

access control, where we assume a trusted computing base fields all requests. However, we

believe that it can be represented as a suitability analysis problem, due to its structure

of requiring a solution that is efficient while also being expressive enough to make formal

security guarantees. We investigate the problem of evaluating the suitability of cryptographic

solutions to this workload in Chapter 7.

3.5 SUMMARY

In this chapter, we have motivated the need for new evaluation techniques for access control

that transcend expressiveness and account for both the differences between applications

and ordered cost metrics. In doing so, we support our thesis statement by motivating the

types of analysis questions it claims we can answer. We gave an informal description of

the suitability analysis workflow and discussed how it can be utilized to determine which

access control system is best suited to an application. In a framework that instantiates this

workflow, an application’s requirements are formalized as a workload, a novel structure that

32

enables evaluation of systems’ ability and cost to operate within the application. We then

discussed how we will proceed to tackle the key challenges in fully realizing a suitability

analysis framework.

33

4.0 INSTANTIATING SUITABILITY ANALYSIS

In this chapter, we formalize the access control suitability analysis problem, which gives

rigor to the type of analysis described in our thesis statement and informally in Section 3.3.

We then present a series of requirements (e.g., efficiency, accuracy) for suitability analysis

frameworks that solve this problem. We then develop our own mathematical framework to

conduct suitability analysis in two phases, first through reductions to prove that candidate

systems are capable of implementing the workload, and then through simulations to calculate

expected costs of using each candidate scheme to do so. We then evaluate this framework

both formally, by showing it satisfies the aforementioned requirements, and practically, by

demonstrating how our framework can be used to evaluate the suitability of several popular

access control systems to the program committee workload described in Section 3.2.1

4.1 INTRODUCTION

In this chapter, we address several of the challenges identified in Chapter 3, and in doing so

we take our first concrete step toward developing the techniques that will enable suitability

analysis. Namely, we propose a framework that enables us to carry out application-aware

expressiveness analysis as well as cost analysis of access control.

We first identify and formalize the access control suitability analysis problem, which

considers both qualitative and quantitative (expressiveness and cost) metrics. We then

propose a formal mathematical framework to carry out this type of analysis. We first develop

a precise formalism for access control workloads. This structure enables us to formalize an

1The material presented in this chapter was first published as [46].

34

application’s access control needs and the expected uses of these functionalities. Analysis

then consists of two orthogonal tasks: (i) demonstrate that each candidate access control

system can safely implement the workload (qualitative analysis), and (ii) quantify the costs

associated with using each candidate system (quantitative analysis). Toward carrying out such

an evaluation, we will develop techniques for representatively sampling from the workload’s

functionality, guidelines and mathematical structures for formally specifying access control

cost metrics, and a simulation algorithm for carrying out cost analysis. In doing so, we make

the following contributions:

• We formalize the access control suitability analysis problem, and articulate a set of

requirements that should be satisfied by two-phase suitability analysis frameworks.

• We formalize the access control workload. This enables analysts to clearly and concisely

specify the functionalities that must be provided by access control systems that are to

be used within a given context, as well as identify the ways in which these systems are

expected to be used.

• We develop the first two-phase suitability analysis framework. Within this framework,

qualitative analysis is conducted by constructing and formally proving the correctness of

implementations of the workload in each of the candidate systems. Then, quantitative

analysis is conducted by sampling traces from the workload’s expected usage patterns

and translating these traces into behavior in each candidate system.

• We propose a constrained, actor-based workload invocation structure that allows us

to generate representative traces of workload usage patterns based on the interleaved

execution of multiple users’ actions in the system.

• We present a simulation-based cost analysis algorithm for exploring the expected costs of

deployment.

• We evaluate our framework formally by proving that our simulation procedure is fixed-

parameter tractable, and practically via a case study demonstrating how our framework

can be effectively used to gain insight into a realistic scenario based on an academic

conference management system.

In Section 4.2, we formalize the suitability analysis problem and overview our two-phase

35

approach to solving it. Further, we articulate a set of requirements for suitability analysis

frameworks. Sections 4.3 and 4.4 describe in depth our approach to a two-phase solution to the

suitability analysis problem. We describe a case study investigating the use of our framework

in Section 4.5. We then discuss the properties upheld by our framework (Section 4.6) and

summarize (Section 4.7).

4.2 THE SUITABILITY ANALYSIS PROBLEM

As was discussed in Section 3.3, in order to evaluate against the specific demands of the

application in question, an analyst must construct a workload that represents that application,

including both required capabilities and expected usage of those capabilities. To conduct

quantitative evaluation that is application-aware, a reduction must be constructed from the

workload to each candidate system, showing that each is capable of satisfying the workload’s

requirements. To conduct application-aware qualitative evaluation, costs must be evaluated

with respect to the expected usage described by the workload.

To enable the analysis to consider whichever cost metrics are of the greatest consequence

to the application, we present the minimal structure that a cost measure must have. We

also prove that a vector of cost measures is a cost measure, allowing multiple costs to be

considered. One of the inputs to the analysis problem, then, is the set of costs that should

be considered in quantitative analysis.

Similarly, to enable the analysis to consider whichever of the wide range of expressiveness

metrics is most appropriate for the application, the analysis problem takes as input a set

of security guarantees that may be enforced on the mapping constructed during qualitative

analysis. The suitability analysis problem takes each of these components into account, and

is stated as follows.

Suitability Analysis Problem. Given an access control workload W, a set of candidate

access control systems Y, a set of security guarantees G, and a set of ordered cost measures

C, determine:

36

Access Control Workload

Operational
Component

Invocation
Mechanism

�X

�Z

Z
System

Workload
Traces

System
Traces `Y

`Z

⌃ C1, . . . , Cj
�Y

�Z

System
Y

X
System

�X

�Y

`X

Mappings Cost
Functions

⌃

⌃

Action
Costs

Cost
Accrual

Total
Costs

Figure 2: Overview of an application-aware analysis framework for access control

(i) a set of implementations I, each describing how a candidate system Si ∈ Y can implement

W while satisfying a maximal subset of G

(ii) for each I ∈ I, the expected costs relative to C of using I to implement W ♦

Figure 2 depicts an overview of the two-phase approach to solving the suitability analysis

problem. First, in expressiveness analysis, the analyst formalizes a workload, candidate

systems, and implementations, and then proves that the implementations satisfy the desired

security guarantees. Next, to start cost analysis, the analyst formalizes the cost measures that

represent the quantitative metrics the application is sensitive to, and labels each action within

each system with its respective costs. Cost analysis is completed by generating representative

traces of usage from the workload, translating them into equivalent system traces using the

mappings constructed during expressiveness analysis, and simulating the system traces while

recording the costs of each action.

We briefly mention the final (sometimes implicit) step following suitability analysis:

selecting the appropriate system to deploy. While it is appealing to imagine the suitability

analysis problem as an instance of the question, “Which of these systems is most suitable

to this workload?,” in reality it is a bit more subtle. In order to give an absolute answer

to the former informal question, we would need to reconcile implementations that preserve

incomparable maximal subsets of implementation properties, implementations that incur

lower costs in some measures but higher in others, and those that can preserve stronger

reduction properties with those of lower cost. That is, the only time this informal question

37

can have a definitive answer is when one implementation admits security properties consisting

of at least the sum of all other implementations and incurs the minimum cost in all cost

measures. While we can artificially restrict the framework in order to create this scenario (e.g.,

by forcing the cost lattice to be totally ordered), we have instead opt to define the suitability

analysis problem such that Phase 1 identifies the possible implementations and the security

guarantees that each upholds, and Phase 2 determines the cost of each implementation in

each of the cost measures. The analyst utilizing the suitability analysis framework will then

need to consider these results when selecting the most appropriate system for the application.

We now explore solution requirements (each denoted SR#) for suitability analysis frame-

works. First, we consider requirements in how representative traces through an access control

workload (W) are chosen for exploration in cost analysis. Because exploring all traces of

possible usages during cost analysis will likely be impractical, we must sample from this set

in a way that selects traces that are representative of the expected behavior. Our first two

requirements ensure that the framework can generate traces that accurately model the tasks

carried out within an organization, and the interactions required to support and process

these tasks.

SR1: Domain exploration Large organizations are complex systems with subtle inter-

actions, the emergent behaviors of which may not be captured during the static process

of workload specification. It must be possible to efficiently explore many initial conditions

(e.g., types of actors, operations supported, organization size, and operation distributions) to

examine the effects of various levels of concurrency and resource limitation.

SR2: Cooperative interaction Tasks within large organizations typically require the

interaction of multiple individuals. As such, suitability analysis frameworks should support

operational workflows and constraints on their execution.

Next, we must ensure that the suitability analysis framework can be tuned to meet the

specific needs of an application via choosing the metrics used to assess the suitability of an

access control system for a given workload. This includes both the security guarantees used

in expressiveness evaluation (G) and the cost metrics used in cost evaluation (C).

SR3: Tunable safety There may be many different ways for a system to implement a

38

given workload. Without enforcing structure on the mapping encoding this implementation,

even the most under-expressive systems can appear to implement a workload [113,114]. It

must be possible for an analyst to specify the security guarantees required for implementations

of their workload.

SR4: Tunable cost There is no single notion of cost that is sensible for use in every access

control analysis [63]. Suitability analysis frameworks must be capable of representing many

types of costs (e.g., computational, communication, and administrative), and examining

multiple costs simultaneously.

Finally, we consider requirements that ensure that the suitability analysis framework

remains practical to use, even for large-scale application workloads.

SR5: Tractability Steps of the analysis process that can be automated should be done so

using tractable (e.g., polynomial time or fixed-parameter tractable) algorithms that remain

feasible to use even for large systems.

SR6: Accuracy Since exploring all possible traces is impractical, it must be possible to

approximate the expected error of costs obtained by exploring only a specific subset of traces.

These requirements guide the development of our suitability analysis framework; we will

discuss our ability to achieve these requirements in Section 4.6.

4.3 PHASE 1: EXPRESSIVENESS ANALYSIS

In this section, we describe the first phase of suitability analysis, in which the analyst

constructs mappings proving that the each candidate system is expressive enough for the

workload. A prerequisite to this is formalizing the access control systems themselves. We

now restate the definition of access control system, the state-machine formalism that will

represent the candidate systems.

Definition 2 (Access Control System, restated). Given access control model M = 〈Γ,R〉,
an access control system within M is a state transition system, S = 〈Γ,Ψ, Q〉, where Ψ is

39

the set of commands, each command ψ ∈ Ψ is a function Γ→ Γ, Q ⊇ R is the set of queries,

and each query q ∈ Q is a function Γ→ {true, false}. ♦

Recall the discussion in Section 3.4.1 of the workload formalism, used for representing the

demands of the application. We noted that this structure should contain two components.

The operational component describes the required capabilities, and can be represented as an

abstract access control system. The invocational component is used to represent the usage of

this abstract access control system. It will be used in cost analysis to provide the traces of

actions whose costs will be evaluated. More formally, each trace defines an initial state and

a sequence of commands and queries that are executed. Given these components, we now

formally define the access control workload.

Definition 12 (Access Control Workload). An access control workload is defined by 〈A, T 〉,
where:

• A = 〈Γ,Ψ, Q〉 is the operational component: an abstract access control system

• T is the invocational component: a set of pairs 〈γ0, τ〉 where γ0 ∈ Γ and τ = a1 ◦ a2 ◦ . . .
is a sequence where ∀ai ∈ τ : ai ∈ (Ψ ∪Q). ♦

The common structure between the workload’s operational description and access control

systems enables us to utilize a special type of access control reduction: an implementation of a

workload maps the desired behavior in the workload to the capabilities of a candidate system.

Like other access control reductions, a proof that an implementation is correct and satisfies

the desired security guarantees must be manually constructed. As we discussed in detail in

Section 2.2, various prior works propose different sets of security guarantees defining their

particular notion of expressive power. Rather than dictate a particular notion of reduction

for Phase 1 of suitability analysis, we seek to enable a wide range of application-sensitive

expressiveness metrics, and thus we lay out the minimal requirements imposed on a form of

reduction in order for it to be usable in suitability. For a notion of reduction to be usable as

an implementation, the existence of such a reduction would allow one to determine how to

replace one system with another. This will allow us to translate workload traces into system

traces for the purposes of cost analysis. We refer to these requirements as the implementability

requirements, each denoted IR#.

40

IR1: State mapping In order to use system S to satisfy workload W , it must be possible

to (uniquely) determine which S state to use in place of a particular W state. Thus, an

implementation must include a state mapping, a function from workload states to simulating

system states.

IR2: Command mapping To use S to satisfy W, it must be possible to transform S’s

state in ways that are equivalent to the required functionalities described in W . That is, we

must be able to determine the commands in S that perform an equivalent state transformation

to each of the abstract commands in W . It is not necessarily the case that each W command

can be simulated using a single S command, so an implementation requires a function from

W commands to sequences of S commands. In addition, it may be necessary to map a W
command differently depending upon the state in which it is intended to be executed. Since

using S for workload W means we have a S state to inspect during execution, this function

should map a W command and an S state to a sequence of S commands.2

IR3: Query decider Just as we need to transform any W command to functionally

equivalent S commands, we also need to be able to provide answers to any query that W
requires. In some workloads, this may include only the authorization requests that grant or

revoke access to resources in W , while in other cases additional types of queries are allowed,

such as “Is user u a member of role r?”. To remain general, we simply require that a W
query can be answered using a S state. Thus, an implementation must include a function

that maps each W query and S state to either true or false.3

The definition of implementation formalizes the implementability requirements require-

ments IR1–3. Thus, any type of access control reduction of the following form can be used to

solve the suitability analysis problem.

Definition 13 (Access Control Implementation). Given a workload W = 〈A, T 〉 where

A = 〈ΓA,ΨA, QA〉, and a system S = 〈ΓS ,ΨS , QS〉, an implementation of W in S is a triple

of functions σ = 〈σΓ, σΨ, σQ〉, where:

2As these requirements are only the minimum required by suitability analysis, specific types of imple-
mentations can include special cases of the command mapping. For instance, under certain notions of
implementation, a W command may be mapped to the same series of S commands regardless of the state; in
others, only particular portions of the state may be considered.

3A more specific query decider may map each W query to a single S query q, then return the value of q in
the current S state.

41

• σΓ : ΓA → ΓS is the state mapping

• σΨ : ΨA × ΓS →
(
ΨS
)∗

is the command mapping

• σQ = QA × ΓS → {true, false} is the query decider ♦

Many notions of expressiveness in the literature meet these requirements; notable examples

include the state matching reduction (Definition 11, restated from [113,114]), as well as the

reductions defined by Chander et al. (Definitions 8 and 9, restated from [21]) and Ammann

et al. (Definition 6, restated from [2, 3]). We leave the selection of reduction form to the

analyst, who can make such a selection among those proposed in the literature based on the

security guarantees the workload requires. In Chapter 8, we will revisit the implementability

requirements and provide greater guidance in selecting, for a particular analysis, the additional

properties to be enforced atop this minimal definition.

4.4 PHASE 2: COST ANALYSIS

In this section, we describe the second phase of suitability analysis, in which the expected

cost is determined for each implementation of the workload.

4.4.1 Trace Generation

In cost analysis, we are interested in determining the cost of using a particular implementation

under the expected usage of the system. For this reason, cost analysis must evaluate costs with

respect to the particular usage described in the invocation mechanism of an access control

workload (Definition 12). This is represented as a set of traces through the system’s actions

(commands and queries). In cost analysis, we need to sample from this set of traces in a way

that is representative of the expected usage. We also need to do so in a way that satisfies the

solution requirements set forth in Section 4.2. For example, Domain Exploration requires

that we are able to alter input parameters. Implicitly in this requirement is the assumption

that the trace reacts to these initial state parameters (e.g., more users typically means more

frequent execution of commands and queries).

42

A first attempt at tackling this problem may not be trace generation at all, but rather

exhaustive search of the space of traces. However, we quickly abandon such approaches for

several reasons. The most obvious is Tractability , which requires tractable solutions (recall

that the set of all valid traces is most likely infinite). More subtly, we note that Tunable

Costs requires that the cost analysis is tuned to the particular scenario in which the system

will be deployed; determining which system is most efficient across all possible usages violates

this requirement.

Next, one might consider recording real-life traces and playing them back within the

simulation environment. After all, real traces are guaranteed to be realistic. However,

collecting such traces can be expensive, and recorded traces are not necessarily representative.

Further, recording and playing back static traces violates Domain Exploration, which requires

the exploration of a variety of initial conditions.

Thus, inspired by work in disk benchmarking [40] and stream processing [4, 18] (see

Section 3.4.1), we opt to conduct trace generation using an interleaved agent-based technique.

This allows the analyst to model usage of the access control system at the level of the

individual user. To this end, we define an extension of the invocation mechanism that utilizes

the concepts of actors carrying out actions within the system. Actors are human users,

daemons, and other entities that act on the access control system in ways that are described

by actor machines. We express the various ways in which actors cooperate to complete

a task using constrained workflows. This structure specifies dependencies between related

actions, and utilizes constraints to restrict which user can execute each action. Together,

these structures enable the modeling and simulation of complex and concurrent behaviors of

the entities in a workload.

We now formalize actions, the basic units of work executed by an actor in the system. An

action is a parameterized generalization of queries and commands. This allows us to specify

the generic description of the action (e.g., check an access, assign a role) and separately

assign the precise parameters (e.g., the specific users, documents, and roles involved). These

parameters can then be assigned statically by the executing actor machine or dynamically

upon execution.

Definition 14 (Access Control Action). Given an access control system, S = 〈Γ,Ψ, Q〉, an

43

access control action for S is a function from a set of parameter spaces (derived from Γ) to

the system’s set of operations, and is defined as a : P1 × · · · × Pj → Ψ ∪Q ∪ {∅}, where:

• P = 〈P1, . . . , Pj〉 is the set of parameter spaces from which the actions’s j parameters are

drawn (e.g., the set of subjects, objects, roles).4 We denote P1 × · · · × Pj as P ∗.

• a : P ∗ → Ψ∪Q∪ {∅} maps each parameterization to a command or query in S; or to ∅,

which designates no command or query is to be executed ♦

To describe the behavior of actors, we employ state machines that we call actor machines.

The primary goal of an actor machine is, at each instant in time, to produce a candidate

action for the entity that it represents to execute (or to pass on executing an action in this

instant). Each state in an actor machine is labeled with an action and a (possibly incomplete)

parameterization. Transitions in this state machine are labeled with rates akin to those used

in continuous-time Markov processes (e.g., [79]). We generate representative traces of actor

behavior by probabilistically walking this machine, following transitions with probabilities

proportional to their rates.

Definition 15 (Actor Machine). Let S be an access control system, A a set of actions from

S, and V a set of variable symbols. An actor machine for S is the state machine 〈S,Φ, R〉,
where:

• S is the set of actor machine states

• Φ : S → A × (P1 ∪V) × . . . × (Pj ∪V) labels each actor machine state in S with an

action and a (perhaps partial) parameterization of that action. That is, parameters can

be assigned a static value or a variable to be assigned dynamically during execution.

• R : S × S → R is the set of transition rates ♦

The semantics of the execution of an actor machine are as follows. R describes the rates

of transitioning from one state to another. To achieve the Markov property, the time spent

waiting to exit a state is exponentially distributed, with an exponential rate parameter that

is proportional to the sum of the rates of all exiting transitions. An actor carries out a state’s

4Unless otherwise noted, we use the first parameter of an action to represent the executing entity. For
queries, this allows different responses for different queriers. For commands, this allows restrictions on the
entities permitted to execute.

44

action upon entering the state (possibly after a pause, e.g., an action to submit a comment

to a forum may pause for several minutes while the message is composed).

Example actor machines are demonstrated in Figure 3a. Here, we classify actors into

administrators and users. Users generate documents and occasionally request that a document

be declassified for public consumption, while administrators approve declassification requests.

Due to the labeled rates on this machine, an administrator is expected to approve a declassi-

fication request on average in one day, and roughly 10% of users request a declassification

each month. Transitions labeled with ∞ occur immediately.

To describe dependencies between actions taken by one or more actors, we make use of the

notion of a constrained access control workflow, which organizes the execution of sequences

of actions. Intuitively, the goal of this structure is to approve or deny a candidate action

returned from an actor machine on the basis of actions taken by other actors in the system.

Formally, this structure specifies the partial order describing action dependence as well as

constraints that restrict the set of users that can execute various actions.

Definition 16 (Constrained Workflow). Let S be an access control system and A a set of

access control actor machines for S. We say that W = 〈A,≺, C〉 is a constrained access

control workflow over the system S, where:

• A is the set of actions from S

• ≺ ⊂ A × A is the partial order describing action dependencies. If a1 ≺ a2, then a2

depends on a1, and a2 cannot be executed until after an execution of a1.

• C is the set of constraints, each of the form 〈ρ, a1, a2〉 (with a1, a2 ∈ A). Here, ρ is a

binary operator of the form A× A→ {true, false}. For example, 〈6=, a1, a2〉 says that

a1 and a2 must be executed by different actors. ♦

Figure 3b displays a constrained workflow with two tasks (disjoint subsets of the workflow):

document creation and declassification. The former is a degenerate task containing a single

unconstrained action. Declassifying a document, on the other hand, requires the approval of

two different administrators. The workflow allows administrators to approve declassification

only after the request, and the approvals must be executed by distinct administrators.

The actor-based invocation mechanism combines the components discussed above; it

45

Approve
Declassify

Co-
approve

Declassify

Create
Document

Request
Document
Declassify

2 d.�1

0.1 mo.�1

1 d.�1

1

1

UsersAdministrators

1 d.�1

2 d.�1

(a) Actor machines

D: Co-
approve

Declassify

C:
Approve

Declassify

B:
Request

Declassify

Constraints:

A: Create
Document

{h6=, C, Di}

(b) Workflow

Figure 3: Example invocational structures

refines the set of traces included in an access control workload (Definition 12) using a

constrained workflow (an instance of Definition 16), a set of actor machines (each an instance

of Definition 15), and a method for extracting the active actor machines from an access

control state.

Definition 17 (Actor-Based Invocation). Let S = 〈Γ,Ψ, Q〉 be an access control system. We

say that IS = 〈W,A,M〉 is a constrained, actor-based access control invocation mechanism

over the system S, where:

• W is a constrained workflow over S

• A is a set of actor machines over S

• M : Γ → ℘ (A) is the actor machine liveness function (i.e., a function that maps each

access control state to the set of actor machines active in that state) ♦

Workload traces are generated from this structure by combining the elements discussed

above. In a given time step, each actor is consulted for a candidate action. If that actor

returns an action, its missing parameters are filled in. Then, the action is checked against

each live workflow instance, including a new, blank workflow instance if needed. If allowed,

the action is added to the trace, and the next actor is consulted. If any action in a timestep

would add or remove an actor, the corresponding change is mirrored in the set of currently

46

active actor machines.

4.4.2 Calculating the Costs of Traces

Once representative workload traces are generated and mapped into candidate system traces,

the second main task of cost analysis is calculating the costs of these traces. In order to do so,

the analyst must first identify the relevant cost measures—that is, what types of costs should

be included in consideration when determining expected costs. There is a wide variety of cost

measures that one may consider, as discussed in Section 3.4.2 These can include any of the

various computational, storage, personnel, and throughput costs associated with maintaining

a particular implementation of a workload in a particular access control system.

Due to this wide variety among cost measures and the vast differences among applications

requiring access control systems, which of these cost measures should be considered in a

particular analysis is very application-dependent: administrators of a high-security military

access control system will likely value the cost of trained, security-cleared labor much more

highly than any computational cost, while the access control system for a lightweight web

server may have a much greater concern for computational resources. The considered measures

should be descriptive of what types of costs are important to the analysis, while also enabling

the analyst to easily label actions with costs. For example, while “operational cost per day”

may be representative of evaluation goals in industry, it is hard to assign costs in this measure

to any access control action. A measure such as “average administrative personnel-hours,”

on the other hand, is more easily quantified and enables the same types of analyses. In this

dissertation, we do not commit to a particular cost measure, but rather develop a framework

that operates on any measure satisfying a number of simple properties.

Definition 18 (Cost Measure). A cost measure is defined by the ordered abelian monoid

C = 〈C, •,�〉, where C is the set of costs, • is the closed, associative, commutative accrual

operator over C with identity 0C , and � is a partial order over C such that ∀a, b ∈ C : a �
a • b ∧ b � a • b. ♦

Definition 18 can be used to encode a variety of interesting access control measures,

including several of those noted in a recent NIST report on the assessment of access control

47

systems [63]. Costs like “steps required for assigning and dis-assigning user capabilities” and

“number of relationships required to create an access control policy” can be represented using

the cost measure 〈N,+,≤〉. Our notion of measure is general enough to represent many other

types of costs as well. Measures for human work such as “personnel-hours per operation”

and “proportion of administrative work to data-entry work” can be represented using the

cost measures 〈Z+,+,≤〉 and 〈Z+ × Z+,+,≤〉, respectively. Maximum memory usage can

be represented using 〈N,max,≤〉.

In order to accomplish the aggregation step and calculate the total cost of a particular

implementation, more information is needed than simply the measure; the framework needs

a way of calculating the cost of executing a particular action within an implementing system.

Sometimes, the cost of any execution of an action is constant (e.g., creating a document

requires a constant amount of I/O). In other cases, the parameters of the action affect the

cost (e.g., adding a user is more expensive for classes of users with greater capabilities). In

addition, some costs depend on the current state (e.g., granting access to all documents with

a certain property may require inspecting each document, a procedure that grows in cost

with the number of documents currently in the system). Thus, in the general case, a cost

function must map each (action, parameterization, state) tuple to an element of the relevant

cost measure.

Definition 19 (Cost Function). Let S = 〈Γ,Ψ, Q〉 be an access control system, A a set of

actions from S, P ∗a the set of parameter spaces for a ∈ A, and C = 〈C, •,�〉 a cost measure.

A cost function for C in S is a function `SC : A × P ∗a × Γ → C, which maps each action a,

parameterization p∗a = 〈p1, p2, . . . , pj〉, and state γ to the member of the cost set C that best

represents the costs associated with executing a(p1, p2, . . . , pj) in γ. ♦

Thus, given system S = 〈Γ,Ψ, Q〉 and a trace 〈γ0, a1 ◦ a2 ◦ . . .〉 from S, say that the state

of the system after executing ai is γi = next(γi−1, ai). Then, given measure C = 〈C, •,�〉,
and cost function ` for C in S, the cost of the first i actions in trace A is described by the

following recurrence.

ci =





0C i = 0

ci−1 • `(ai, γi) i > 0

48

In addition to the cost functions that are of specific interest to the analyst, our cost

analysis simulation process also requires the specification of each system’s time function.

The time function is a cost function with measure 〈R,+,≤〉, describing the duration of time

required to complete each access control action. This time corresponds to the duration that

an actor pauses before completing an action when entering a state in the actor machine.

4.4.3 Simulation Procedure

Once the analyst has defined the trace generation structures, a set of cost measures, and

cost functions for each candidate system, she can conduct cost analysis via simulation. Our

main simulation procedure, ACCostEvalSim (shown in Algorithm 1), conducts a single,

randomized run of the system. First, the workload’s initial state is chosen by sampling from

a distribution provided by the analyst, and this initial workload state is translated into an

initial state for each candidate system. An actor machine is then launched for each actor in

the workload’s invocation mechanism. At each time step, the clock is incremented and each

actor machine is inspected for the next action, as per the execution semantics of the actor

machine (Section 4.4.1).

Since a workload’s invocation mechanism includes a constrained workflow, we must

consider an actor machine’s actions with respect to those that have been completed thus far

within the related task. This includes not only ensuring that a particular action is allowed

by the workflow, but also that it will not render the remaining actions in a task impossible.

For instance, if actions a1 and a2 must be completed by different actors, and actor α is the

only user able to complete a2, then α should not be allowed to carry out action a1 since this

would leave no possible actor to carry out a2. The general case of this problem is known as

the workflow satisfiability problem (WSP) [24, 28,117].

Thus, if the actor machine returns an action at a given time step, an instance of WSP is

instantiated and solved by procedure WSat to ensure that the actor can execute the action

without rendering the constrained workflow instance unsatisfiable. For independent actions

(i.e., those in {a1 | @ a2.(a2 ≺ a1)}), a new workflow instance is created and added to the pool

of partially-executed workflows. Otherwise, the action is taken in the context of an existing

49

Algorithm 1 ACCostEvalSim: A simulation procedure for application-aware cost analysis

of access control
Input: Y, set of candidate systems
Input: Σ, set of implementations (∀S ∈ Y : σS ∈ Σ)
Input: C, set of cost measures (C = 〈R,+,≤〉 ∈ C)
Input: L, set of cost functions (∀S ∈ Y, C ∈ C : `SC ∈ L)
Input: I = 〈W,A,M〉, invocation mechanism
Input: γ0 ∈ ΓW , start state
Input: Tf , goal time
Input: t, time step

procedure ACCostEvalSim(Y,Σ,C, L, I, γ0, Tf , t)
S← {} . Initialize set of running AC systems
T ← 0 . Initialize master clock
for all S ∈ Y do . Initialize each system’s state

S← S ∪ {S}
γS ← σS(γ0) . Initial state of system S
for all C ∈ C do

cSC ← 0C . Total cost of system S in C
AS ←M(γ0) . Set of running actor machines
for all α ∈ AS do

Tα ← 0 . Per-actor clocks

while T ≤ Tf do . Main loop
T ← T + t . Increment clock
for all S ∈ S do . Each AC system

K = {} . Clear action list
for all α ∈ AS do . Choose next actions

if Tα < T then . Check actor busy state
〈k, Pk〉 ← nextAction(α)
if k 6= ∅ ∧WSat(k, α, Pk) 6= ∅ then

Tα ← T + `SC (k) . Busy state
K ← K ∪ {〈k, α, Pk〉} . Save action

for all 〈k, α, Pk〉 ∈ K do . Compile costs
〈k′, P ′k〉 ← σS(〈k, Pk〉) . Translate workload action to system action
for all C ∈ C do

cSC ← cSC •C `SC (〈k′, P ′k, γS〉)
if k is a command then

γS ← next(γS , k′(P ′k)) . Update state

for all S ′ ∈ Y do
Output 〈S ′, cS′

C1 , . . . , c
S′

Cm〉

workflow instance that is already in progress. After all workload actions for a time step are

collected (and verified to be satisfiable by WSat), they are translated into system actions,

their changes are effected in the systems’ states, and their costs are accrued. Finally, the set

of actors is adjusted according to changes in the state. Once the goal time is reached, the

total costs are output.

50

To address the requirement of Tractability , we prove that ACCostEvalSim is fixed-

parameter tractable (FPT) when workflow constraints are user-independent.5 We first define

FPT; for more details on parameterized complexity, see, e.g., [117].

Definition 20 (Fixed-Parameter Tractable). A parameterized problem is a decision problem in

which inputs are of the form 〈x, k〉, where k is the parameter of the problem. A parameterized

problem is fixed-parameter tractable if it can be decided for input 〈x, k〉 in running time

f(k)× |x|O(1), where f(k) is some function depending only on k. ♦

Theorem 1. Assuming that workflow constraints are restricted to user-independent con-

straints, the simulation procedure ACCostEvalSim is fixed-parameter tractable in the number

of actions in the largest task (i.e., the size of the largest disjoint subgraph of the workflow

graph).

Proof. Our proof is by observation of Algorithm 1. The first loop (for all S ∈ Y) handles

assignments and initializations. The final loop (for all S ′ ∈ Y) outputs results. The main

loop, then, contains all of the computationally intensive code.

The expensive section of the algorithm starts after several nested loops, adding multi-

plicative factors for number of time steps (Tf/t), number of systems (|Y|), and number of

actors. The steps with computational overhead are nextAction, which polls an actor machine

for the next action, and WSat, which calculates whether a particular action can be taken by

an actor without causing any workflow instances to become unsatisfiable (i.e., WSat solves

an instance of the WSP problem).

By previous work [24, 117], WSP can be solved in O(C · Aα), where C is the number

of constraints, A is the maximum number of actors, and α is the number of steps in the

largest task (i.e., the size of the largest disjoint subgraph of the workflow graph). This

greatly exceeds nextAction, which executes a single step in a continuous-time probabilistic

machine (polynomial in actor machine size). Thus, the dominant factor in the complexity of

Algorithm 1 is O(S · C · T · Aα+1), where S = |Y| is the number of systems and T = Tf/t

is the number of time steps to simulate. Since T is an input, this means the algorithm is

5Prior work has shown that most practically-relevant constraints are user-independent, including separation
of duty and all constraints specified in the ANSI RBAC standard [24].

51

pseudo-polynomial in T and FPT in α. Since FPT is a generalization of pseudo-polynomial

time [62], Algorithm 1 is FPT, thus satisfying Tractability .

4.5 CASE STUDY

In this section, we in which we demonstrate the suitability analysis process using our

framework. This case study explores the workload based on an online management system for

an academic conference first discussed in Section 3.2, including paper submissions, reviews,

and discussion. The specification of the workload is based on the group-centric secure

information sharing model [71, 73], which we will discuss in greater detail in Chapter 6.

Our candidate systems include two variants of role-based access control [36, 103, 104] and

traditional UNIX user-group-other permissions [42]. The qualitative phase is conducted using

parameterized expressiveness [59], and the quantitative phase is conducted using several cost

measures that indicate how naturally the systems can implement the workload.

4.5.1 Workload and Candidate Systems

The workload’s operational component (i.e., the abstract system that describes the appli-

cation’s requirements) is based on a group-based program committee workload. Users can

join and leave groups, and objects can be added and removed from groups. The log of these

events is used to decide whether a user can access an object. Users who perform a strict join

to a group receive access only to objects added after they join, whereas a liberal join grants

immediate access to all existing objects. A strict leave rescinds all of the user’s accesses

within the group; a liberal leave allows the user to retain access. All objects (i.e., papers,

reviews, discussion messages) are added to groups via liberal add, and thus whether a user

can access an object in a group is determined solely by the relative times the join and add

took place and the variants of join/leave that was performed.

Definition 21 (PC Workload Operational Component). The operational component of the

program committee (PC) workload is defined as follows. States in PC have the following

52

fields.

• S, the set of subjects

• O, the set of objects

• G, the set of groups

• T , the set of times

• >T , the total order on T

• Time ∈ T , the current time

• StrictJoin ⊆ S ×G× T , the record of strict join events

• LiberalJoin ⊆ S ×G× T , the record of liberal join events

• StrictLeave ⊆ S ×G× T , the record of strict leave events

• LiberalLeave ⊆ S ×G× T , the record of liberal leave events

• LiberalAdd ⊆ O ×G× T , the record of liberal add events

Commands in PC consist of the following forms.

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• strictJoin(s, g): Remove Time(t), add StrictJoin(s, g, t), Time(t+ 1)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), Time(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), Time(t+ 1)

• liberalLeave(s, g): Remove Time(t), add LiberalLeave(s, g, t), Time(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), Time(t+ 1)

A request in PC is of the form auth(s, o, g), which asks whether subject s has access to

object o through group g. Other queries include Member, which asks whether a particular

subject is currently a member of a particular group, Assoc, which asks whether a particular

object is currently associated with a particular group. The entailments of these queries are

defined as follows. In the case of auth, authForward applies in cases where the subject

53

joined the group before the object was added, and authBackward applies when the subject

joined after the object was added.

• Join(s, g, t) , StrictJoin(s, g, t) ∨ LiberalJoin(s, g, t)

• Leave(s, g, t) , StrictLeave(s, g, t) ∨ LiberalLeave(s, g, t)

• Member(s, g) , ∃t1.(
Join(s, g, t1) ∧
∀t2.(

Leave(s, g, t2)⇒ t1 > t2

)

)

• Assoc(o, g) , ∃t1.(LiberalAdd(o, g, t1))

• authForward(s, o, g) , ∃t1, t2.(
Join(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
t2 > t1 ∧
∀t3.(

Leave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2) ∧
StrictLeave(s, g, t3)⇒ t2 > t3

)

)

• authBackward(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
t1 > t2 ∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3

)

)

• auth(s, o, g) , authForward(s, o, g) ∨ authBackward(s, o, g) ♦

54

These capabilities naturally satisfy the requirements of the academic conference. When

the program committee is formed, a discussion group is created, and each reviewer joins.

Each paper is submitted to an author group, which holds the objects the author can see

(initially, only the submitted paper). During the reviewing period, a review group is created

for each paper, which the paper’s reviewers join. Discussion about papers in contention takes

place in the discussion group. When the group discusses a paper with which a reviewer has

a conflict of interest, this reviewer will temporarily leave the discussion group (executing

liberal leave to retain previous accesses and strict join to return without gaining access to

the conflicted discussion).

We consider several role- and group-based candidate systems for implementing the

conference workload. As such systems provide a level of indirection between subjects and

objects, they are more likely to be effective at implementing the group-based conference

workload than systems without this level of indirection (e.g., access control list systems). We

choose widely-deployed candidate systems from both the industrial and consumer spaces,

making them likely candidates for developing the type of system described by our conference

workload. We evaluate RBAC0 , RBAC1, and ugo.

RBAC0 is the most basic role-based access control system in the RBAC standard [103,104].

States contain the set of users U , set of roles R, and set of permissions P , as well as relations

between them: UR ⊆ U ×R describes users’ membership in roles, and PA ⊆ R×P describes

permissions’ assignment to roles. A user u is authorized to permission p if and only if

∃r.(〈u, r〉 ∈ UR ∧ 〈r, p〉 ∈ PA). Commands allow adding to and removing from all of U , R,

P , UR, and PA. RBAC0 was formally defined in Example 2.

While RBAC0 grants a level of indirection between users and permissions, RBAC1 includes

a hierarchical structure over roles to further extend this abstraction. RBAC1 includes all

state elements of RBAC0 as well as the role hierarchy RH ⊆ R × R, a binary relation

over R whose transitive closure is the Senior partial order (we sometimes designate the

transitive, reflexive closure ≥). In hierarchical RBAC, a user inherits all permissions from

roles junior to roles she is explicitly assigned. That is, a user u is authorized to permission p

if ∃r1, r2.(〈u, r1〉 ∈ UR ∧ 〈r2, p〉 ∈ PA ∧ r1 ≥ r2). Commands allow manipulation of all state

elements.

55

Definition 22 (RBAC1 System). The hierarchical role-based system, RBAC1, is based on

the system of the same name in the RBAC standard [103,104]. States in RBAC1 have the

following fields.

• U , the set of users

• R, the set of roles

• P , the set of permissions

• UR ⊆ U ×R, the user-role relation

• PA ⊆ R× P , the role-permission relation

• RH ⊆ R×R, a partially ordered role hierarchy (written ≥ in infix notation)

Commands in RBAC1 consist of the following forms.

• addU(u): Add U(u)

• delU(u): Remove U(u)

• addR(r): Add R(r)

• delR(r): Remove R(r)

• addP (p): Add P (p)

• delP (p): Remove P (p)

• assignUser(u, r): Add UR(u, r)

• revokeUser(u, r): Remove UR(u, r)

• assignPermission(r, p): Add PA(r, p)

• revokePermission(r, p): Remove PA(r, p)

• addHierarchy(r1, r2): Add RH(r1, r2)

• removeHierarchy(r1, r2): Remove RH(r1, r2)

A request in RBAC1 is of the form auth(u, p), which asks whether user u is granted

permission p. Other queries include UR, which asks whether a particular user is currently a

member of a particular role, PA, which asks whether a particular permission is currently

assigned to a particular role, R, which asks whether a particular role exists, RH, which asks

whether a particular role is the direct senior of another role, and Senior, which asks whether

a particular role is a (general) senior of another role. The entailments of UR, PA, R, and

56

RH are defined simply by inspecting the corresponding state elements. The entailments of

the remaining queries are defined as follows.

• Senior(r1, r2) , RH(r1, r2) ∨ ∃r3.(Senior(r1, r3) ∧ Senior(r3, r2))

• auth(u, p) , ∃r1, r2.(UR(u, r1) ∧ PA(r2, p) ∧ (r1 = r2 ∨ Senior(r1, r2))) ♦

Finally, the ugo system [42] is based on the traditional user, group, other permission

system in UNIX. Thus, if RBAC0 and RBAC1 fill the need for a commonly-used industrial

standard system, ugo fills the role of a common consumer system. In ugo, objects can be

associated with an owner user and owner group, and permissions are then granted to the

user, the group, or everyone else.

Definition 23 (ugo System). UNIX’s traditional user-group-other discretionary access control

system, ugo, is defined as follows. States in ugo have the following fields.

• S, the set of subjects

• O, the set of objects

• G, the set of groups

• R = {read, write, execute}, the set of rights

• Member ⊆ S ×G, the group-membership relation

• Owner : O → S, the object-ownership record

• Group : O → G, the object-group-membership record

• OwnerRight ⊆ O ×R, the granted owner rights for objects

• GroupRight ⊆ O ×R, the granted group rights for objects

• OtherRight ⊆ O ×R, the granted global rights for objects

Commands in ugo consist of the following forms.

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• addG(g): Add G(g)

• delG(g): Remove G(g)

57

• changeOwner(o, s): Set Owner(o) = s

• changeGroup(o, g): Set Group(o) = g

• grantOwner(o, r): Add OwnerRight(o, r)

• revokeOwner(o, r): Remove OwnerRight(o, r)

• grantGroup(o, r): Add GroupRight(o, r)

• revokeGroup(o, r): Remove GroupRight(o, r)

• grantOther(o, r): Add OtherRight(o, r)

• revokeOther(o, r): Remove OtherRight(o, r)

A request in RBAC1 is of the form auth(s, o, r), which asks whether subject s has access

to object o with right r. Other queries include G, which asks whether a particular group

exists, Member, which asks whether a particular subject is currently a member of a particular

group, and Group, which asks whether a particular object is currently assigned to a particular

group. The entailments of these queries are defined simply by inspecting the corresponding

state elements. The entailment of auth is defined as follows, where OwnerAccess applies if

authorization should consider the owner rule, GroupAccess applies if authorization should

consider the group rule, and OtherAccess applies if the authorization should consider the

other rule.

• OwnerAccess(s, o) , Owner(o, s)

• GroupAccess(s, o) , ¬Owner(o, s) ∧ ∃g1.(Group(o, g1) ∧Member(s, g1))

• OtherAccess(s, o) , ¬Owner(o, s) ∧ ∀g1.(¬Group(o, g1) ∨ ¬Member(s, g1))

• auth(s, o, r) ,

OwnerAccess(s, o) ∧OwnerRight(o, r) ∨
GroupAccess(s, o) ∧GroupRight(o, r) ∨
OtherAccess(s, o) ∧OtherRight(o, r) ♦

4.5.2 Qualitative Analysis

In this section, we describe the qualitative analysis we conducted to ensure that each of our

candidate systems is capable of satisfying the PC workload. Expressiveness reductions and

proofs that are not detailed here are available in [47]. In this case study, we consider a fixed

58

notion of expressiveness reduction based on parameterized expressiveness (PE) [59] that has

been shown to satisfy the implementability requirements [43]. In particular, we require a PE

reduction that satisfies the following properties.

Correctness is a bare minimum requirement for an implementation in parameterized

expressiveness. Intuitively, correctness says the following: a workload state’s image in a

system answers mapped queries exactly as the original state answers the original queries; and

the same system state is reached by executing a workload action and mapping the result into

the system or by mapping the initial state and executing the action’s image in the system.

Definition 24 (Correctness). Given a workload, W = 〈A, T 〉, a system S, and an imple-

mentation 〈σΓ, σΨ, σQ〉, the implementation is correct if the following conditions hold.

• σΓ preserves σQ: For every workload state γ, Th(γ) = σQ(Th(σΓ(γ)))

• σΨ preserves σΓ: For every workload state γ and command ψ, σΓ(next(γ, ψ)) =

terminal(σΓ(γ), σΨ(ψ, σΓ(γ))) ♦

Next, AC-preservation says that σQ must map authorization request r from workload

state γ to system state σΓ(γ) directly, checking whether σΓ(γ) ` r. This forces the workload

and system to have identical sets of requests, which is not always the case (e.g., access

matrix systems typically use subject-object-right triples, while role-based systems often use

user-permission pairs). Weak AC-preservation captures the spirit of AC-preservation (ensures

the use of the authorization procedure of the system) but allows us to define a request

transformation function to map workload requests to system requests.

Definition 25 (Weak AC-Preservation). Given a workload, W = 〈A, T 〉, a system, S,

and an implementation, 〈σΓ, σΨ, σQ〉, σQ is weak AC-preserving if there exists a request

transformation f : RA → RS such that for any workload state γ, workload request r,

and system request r′, the following conditions hold. This allows us to answer a workload

authorization using the system’s authorization procedure, even if their requests use different

formats. Thus, we allow the use of a request transformation function f , so we can ask

auth(f(r)) for some function f .

• σQ(r, σΓ(γ)) = true⇒ σΓ(γ) ` f(r)

• σΓ(γ) ` r′ ⇒ ∃r.(σQ(r, σΓ(γ)) = true ∧ f(r) = r′) ♦

59

Finally, a safe implementation is one in which intermediate states through which the sys-

tem travels while implementing a single workload command do not add or remove authorized

requests except as determined to be necessary by the start and end states.

Definition 26 (Safety). Given a workload,W = 〈A, T 〉, a system, S, and an implementation,

〈σΓ, σΨ, σQ〉, the implementation is safe if, for any workload command ψ, and system state

γ0 if executing σΨ(ψ, γ0 results in the system state sequence 〈γ1, . . . , γk〉, then for all γi in

the sequence:

• Auth(γi) \ Auth(γ0) ⊆ Auth(γk) \ Auth(γ0), and

• Auth(γ0) \ Auth(γi) ⊆ Auth(γ0) \ Auth(γn). ♦

We implement the conference workload in RBAC1 (role-based access control with role

hierarchy) using the following construction techniques. Members who strict join a group are

granted a subset of the permissions of older members, a pattern we can mirror naturally using

a role hierarchy. In a way, older members “inherit” access to all added objects; new members

only receive access to objects added after they joined. We thus create a chain in the role

hierarchy for each group. When a group is created, the top of the chain is created in RBAC1.

We name the top role of the chain after the group, and use this to correlate chains to groups.

When an object is added to a group, it is available to all members, and thus the

corresponding permission in RBAC1 is added to the bottom of the chain, where access to it

will be inherited upward (to older members). When a user liberal joins a group, they gain

access to all existing objects, and thus we add this user in RBAC1 to the top of the role chain,

where she will inherit permission corresponding to each object. When a new user strict joins

a group, they create a new “view” of the group, since they are not authorized to any existing

objects. Thus, we create a new RBAC1 role (named arbitrarily) and link it to the bottom of

the group’s chain.

When a user strict leaves a group, she is removed from any roles in the group’s role

chain, losing access to all objects in the group. When a user liberal leaves a group, on

the other hand, she should retain access to the current set of objects. Thus, we create an

orphan role, which does not inherit any permissions from other roles, and from which no

users inherit permissions. Then, the leaving user is added to the orphan role, and the role

60

s2

o1, o2

s1

o1

s3

o2

s4 Executed operations
s1 s2 o1 s3 s4 o2 s2

s.join s.join l.add s.join l.join l.add l.leave

Time

Figure 4: An example role hierarchy implementing the PC workload in RBAC1

is granted access to the group’s objects to which the user currently has permission. Then,

when the user is removed from the main role chain, she does not lose accesses. We give a

demonstrative example of the role hierarchy structure in Fig. 4. This example displays each

of the aforementioned operations, and shows an orphan role created for s2 after a liberal

leave.

Using this technique, we can implement the conference workload in RBAC1 while preserving

correctness, weak AC-preservation, and safety.

Theorem 2. There exists a correct, weak AC-preserving, and safe implementation of the

conference workload in RBAC1.

Proof. We present the implementation, 〈σΓ, σΨ, σQ〉, and show that σΨ preserves σΓ and

preserves safety, σΓ preserves σQ, and σQ is weak AC-preserving.

First, σΓ maps each PC state 〈S,O,G, T, T ime, StrictJoin, LiberalJoin, StrictLeave,
LiberalLeave, LiberalAdd〉 to an RBAC1 state 〈U,R, P, UR, PA,RH〉. This mapping is

described as follows.

state_mapping(γ)

Let WildRoles = {}

Let UR = {}

61

Let PA = {}

Let RH = {}

for each (S(s) ∈ γ)

output(U(s))

for each (G(g) ∈ γ)

InitGroup(γ, g, RH, WildRoles)

for each (O(o) ∈ γ)

output(P(o))

Let Records = sortByTime(StrictJoin ∪ LiberalJoin ∪
StrictLeave ∪ LiberalLeave ∪
LiberalAdd)

for each (Record ∈ Records)

If ∃ s, g, t.(Record = <s, g, t> ∧
StrictJoin(s, g, t) ∈ γ)

ProcessSJoin(γ, s, g, UR, RH, WildRoles)

else If ∃ s, g, t.(Record = <s, g, t> ∧
LiberalJoin(s, g, t) ∈ γ)

ProcessLJoin(γ, s, g)

else If ∃ s, g, t.(Record = <s, g, t> ∧
StrictLeave(s, g, t) ∈ γ)

ProcessSLeave(γ, s, g, UR, RH)

else If ∃ s, g, t.(Record = <s, g, t> ∧
LiberalLeave(s, g, t) ∈ γ)

ProcessLLeave(γ, s, g, UR, PA, RH, WildRoles)

else If ∃ o, g, t.(Record = <o, g, t> ∧
LiberalAdd(o, g, t) ∈ γ)

ProcessLAdd(γ, o, g, PA, RH)

endif

62

outputSet(UR ∪ PA ∪ RH)

InitGroup(γ, g, RH, WildRoles)

output(R(g))

<Top , Bottom > = nFreshConst (2, Consts(γ) ∪ WildRoles ,

Univ)

WildRoles = WildRoles ∪ {Top , Bottom}

output(R(Top))

output(R(Bottom))

RH = RH ∪ {<Top , g>, <g, Bottom >}

ProcessSJoin(γ, s, g, UR, RH, WildRoles)

NewBottom = nFreshConst (1, Consts(γ) ∪ WildRoles ,

Univ)

WildRoles = WildRoles ∪ {NewBottom}

OldBottom = FindBottom(g, RH)

output(R(NewBottom))

RH = RH ∪ {<OldBottom , NewBottom >}

UR = UR ∪ {<s, NewBottom >}

FindBottom(r, RH)

If ∃ q.(<r, q> ∈ RH)

return FindBottom(q, RH)

else

return r

endif

ProcessLJoin(γ, s, g)

UR = UR ∪ {<s, g>}

63

ProcessSLeave(γ, s, g, UR, RH)

LeaveDown(s, g, UR, RH)

LeaveOrphans(s, g, UR, RH)

LeaveDown(u, r, UR, RH)

UR = UR \ {<u, r>}

If ∃ q.(<r, q> ∈ RH)

LeaveDown(u, q, UR, RH)

endif

LeaveOrphans(u, g, UR, RH)

for each (Orphan in {r | ∃ Head.(<Head , g> ∈ RH ∧
<Head , r> ∈ RH)})

UR = UR \ {<u, Orphan >}

ProcessLLeave(γ, s, g, UR, PA, RH, WildRoles)

Orphan = nFreshConst (1, Consts(γ) ∪ WildRoles , Univ)

WildRoles = WildRoles ∪ {Orphan}

output(R(Orphan))

Permissions = PermsInChain(s, g, UR, PA, RH)

Top = FindTop(g, RH)

for each (Permission ∈ Permissions)

PA = PA ∪ {<Orphan , Permission >}

UR = UR ∪ {<s, Orpan >}

RH = RH ∪ {<Top , Orphan >}

LeaveDown(s, g, UR, RH)

PermsInChain(u, r, UR, PA, RH)

If <u, r> ∈ UR

return PermsBelow(r, PA, RH, {})

64

else If ∃ q.(<r, q> ∈ RH)

return PermsInChain(u, q, UR, PA, RH)

else

return {}

endif

PermsBelow(r, PA, RH, Perms)

Perms = Perms ∪ {p | <r, p> ∈ PA}

If ∃ q.(<r, q> ∈ RH)

return PermsBelow(q, PA, RH, Perms)

else

return Perms

endif

FindTop(r, RH)

If ∃ q.(<q, r> ∈ RH)

return FindTop(q)

else

return r

endif

ProcessLAdd(γ, o, g, PA, RH)

Bottom = FindBottom(g, RH)

PA = PA ∪ {<Bottom , o>}

65

The query mapping, σQ, is defined as follows.

σQ(Member(s, g), γ) = UR(s, g) ∈ γ ∨ ∃r.(UR(s, r) ∈ γ ∧ Senior(g, r) ∈ γ)

σQ(Assoc(o, g), γ) = ∃r.(PA(r, o) ∈ γ ∧ Senior(g, r) ∈ γ)

σQ(auth(s, o, g), γ) = ∃r1, r2.(UR(s, r1) ∈ γ ∧ PA(r2, o) ∈ γ∧

(r1 = r2 ∨ Senior(r1, r2) ∈ γ)∧

∃r3.(Senior(r3, g) ∈ γ ∧ Senior(r3, r2) ∈ γ))

Let γ be an arbitrary PC state and v = auth(s, o, g) an arbitrary PC request, and let

f(auth(s, o, g)) = auth(s, o) be a request transform. Assume σQ(v, σΓ(γ)) = true. Then, by

σQ, ∃r1, r2.(r1 ≥ r2 ∧ UR(s, r1) ∈ Th(σΓ(γ)) ∧ PA(r2, o) ∈ Th(σΓ(γ))). Thus, by RBAC1’s `
relation, σΓ(γ) ` auth(s, o).

Now let γ be an arbitrary PC state, v′ = auth(u, p) an arbitrary RBAC1 request, and

f the request transform defined above. Assume σΓ(γ) ` v′. Then, ∃r1, r2.(r1 ≥ r2 ∧ UR(u,

r1) ∈ Th(σΓ(γ)) ∧ PA(r2, p) ∈ Th(σΓ(γ))). Furthermore, since σΓ only assigns permissions

to role which correspond to some group, r2 must exist either in the hierarchy below a role

corresponding to a group, or as an orphan node attached to such a role: ∃r3.(Senior(r3,

g) ∈ Th(σΓ(γ)) ∧ Senior(r3, r2) ∈ Th(σΓ(γ))). Finally, f(auth(u, p, g)) = auth(u, p),

and σQ(auth(u, p, g), σΓ(γ)) = true. Thus, σQ is weak AC-preserving with transform

f(auth(s, o, g)) = auth(s, o).

We show that σΓ preserves σQ (for all PC states γ, Th(γ) = σQ(Th(σΓ(γ)))) by contra-

diction. Assume that there is some PC state γ and query q such that the value of q in γ is

the opposite of the value of σQ(q) in σΓ(γ). We show that, for each of the query forms of PC,

this assumption leads to contradiction.

• Member Assume γ `Member(s, g) and σΓ(γ) 0 σQ(Member(s, g)). Then, ∃t1.(Join(s,

g, t1) ∈ Th(γ)∧ ∀t2.(Leave(s, g, t2) ∈ Th(γ)⇒ t1 > t2)) (s has joined g and not left). By

σΓ, if the Join is a LiberalJoin, then UR(s, g) ∈ Th(σΓ(γ)). If the Join is a StrictJoin,

then ∃r1.(UR(s, r1) ∈ Th(σΓ(γ)) ∧ Senior(g, r1) ∈ Th(σΓ(γ))). By σQ, in either case,

σQ(Member(s, g), σΓ(γ)) = true, which is a contradiction on the assumption that

σΓ(γ) 0 σQ(Member(s, g)).

66

Assume instead that γ 0 Member(s, g) and σΓ(γ) ` σQ(Member(s, g)). Then, either

∃t1.(Leave(s, g, t1) ∈ Th(γ) ∧ ∀t2.(Join(s, g, t2) ∈ Th(γ) ⇒ t1 > t2)) (s has left g and

not returned), or ∀t1.(Join(s, g, t1) /∈ Th(γ)) (s has not joined g). By σΓ, in either case,

UR(s, g) /∈ Th(σΓ(γ)) ∧ ∀r1.(Senior(g, r1) /∈ Th(σΓ(γ)) ∨ UR(s, r1) /∈ Th(σΓ(γ))). By

σQ, σQ(Member(o, g), σΓ(γ)) = false, which is a contradiction on the assumption that

σΓ(γ) ` σQ(Member(s, g)).

• Assoc Assume γ ` Assoc(o, g) and σΓ(γ) 0 σQ(Assoc(o, g)). Then, ∃t1.(LiberalAdd(o,

g, t1) ∈ Th(γ)) (o was added to g). By σΓ, ∃r1.(Senior(g, r1) ∈ Th(σΓ(γ)) ∧ PA(r1,

o) ∈ Th(σΓ(γ))). By σQ, σQ(Assoc(o, g), σΓ(γ)) = true, which is a contradiction on the

assumption that σΓ(γ) 0 σQ(Assoc(o, g)).

Assume instead that γ 0 Assoc(o, g) and σΓ(γ) ` σQ(Assoc(o, g)). Then,

∀t1.(LiberalAdd(o, g, t1) /∈ Th(γ)) (o has not added to g). By σΓ, ∀r1.(Senior(g,

r1) /∈ Th(σΓ(γ)) ∨ PA(r1, o) /∈ Th(σΓ(γ))). By σQ, σQ(Assoc(o, g), σΓ(γ)) = false,

which is a contradiction on the assumption that σΓ(γ) ` σQ(Assoc(o, g)).

• auth Assume γ ` auth(s, o, g) and σΓ(γ) 0 σQ(auth(s, o, g)). Then, ∃t1, t2.(Join(s, g,

t1) ∈ Th(γ) ∧ LiberalAdd(o, g, t2) ∈ Th(γ) ∧ ∀t3.(StrictLeave(s, g, t3) ∈ Th(γ) ⇒ t1 >

t3)) (s has joined g and not strict left; o has been added to g). If t2 > t1 (the join

occurred first), then ∀t4.(Leave(s, g, t4) ∈ Th(γ) ⇒ t1 > t4 ∨ t4 > t2) (s did not leave

g between joining and o being added). If t1 > t2 (the add occurred first), then s’s join

must be a liberal join. In either case, by σΓ, ∃r1, r2.(UR(s, r1) ∈ Th(σΓ(γ)) ∧ PA(r2,

o) ∈ Th(σΓ(γ)) ∧ r1 ≥ r2 ∈ Th(σΓ(γ))) (s belongs to a role authorized to o or senior

to a role authorized to o). Connection to g is preserved by σΓ, so ∃r3.(Senior(r3,

g) ∈ Th(σΓ(γ))∧ Senior(r3, r2) ∈ Th(σΓ(γ))), either because s and o are in the hierarchy

below g or because s and o are in an “orphaned node” due to o’s removal from g. Thus,

by σQ, σQ(auth(s, o, g), σΓ(γ)) = true, which is a contradiction on the assumption that

σΓ(γ) 0 σQ(auth(s, o, g)).

Assume instead that γ 0 auth(s, o, g) and σΓ(γ) ` σQ(auth(s, o, g)). Then, either:

∀t1, t2.(Join(s, g, t1) /∈ Th(γ) ∨ LiberalAdd(o, g, t2) /∈ Th(γ)) (s has not joined g or o

has not been added to g); ∃t3.(StrictLeave(s, g, t3) ∈ Th(γ) ∧ t3 > t1) (s has since

strict left g); or s’s and o’s membership in g did not overlap in a way that caused the

67

authorization. In the final case, if t2 > t1 (the join occurred first), then ∃t4.(Leave(s, g,
t4) ∈ Th(γ) ∧ t2 > t4 > t1) (s left g before o was added). If t1 > t2 (the add occurred

first), then Join(s, g, t1) must be StrictJoin(s, g, t1). Thus, by σΓ, if ∃r1, r2.(UR(s,

r1) ∈ Th(σΓ(γ)) ∧ PA(r2, o) ∈ Th(σΓ(γ)) ∧ r1 ≥ r2 ∈ Th(σΓ(γ))) (s belongs to a role

authorized to o or senior to a role authorized to o), then it must be in conjunction with a

group other than g: ∀r3.(Senior(r3, g) /∈ Th(σΓ(γ)) ∨ Senior(r3, r2) /∈ Th(σΓ(γ))). Thus,

by σQ, σQ(auth(s, o, g), σΓ(γ)) = false, which is a contradiction on the assumption that

σΓ(γ) ` σQ(auth(s, o, g).

Thus, by contradiction, σΓ preserves σQ.

Finally, the command mapping, σΨ, is defined as follows.

addS(γ, s)

output(addU(s))

delS(γ, s)

output(delU(s))

addG(γ, g)

output(addR(g))

<Top , Bottom > = nFreshConst (2, Consts(γ), Univ)

output(addR(Top))

output(addR(Bottom))

output(addHierarchy(Top , g))

output(addHierarchy(g, Bottom))

delG(γ, g)

If ∃ Head.(RH(Head , g) ∈ γ)

DeleteDown(γ, g)

DeleteOrphans(γ, Head)

output(delR(Head))

68

DeleteDown(γ, r)

If ∃ q.(RH(r, q) ∈ γ)

DeleteDown(γ, q)

endif

output(delR(r))

DeleteOrphans(γ, Head)

for each (Orphan ∈ {Role | RH(Head , Role) ∈ γ}

output(delR(Orphan))

addO(γ, o)

output(addP(o))

strictJoin(γ, s, g)

NewBottom = nFreshConst (1, Consts(γ), Univ)

OldBottom = FindBottom(γ, g)

output(addR(NewBottom))

output(addHierarchy(OldBottom , NewBottom))

output(assignUser(s, NewBottom))

FindBottom(γ, r)

If ∃ q.(RH(r, q) ∈ γ)

return FindBottom(γ, q)

else

return r

endif

liberalJoin(γ, s, g)

output(assignUser(s, g))

69

strictLeave(γ, s, g)

LeaveDown(γ, s, g)

LeaveOrphans(γ, s, g)

LeaveDown u, r)

If UR(u, r) ∈ γ

output(revokeUser(u, r))

endif

If ∃ q.(RH(r, q) ∈ γ)

LeaveDown(γ, u, q)

endif

LeaveOrphans(γ, u, g)

for each (Orphan ∈ {r | ∃ Head.(RH(Head , g) ∈ γ ∧
RH(Head , r) ∈ γ)})

If UR(u, Orphan) ∈ γ

output(revokeUser(u, Orphan))

endif

liberalLeave(γ, s, g)

Orphan = nFreshConst (1, Consts(γ), Univ)

output(addR(Orphan))

Top = FindTop(γ, r)

for each (Permission ∈ PermsInChain(γ, s, g))

output(assignPermission(Orphan , Permission))

output(assignUser(s, Orphan))

output(addHierarchy(Top , Orphan))

LeaveDown(γ, s, g)

70

FindTop(γ, r)

If ∃ q.(RH(q, r) ∈ γ)

return FindTop(γ, q)

else

return r

endif

PermsInChain(γ, u, r)

If UR(u, r) ∈ γ

return PermsBelow(γ, r, {})

else If ∃ q.(RH(r, q) ∈ γ)

return PermsInChain(γ, u, q)

else

return {}

endif

PermsBelow(γ, r, Perms)

Perms = Perms ∪ {p | PA(r, p) ∈ γ}

If ∃ q.(RH(r, q) ∈ γ)

return PermsBelow(γ, q, Perms)

else

return Perms

endif

liberalAdd(γ, o, g)

Bottom = FindBottom(γ, g)

output(assignPermission(Bottom , o))

We prove that σΨ preserves σΓ by showing that, for any PC state γ and command ψ,

σΓ(next(γ, ψ)) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

71

Given PC state γ and command ψ, γ′ = next(γ, ψ) is the state resulting from executing

command ψ in state γ.

• If ψ is an instance of addS(s), then γ′ = γ ∪ S(s). By σΓ, this maps in RBAC1 to state

σΓ(γ′) = σΓ(γ) ∪ U(s). By σΨ, σΨ(ψ, σΓ(γ)) = addU(s). By RBAC1’s next relation,

next(σΓ(γ), addU(s)) = σΓ(γ) ∪ U(s). Thus, if ψ is an instance of addS(s), σΓ(γ′) =

terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

• If ψ is an instance of delS(s), then γ′ = γ \ (S(s) ∪ Entries(γ, s)), where Entries(γ,

s) denotes the set of all state tuples in γ involving s. By σΓ, σΓ(γ′) = σΓ(γ) \
(U(s) ∪ Entries(σΓ(γ), s)). By σΨ, σΨ(ψ, σΓ(γ)) = delU(s). By RBAC1’s next rela-

tion, next(σΓ(γ), delU(s)) = σΓ(γ) \ (U(s)∪Entries(σΓ(γ), s)). Thus, if ψ is an instance

of delS(s), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

• If ψ is an instance of addG(g), then γ′ = γ ∪ G(g). By σΓ, σΓ(γ′) = σΓ(γ) ∪ R(g) ∪
R(rtop)∪R(rbottom)∪RH(rtop, g)∪RH(g, rbottom), where rtop and rbottom are newly-created

roles. By σΨ, σΨ(ψ, σΓ(γ)) = addR(g) ◦ addR(rtop) ◦ addR(rbottom) ◦ addHierarchy(rtop,

g) ◦ addHierarchy(g, rbottom). By RBAC1’s next relation, terminal(σΓ(γ), addR(g) ◦
addR(rtop) ◦ addR(rbottom) ◦ addHierarchy(rtop, g) ◦ addHierarchy(g, rbottom)) = σΓ(γ) ∪
R(g) ∪ R(rtop) ∪ R(rbottom) ∪ RH(rtop, g) ∪ RH(g, rbottom). Thus, if ψ is an instance of

addG(g), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

• If ψ is an instance of delG(g), then γ′ = γ\(G(g)∪Entries(γ, g)). By σΓ, σΓ(γ′) = σΓ(γ)\
(R(g)∪ConnectedEntries(σΓ(γ), g)), where ConnectedEntries(σΓ(γ), g) denotes the set

of state tuples in σΓ(γ) involving either g or any role connected to g in the role hierarchy

of σΓ(γ) (i.e., ConnectedEntries(γ, r) , r ∪ Entries(γ, r) ∪ {ConnectedEntries(γ, q) |
RH(r, q) ∈ Th(γ) ∨ RH(q, r) ∈ Th(γ)}). By σΨ, σΨ(ψ, σΓ(γ)) = delR(g) ◦ delR(r1) ◦
· · · ◦ delR(rk), where r1, . . . , rk is the (finite) set of roles connected to g in the role

hierarchy. By RBAC1’s next relation, terminal(σΓ(γ), delR(g)◦delR(r1)◦· · ·◦delR(rk)) =

σΓ(γ) \ (R(g) ∪ ConnectedEntries(σΓ(γ), g)). Thus, if ψ is an instance of delG(g),

σΓ(γ′) = terminal(σΓ(γ), σΨ(σΓ(γ), ψ)).

• If ψ is an instance of addO(o), then γ′ = γ ∪O(o). By σΓ, σΓ(γ′) = σΓ(γ)∪ P (o). By σΨ,

σΨ(ψ, σΓ(γ)) = addP (o). By RBAC1’s next relation, next(σΓ(γ), addP (o)) = σΓ(γ)∪P (o).

Thus, if ψ is an instance of addP (o), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

72

• If ψ is an instance of strictJoin(s, g), then γ′ = γ ∪ StrictJoin(s, g, t) ∪ Time(t + 1) \
Time(t). By σΓ, σΓ(γ′) = σΓ(γ) ∪ R(rnew) ∪ RH(rbottom, rnew) ∪ UR(s, rnew), where

rbottom is the current bottom of the hierarchy chain below g and rnew is a newly-created

role. By σΨ, σΨ(ψ, σΓ(γ)) = addR(rnew) ◦ addHierarchy(rbottom, rnew) ◦ assignUser(s,
rnew). By RBAC1’s next relation, terminal(σΓ(γ), addR(rnew) ◦ addHierarchy(rbottom,

rnew) ◦ assignUser(s, rnew)) = σΓ(γ) ∪R(rnew) ∪RH(rbottom, rnew) ∪ UR(s, rnew). Thus,

if ψ is an instance of strictJoin(s, g), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

• If ψ is an instance of liberalJoin(s, g), then γ′ = γ ∪ LiberalJoin(s, g, t) ∪ Time(t+ 1) \
Time(t). By σΓ, σΓ(γ′) = σΓ(γ) ∪ UR(s, g). By σΨ, σΨ(ψ, σΓ(γ)) = assignUser(s, g).

By RBAC1’s next relation, next(σΓ(γ), assignUser(s, g)) = σΓ(γ) ∪ UR(s, g). Thus, if ψ

is an instance of liberalJoin(s, g), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

• If ψ is an instance of strictLeave(s, g), then γ′ = γ ∪ StrictLeave(s, g, t)∪ Time(t+ 1) \
Time(t). By σΓ, σΓ(γ′) = σΓ(γ)\(UR(s, g)∪UR(s, r1)∪· · ·∪UR(s, rk)), where r1, . . . , rk

is the set of roles to which s belongs and which are also connected in the role hierarchy to

g. By σΨ, σΨ(ψ, σΓ(γ)) = revokeUser(s, g) ◦ revokeUser(s, r1) ◦ · · · ◦ revokeUser(s, rk).
By RBAC1’s next relation, terminal(σΓ(γ), revokeUser(s, g) ◦ revokeUser(s, r1) ◦ · · · ◦
revokeUser(s, rk)) = σΓ(γ) \ (UR(s, g) ∪ UR(s, r1) ∪ · · · ∪ UR(s, rk)). Thus, if ψ is an

instance of strictLeave(s, g), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

• If ψ is an instance of liberalLeave(s, g), then γ′ = γ ∪ liberalLeave(s, g, t) ∪ Time(t +

1) \ Time(t). By σΓ, σΓ(γ′) = σΓ(γ) ∪ R(rorphan) ∪ PA(rorphan, p1) ∪ · · · ∪ PA(rorphan,

pk)∪UR(s, rorphan)∪RH(rhead, rorphan) \ (UR(s, r1)∪ · · · ∪UR(s, rl)), where p1, . . . , pk is

the set of permissions to which s is authorized in g, and r1, . . . , rl is the set of roles to which

s is authorized in the role hierarchy chain below g. By σΨ, σΨ(ψ, σΓ(γ)) = addR(rorphan)◦
assignPermission(rorphan, p1) ◦ · · · ◦ assignPermission(rorphan, pk) ◦ assignUser(s,
rorphan) ◦ addHierarchy(rhead, rorphan) ◦ revokeUser(s, r1) ◦ · · · ◦ revokeUser(s, rl). By

RBAC1’s next relation, terminal(σΓ(γ), addR(rorphan) ◦ assignPermission(rorphan, p1) ◦
· · ·◦assignPermission(rorphan, pk)◦assignUser(s, rorphan)◦addHierarchy(rhead, rorphan)◦
revokeUser(s, r1) ◦ · · · ◦ revokeUser(s, rl)) = σΓ(γ)∪R(rorphan)∪PA(rorphan, p1)∪ · · · ∪
PA(rorphan, pk)∪UR(s, rorphan)∪RH(rhead, rorphan) \ (UR(s, r1)∪ · · · ∪UR(s, rl)). Thus,

if ψ is an instance of liberalLeave(s, g), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

73

• If ψ is an instance of liberalAdd(o, g), then γ′ = γ ∪ LiberalAdd(o, g, t) ∪ Time(t+ 1) \
Time(t). By σΓ, σΓ(γ′) = σΓ(γ) ∪ PA(rbottom, o), where rbottom is the bottom role of the

role hierarchy chain below g. By σΨ, σΨ(ψ, σΓ(γ)) = assignPermission(rbottom, o). By

RBAC1’s next relation, next(σΓ(γ), assignPermission(rbottom, o)) = σΓ(γ) ∪ PA(rbottom,

o). Thus, if ψ is an instance of liberalAdd(o, g), σΓ(γ′) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

Thus, for any PC state γ and command ψ, σΓ(next(γ, ψ)) = terminal(σΓ(γ), σΨ(ψ, σΓ(γ))).

Thus, we have shown that σΨ preserves σΓ.

Finally, σΨ is safe by inspection—for any PC state γ and command ψ, the sequence of

RBAC1 commands σΨ(ψ, σΓ(γ)) never revokes or grants authorizations except the images of

those that are revoked or granted by ψ.

Thus, we have shown that σΨ preserves σΓ, and preserves safety; that σΓ preserves σQ;

and that σQ is weak AC-preserving.

∴ 〈σΓ, σΨ, σQ〉 is an implementation of PC in RBAC1 which preserves correctness, weak

AC-preservation, and safety.

To implement the workload in RBAC0 (role-based access control without role hierarchy),

we follow the same procedure, but store the role hierarchy encoded in role names. This

expands the set of roles to include a role named for every path through the logical hierarchy

in the downward direction. Thus, if in RBAC1 we would store a hierarchy that says A ≥ B,

B ≥ C, and A ≥ D, we represent this in RBAC0 with roles {A,B,C,D,AB,ABC,AD,BC}.
For every role r a user would be assigned to in RBAC1, she will be assigned to each role

starting with r in RBAC0. In the previous example, if 〈u,A〉 ∈ UR in RBAC1, then in

RBAC0 this maps to {〈u,A〉, 〈u,AB〉, 〈u,ABC〉, 〈u,AD〉} ⊂ UR in RBAC0. This allows us

to implement the conference workload in RBAC0 while preserving our chosen implementation

guarantees.

Theorem 3. There exists a correct, weak AC-preserving, and safe implementation of the

conference workload in RBAC0.

Finally, although ugo has the inherent disadvantage that each object is owned by only

a single user and group, it can implement the conference workload by mapping a workload

object assigned to multiple groups to an object with a single group owner. This group then

74

addG(Ai) addO(Pi) liberalAdd
(Pi, Ai)

1

1/time remaining

1

(a) Submit

1/time passed

auth
(ai, Si, Ai)

(b) Notify

Figure 5: Program Committee invocation: Author actor machines

represents all groups with authorization and includes as members all users with access. Of

course, this incurs a storage penalty; the magnitude of this overhead will be explored in

quantitative analysis.

Theorem 4. There exists a correct, weak AC-preserving, and safe implementation of the

conference workload in ugo.

The proofs of Theorems 3 and 4 can be found in [47].

4.5.3 Quantitative Analysis

To perform simulation-based cost analysis, we formalized actor machines for the conference

program chair, authors, and reviewers, as well as workflows that describe how these actors

interact. These instantiations of the structures defined in Section 4.4.1 allow us to describe

the usage of the workload system.

The actors in our system are a program chair, a set of reviewers, and a set of authors.

Each paper is assigned three reviewers, and each reviewer is assigned nine reviews, and thus

we have three times as many authors as reviewers (without loss of generality, we assume

that one author is registered to submit each paper). The program chair is responsible for

administrative tasks such as creating groups (the discussion group and each paper’s review

group), assigning reviews to reviewers, copying the submitted papers into their respective

75

1

1/time remaining

addO(Ri) liberalAdd
(Ri, Xi)

1
(if reviews not

completed)

(a) Review

1

discussRate

1

addO(Mi) liberalAdd
(Mi, D)

(b) Discuss

Figure 6: Program Committee invocation: Reviewer actor machines

addG(D)
1

(a) Create

recruitRate

1 (if not done)

strictJoin
(ri, D)

(b) Recruit

addG(Xi) liberalAdd
(Pi, Xi)

strictJoin
(rj, Xi)

1
(if more

reviewers)

1 (if more papers)

1 1 1

(c) Review

StrictJoin
(rj, D)

liberalLeave
(ri, D)

liberalAdd
(Pk, D)

1
(if other
conflicts)

1
(if others
rejoining)

rotate
rate 1 1

1

(d) Discuss

1

1 (if more papers)

1
addO(Si) liberalAdd

(Si, Ai)

(e) Notify

Figure 7: Program Committee invocation: Chair actor machines

76

liberalAdd
(Pi, Xi)

liberalAdd
(Ri, Xi)

(a) Review: Reviews can
not be submitted before
the corresponding paper is
available

liberalAdd
(Pk, D)

liberalAdd
(Mi, D)

(b) Discuss: Discussion can
not occur until a paper has
been submitted for discus-
sion

liberalAdd
(Si, Ai)

auth
(ai, Si, Ai)

(c) Notify: Authors can
not read their reviews until
they are made available

Figure 8: Program Committee invocation: Workflows

review groups, and rotating through the submitted papers during discussion. The program

chair also transitions between the phases of the simulation, which determines the actions

that the other actors can execute at any particular time. The phases proceed in the following

order:

1. Create Chair creates the discussion group

2. Recruit Chair adds the reviewers to the discussion group

3. Submit Authors create author groups and submit papers

4. Review Chair creates review groups and adds assigned reviewers; reviewers add reviews

to the review groups

5. Discuss Chair rotates discussion between various papers; reviewers add comments in

the discussion group; conflicted reviewers leave during discussion

6. Notify Chair adds review summaries to author groups; authors read their summaries

Formally, each actor machine includes the actions from all phases, and workflows ensure

that only the current phase’s actions are enabled. For simplicity, we show them as separate

actor machines between which the actor transitions. Figure 5, Fig. 6, and Fig. 7 show the

actor machines for each phase for authors, reviewers, and the program chair, respectively.

Figure 8 shows the workflows for phases, where they are needed.

To conduct cost analysis, we built a Java implementation of ACCostEvalSim to simulate

the conference workload. We repeated the simulation for 200 runs, randomly selecting the

77

4 6 8 10 12 14 16

Maximum workload state size (×1000)

0

5

10

15

20

25

30

35

40

45
M

ax
im

um
sy

st
em

st
at

e
si

ze
(×

10
00

)
RBAC1

RBAC0

ugo

(a)

100 150 200 250 300

Number of users

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

A
ve

ra
ge

pr
op

or
ti

on
of

sy
st

em
st

at
e

ch
an

ge
d

pe
r

ac
ti

on

RBAC1

RBAC0

ugo

(b)

100 150 200 250 300

Number of users

0

2

4

6

8

10

12

14

M
ax

im
um

N
um

be
r

of
R

ol
es

(×
10

00
)

RBAC1

RBAC0

ugo

(c)

100 150 200 250 300

Number of users

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
ve

ra
ge

pe
rm

is
si

on
s

pe
r

ro
le

RBAC1

RBAC0

ugo

(d)

100 150 200 250 300

Number of users

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

st
ut

te
r

co
st

pe
r

ac
ti

on

RBAC1

RBAC0

ugo

(e)

100 150 200 250 300

Number of users

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

P
ro

po
rt

io
n

of
no

n-
at

om
ic

ac
ti

on
s

RBAC1

RBAC0

ugo

(f)

Figure 9: Conference workload cost analysis results using ACCostEvalSim and 200 runs

number of authors and reviewers (preserving the proportion of 3 times as many authors as

reviewers).

In Figure 9a, we compare the maximum system state size to the size of the equivalent

workload state, demonstrating the storage overhead needed to utilize each system. While

the role-based schemes use a small amount of additional state, ugo requires several times

the storage of the workload. This is due to ugo’s restriction that each object is owned by

a single group; an object that should be accessed by multiple groups must be owned by a

combined group which contains all the members of the originals. Figure 9b shows that a

similar proportion of each system’s state changes on average for each action executed, but

given the larger storage required by ugo, this system will require much greater I/O as well.

78

We compare the number of users to the number of roles (groups in ugo) created in each

system in Figure 9c. RBAC0 uses many extra roles to simulate hierarchy information, and ugo

creates even more since each object is owned by only a single group. However, even RBAC1

uses several times as many roles as there are users in the system, potentially indicating a

poor fit from all three systems, as the administrative value of using roles is reduced when

the number of roles exceeds the number of users [119]. As indicated in Figure 9d, roles in

all three systems are particularly permission-sparse, averaging 1.2, 0.4, and 0.2 permissions

per role in RBAC1, RBAC0, and ugo, respectively. In particular, RBAC0 and ugo utilize many

additional roles to store simulated hierarchy information, and many of these roles are never

assigned permissions.

In Figure 9e, we investigate the average number of stutter steps per action, or the average

number of system commands that must be executed to simulate each workload command.

RBAC1, RBAC0, and ugo must execute, on average, 1.3, 1.6, and 3.4 actions (respectively) for

each workload action simulated. Furthermore, as shown in Figure 9f, 18% of workload actions

incur some stuttering in the role-based systems, and 49% incur stuttering in ugo. In scenarios

where multiple users will be interacting with the system, this loss of atomicity necessitates

the incorporation of an additional locking layer to ensure the system is not accessed in an

inconsistent state.

4.5.4 Summary of Findings

The preceding case study shows that, under the lens of several cost measures, RBAC1 is a

better choice than RBAC0 or ugo for implementing the conference workload, due to its native

support for role hierarchies, a structure that can mimic the pattern of authorized requests

common in the workload. However, even RBAC1 utilizes a large number of permission-sparse

roles, indicating that even it may be a tenuous fit for the workload. More importantly,

though, our case study demonstrates that the concepts of our two-phase suitability analysis

framework can be applied to a realistic workload and evaluate access control systems that are

common in practice with respect to that workload. Our simulation procedure allows us to

easily determine the overheads of using each system, and with an average runtime of around

79

eight minutes per five-month simulation run, does so efficiently. An improved simulator could

also execute multiple runs in parallel (in Chapter 5, we discuss an extensible simulation

framework for the suitability analysis problem that incorporates this and other features).

4.6 REQUIREMENTS, REDUX

In Section 4.2, we outlined solution requirements to guide the development of our suitability

analysis framework. We now discuss the degree to which each requirement was met. The

Domain Exploration requirement is addressed by our workload formalism and our simulation

procedure: the former allows the analyst to specify a broad range of workloads, while

the latter enables cost analysis over many workload instances. Cooperative Interaction is

met by combining our invocation formalism with the WSP solver (i.e., WSat) leveraged

by ACCostEvalSim: constrained workflows articulate the ways in which cooperation must

be carried out, while the use of actor graphs and the WSP solver ensures the generation

of compliant traces. Although this chapter makes use of a fixed set of implementation

guarantees to define implementation safety, this is not mandatory. Proofs of safety are

carried out manually, allowing any notion of safety to be used and providing Tunable Safety .

Section 4.4.2 demonstrated that our notion of cost measure is capable of representing a wide

range of system- and human-centric costs and thus provides Tunable Costs. Supporting

multi-user workflows is seemingly at odds with the Tractability requirement, as the workflow

satisfiability problem has been shown to be NP-complete [117]. However, the proof of

Theorem 1 makes use of recent results [24,28] to show that ACCostEvalSim is fixed-parameter

tractable in maximum task length (typically a small constant). More concretely, simulating

each 5-month period in our case study took, on average, around 8 minutes. In conclusion,

the analysis framework developed in this chapter meets each of the desiderata outlined in

Section 4.2, and provides a flexible, efficient, and precise mechanism for analyzing instances

of the access control suitability analysis problem.

80

4.7 SUMMARY

In this chapter, we formally defined suitability analysis based on the motivation provided in

Chapter 3. We proposed the formal problem statement (which aligns with the analysis goals

of this dissertation’s thesis statement), then a two-phase framework to solve the problem. We

developed a trace generation method based on interleaving the behavior of multiple actors in

the system, constrained by workflows that describe how they interact. We also presented an

algorithm for conducting cost analysis on traces. Our analysis of the procedure evaluated it

formally, and our conference workload case study evaluated it practically.

Moving forward through this dissertation, we will continue to use this framework as the

backbone of many of the contributions we make. This will come in the form of presenting

more refined or detailed versions of components (e.g., the cost analysis simulation engine in

Chapter 5, expressiveness reductions in Chapter 8) as well as using the framework toward

additional case studies (e.g., an in-depth case study of the class of group-centric access

control models containing the PC workload in Chapter 6, an evaluation of encryption-based

workloads for untrusted cloud storage in Chapter 7).

81

5.0 Portuno: AN ACTOR-BASED SIMULATOR FOR ACCESS CONTROL

SUITABILITY ANALYSIS

Having presented the formal problem statement and mathematical framework for suitability

analysis, we now focus our attention on the Java-based simulation engine that enables us

to conduct the second phase of suitability analysis in practice: Portuno. Through Portuno,

we support our thesis by showing that practical cost evaluation of access control is feasible.

Further, we discuss the instantiation of the powerful trace generation methods first proposed

in Chapter 4, which helps ensure that our evaluation is true to the desired usage of the access

control system.

5.1 INTRODUCTION

At its core, Portuno utilizes an implementation of ACCostEvalSim (Algorithm 1). In support of

this algorithm, we have developed Java-based representations for the mathematical structures

used in the two-phase suitability analysis framework, including access control systems,

workloads, implementations, cost measures, and cost functions.

To represent the results of Phase 1 of suitability analysis within Portuno, we present

techniques for encoding the state machines representing candidate systems and workload

operational components as classes in Java. We also present an API for implementations, to

provide Portuno with a recipe for mapping workload usage to candidate system actions.

To enable costs to be evaluated over representative traces of workload usage, we describe

how an analyst can encode a constrained, actor-based workload invocation structure in the

formalism of Definition 17 within Portuno, representing in an executable way the behavior of

82

entities that will use the access control system.

To allow Portuno to consider the wide variety of costs incurred by candidate access control

systems, we present an extensible, multi-component measurement system. This system is

capable of representing the vast range of cost measures described in Section 4.4.2. It also

provides tools to assist in encoding cost functions. This measurement system is able to

inspect many of the components of the simulation, enabling the analyst to easily represent

even complex cost functions.

While ACCostEvalSim conducts cost analysis over a single trace, realistic evaluations

should consider many traces. Portuno includes a Monte Carlo driver that repeatedly calls

ACCostEvalSim using different traces sampled from the distribution. This driver is useful for

exploring trends in costs (for instance, by plotting costs vs. the number of users in the trace).

We also discuss a confidence-bounding driver for determining a particular expected cost to

within a specific confidence interval.

To demonstrate how Portuno could be used for a realistic suitability analysis, we expand

the discussion of the case study from Section 4.5 with details regarding its implementation

within Portuno’s code framework.

The remainder of this chapter is structured as follows. Section 5.2 presents an overview

of how we use simulation to satisfy the remaining components of the Suitability Analysis

Problem. We describe the details of our solution in Sections 5.3–5.5. We present further

details of the case study from the previous chapter, emphasizing the use of the Portuno

simulation engine in Section 5.6 before summarizing in Section 5.7.

5.2 SIMULATING FOR COST ANALYSIS

In this section, we restate the solution requirements for frameworks that solve the suitability

analysis problem, describe the key processes for a simulation framework that allows analysts

to make the cost decision described in Section 4.4 while satisfying these requirements, and

overview the design of Portuno toward carrying out these processes.

83

5.2.1 Solution Requirements

We now restate the solution requirements for suitability analysis frameworks (Section 4.2).

First, we consider trace generation requirements.

SR1: Domain exploration It must be possible to efficiently explore many initial condi-

tions to examine the effects of various levels of concurrency and resource limitation.

SR2: Cooperative interaction Tasks within large organizations typically require the

interaction of many individuals. Suitability analysis frameworks should support operational

workflows and constraints on their execution.

Next, we must ensure that the suitability analysis framework can be tuned to meet the

specific needs of an application via selection of the metrics used to assess the suitability of an

access control system for a given workload.

SR3: Tunable safety There may be many different ways for a system to implement a

given workload. It must be possible for an analyst to specify the security guarantees required

for implementations of their workload.

SR4: Tunable cost There is no single notion of cost that is sensible for use in every access

control analysis [63]. Suitability analysis frameworks must be capable of representing many

types of costs and examining multiple costs simultaneously.

Finally, we consider requirements that ensure that the suitability analysis framework

remains practical to use (i.e., accurate and efficient), even for large-scale application workloads.

SR5: Tractability The cost analysis simulation procedure should be tractable (e.g.,

polynomial time or fixed-parameter tractable) to remain feasible to use even for large systems.

SR6: Accuracy Since exploring all possible traces during cost analysis is impractical, it

must be possible to approximate the expected error of costs obtained by exploring only a

specific subset of these traces.

84

5.2.2 Key Processes

In cost analysis, we would like to evaluate the costs of traces of expected usage in each

candidate system. In order to ensure that the traces considered satisfy the security guarantees

as proved by the implementations that were constructed during the expressiveness phase, we

generate traces of usage at the workload level, then map them to traces in each candidate

system using these implementations. Thus, our first goal of cost analysis is trace generation,

the process of generating representative traces of workload usage (that is, determining a

subset of the valid traces from T that are representative of expected usage and should thus

be considered in cost analysis). Given the constrained, actor-based invocation mechanism

presented in Definition 17, we will accomplish this task by formalizing actor machines and

constrained workflows within Portuno, then executing and interleaving as per the semantics

of these structures. This task is detailed in Section 5.3.

The implementability requirements requirements IR1–3 (Section 4.3) enforced on the

structure of access control implementation ensure that we are able to map the generated

workload traces to corresponding system traces. We must then calculate the costs of each of

these mapped system traces. We must therefore formalize within Portuno the cost measures

(Definition 18) that describe the quantitative metrics to which the application in question is

sensitive. We then label each trace in each candidate system with a cost in each cost measure,

which requires us to encode our cost functions (Definition 19) within Portuno as well. Finally,

we combine these costs into an overall cost for each candidate access control system. We

collectively refer to these processes as measuring the cost of system traces, and address them

in Section 5.4.

5.2.3 Simulator Design

We now present an overview of Portuno, the simulation framework that we have developed

to conduct the cost analysis phase of suitability analysis while satisfying the requirements

recapped in Section 5.2.1. This overview is depicted in Fig. 10.

First, we must represent the structures resulting from Phase 1 of suitability analysis: the

workload, candidate systems, and implementations of the former in each of the latter. We will

85

ActorMachine : Measurable {
Action nextAction(Params p);

}

Workflow : Measurable {
boolean isSatisfiable(Action a);
void execute(Action a);

}

Implementation : Measurable {
State stateMap(WorkloadState state);
Action action(Action a);

}

WorkloadScheme : Measurable {
WorkloadState state;
boolean queryResult;
void action(Action a);

}

Scheme : Measurable {
State state;
boolean queryResult;
void action(Action a);

}
Measure {

void preExecMeasurement(Measurable m);
void postExecMeasurement(Measurable m);
Cost <T> getCurrentCost ();

}

interface Measurable {
boolean isMeasurable(Property p);
Object getCurrentMeasurement(Property p);

}

System : Measurable

advance ()

Figure 10: Overview of the architecture of our suitability analysis simulator

address the traces of a workload when discussing trace generation; for now, we only consider

the abstract state machine (i.e., operational) component. As workloads are structurally

very similar to candidate systems, we represent them in Portuno very similarly as well. A

workload system or candidate system consists of sets of states, commands, and queries. A

system’s states are represented as subclasses of the State class (the equivalent for workloads is

WorkloadState).

Example 3. RBAC1 states are represented in Portuno using class Rbac1State : State with mem-

bers to store the contents of its state elements: 〈U,R, P, UR, PA〉. The members are

represented as follows.

Set <String > U;

Set <String > P;

Set <String > R;

Map <String , Set <String >> UR;

Map <String , Set <String >> PA;

Set <RolePair > RH;

86

Although UR and PA are defined mathematically in Example 1 as U×R and R×P (resp.),

we implement the corresponding sets, UR and PA, in Portuno as U → ℘ (R) and P → ℘ (R)

(resp.). This design choice is made for efficient indexing of these elements during simulation.

Rbac1State also provides low-level methods for altering these state elements; these are

primarily for use by the corresponding Scheme subclass. ♦

Commands and queries are added in a Scheme class (WorkloadScheme for workloads). We

represent all commands and queries as parameterized objects of the Action class, which

represents the name and parameters of the command/query. For instance, “Does user u

exist?” may be represented as an Action with name “userExists” and single parameter u. Each

system responds to invocations of the action(Action acAction) method by appropriately altering

the current state (in the case of a command) or placing the correct true/false value in

member variable Boolean queryResult (in the case of a query).

Example 4. The RBAC1 system is represented in Portuno using class Rbac1 : Scheme. Its action(

Action acAction) method contains two cases. If a is a query, a private method is called to extract

the parameters, inspect the state data member, and store the answer to the query in queryResult.

If a is a command, a similar private method is called which determines which Rbac1State method

should be executed on state in order to alter it according to the command.

public void action(Action acAction) {

super.action(acAction);

if (! acAction.isQuery) {

command(acAction);

} else {

query(acAction);

}

}

The following demonstrates how queries are handled (here we encode only the queries

that were needed for our implementation of the PC workload using RBAC1).

private void query(Action acAction) {

87

Rbac1State rState = (Rbac1State) state;

String u, r, p;

switch (acAction.name) {

case "UR":

u = acAction.params [1];

r = acAction.params [2];

if (rState.U.contains(u)) {

if (rState.R.contains(r)) {

if (rState.UR.containsKey(u)) {

queryResult = rState.UR.get(u).contains(r);

} else {

queryResult = false;

}

} else {

Log.d("Query␣mismatch:␣UR␣with␣non -existent␣role␣" + r);

queryResult = false;

}

} else {

Log.d("Query␣mismatch:␣UR␣with␣non -existent␣user␣" + u);

queryResult = false;

}

return;

case "auth":

u = acAction.params [1];

p = acAction.params [2];

if (rState.U.contains(u)) {

if (rState.P.contains(p)) {

if (rState.UR.containsKey(u) && rState.PA.containsKey(p)) {

Set <String > uRoles = rState.UR.get(u);

Set <String > pRoles = rState.PA.get(p);

88

// Check if one of uRoles is a senior /= to one of pRoles

queryResult = SetwiseSeniorEq(uRoles , pRoles);

} else {

queryResult = false;

}

} else {

Log.d("Query␣mismatch:␣auth␣with␣non -existent␣permission␣" + p);

queryResult = false;

}

} else {

Log.d("Query␣mismatch:␣auth␣with␣non -existent␣user␣" + u);

queryResult = false;

}

return;

}

}

The following demonstrates how commands are handled.

private void command(Action acAction) {

Rbac1State rState = (Rbac1State) state;

String u, r, p, senior , junior;

switch (acAction.name) {

case "addU":

u = acAction.params [1];

sys.addActor(u, new ActorUser ());

rState.addUser(u);

break;

case "delU":

u = acAction.params [1];

sys.removeActor(u);

89

rState.delUser(u);

break;

case "addR":

r = acAction.params [1];

rState.addRole(r);

break;

case "delR":

r = acAction.params [1];

rState.delRole(r);

break;

case "assignUser":

u = acAction.params [1];

r = acAction.params [2];

rState.assignUser(u, r);

break;

case "revokeUser":

u = acAction.params [1];

r = acAction.params [2];

rState.revokeUser(u, r);

break;

case "assignPermission":

p = acAction.params [1];

r = acAction.params [2];

rState.assignPermission(p, r);

break;

case "revokePermission":

p = acAction.params [1];

r = acAction.params [2];

rState.revokePermission(p, r);

break;

90

case "addHierarchy":

senior = acAction.params [1];

junior = acAction.params [2];

rState.addHierarchy(acAction.params [1], acAction.params [2]);

break;

case "removeHierarchy":

senior = acAction.params [1];

junior = acAction.params [2];

rState.removeHierarchy(acAction.params [1], acAction.params [2]);

break;

default:

throw new RuntimeException("Unrecognized␣command:␣" + acAction);

}

}

In particular, we note the use of the addActor() method in "addU" (and corresponding removeActor

() in "delU"). This mechanism allows the actors in the system to be adjusted dynamically

during the simulation (most commonly, as seen here, upon adding and removing users). ♦

Finally, an Implementation object represents the mapping from a workload to an implementing

system. The stateMap(WorkloadState s) method returns a state in the implementing system that

corresponds to a given workload state (i.e., it encodes σΓ). The action(Action acAction) method

executes a workload action in the current implementing state. Like the action() method from

the Scheme and WorkloadScheme classes, it handles both commands and queries (in this case, it

encodes both σΨ and σQ). If the workload action is a command, the corresponding system

actions are executed and the current state updated. If the workload action is a query, the

implementing state is inspected and the result of the query is stored in queryResult.

Example 5. The implementation of the PC workload in RBAC1 (as described in the proof of

Theorem 2) is represented in Portuno using class ImplementPcInRbac1 : Implementation. The stateMap()

method converts PC states to RBAC1 states.

91

public State stateMap(WorkloadState ws) {

Rbac1State rState = new Rbac1State ();

PcState pcState = (PcState) ws;

List <String > S = pcState.getS().getList ();

for (String s : S) {

rState.addUser(s);

}

List <String > G = pcState.getG().getList ();

for (String g: G) {

rState.addRole(g);

String topRole = newRoleName ();

rState.addRole(topRole);

String bottomRole = newRoleName ();

rState.addRole(bottomRole);

rState.addHierarchy(topRole , g);

rState.addHierarchy(g, bottomRole);

}

List <String > O = pcState.getO().getList ();

for (String o: O) {

rState.addPermission(o);

}

HashMap <Integer , Object > records = pcState.getSortedRecords ();

for (Object record : records) {

if (record instanceof LiberalJoinRecord) {

LiberalJoinRecord lj = (LiberalJoinRecord) record;

92

rState.assignUser(lj.subject , lj.group);

} else if (record instanceof LiberalLeaveRecord) {

LiberalLeaveRecord ll = (LiberalLeaveRecord) record;

String orphan = newRoleName ();

rState.addRole(orphan);

Set <String > permissions = permsInChain(ll.subject , ll.group , rState);

String top = findTop(ll.group , rState);

for (String permission : permissions) {

rState.assignPermission(permission , orphan);

}

rState.assignUser(ll.subject , orphan);

rState.addHierarchy(top , orphan);

leaveDown(ll.subject , ll.group , rState);

} else if (record instanceof StrictJoinRecord) {

StrictJoinRecord sj = (StrictJoinRecord) record;

String newBottom = newRoleName ();

String oldBottom = findBottom(sj.group , rState);

rState.addRole(newBottom);

rState.addHierarchy(oldBottom , newBottom);

rState.assignUser(sj.subject , newBottom);

} else if (record instanceof StrictLeaveRecord) {

StrictLeaveRecord sl = (StrictLeaveRecord) record;

leaveDown(sl.subject , sl.group , rState);

leaveOrphans(sl.subject , sl.group , rState);

} else if (record instanceof LiberalAddRecord) {

LiberalAddRecord la = (LiberalAddRecord) record;

String bottom = findBottom(la.group , rState);

rState.assignPermission(la.object , bottom);

} else {

Log.e("Invalid␣record␣type");

93

throw new InvalidArgumentException ();

}

}

return rState;

}

The action(Action acAction) method converts PC actions to sequences of RBAC1 actions and

executes the generated sequences.

void action(Action acAction) {

super.action(acAction);

Rbac1 rbac = (Rbac1)scheme;

Rbac1State rState = scheme.state;

String actor = acAction.params [0];

String s, o, g;

switch (acAction.name) {

case "delG":

g = acAction.params [1];

Set <String > chain = rState.findRoleChain(g);

for (String r : chain) {

rbac.action(new Action("delR", actor , r));

}

break;

case "addO":

o = acAction.params [1];

rbac.action(new Action("addP", actor , o));

break;

case "delO":

o = acAction.params [1];

rbac.action(new Action("delP", actor , o));

break;

94

case "LAdd":

o = acAction.params [1];

g = acAction.params [2];

String bottom = findBottom(g, rState);

rbac.action(new Action("assignPermission", actor , bottom , o));

break;

case "SJoin":

s = acAction.params [1];

g = acAction.params [2];

String newBottom = newRoleName ();

String oldBottom = findBottom(g, rState);

rbac.action(new Action("addR", actor , newBottom));

rbac.action(new Action("addHierarchy", actor , oldBottom , newBottom));

rbac.action(new Action("assignUser", actor , s, newBottom));

break;

case "SLeave":

s = acAction.params [1];

g = acAction.params [2];

leaveDownCmd(actor , s, g);

leaveOrphansCmd(actor , s, g);

break;

case "addG":

g = acAction.params [1];

rbac.action(new Action("addR", actor , g));

String topRole = newRoleName ();

rbac.action(new Action("addR", actor , topRole));

String bottomRole = newRoleName ();

rbac.action(new Action("addR", actor , bottomRole));

rbac.action(new Action("addHierarchy", actor , topRole , g));

rbac.action(new Action("addHierarchy", actor , g, bottomRole));

95

break;

case "LLeave":

s = acAction.params [1];

g = acAction.params [2];

String orphan = newRoleName ();

rbac.action(new Action("addR", actor , orphan));

HashSet <String > permissions = permsInChain(s, g, rState);

String top = findTop(g, rState);

for (String permission : permissions) {

rbac.action(new Action("assignPermission", actor , orphan , permission));

}

rbac.action(new Action("assignUser", actor , s, orphan));

rbac.action(new Action("addHierarchy", actor , top , orphan));

leaveDownCmd(actor , s, g);

break;

case "LJoin":

s = acAction.params [1];

g = acAction.params [2];

rbac.action(new Action("assignUser", starter , s, g));

break;

case "auth":

s = acAction.params [1];

o = acAction.params [2];

g = acAction.params [3];

rbac.queryResult = false;

if (rState.U.contains(s) && rState.P.contains(o) &&

rState.UR.containsKey(s) && rState.PA.containsKey(o)) {

Set <String > sRoles = rState.UR.get(s);

Set <String > oRoles = rState.PA.get(o);

Set <String > gRoles = getSeniors(g, rState);

96

if (! gRoles.isEmpty ()) {

// Will contain at most one role

String gRole = gRoles.get(0);

// Eliminate all oRoles except those that gRole is senior to

oRoles.retainAll(getJuniors(gRole , rState));

// Check if one of sRoles is a senior /= to one of oRoles

rbac.queryResult = SetwiseSeniorEq(uRoles , pRoles);

}

}

break;

default:

Log.w("Cannot␣execute␣action␣" + acAction);

}

}

We note in particular the process of mapping the authorization query. In answering

whether s has access to o via group g as described by the implementation, we manipulate

several sets of roles. First, we determine all roles of which s is a member, and all roles that

have access to o. Then, we determine the role that is senior to g (if role names are generated

properly, then g must be a valid group and thus there must be at most one role senior to

g). We eliminate all of o’s roles that are not junior to g’s senior. Finally, we execute the last

check: whether one of s’s roles is senior or equal to one of o’s remaining roles. This yields the

same answer as σQ in the proof of Theorem 2, by determining whether s has access to o via a

role in the same chain as g. ♦

Having discussed and demonstrated how each of the components from Phase 1 are encoded

in the simulation framework, we will now address the key processes from Section 5.2.2. The

first is trace generation, which begins by generating an initial state generated from an

analyst-supplied distribution. The commands and queries that follow this start state are

97

generated from the behavior of independent actors in the system combined with restrictions

on their behavior in the form of constrained workflows. Each actor’s behavior is represented

by an ActorMachine object that encodes the relevant instance of Definition 15. Each partially-

completed constrained workflow is represented by a Workflow object that encodes an instance

of Definition 16: that is, it describes which actions depend upon which others and which

actions must be completed by which classes of users. At each point in time, each actor is

queried for an action (via the ActorMachine’s nextAction() method). If an action is returned, it is

checked against the restrictions formalized in the Workflow objects to ensure it can be allowed:

if so, it is added to the trace being generated. We discuss these trace-generation components

in full detail in Section 5.3.

The second key process is calculating the costs of a trace. In Portuno, we calculate the

cost of a trace while simulating its execution. Each cost measure that is part of the simulation

is represented as a Measure which aggregates objects of a Cost class. A Cost defines a data type T

(e.g., Integer) and an aggregate method (e.g., summation). For each action that is encountered

during the execution of a trace, the current value of each measure in the system is calculated

and aggregated into the running total for that measure.

In order to support a variety of potential costs, we need to enable the measurement of

a wide range of properties of many components in the framework. For instance, measuring

storage overhead requires inspecting both the workload state and the implementing system’s

state; measuring personnel-hours requires inspecting the actor machines; and measuring the

proportion of initiated tasks that go uncompleted requires inspecting the workflows. Thus,

Portuno provides the Measurable interface that is implemented by all of these components and

enables each to return measurements (via getCurrentMeasurement). To identify which property a

Measurable should return, a measurement request specifies a Property object, which describes the

object to do the measuring and the measurement that should be taken (e.g., “the number of

users in the workload state”).

As we describe Portuno in depth, we will also elaborate on several other details. We

typically execute Portuno in a Monte Carlo fashion, generating large numbers of traces

and measuring costs across a distribution of start states and parameters that control actor

behavior (looking at means for expected costs, and comparing to parameter choices in the

98

initial states to analyze trends). We can also utilize the framework by picking specific start

states, repeating the simulation until we reach a particular confidence about the resulting costs.

Finally, as the multiple simulation runs are trivially parallelizable, we have made Portuno a

client/server framework, allowing a client running SimulationManager to delegate executions to

servers running SimulationWorker.

5.3 TRACE GENERATION

The first phase of cost analysis is generating traces of workload usage which accurately

describe how it is likely to be used in practice. In this section, we describe our solution to

trace generation using constrained workflows and actor machines.

The invocation mechanism of an access control workload (Definition 12) describes valid

usage of the access control system within the application being described. This is represented

as a set of traces through the system’s actions (commands and queries). In cost analysis, we

need to sample from this set of traces in a way that is representative of the expected usage

while satisfying the requirements described in Section 5.2.1.

Actions are the basic units of work executed by an actor in the system, a parameterized

generalization of queries and commands. In Portuno, actions are represented as instances of

the Action class. Such objects are the primary method of interfacing with both the workload

and implementing systems, and can specify some or all of the action’s required parameters.

An Action object thus specifies the action name, whether it is a command action or a query

action, and the known parameters (allowing others to be not-yet-specified).

To describe the behavior of actors, we employ state machines that we call actor machines.

The primary goal of an actor machine is, at each instant in time, to produce a candidate

action for the entity that it represents to execute (or to pass on executing an action in this

instant). Actor machines are represented as objects of the ActorMachine abstract class. Each

type of actor is thus represented as a subclass of ActorMachine. For instance, an experiment in

Portuno may contain a subclass of ActorMachine for administrative users and another for regular

users. Each actual actor is then represented as an object instantiating the corresponding

99

ActorMachine subclass.

As the main goal of the actor machine is to return a candidate action for each instant in

time, the primary method of any ActorMachine subclass is nextAction(Params p), which returns an

Action object based on the current state of the actor machine and the amount of simulated

time elapsed since the last execution of nextAction(Params p).

Example 6. The example user actor machine depicted in Figure 3a can be represented in

Portuno as follows.

Action nextAction(Params p) {

double createRate = 2.0 / Conversion.Day;

double declassRate = 0.1 / Conversion.Month;

double coin = Simulation.rand.nextDouble () / p.delta;

if (coin <= createRate) {

return new Action("addO", actor , null);

}

coin -= createRate;

if (coin <= declassRate) {

return new Action("reqDeclass", actor , null);

}

coin -= declassRate;

return null;

}

We use the included Conversion library to specify rates independent of the current simulation

timestep (p.delta), though we note that this timestep must still be specified when generating

the random “coin.” In this example, the first parameter of the resulting action (executing

actor) is specified, while the second parameter (the object in question) is left as null, allowing

the simulation to automatically select the appropriate object (in this case, an available object

100

name for creation, or an existing object name for requesting declassification). ♦

Since each executing actor machine represents an entity acting upon the access control

system, Portuno must support the adding and removing of actor machines as users are added

and removed. Thus, after each action executed, Portuno will re-enumerate the set of actors,

spinning up new ActorMachines and shutting down others as necessary (see the use of addActor()

and removeActor() in Example 4).

To describe dependencies between actions taken by one or more actors, we make use of the

notion of a constrained access control workflow, which organizes the execution of sequences

of actions. Intuitively, the goal of this structure is to approve or deny a candidate action

returned from an ActorMachine on the basis of actions taken by other actors in the system. We

describe a disjoint subset of a workflow as a task.

In Portuno, a constrained workflow is represented as a subclass of the Workflow abstract

class, and a constrained workflow instance (the workflow along with the actions already

executed) is represented as an object of some Workflow subclass. The primary method of interest

is isSatisfiable, which takes an Action and determines whether it should be allowed to execute

in the current workflow instance, based on the actions already executed. When an ActorMachine

returns an action, it is checked against each executing Workflow: if no existing Workflow allows

the Action, a new, blank Workflow is checked. If the Action completes a task in the Workflow, the

Workflow is removed from the currently-executing set.

Before we can verify that a candidate action does not violate the constrained workflow,

Portuno fills in parameters that the actor did not specify using the WorkloadScheme’s Action

addParameters(Action a) method. For instance, if an actor specifies the action assignUser(Alice, null),

which assigns Alice to an unspecified role, the simulation may fill in the missing role name

with a random non-privileged role to which Alice is not already assigned.

Once parameters are established, to check an Action against a Workflow, the action name is

found within the constrained workflow system and an instance of the workflow satisfiability

problem (WSP) [28] is solved to determine whether the task containing this action will remain

satisfiable if this action is allowed to be executed. The simplest failure is one where a

prerequisite action has not yet been executed or an already-executed action belongs to a

disjoint task; a more subtle failure can occur if allowing this user to execute the current

101

action will result in no other existing users being capable of executing a later action in the

task. Efficient (FPT) algorithms for certain restrictions of WSP have been proposed, and have

been shown to cover the vast majority of constraints required in practice [24]. For simple

workflows, even more efficient algorithms can be used, e.g., as follows.

Example 7. The example workflow depicted in Figure 3b can be represented in Portuno as

follows.

boolean isSatisfiable(Action a) {

switch (a.name) {

case "addO":

case "reqDeclass":

return executed.isEmpty ();

case "approve":

if (! executed.contains("reqDeclass"))

return false;

if (executed.contains("approve"))

return false;

return sys.impl.scheme.numAdmins () >= 2;

case "coApprove":

if (! executed.contains("approve")) {

return false;

}

return a.params [0] != executed [1]. params [0];

}

}

For each action with dependent actions, these dependents are first ensured to exist in

executed, the record of executed actions in the current workflow instance. Then, additonal

requirements are checked as appropriate, e.g., approve will not be executed unless there exists

another administrator to execute coApprove, which in turn will not be allowed unless requested

by a different actor than the one who executed approve. ♦

102

Access Control Workload

Operational
Component

Invocation
Mechanism

�X

�Z

Z
System

Workload
Traces

System
Traces `Y

`Z

⌃ C1, . . . , Cj
�Y

�Z

System
Y

X
System

�X

�Y

`X

⌃

⌃

Action
Costs

Scheme, State

WorkloadScheme,
WorkloadState

ActorMachine,
Workflow

WorkloadState,
List<Action>

Implementation

Figure 11: A summary of the Portuno components discussed thus far

5.3.1 Summary

We now summarize the aspects of suitability analysis that we have addressed thus far with

the aid of an annotated overview diagram (Fig. 11). We describe in detail the role of

expressiveness analysis in Section 4.3. The Portuno structures that represent this phase’s

structures are discussed in Section 5.2.3: the workload operational component is represented

by a WorkloadScheme, WorkloadState pair; each system is represented by a Scheme, State pair; and each

implementation is represented by an Implementation.

Cost analysis requires an expanded workload invocation mechanism in order to sample

from the provided valid traces. This sampling should result in a series of traces representing

the expected usage of the access control system, and as such we introduced the constrained,

actor-based invocation mechanism presented in Definition 17. An instance of this definition

is represented in Portuno using the ActorMachine and Workflow classes: one ActorMachine subclass per

type of actor, and one Workflow subclass to manage collaborations between actors.

These structures allow Portuno to generate workload traces. Of course, Portuno needs to

execute these traces within each candidate system in order to measure the revelant costs,

and thus these workload traces need to be translated into system traces. This will be

accomplished using the Portuno components constructed during expressiveness analysis, which

yield a procedure for translating traces. Using the Implementation corresponding to each Scheme,

the initial workload state can be converted to a corresponding system state (via stateMap), and

103

each workload action can be converted into an equivalent system action (via action).

Having generated representative workload traces and translated such traces into each

candidate system, we can then conduct cost analysis by simulating the execution of such

system traces and measuring the relevant costs. The next section describes the details of how

we conduct this step.

5.4 CALCULATING COST OF TRACES

Once representative workload traces are generated and mapped into candidate system traces,

Portuno needs to calculate the costs of these traces.

An important part of cost analysis is choosing relevant cost measures. We do not commit

to a particular cost measure, but rather develop our framework to operate on any measure

satisfying a number of simple properties (Definition 18). In Portuno, measures are represented

as subclasses of the Measure class, and each Measure aggregates objects of the Cost class. A Cost

defines a data type T and an aggregate method. Each measure loaded into the simulator will be

referenced before and after each action is executed, in order to calculate the cost of the action

in question and aggregate it into the running total for the measure. To accomplish this, each

Measure class contains methods preExecMeasurement and postExecMeasurement, which are called by the

simulator to aggregate the costs of the current action. Some cost measures are more easily

calculated before the action’s execution (e.g., the number of objects that will be deleted) while

others are easier to calculate after (e.g., the number of workflows that have been completed).

Still other measures benefit from using both (e.g., the size difference between the initial and

final states).

Example 8. We demonstrate the Measure class with an example that measures the maximum

number of system commands needed to simulate a single workload command.

public class MaxStutter extends Measure {

public MaxStutter () {

curMeasurement = new IntMaxCost ();

104

}

public String getMeasureName () {

return "Max_Stutter";

}

public String getPrintFriendlyName () {

return "Maximum␣number␣of␣system␣commands␣to␣simulate␣a␣single␣workload␣command";

}

void postExecMeasurement(Measurable m) {

Property p = new Property(Scheme.class , Scheme.Q_ACTIONSEXECUTED , new String [0]);

List <Action > actions = (List <Action >)m.getCurMeasure(p);

curMeasurement.aggregate(actions.size());

}

public boolean isMeasurementValid(Measurable w) {

Property p = new Property(Scheme.class , Scheme.Q_ACTIONSEXECUTED , new String [0]);

return w.isMeasurable(p);

}

}

This Measure uses the Cost set of integers with accrual operator max. It measures the Scheme

property that returns the full set of system actions executed for the last workload action (we

discuss returning measurements via the Property API in Section 5.4.1). Finally, it aggregates

the number of actions that were returned to its current measurement (i.e., takes the max). ♦

5.4.1 Cost Functions

In order to accomplish the aggregation step, the framework needs a way of calculating the

cost of executing a particular action within an implementing system. A cost function must

105

map each (action, parameterization, state) tuple to an element of the relevant cost measure.

Rather than attempt to define and encode all measures and cost functions of interest

to analysts, we designed Portuno to allow measures to be loaded at execution-time, and

included the Measurable interface to facilitate measuring any desired properties about the

simulation components that can influence costs; any component that can measure a cost-

relevant property must implement this interface. The interface gives measures a defined

API for measuring properties about the components of the simulation. Each call to this

measurement API must include a Property object: the Property class defines a naming scheme

for measurable objects that ensures that the analyst can precisely identify which components

should be polled and which statistics should be measured. The isMeasurable() method of the

Measurable interface allows each measurable entity to specify which measurements it is capable

of taking, and the getCurrentMeasurement() method allows these measurements to be taken. To

take a measurement, Portuno first polls each Measurable for whether it is capable of taking the

measurement corresponding to the requested Property, and then asks the most general capable

Measurable to do so. This allows the analyst to define measurements that are very generic or

very specific; “the parameters of the last action executed” is generic and can target any Scheme,

whereas “the number of roles in the current state” is specific to certain types of schemes and

should target, e.g., RbacState.

The top level Measurable, as seen in Fig. 10, is System, the component of Portuno that tracks

a single workload-candidate system pair during simulation. This Measurable is responsible for

passing each request for a Property down the hierarchy until it reaches a component that can

answer it. A System is capable of measuring a top-level Property, such as the full set of actors

currently in the system, or the action currently being executed. For any other Property, it

passes it in turn to each of its Measurable components. This includes, e.g., each ActorMachine

and Workflow, but the most common is the Implementation. This component, in turn, will pass

the Property to the workload scheme and/or candidate scheme, which will pass it to their

corresponding states if needed. Thus, the Measure requesting a Property should be as specific

as needed, otherwise a more general component that can measure the property will take

precedence.

Example 9. Here we demonstrate the measurements that Rbac1State exposes via the Property

106

API.

Object getCurMeasure(Property p) {

if (super.isMeasurable(p)) {

return super.getCurMeasure(p);

}

Property qTest = new Property(this , "__test", new String [0]);

if (!qTest.matchQualifier(p)) {

throw new InvalidMeasureException(p);

}

switch (p.name) {

case "U":

return U;

case "P":

return P;

case "R":

return R;

case "UR":

return UR;

case "PA":

return PA;

case "RH":

return RH;

case "sizeof":

switch (p.params.get(0)) {

case "U":

return U.size();

case "P":

return P.size();

case "R":

107

return R.size();

case "UR":

return getUrSize ();

case "PA":

return getPaSize ();

case "RH":

return 2 * RH.size();

case "ALL":

return U.size() + P.size() + R.size() + getUrSize () + getPaSize () +

2 * RH.size();

}

}

throw new InvalidMeasureException(p);

}

In addition to all the properties exposed by its parent class (State), Rbac1State exposes its

full state elements to measures, as well as methods for determining their size (individually

and in total). ♦

Although Portuno allows specific systems, workloads, etc., to expose arbitrary information

via measurements, we also provide several commonly-useful measurements in the base classes.

By default, measures can request from an implementation the action currently being executed,

the actor that requested that action, the set of all actors or workflows, or the current elapsed

simulation time. The candidate system and workload system templates include properties

that return the current state of the system, the previous state, and the result of the last query.

Candidate systems can also return the full list of candidate actions executed to simulate the

current workload action (e.g., see Example 8).

While a combination of these generic properties allows a measure to inspect any in-

formation about the current state of the simulation, there are situations where it makes

sense to define specific properties for specific systems, workflows, or actors for optimization

and readability. Consider the analyst who wants to measure the total size of the current

108

Algorithm 2 ACCostEvalMC: A Monte Carlo driver for ACCostEvalSim

Input: Y, set of candidate systems
Input: Σ, set of implementations (∀S ∈ Y : σS ∈ Σ)
Input: C, set of cost measures (C = 〈R,+,≤〉 ∈ C)
Input: L, set of cost functions (∀S ∈ Y, C ∈ C : `SC ∈ L)
Input: I = 〈W,A,M〉, invocation mechanism
Input: Pr (γ), probability distribution over start states
Input: χ, number of Monte Carlo runs
Input: Tf , goal time
Input: t, time step

procedure ACCostEvalMC(Y,Σ,C, L, I,Pr (γ), χ, Tf , t)
for all [1, χ] do . Monte Carlo loop

γ0 ← random sample from Pr (γ)
ACCostEvalSim(Y,Σ,C, L, I, γ0, Tf , t)

candidate system’s state. In this case, it probably makes more sense to follow Example 9

in implementing a sizeof property that can be measured directly by the state, rather than

requesting the state itself and measuring its size within the Measure code.

5.5 DRIVERS FOR ACCOSTEVALMC

Once the analyst has defined the trace generation structures, a set of cost measures, and cost

functions for each candidate system, she can conduct cost analysis via simulation. Our main

simulation procedure, ACCostEvalSim (shown in Algorithm 1), conducts a single, randomized

run of the system.

Portuno also includes two drivers for using this simulation procedure. The first, ACCostE-

valMC, utilizes the Monte Carlo technique; it calls ACCostEvalSim repeatedly, each time

randomly sampling a start state from the given distribution. This allows the analyst to

generate a large number of data points across a predefined pattern of start states, which

makes it particularly effective in detecting trends across various start states. For example, in

the case study presented in Sections 4.5 and 5.6, we randomly choose a number of users in

the system for each run, allowing us to see the effect this parameter has on the costs of using

each system.

Because the repeated execution in ACCostEvalMC contributes to the complexity of the full

109

Algorithm 3 ACCostEvalCI: A confidence-bounding driver for ACCostEvalSim

Input: Y, set of candidate systems
Input: Σ, set of implementations (∀S ∈ Y : σS ∈ Σ)
Input: C, set of cost measures (C = 〈R× time,+,≤〉 ∈ C)
Input: L, set of cost functions (∀S ∈ Y, C ∈ C : `SC ∈ L)
Input: I = 〈W,A,M〉, invocation mechanism
Input: γ0, start state
Input: Tf , goal time
Input: t, time step
Input: u ∈ (0, 1), desired confidence level
Input: v ∈ (0, 1), desired tolerance

procedure ACCostEvalCI(Y,Σ,C, L, I, γ0, Tf , t, u, v)
n← ∅
while t|n|−1,1−u/2

√
S2(n)
|n| > v · X̄(n) do

n← n ∪ ACCostEvalSim(Y,Σ,C, L, I, γ0, Tf , t)

analysis by only an additional pseudo-polynomial factor, ACCostEvalMC, like ACCostEvalSim,

is in FPT.

Corollary 5. Under the same assumptions as in Theorem 1, the simulation procedure

ACCostEvalMC is in FPT.

Proof. The driver ACCostEvalMC calls ACCostEvalSim χ times. Thus, the runtime complex-

ity of ACCostEvalMC is a factor of χ greater than that of ACCostEvalSim. Since χ is an

input, this contributes an additional pseudo-polynomial factor over the runtime complexity

of ACCostEvalSim, and thus ACCostEvalMC is in FPT.

In the interest of satisfying the Accuracy requirement, we also present a second driver,

which allows the analyst to achieve an intended confidence in the cost value generated for a

particular start state. Using this approach, we can decide the number of simulation runs to

conduct based on a desired confidence and the assumption of a particular distribution of costs

across runs, terminating when a satisfactory confidence is reached. For example, assuming a

normal distribution of costs across runs, we can use the fixed-sample-size procedure for point

estimate of a mean [74], which says that the confidence interval for a mean is:

X̄(n)± t|n|−1,1−α
2

√
S2(n)

|n|

110

where X̄(n) is the sample mean, S2(n)
|n| is the sample variance, and tν,γ is the critical point

for the t-distribution with ν degrees of freedom. The resulting range is an approximate

100(1− α)-percent confidence interval for the expected average cost of the system. During

simulation, we repeatedly calculate the confidence interval for incrementing n, terminating

when a satisfactory confidence is reached. For example, assuming we desire a 90-percent

confidence interval of no more than 0.1 of the mean, we run the simulation repeatedly until:

t|n|−1,0.95

√
S2(n)

|n| ≤ 0.1X̄(n)

Algorithm 3 demonstrates ACCostEvalCI, which uses this approach to execute ACCostEvalSim

until a desired confidence is reached, rather than executing for a fixed number of runs.

In Section 4.2 and again in Section 5.2.1, we stated solution requirements to guide

the development of our suitability analysis framework: Domain Exploration, Cooperative

Interaction, Tunable Safety , Tunable Costs, Tractability , and Accuracy . We now briefly

revisit these to discuss the degree to which each was met by Portuno.

The Domain Exploration requirement is addressed by the Monte Carlo driver for Portuno

in Algorithm 2, which enables cost analysis over many workload instances.

Cooperative Interaction is met by combining the constrained, actor-based invocation

formalism of Definition 17 with the WSP solver leveraged by ACCostEvalSim: constrained

workflows articulate the ways in which cooperation must be carried out, while the use of

actor machines and the WSP solver ensures that all traces generated during cost analysis are

compliant with these workflows.

Our framework does not mandate the use of any particular set of safety properties for

a notion of safe implementation. Instead, in Section 4.3, we describe the bare minimum

requirements that a notion of implementation must satisfy. Proofs of safety are then carried out

manually. This allows the use of any notion of safety that meets these minimum requirements

(which have been shown to encompass many notions of expressiveness simultaion from the

literature [43]), satisfying Tunable Safety .

Toward addressing Tunable Costs , Section 5.4 describes Portuno’s flexible cost measure-

ment system that is capable of aggregating a wide range of system- and human-centric

costs.

111

Supporting multi-user workflows is seemingly at odds with the Tractability requirement,

as the workflow satisfiability problem has been shown to be NP-complete [117]. However,

the proof of Theorem 1 makes use of recent results [24,28] to show that ACCostEvalSim is

fixed-parameter tractable in maximum task length (typically a small constant).

Finally, the Accuracy requirement is addressed by ACCostEvalCI, which determines when

to halt based on confidence intervals for point estimates of cost.

In conclusion, Portuno meets each of the desiderata outlined in Section 5.2.1, and provides

a flexible, efficient, and precise mechanism for analyzing instances of the access control

suitability analysis problem.

5.6 CASE STUDY

In this section, we discuss the case study presented in Section 4.5 to demonstrate how it is

represented in Portuno.

5.6.1 Workloads Operational Component

The workload’s operational component is a group-based program committee workload. The

workload states are represented by PcWorkloadState : WorkloadState with the following data members.

Set <String > S;

Set <String > O;

Set <String > G;

int timestamp;

Map <SGPair , Set <Integer >> liberalJoin;

Map <SGPair , Set <Integer >> liberalLeaves;

Map <OGPair , Set <Integer >> liberalAdd;

Map <SGPair , Set <Integer >> strictJoin;

Map <SGPair , Set <Integer >> strictLeaves;

112

Here, S stores the set of subjects, O the set of objects, and G the set of groups. The set

of join/leave/add records is kept in liberalJoin, etc., each stored as a map. These maps are

represented with the subject/group or object/group pair as the key and the set of timestamps

upon which the relevant operation occured as the value. As with Example 3, this organization

is chosen for simulation efficiency; it does not alter the mathematical properties of the state

presented in [48].

The workload system, then, is represented by PcWorkload : WorkloadScheme. Like the RBAC0

example in Example 4, PcWorkload’s action(Action acAction) method utilizes methods of its corre-

sponding state class, PcWorkloadState, to carry out the effects of its commands.

public void command(Action action) {

PcWorkloadState pState = (PcWorkloadState) state;

String g, o, s;

switch (a.name) {

case "addG":

g = action.params [1];

pState.addGroup(g);

break;

case "delG":

g = action.params [1];

pState.delGroup(g);

break;

case "addO":

o = action.params [1];

pState.addObject(o);

break;

case "SJoin":

s = action.params [1];

g = action.params [2];

pState.addStrictJoin(s, g);

113

break;

case "LJoin":

s = action.params [1];

g = action.params [2];

pState.addLiberalJoin(s, g);

break;

case "SLeave":

s = action.params [1];

g = action.params [2];

pState.addStrictLeave(s, g);

break;

case "LLeave":

s = action.params [1];

g = action.params [2];

pState.addLiberalLeave(s, g);

break;

case "LAdd":

o = action.params [1];

g = action.params [2];

pState.addLiberalAdd(o, g);

break;

}

}

The relevant queries in this workload are the authorization requests, of the form auth(

subject, object, group) and asking whether subject has access to object through group, as described

by the semantics of the strict/liberal join/leave and add operations. However, as the answers

to these queries are not relevant to any of the measures of interest in our experiment, we

implement these queries in Portuno as simply accessing the required data to accrue the

expected I/O costs. This gives us the correct cost information while improving efficiency (e.g.,

114

not requiring us to develop a functional prototype of the workload’s enforcement mechanism).

case "auth":

subject = action.params [0];

object = action.params [1];

group = action.params [2];

SGPair sg = new SGPair(subject , group);

OGPair og = new OGPair(object , group);

// Access relevant data

state.getJoinTimes(sg);

state.getLeaveTimes(sg);

state.getLiberalAdds(og);

// Query result is irrelevant

queryResult = true;

return;

}

5.6.2 Cost Analysis

To perform simulation-based cost analysis, we formalized actor machines for the conference

program chair, authors, and reviewers, as well as workflows that describe how these actors

interact. We formalized the relevant behavior by considering six distinct phases of time

during which the actors carry out different sets of actions. These structures are presented in

Section 4.5.3. Here we describe how they are implemented in Portuno.

To implement the desired actor machines in Portuno, we utilize a centralized class which

determines the current phase from the current time in the simulation. Then, the nextAction(

Params params) method of these actors calls the appropriate method for the phase. The following

is this method and its helpers from ActorPcAuthor : ActorMachine, the actor machine for paper

authors.

115

Action nextAction(Params params) {

if (params.system.TIME_STOPPED) return null;

Action a = q.poll();

if (a != null) return a;

currentPhase = PcPhases.phase(currentTime);

switch (currentPhase) {

case Submit:

return submitAction(params);

case Notify:

return notifyAction(params);

}

return null;

}

Action submitAction(Params params) {

if (submitted) return null;

double coin = Simulation.rand.nextDouble ();

double timeLeft = PcPhases.phaseTimeLeft(currentTime) / params.delta - 3;

if (coin <= 1.0/ deltasLeft) {

String id = actor.substring (1);

submitted = true;

q.add(new Action("addO", actor , "P" + id));

q.add(new Action("LAdd", actor , "P" + id, "A" + id));

return new Action("addG", actor , "A" + id);

} else {

return null;

}

}

116

private Action notifyAction(Params params) {

double coin = Simulation.rand.nextDouble ();

double deltasElapsed = PcPhases.phaseTimeElapsed(currentTime) / params.delta + 2;

if (coin <= 1.0/ deltasElapsed) {

String id = actor.substring (1);

return new Action("auth", actor , "S" + id, "A" + id);

} else {

return null;

}

}

Using this ActorMachine, the authors in our simulation check for the two phases in which

they have a role: submit and notify. During the submit phase, authors get exponentially more

likely to submit their paper as the deadline approaches. When the submit finally occurs, the

paper group is created immediately, and actions are queued to create the object representing

the paper and liberal-add it to its group.

We note that this experiment uses a time-step of 1 hour, which balances goals of (1)

being fine enough granularity, so that multiple actions are not necessary within a single

time-step for the same actor; and (2) being large enough to remain efficient. However, in the

PC workload, there are certain strings of administrative actions by the chair that always

happen in quick succession. For such cases, rather than require the experiment to switch

to an infeasibly fine time-step, we provide a switch in Portuno that allows an ActorMachine to

indicate it needs to stop the simulation clock. This allows that actor to execute a string of

actions within the same time-step and without interruption. The above example shows the

author ensuring that she does not attempt to execute any action if time is stopped; below we

show the chair stopping time while she completes a queue of actions.

Action nextAction(Params params) {

Action a = q.poll();

if (a == null) {

117

params.system.TIME_STOPPED = false;

} else {

return a;

}

currentPhase = PcPhases.phase(currentTime);

switch (currentPhase) {

case Create:

return createAction(params);

case Recruit:

return recruitAction(params);

case Review:

return reviewAction(params);

case Discuss:

return discussAction(params);

case Notify:

return notifyAction(params);

}

return null;

}

Action recruitAction(Params params) {

if (! pcAdded) {

params.system.TIME_STOPPED = true;

pcAdded = true;

for (int i = 0; i < params.numReviewers; i++) {

q.add(new Action("SJoin", actor , "r" + i, "D"));

}

}

return null;

118

}

5.7 SUMMARY

Toward enabling the cost analysis phase of suitability analysis, in Chapter 4 we proposed

mathematical structures that enable representative trace sampling, as well as a formal

framework for specifying cost measures and cost functions. Furthermore, we presented an

algorithm for using these components to conduct simulation-based cost analysis. In this

chapter, we describe in detail our Java-based simulation framework, Portuno, that implements

all of these components into an extensible package that can be used for suitability analysis for

a wide range of access control scenarios. We present a Monte Carlo driver for trend detection

and a confidence-bounding driver for bounded-accuracy results. We evaluate our framework

both formally, proving additional complexity bounds, and practically, demonstrating within

the program committee case study how to represent realistically complex instances of the

aforementioned structures within Portuno. As we continue to develop these tools, we will

also investigate their use in other security domains, including evaluating cryptographic

techniques for enforcing access controls on untrusted infrastructure and proposals for secure

web communication. As such, we have shown the impact of suitability analysis on both

formal as well as practical research.

119

6.0 CASE STUDY: DISSEMINATION-CENTRIC SYSTEMS FOR

GROUP-CENTRIC SHARING

The Group-centric Secure Information Sharing (g-SIS) family of models has been proposed

for modeling environments in which group dynamics dictate information-sharing policies and

practices. Examples of such scenarios include secure meeting rooms where a participant only

“hears” messages sent while she is a member, online periodicals where a subscriber is granted

access to issues that are published during her subscription period (and is possibly allowed to

retain such accesses even after her subscription is terminated), and the program committee

workload considered in Chapters 4 and 5 in which reviewers and authors are brought together

to share and discuss content. These contexts consider bringing subjects and objects together

in groups to facilitate sharing, in contrast to traditional, dissemination-centric sharing models,

which focus on attaching policies to resources that limit their flow from producer to consumer.

The creators of g-SIS speculate that group-centric models may not be strictly more expressive

than dissemination-centric models, but that they nevertheless have pragmatic efficiency

advantages in group-centric scenarios [72]. In this chapter, we demonstrate the power of

suitability analysis to answer such open questions, by formally and systematically testing

these characteristics of an access control system’s suitability for a scenario—expressiveness

and cost—to evaluate the capabilities of dissemination-centric systems within group-centric

workloads. We consider several common dissemination-centric systems, and identify security

guarantees (most notably, homomorphism) that these systems are often unable to satisfy

while implementing the wide range of behavior that is characteristic of the g-SIS models,

except via impractical, convoluted encodings. Further, even more efficient implementations

(admissible under relaxed security requirements) suffer from high storage and computational

overheads. These observations support the practical and theoretical significance of the g-SIS

120

models as well as the suitability analysis techniques we have developed, and provide continued

insight into techniques for evaluating and comparing access control systems in terms of both

expressiveness and cost.1

6.1 INTRODUCTION

Group-centric Security Information Sharing (g-SIS) [71, 72] is a modeling paradigm and

class of access control models that has been proposed for sharing environments in which

users and resources are brought together in groups to facilitate collaboration and efficient

exchange of information. Its creators contrast it with the traditional, dissemination-centric

modeling paradigms that are currently used in access control and information sharing. In

dissemination-centric sharing, emphasis is placed on attaching policies (and/or attributes

that determine policy) to resources as they are created or made available. These policies

then restrict which consumers can access the resources. In g-SIS, on the other hand, users

are granted access to resources based on their temporal membership in groups—e.g., if object

o is added to a group that a user u is a member of, u will be granted access to o. The rules

for users who join later, objects that are removed, and users who leave are determined by the

particular parameterization of g-SIS used.

For instance, consider the program committee workload presented in Definition 21. In

this application, a reviewer may be added to a paper’s review group so that she can provide

her feedback, which necessitates her gaining access to the paper itself as well as older reviews.

However, a reviewer may also need to leave a discussion group due to a conflict-of-interest, and

upon return should not gain access to the conversation that occurred in the interim. Another

group-centric scenario considers online magazines. A base subscription to such a periodical

may only include access to issues that are published during one’s subscription period, and

only while one remains a subscriber. However, for an additional fee, the publisher may allow

access to back issues, or continued access to existing content even after the subscription runs

out.

1The material presented in this chapter was first published as [48].

121

Although g-SIS seems to represent these motivating scenarios rather elegantly, there has,

to date, been no fully-functional implementation of the g-SIS models. This may partially be

due to the following hypothesis by the creators of the paradigm [72]:

It may turn out that at a theoretical level, whatever dissemination-centric [systems] can

achieve, group-centric [systems] can also achieve, and vice-versa. But at a pragmatic

level, we believe these are significantly different approaches to information sharing.

We note that this quote indicates a need for precisely the type of evaluation we propose

in suitability analysis, considering both expressiveness for formal capabilities, and costs for

pragmatic effectiveness. As such, in this chapter, we utilize our two-phase suitability analysis

framework to evaluate the above hypothesis regarding the capabilities of dissemination-centric

access control systems within the context of group-centric sharing workloads. Specifically, we

break the above considerations into the following precise questions:

1. Which systems based on the g-SIS models can be safely implemented within, or simulated

by, dissemination-centric access control systems?

2. How strong are the security properties that can be guaranteed by dissemination-centric

systems when implementing workloads based on the g-SIS models?

3. How efficiently can dissemination-centric systems implement workloads based on the

g-SIS models?

4. What practically-interesting instantiations of the g-SIS models cannot be safely and

efficiently implemented by dissemination-centric systems?

To investigate the above questions, we formalize several instantiations of the g-SIS models.

Some are based on mathematical extrema in the space of g-SIS instantiations and are intended

to represent a diverse cross-section of the capabilities of these models overall. Others are

based on realistic use cases to which g-SIS seems particularly well-suited. We then employ

application-aware parameterized expressiveness [59] to answer questions #1 and #2. To

evaluate question #3, we utilize cost analysis via Portuno as described in Chapters 4 and 5.

Finally, we address question #4 by interpreting and analyzing the results of questions #1–3,

discussing the various failings of the use of dissemination-centric techniques in group-centric

environments.

122

Our analysis provides new insights into the relationship between group-centric and

dissemination-centric sharing, and represents the first in-depth analysis into the use of g-SIS.

We support the notion that g-SIS is a practically significant proposal by demonstrating

the inability of traditional systems to satisfy many of its models safely and efficiently. Our

analysis also demonstrates a deep, systematic examination and comparison of access control

systems based on suitability. We therefore support our thesis statement, which says that

suitability analysis has the potential to answer many realistic questions that arise when

examining an application’s access control needs.

The rest of this chapter is structured as follows. In Section 6.2, we introduce the g-SIS

models. In Section 6.3, we describe the specific g-SIS instantiations that we will be analyzing.

In Section 6.4, we present our parameterized expressiveness analysis. In Section 6.5, we

discuss our cost analysis using Portuno. Finally, we discuss our results and reason about

the drawbacks of utilizing dissemination-centric access control systems for group-centric

workloads in Section 6.6 before summarizing in Section 6.7.

6.2 THE G-SIS MODELS

We now discuss background on g-SIS, the group-centric secure information sharing paradigm

that inspires our workloads. The g-SIS models encompass a wide range of access control

systems and behavior, and, on the surface, appear to subsume other group- and role-based

access control and information sharing systems [98, 103, 104, 108]. As we have discussed,

the motivating scenarios that inspired g-SIS include periodical subscriptions and secure

message rooms. It is conceptually simpler to model such scenarios within g-SIS than by using

dissemination-centric access control; that g-SIS is inherently more capable of representing

such scenarios is a claim that we make and support in this chapter.

A major distinguishing feature of g-SIS is its preservation of a full membership record for

groups. Users can join and leave groups, and objects can be added and removed from groups.

The log of these events is used to decide whether a user can access an object. The basic

operations each have numerous variants, ranging from strict to fully liberal. The semantics of

123

u1

create
u2

s-join
u3

l-join
u1

l-leave
u1

s-join

u1

u2

u3
Member,
Access

Non-member,
Access

time

Post

o1

o2 o3

Figure 12: Example accesses in a single group in g-SIS

these variants depends on the type of action.

Users who perform a strict join to a group receive access only to objects added after they

join, whereas a fully liberal join grants immediate access to all existing objects. A strict leave

rescinds all of the user’s accesses within the group; a liberal leave allows the user to retain

access. Performing a strict add of a message to a group grants only current members access;

a liberal add grants future members access as well. Finally, a strict remove rescinds access to

the removed object from all users in the group, while a liberal remove allows users to retain

access.

The application of these operations to the motivating scenarios (subscriptions, secure

messaging) are, thus, fairly obvious. A subscription service can provide a base level of service

with no access to back issues and no continued access after canceling (via strict join and

strict leave). For an additional fee, users can access back issues (via liberal join) or maintain

access to their issues after canceling (via liberal leave). As we demonstrated in Chapters 4

and 5 through the program committee workload, secure messaging can make various uses of

combinations of strict and liberal actions: users can liberal leave before a discussion with

which they have a conflict of interest and strict join at its conclusion; objects to which new

members should not gain automatic access can be strict added while others are liberal added.

A graphical depiction of a membership/post record is shown in Fig. 12. Here, users u2

and u3 both join the group after u1 posts o1. However, u2 performs a strict join whereas u3

performs a liberal join, meaning that u3 has access to o1 while u2 does not. Furthermore,

124

o3 is added after u1 liberal-leaves the group, and thus u1 will not be able to access o3, even

after re-joining via strict join. We note, here, that after only a small number of operations

in a single group, each of the users in the system has access to a different set of objects. If

roles are used to implement this scenario, several will thus be needed to represent only this

single group. This example shows that even simple group-centric scenarios can be complex

to represent using dissemination-centric access control systems.

Although g-SIS also supports variants of actions that lie in between strict and fully liberal,

in this chapter we focus on these extremes, since those in between tend to be application-

specific. For example, in some systems a liberal (but not fully liberal) leave might allow a

user to retain only some of their accesses when leaving, but the semantics of this action

would have to be defined specific to the objects in the system. Thus, in this chapter, liberal

actions are assumed to be fully liberal unless otherwise specified. In addition, g-SIS supports

variants of join with different behavior for users who have left and re-joined a group. Lossy

join may revoke some or all permissions retained from a past liberal leave; lossless join will

not revoke any permissions. Restorative join may re-grant some or all permissions revoked

by a past leave; non-restorative join will not re-grant any permissions. In this work, we focus

on lossless, non-restorative joins unless otherwise specified.

6.3 INSTANTIATIONS OF G-SIS

In this section, we describe the particular g-SIS systems and workloads that form the basis of

our analyses in Sections 6.4 and 6.5.

6.3.1 The g-SIS0 Model

The g-SIS0 model defines the state representation and queries for our g-SIS systems. It defines

structures for storing the records for all combinations of the basic g-SIS strict and liberal

actions (join, leave, add, remove). The authorization request is defined for non-restorative

joins. It will thus be the basis for our instantiations of the framework. In the g-SIS0 model,

125

states are comprised of the following fields.

• Sets S,O,G, and T of subjects, objects, groups, and times

• >T , the total order on T

• Time ∈ T , the current time

• StrictJoin ⊆ S ×G× T , the record of strict joins

• LiberalJoin ⊆ S ×G× T , the record of liberal joins

• StrictLeave ⊆ S ×G× T , the record of strict leaves

• LiberalLeave ⊆ S ×G× T , the record of liberal leaves

• StrictAdd ⊆ O ×G× T , the record of strict adds

• LiberalAdd ⊆ O ×G× T , the record of liberal adds

• StrictRemove ⊆ O ×G× T , the record of strict removes

• LiberalRemove ⊆ O ×G× T , the record of liberal removes

The g-SIS0 authorization requests are of the form auth(s, o, g) for whether subject s has

access to object o via group g. Here, like in the PC workload operational component, we

define authForward, which applies in cases where the user joined the group before the object

was added, and authBackward, which applies when the user joined after the object was

added. Additional queries include Member(s, g) for whether subject s is currently a member

of group g and Assoc(o, g) for whether object o is currently associated with group g. These

are answered as follows.

• Join(s, g, t) , StrictJoin(s, g, t) ∨ LiberalJoin(s, g, t)

• Leave(s, g, t) , StrictLeave(s, g, t) ∨ LiberalLeave(s, g, t)
• Add(o, g, t) , StrictAdd(o, g, t) ∨ LiberalAdd(o, g, t)

• Remove(o, g, t) , StrictRemove(o, g, t) ∨ LiberalRemove(o, g, t)
• Member(s, g) , ∃t1.(

Join(s, g, t1) ∧
∀t2.(

Leave(s, g, t2)⇒ t1 > t2

)

)

126

• Assoc(o, g) , ∃t1.(
Add(o, g, t1) ∧
∀t2.(

Remove(o, g, t2)⇒ t1 > t2

)

)

• authForward(s, o, g) , ∃t1, t2.(
Join(s, g, t1) ∧
Add(o, g, t2) ∧
t2 > t1 ∧
∀t3.(

Leave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2) ∧
StrictLeave(s, g, t3)⇒ t2 > t3 ∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

• authBackward(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
t1 > t2 ∧
∀t3.(

Remove(o, g, t3)⇒ (t2 > t3 ∨ t3 > t1) ∧
StrictLeave(s, g, t3)⇒ t1 > t3 ∧
StrictRemove(o, g, t3)⇒ t1 > t3

)

)

• auth(s, o, g) , authForward(s, o, g) ∨ authBackward(s, o, g)

127

6.3.2 Extrema Systems

Top, bottom, and role-like g-SIS are systems in the g-SIS0 model. Each of these systems

contains a subset of the full set of actions supported in g-SIS0, and represents a different

extreme in terms of resulting behavior.

Top g-SIS contains only strict actions. Since all adds and joins are strict, there is no

need for authBackward. Newer users to a group always have a subset of accesses of older

users, users who leave retain no permissions to group-associated objects, and objects that are

removed are no longer accessible by group members. In Top g-sis, states are represented as

in the g-SIS0 model. Commands are defined as follows.

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• strictJoin(s, g): Remove Time(t), add StrictJoin(s, g, t), T ime(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), T ime(t+ 1)

• strictAdd(o, g): Remove Time(t), add StrictAdd(o, g, t), T ime(t+ 1)

• strictRemove(o, g): Remove Time(t), add StrictRemove(o, g, t), T ime(t+ 1)

Furthermore, since this system is more restricted than g-SIS0 (it lacks liberal commands,

so we never need to inspect the corresponding liberal records), we can use the following

authorization formula, which is simpler than that of the full g-SIS0 model.

• auth(s, o, g) , ∃t1, t2.(
StrictJoin(s, g, t1) ∧
StrictAdd(o, g, t2) ∧
t2 > t1 ∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3 ∧
StrictRemove(o, g, t3)⇒ t2 > t3

128

)

)

Bottom g-SIS contains only liberal actions. Thus, a subject is granted access to an

object as long as they both belonged to a group at the same time at some point (currently or

in the past), however briefly. Access to added objects is granted to current and new users,

but once an object is removed no new users are granted access. Thus, new users tend to have

fewer accesses than older users. The following commands are defined.

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), T ime(t+ 1)

• liberalLeave(s, g): Remove Time(t), add LiberalLeave(s, g, t), T ime(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), T ime(t+ 1)

• liberalRemove(o, g): Remove Time(t), add LiberalRemove(o, g, t), T ime(t+ 1)

As before, we can use a simpler authorization procedure that does not inspect the portions

of the state that can never be changed.

• auth(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
(

t2 > t1 ∧
∀t3.(LiberalLeave(s, g, t3)⇒ t1 > t3 ∨ t3 > t2)

) ∨ (

t1 > t2 ∧
∀t3.(LiberalRemove(o, g, t3)⇒ t2 > t3 ∨ t3 > t1)

129

)

)

Role-like g-SIS, lastly, is an approximation of a role-based access control system within

g-SIS. It allows liberal join and add actions and strict leave and remove. Thus, all current

members have access to all current objects, but users who leave lose all access, and objects

that are removed are revoked from all users. The commands are as follows.

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addG(g): Add G(g)

• delG(g): Remove G(g)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), T ime(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), T ime(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), T ime(t+ 1)

• strictRemove(o, g): Remove Time(t), add StrictRemove(o, g, t), T ime(t+ 1)

The authorization procedure is as follows.

• auth(s, o, g) , ∃t1, t2.(
LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
∀t3.(

StrictLeave(s, g, t3)⇒ t1 > t3 ∧
StrictRemove(o, g, t3)⇒ t2 > t3

)

)

6.3.3 Workloads

In addition to the above extrema systems, we also study several more realistic parameteriza-

tions that reflect how g-SIS might be used in practice. Conceptually, these lie somewhere in

130

the g-SIS spectrum between the extrema systems defined above, and represent real-world

usages of group-centric techniques. We formalize these as workloads.

The PC workload is an instance of the “secure message room” example use case of

g-SIS [71, 72] that is defined to model academic program committee discussions. It was

discussed at length in Chapters 4 and 5.

The Playstation Plus (PSP) premium gaming service [93] uses temporal constraints to

decide accesses, and is thus a natural fit for modeling in g-SIS. PSP uses a g-SIS model with

an extension over g-SIS0: the auth query supports restorative joins. Subscribers liberal join,

and strict leave when canceling. If a user cancels and later joins again, she is re-granted access

to all objects she had before leaving (except those that have been strict removed). Managers

liberal add promotions (free games and discounts). When a promotion is complete, free

games are liberal removed (users who are members at the time a free game is available may

continue to access it as long as they are a member), while discounts are strict removed and

thus become inaccessible to all users. Trace restrictions allow users to subscribe in 3-month

increments. The managers add and remove several promotions each week, maintaining the

same total number for each group.

PCP considers the same state as g-SIS0, with the following commands.

• addS(s): Add S(s)

• delS(s): Remove S(s)

• addO(o): Add O(o)

• delO(o): Remove O(o)

• liberalJoin(s, g): Remove Time(t), add LiberalJoin(s, g, t), T ime(t+ 1)

• strictLeave(s, g): Remove Time(t), add StrictLeave(s, g, t), T ime(t+ 1)

• liberalAdd(o, g): Remove Time(t), add LiberalAdd(o, g, t), T ime(t+ 1)

• strictRemove(o, g): Remove Time(t), add StrictRemove(o, g, t), T ime(t+ 1)

• liberalRemove(o, g): Remove Time(t), add LiberalRemove(o, g, t), T ime(t+ 1)

Note that, due to its having restorative rejoin, this system is not a member of the g-SIS0

model and therefore the following auth definition is not a simplified or special case of the one

used in g-SIS0.

131

• auth(s, o, g) ,Member(s, g) ∧
∃t1, t2.(

LiberalJoin(s, g, t1) ∧
LiberalAdd(o, g, t2) ∧
∀t3.(StrictRemove(o, g, t3)⇒ t2 > t3) ∧
(

t2 > t1 ∧
∀t3.(StrictLeave(s, g, t3)⇒ (t1 > t3 ∨ t3 > t2))

) ∨ (

t1 > t2 ∧
∀t3.(Remove(o, g, t3)⇒ (t2 > t3 ∨ t3 > t1))

)

)

6.4 EXPRESSIVENESS ANALYSIS

In this section, we describe the details of our expressiveness analysis using parameterized

expressiveness and present a summary of the results. Demonstrative proofs are included here.

Remaining proofs have been published in a technical report [47].

We use slightly different techniques for evaluating against g-SIS systems vs. workloads.

To evaluate against a workload, we construct an access control implementation as described

in previous chapters. When evaluating against a system, on the other hand, we use an access

control reduction: a set of mappings allowing us to prove that a system T is at least as

expressive as system S with respect to a particular set of security guarantees G. This is

written S ≤G T , and indicates that any workload W that can be implemented in S with

guarantees G can also be implemented in T with G. We use the form of reduction from

parameterized expressiveness [59], in which a reduction from S to T , 〈σΓ, σQ〉, defines a state

mapping σΓ and a query mapping σQ where the state mapping preserves the query mapping

(∀γ ∈ States(S) Th(γ) = σQ(Th(σΓ(γ)))). The additional conditions put on the reduction

132

differ based on the set of security guarantees it should preserves.

6.4.1 Security Guarantees

In this work, we consider the following security guarantees.

Correctness Correctness is a bare minimum requirement for any implementation, as defined

in Definition 24.

AC-Preservation AC-Preservation says that the native authorization procedure of the

candidate system must be used to map workload requests to answers. It is discussed in

Section 4.5.2.

Weak AC-Preservation This guarantee is a weaker version of AC-preservation [59], and

is defined in Definition 25.

Safety A safe implementation is one that does not grant or revoke unnecessary permissions

during the execution of the image of a single workload command. It is defined in Definition 26.

Homomorphism The homomorphic property eliminates implementations that abuse sys-

tem state by encoding workload state in a way that is fragile to string substitutions. Without

this requirement, an implementation can, e.g., store unbounded state in a single user name

by encoding whole relations as a single string.

Definition 27 (Homomorphism). A homomorphic mapping f is one in which f(x)[v] =

f(x[v]) for any constant string substitution [v].

Given a workload, W = 〈A, T 〉, a system, S, and an implementation, 〈σΓ, σΨ, σQ〉, σQ is

homomorphic if each of σΓ, σΨ, and σQ is homomorphic. ♦

Intuitively, homomorphism requires that data elements be opaque, and that the symbol

representing any element (e.g., user, object, role) can be substituted for any other without

affecting the behavior of the system. Hinrichs et al. [59] define the programming language

HPL (Homomorphic Programming Language) such that any mapping expressed in HPL is

homomorphic.

133

6.4.2 Dissemination-Centric Systems

We choose several dissemination-centric access control systems as candidates for implementing

the group-centric workloads described in Section 6.3. As in Section 4.5, we focus on role- and

group-based models. While these access control models are dissemination-centric, they provide

a level of indirection between subjects and objects that enables greater expressiveness than

models based on the access matrix or access control lists [89,98]. Comparing to group-enabled

dissemination-centric access control systems enables our analysis to more directly compare

the effect of the group-centric paradigm, whereas comparing to non-group-enabled systems

would be more likely to highlight simply the advantage of the additional level of indirection

provided by groups. Thus, we evaluate the following dissemination-centric systems.

RBAC RBAC0 is the most basic role-based access control system proposed in the RBAC

standard [103,104]. It is defined in Example 2.

Hierarchical RBAC RBAC1 includes a hierarchical structure over roles, and is defined in

Definition 22.

UNIX Permissions Finally, the ugo system is based on the user, group, other system of

access control in UNIX. It is defined in Definition 23.

Thus, we evaluate standard, widely-deployed access control systems, in both the industrial

and consumer spaces. These systems are likely candidates for a system administrator who

desires to implement a group-centric workload using available and trusted access control

mechanisms.

6.4.3 Expressiveness via System Reductions

We now present a summary of the system reductions proving expressiveness statements

comparing the chosen dissemination-centric systems and the g-SIS extrema systems. A

summary of the expressiveness reductions, including a key to our shorthand for denoting the

guarantees a reduction satisfies, is shown in Figure 13a. We now discuss the major results

depicted in this figure.

First, we note that it is simple to construct a reduction from role-like g-SIS (rgSIS) to

134

rgSIS

tgSIS

bgSIS

RBAC0

RBAC1

ugo

CaH

CaH

CaH

CA(eH)CAH

Ca(eH)

C: Correctness
A: AC-Preservation
a: Weak AC-Preservation

H: Homomorphism
S: Safety
⇠: Infeasible

(a) Reductions

Ca

RBAC1

RBAC0

ugo

CaH

RBAC1

R̂BAC0

gugo

CaS

RBAC1

RBAC0

ugo

CaHS

RBAC1

R̂BAC0

gugo

(b) Implementations

Figure 13: Expressiveness analysis results

RBAC0 that satisfies all considered security guarantees (correctness, weak AC-preservation,

homomorphism). Role-like g-SIS has only liberal add and join operations and strict leave

and remove operations, and thus its auth only depends on the current group members and

associated documents. In this scenario, RBAC0 can simply simulate groups using roles.

Theorem 6. rgSIS ≤CaH RBAC0.

Proof. We show that there exists a reduction 〈σΓ, σQ〉 from role-like g-SIS to RBAC0 where:

• σΓ preserves σQ, is pseudo-injective, preserves reachability, and is homomorphic

• σQ is weak AC-preserving and homomorphic

Thus, rgSIS ≤CaH RBAC0 (RBAC0 is at least as expressive as role-like g-SIS with respect

to correctness, weak AC-preservation, and homomorphism).

We present the reduction, 〈σΓ, σQ〉. First, σΓ maps the g-SIS state 〈S,O,G, T, T ime,
LiberalJoin, StrictLeave, LiberalAdd, StrictRemove〉 to an RBAC0 state of the form 〈U,

135

R,P, UR, PA〉. This mapping is described by the following HPL method (and is thus

homomorphic).

for each (S(s) ∈ γ)

output(U(s))

for each (G(g) ∈ γ)

output(R(g))

for each (O(o) ∈ γ)

output(P(o))

for each (LiberalJoin(s, g, t) ∈ γ)

Old = {}

for each (StrictLeave(s, g, x) ∈ γ)

If >T (x, t) ∈ γ then

Old = {<s, g>}

endif

If <s, g> /∈ Old

output(UR(s, g))

endif

for each (LiberalAdd(o, g, t) ∈ γ)

Old = {}

for each (StrictRemove(o, g, x) ∈ γ)

If >T (x, t) ∈ γ then

Old = {<o, g>}

endif

If <o, g> /∈ Old

output(PA(g, o))

endif

136

σQ is defined as follows.

σQ(Member(s, g), γ) = UR(s, g) ∈ γ

σQ(Assoc(o, g), γ) = PA(g, o) ∈ γ

σQ(auth(s, o, g), γ) = UR(s, g), PA(g, o) ∈ γ

This query mapping clearly contains no string manipulation and is thus homomorphic.

Let γ be an arbitrary rgSIS state and r = auth(s, o, g) an arbitrary rgSIS request,

and let f(auth(s, o, g)) = auth(s, o) be a request transform. Assume σQ(r, σΓ(γ)) = true.

Then, UR(s, g) ∈ Th(σΓ(γ)) ∧ PA(g, o) ∈ Th(σΓ(γ)). Thus, it is clear that ∃r1.(UR(s,

r1) ∈ Th(σΓ(γ)) ∧ PA(r1, o) ∈ Th(σΓ(γ))), and therefore σΓ(γ) ` f(r).

Now let γ be an arbitrary rgSIS state, r′ = auth(u, p) an arbitrary RBAC0 request,

and f the request transform defined above. Assume σΓ(γ) ` r′. Then, ∃r1.(UR(s, r1) ∈
Th(σΓ(γ)) ∧ PA(r1, o) ∈ Th(σΓ(γ))). Finally, f(u, p, r1) = (u, p), and σQ(auth(u, p, r1),

σΓ(γ)) = true. Thus, σQ is weak AC-preserving with transform f(s, o, g) = (s, o).

We show that σΓ preserves σQ (for all rgSIS states γ, Th(γ) = σQ(Th(σΓ(γ)))) by

contradiction. Assume that there is some rgSIS state γ and query q such that the value of q

in γ is the opposite of the value of σQ(q) in σΓ(γ). We show that, for each of the query forms

of rgSIS, this assumption leads to contradiction.

• Member Assume γ ` Member(s, g) and σΓ(γ) 0 σQ(Member(s, g)). Then,

∃t1.(LiberalJoin(s, g, t1) ∈ Th(γ) ∧ ∀t2.(LiberalLeave(s, g, t2) ∈ Th(γ) ⇒ t1 > t2))

(s has joined g and not left). By σΓ, UR(s, g) ∈ Th(σΓ(γ)). Thus, by σQ, σQ(Member(s,

g),Th(σΓ(γ))) = true, which is a contradiction on the assumption that σΓ(γ) 0

σQ(Member(s, g)).

Assume instead that γ 0 Member(s, g) and σΓ(γ) ` σQ(Member(s, g)). Then, either

∃t1.(LiberalLeave(s, g, t1) ∈ Th(γ)∧∀t2.(LiberalJoin(s, g, t2) ∈ Th(γ)⇒ t1 > t2)) (s has

left g and not returned), or ∀t1.(LiberalJoin(s, g, t1) /∈ Th(γ)) (s has not joined g). By σΓ,

in either case, UR(s, g) /∈ Th(σΓ(γ)). Thus, by σQ, σQ(Member(o, g), σΓ(γ)) = false,

which is a contradiction on the assumption that σΓ(γ) ` σQ(Member(s, g)).

137

• Assoc Assume γ ` Assoc(o, g) and σΓ(γ) 0 σQ(Assoc(o, g)). Then, ∃t1.(LiberalAdd(o,

g, t1) ∈ Th(γ) ∧ ∀t2.(LiberalRemove(o, g, t2) ∈ Th(γ) ⇒ t1 > t2)) (o was added to

g and not removed). Thus, by σΓ, PA(g, o) ∈ Th(σΓ(γ))). By σQ, σQ(Assoc(o, g),

σΓ(γ)) = true, which is a contradiction on the assumption that σΓ(γ) 0 σQ(Assoc(o, g)).

Assume instead that γ 0 Assoc(o, g) and σΓ(γ) ` σQ(Assoc(o, g)). Then, either

∃t1.(LiberalRemove(o, g, t1) ∈ Th(γ) ∧ ∀t2.(LiberalAdd(o, g, t2) ∈ Th(γ) ⇒ t1 > t2))

(s was removed from g and not re-added), or ∀t1.(LiberalAdd(o, g, t1) /∈ Th(γ)) (o has not

added to g). By σΓ, in either case, PA(g, o) /∈ Th(σΓ(γ))). Thus, by σQ, σQ(Assoc(o, g),

σΓ(γ)) = false, which is a contradiction on the assumption that σΓ(γ) ` σQ(Assoc(o, g)).

• auth Assume γ ` auth(s, o, g) and σΓ(γ) 0 σQ(auth(s, o, g)). Then, ∃t1.(LiberalJoin(s,

g, t1) ∈ Th(γ) ∧ ∀t2.(LiberalLeave(s, g, t2) ∈ Th(γ)⇒ t1 > t2)) (s has joined g and not

left), and ∃t1.(LiberalAdd(o, g, t1) ∈ Th(γ) ∧ ∀t2.(LiberalRemove(o, g, t2) ∈ Th(γ) ⇒
t1 > t2)) (o was added to g and not removed). By σΓ, UR(s, g) ∈ Th(σΓ(γ)) ∧ PA(g,

o) ∈ Th(σΓ(γ)). Thus, by σQ, σQ(auth(s, o, g), σΓ(γ)) = true, which is a contradiction

on the assumption that σΓ(γ) 0 σQ(auth(s, o, g))

Assume instead that γ 0 auth(s, o, g) and σΓ(γ) ` σQ(auth(s, o, g)). Then, there

are four possibilities which we consider in pairs. If ∃t1.(LiberalLeave(s, g, t1) ∈
Th(γ) ∧ ∀t2.(LiberalJoin(s, g, t2) ∈ Th(γ) ⇒ t1 > t2)) (s has left g and not returned),

or ∀t1.(LiberalJoin(s, g, t1) /∈ Th(γ)) (s has not joined g), then by σΓ, UR(s, g) /∈
Th(σΓ(γ)), and thus by σQ, σQ(auth(s, o, g), σΓ(γ)) = false (a contradiction). If instead

∃t1.(LiberalRemove(o, g, t1) ∈ Th(γ) ∧ ∀t2.(LiberalAdd(o, g, t2) ∈ Th(γ) ⇒ t1 > t2))

(s was removed from g and not re-added), or ∀t1.(LiberalAdd(o, g, t1) /∈ Th(γ)) (o has

not added to g), then by σΓ, PA(g, o) /∈ Th(σΓ(γ))), and thus by σQ, σQ(auth(s, o, g),

Th(σΓ(γ))) = false.

Thus, by contradiction, σΓ preserves σQ.

For all rgSIS states γ, γ′, if γ′ is reachable from γ, then there exists a sequence of

commands 〈ψ1, ψ2, . . . , ψn〉 such that terminal(γ, ψ1 ◦ ψ2 ◦ · · · ◦ ψn) = γ′. We will show that,

for any rgSIS state γ and command ψ, σΓ(next(γ, ψ)) is reachable from σΓ(γ) via RBAC0

commands. By induction, this will show that for each intermediate rgSIS state γi between

γ and γ′, σΓ(γi) is reachable from σΓ(γ) and ultimately that σΓ(γ′) is reachable from σΓ(γ)

138

(i.e., that σΓ preserves reachability).

Given rgSIS state γ and command ψ, γ′ = next(γ, ψ) is the state resulting from executing

command ψ in state γ.

• If ψ is an instance of addS(s), then γ′ = next(γ, ψ) = γ∪S(s). By σΓ, this maps in RBAC0

to state σΓ(γ′) = σΓ(γ ∪ S(s)) = σΓ(γ) ∪ U(s). By RBAC0’s next relation, next(σΓ(γ),

addU(s)) = σΓ(γ) ∪ U(s). Thus, if ψ is an instance of addS(s), σΓ(γ′) is reachable from

σΓ(γ) via execution of addU(s). A similar argument holds for instances of addG(g) and

addO(o) (with reachability in RBAC0 via addR(g) and addP (o), respectively).

• If ψ is an instance of delS(s), then γ′ = γ \ (S(s) ∪ Entries(γ, s)), where Entries(γ, s)

denotes the set of all state tuples in γ involving s2. By σΓ, this maps in RBAC0 to

state σΓ(γ′) = σΓ(γ \ (S(s) ∪ Entries(s))) = σΓ(γ) \ (U(s) ∪ Entries(σΓ(γ), s)). By

RBAC0’s next relation, next(σΓ(γ), delU(s)) = σΓ(γ) \ (U(s) ∪Entries(s)). Thus, if ψ is

an instance of delS(s), σΓ(γ′) is reachable from σΓ(γ) via execution of delU(s). A similar

argument holds for instances of delG(g) and delO(o) (with reachability in RBAC0 via

delR(g) and delP (o), respectively).

• If ψ is an instance of liberalJoin(s, g), then γ′ = γ ∪ LiberalJoin(s, g, t) ∪ Time(t +

1) \ Time(t). By σΓ, this maps in RBAC0 to state σΓ(γ′) = σΓ(γ) ∪ UR(s, g). By

RBAC0’s next relation, next(σΓ(γ), assignUser(s, g)) = σΓ(γ) ∪ UR(s, g). Thus, if ψ is

an instance of liberalJoin, σΓ(γ′) is reachable from σΓ(γ) via execution of assignUser(s,

g). A similar argument holds for instances of liberalAdd(o, g) with reachability via

assignPermission(g, o).

• If ψ is an instance of strictLeave(s, g), then γ′ = γ ∪ StrictLeave(s, g, t) ∪ Time(t +

1) \ Time(t). By σΓ, this maps in RBAC0 to σΓ(γ′) = σΓ(γ) \ UR(s, g). By RBAC0’s

next relation, next(σΓ(γ), revokeUser(s, g)) = σΓ(γ) \ UR(s, g). Thus, if ψ is an in-

stance of strictLeave(s, g), σΓ(γ′) is reachable from σΓ(γ) via execution of revokeUser(s,

g). A similar argument holds for instances of strictRemove(o, g) with reachability via

revokePermission(g, o).

Thus, for any rgSIS state γ and command ψ, σΓ(next(γ, ψ)) is reachable from σΓ(γ) via

2In the case of rgSIS, Entries(γ, s) for subject s is {LiberalJoin(s, g, t) | LiberalJoin(s, g, t) ∈ γ} ∪
{StrictLeave(s, g, t) | StrictLeave(s, g, t) ∈ γ}.

139

RBAC0 commands. By induction, for any rgSIS states γ and γ′, if γ′ is reachable from γ,

then σΓ(γ′) is reachable from σΓ(γ). Thus, we have shown that σΓ preserves reachability.

Finally, we show that σΓ is pseudo-injective. We first inspect σΓ to identify what set of

differences may exist between γ1 and γ2 and still allow σΓ(γ1) = σΓ(γ2). We then show that,

if two rgSIS states γ1 and γ2 are identical modulo this set of differences, then for any rgSIS

command, ψ, next(γ1, ψ) and next(γ2, ψ) are also identical modulo this set.

Assume σΓ(γ1) = σΓ(γ2). The state mapping, σΓ, stores S, G, and O directly in U , R,

and P , respectively. The set of times, T , and current time, Time, are not stored in RBAC0.

However, T is immutable. Thus, states γ1 and γ2 must not differ in S, G, and O, and are

guaranteed not to differ in T , but may differ in current time Time.

Regarding the handling of LiberalJoin and StrictLeave by σΓ: These relations of rgSIS

are considered in combination. Rather than consider all joins and leaves a particular subject

s has performed for a particular group g, σΓ only considers the most recent join or leave

event. If in γ1, s has joined g and has not since left, by σΓ, UR(s, g) ∈ Th(σΓ(γ1)). If in γ1,

s has left g and has not since re-joined, or if s never joined g, UR(s, g) /∈ Th(σΓ(γ1)). Since

past entries in LiberalJoin and StrictLeave are not considered by σΓ, γ1 and γ2 can have

any contents in these relations, so long as they agree on the most recent event for each s and

g (i.e., whether each s is currently a member of each g).

For identical reasons regarding the storage of 〈g, o〉 ∈ PA by σΓ, γ1 and γ2 can have any

contents in LiberalAdd and StrictRemove as long as they agree, for each o and g, whether

object o is currently in group g.

Finally, StrictJoin, LiberalLeave, StrictAdd, and LiberalRemove are empty and im-

mutable over the commands of rgSIS. Thus, γ1 and γ2 are guaranteed to be identical in

these relations.

Now, we examine each of the differences that may exist between γ1 and γ2 to ensure that,

after execution of any command in both, the resulting states will also differ only in these

ways.

• Current time Consider two rgSIS states γ1 and γ2 that differ in the current time

Time(t). Since the current time is always greater than all times in the join, leave, add,

and remove logs, the difference in current time between these states will propogate only to

140

a difference in the absolute time of future events in the logs; relative order of future events

will be preserved. Thus, for any tgSIS command ψ, the differences between next(γ1, ψ)

and next(γ2, ψ) will only be in current time and absolute time of events. Thus, next(γ1, ψ)

and next(γ2, ψ) will differ only in ways that ensure σΓ(next(γ1, ψ)) = σΓ(next(γ2, ψ)).

• Absolute event times Consider rgSIS states γ1 and γ2 in which some event occured

at different absolute times but in the same order relative to other events. Since rgSIS

commands can only add events with the most recent timestamp, and do not consider the

absolute times of past events, for any rgSIS command ψ, next(γ1, ψ) and next(γ2, ψ)

will differ only in this altered timestamp. Thus, ∀ψ.(σΓ(next(γ1, ψ)) = σΓ(next(γ2, ψ))).

• Relative inter-group event times Consider rgSIS states γ1 and γ2 in which two

adjacent events (operating on different groups) swap times. Since γ1 and γ2 are adjacent,

this swap does not affect the relative times of events within any particular group, and

more importantly does not alter the most recent event for a particular s, g or o, g pair.

Thus, for any tgSIS command ψ, next(γ1, ψ) and next(γ2, ψ) also differ only in these

events’ relative times. Therefore, ∀ψ.(σΓ(next(γ1, ψ)) = σΓ(next(γ2, ψ))).

• Past events Consider two rgSIS states γ1 and γ2 which have different sets of

LiberalJoin, StrictLeave, LiberalAdd, and StrictRemove, but agree on the most recent

event for each s, g (join or leave) and o, g (add or remove). New events can only be added

to the state with the most recent time, and thus the different records between γ2 and γ1

will never impact a future decision—once events become irrelevant, they cannot become

relevant again. Thus, for any ψ, next(γ1, ψ) and next(γ2, ψ) will continue to differ only

in these previous events, and thus σΓ(next(γ1, ψ)) = σΓ(next(γ2, ψ)).

We have enumerated the ways in which two distinct rgSIS states γ1 and γ2 can map to the

same RBAC0 state (i.e., γ1 6= γ2, σΓ(γ1) = σΓ(γ2)). In each case, we show that ∀ψ.(σΓ(next(γ1,

ψ)) = σΓ(next(γ2, ψ))), that is, that γ1 and γ2 are functionally equivalent with respect to σΓ.

Thus, we have shown that σΓ is pseudo-injective.

Thus, we have shown that σΓ preserves σQ, is pseudo-injective, preserves reachability,

and is homomorphic; and that σQ is weak AC-preserving and homomorphic.

∴ 〈σΓ, σQ〉 is a reduction from rgSIS to RBAC0 which shows rgSIS ≤CaH RBAC0.

141

s2

o3

Executed operations
s1 o1 o2 s2 s3 o3 s4 s3

s.join s.add s.add s.join s.join s.add s.join s.leave

Time

s1

o1, o2

s4

Figure 14: An example role hierarchy implementing top g-SIS in RBAC1

Furthermore, RBAC1 can trivially simulate RBAC0 by ignoring the role hierarchy, yielding

the following.

Lemma 7. RBAC0 ≤CAH RBAC1.

Corollary 8. rgSIS ≤CaH RBAC1.

As we have now shown a full proof of both a reduction (the preceeding proof of Theorem 6)

and an implementation (the proof of Theorem 2 in Section 4.5.2), we will state the main

ideas behind the remaining reductions and implementations and defer their proofs to the

technical report available as [47].

Similarly to our implementation of PC in RBAC1 (Theorem 2), we are able to construct a

reduction from top g-SIS (tgSIS) to RBAC1 by identifying the pseudo-hierarchical structure

of the authorization set in tgSIS: since all operations are strict, new members of a group

will have a subset of the permissions of older members. The hierarchy is invoked by the

fact that older members thus “inherit” access to all added objects, while new members only

receive access to objects added after they joined. We simulate this structure in RBAC1’s role

hierarchy by creating a chain in RH for each group. When a g-SIS group g is created, the

top of the chain, a role named g, is created in RBAC1. Objects newly added to the group

should be available to all users, and thus the corresponding permission in RBAC1 is added to

142

s1

o1

s3

o3

Executed operations
s1 o1 s2 s3 s1 o2 s2 o3 o2

l.join l.add l.join l.join l.leave l.add l.leave l.add l.remove

Time

s2

s2, s3

o2

Figure 15: An example role hierarchy implementing bottom g-SIS in RBAC1

the bottom of the chain, ensuring all users in the chain will be authorized. Finally, when

a new user joins group g, they create a new “view” of the g, since they are not authorized

to any existing objects (due to strict join). Thus, we create in RBAC1 a new role (named

randomly) and link it to the bottom of g’s chain. A demonstrative example of this technique

is depicted in Fig. 14. This figure depicts the result of a series of (strict) adds and joins, and

finally a leave.

Theorem 9. tgSIS ≤CaH RBAC1.

We build a reduction from bottom g-SIS (bgSIS) to RBAC1 using a similar hierarchy-

chain solution to tgSIS and PC. Since bgSIS contains all liberal actions, we still have a

pseudo-hierarchy of Auth(bgSIS). In this case, users who leave a group maintain access to

objects from this group, so users who leave earlier have a subset of the authorizations of

users who leave later (or are still members). An exception is made for removed objects, since

these are not granted to new users after removal. Thus, we again create a hierarchy chain for

each group. In this case, the chain grows upward. When a user is removed, a new role is

created at the top of the chain and all users remaining in the group are added to this new role.

Objects are added to this top role, granting access to all current members. Removed objects,

being the exception to the hierarchy rule, are added to orphaned roles, along with all users

who should maintain access to them. An example hierarchy chain constructed using this

143

technique is depicted in Fig. 15, demonstrating how each of the above operations is handled.

Theorem 10. bgSIS ≤CaH RBAC1.

We utilize a non-homomorphic helper reduction from RBAC1 to RBAC0 (and expressiveness

transitivity) to prove reductions from tgSIS and bgSIS to RBAC0. This reduction, in order

to store hierarchical accesses in a “flat” roleset, expands the set of roles to include a role

named for every path through the hierarchy in the downward direction. Thus, if RBAC1’s

hierarchy says A ≥ B, B ≥ C, and A ≥ D, then this is represented in RBAC0 with roles

{A,B,C,D,AB,ABC,AD,BC}. For every role r a user is assigned to in RBAC1, she will be

assigned to each role starting with r in RBAC0. In the previous example, if 〈u,A〉 ∈ UR in

RBAC1, then in RBAC0 this maps to {〈u,A〉, 〈u,AB〉, 〈u,ABC〉, 〈u,AD〉} ⊂ UR in RBAC0.

Theorem 11. RBAC1 ≤CA RBAC0.

Corollary 12. tgSIS ≤Ca RBAC0; bgSIS ≤Ca RBAC0.

We were also able to construct a homomorphic helper reduction from RBAC1 to RBAC0.

This reduction makes use of an encoding technique which stores the information in the

three binary relations (UR, PA, RH) of RBAC1 in the two binary relations (UR, PA)

of RBAC0. Using this encoding, each tuple in RBAC1 is stored using three to four tuples

in RBAC0. Thus, the resulting state encodes the required information in an unnatural,

convoluted scheme which requires deeply nested looping to decode. For example, the

originally straightforward authorization procedure of finding an r such that 〈u, r〉 ∈ UR

and 〈r, p〉 ∈ PA must be carried out in this reduction by searching for a set of values

r, v, x, y, z such that {〈v, x〉, 〈u, v〉, 〈r, x〉} ⊆ UR and {〈y, z〉, 〈y, r〉, 〈z, p〉} ⊆ PA. These vast,

compounding inefficiencies prevent this reduction from having any practical application. We

conjecture that it is impossible to construct an asymptotically more efficient implementation

than using this helper reduction while satisfying the given guarantees, which restricts us to

storing the required workload state using only tuples in two relations, and using only existing

constants (new constants must be information-less). We discuss this reduction further in

Appendix A.

Finally, although ugo has the inherent disadvantage that each object is owned by only

a single user and group, we can show RBAC0 ≤Ca ugo since ugo can simulate RBAC0

144

implementations by mapping a permission assigned to multiple roles to an object with a

single group owner, which represents all roles with authorization and includes as members

all users in the RBAC0 roles. Though the implementation is weakly AC-preserving, it is not

homomorphic since it requires the manipulation of strings for group names.

Theorem 13. RBAC0 ≤Ca ugo.

Corollary 14. rgSIS ≤Ca ugo; tgSIS ≤Ca ugo; bgSIS ≤Ca ugo.

6.4.4 Expressiveness via Implementations

We now present an overview of the implementations of group-centric workloads in

dissemination-centric systems. A summary of these implementations and their corresponding

strengths is shown in Figure 13b. As in the previous section, we now describe the major

results of these implementations.

The PC workload uses liberal join for users joining a program committee group and

strict leave for resignation (permanent leave). Liberal leave is used for conflicts-of-interest

(temporary leave), and strict join is used to re-join after a COI. We implement this workload

in RBAC1 using techniques from the reductions of both tgSIS and bgSIS in RBAC1. Like

in our reduction from tgSIS, each group uses a hierarchy chain building downward, adding

a node (and thus a new “view” of the group) each time a user executes a strict join and

assigning newly added objects to the bottom role of the chain. Like in the reduction from

bgSIS, we use the orphan role concept, in this case for users who liberal leave; the departing

user and permissions she should continue to be authorized to are added to a new role. We

implement u strict leaving g by removing u from all roles connected to g, and u liberal

joining g by assigning u directly to g (so she inherits permission to all current objects). This

implementation is correct, weakly AC-preserving, homomorphic, and safe (previously stated

and proved in Section 4.5.2, depicted in Fig. 4).

Theorem 2 (restated). There exists a correct, weakly AC-preserving, homomorphic, and

safe implementation of PC in RBAC1.

The PSP workload supports liberal (restorative) join, strict leave, liberal add, and both

strict and liberal remove. Rather than use a role hierarchy chain, this reduction uses a single

145

Executed operations
s1 o1 s1 s2 o2 o1 s2 s1 o3 o2

l.join l.add s.leave l.join l.add l.remove s.leave l.join l.add l.remove

Time

s2

s1

o3

s1

o2o1

s1

o1
o1, o2

Figure 16: An example role hierarchy implementing the PSP workload in RBAC1

role for each group that is assigned to all current members and objects in the group. Two

types of orphans are used. One type of orphan is in the hierarchy two levels below the group’s

main role, and is used when an object is liberally removed, to track the users who should

remain authorized to the object. The second type of orphan is a pair one level below the

group’s main role, and is used when a user strict leaves, in order to support the restorative

join operation. On a strict leave of u from g, we create in RBAC1 an orphan role pair r, s,

where s ≥ r, and assign u to r and all of u’s permissions from g to s. Since u is in a role

junior to the permissions, she is no longer authorized to them. On a re-join to the group, we

simply assign u to s, re-enabling u’s access to these permissions. This is depicted in Fig. 16.

This implementation is correct, weakly AC-preserving, homomorphic, and safe.

Theorem 15. There exists a correct, weakly AC-preserving, homomorphic, and safe imple-

mentation of PSP in RBAC1.

We use helper reductions from the previous section to establish correct, weakly AC-

preserving implementations of PC and PSP in RBAC0 and ugo. We independently prove

these implementations are safe, since there is no known meta-theorem for using reductions to

prove safety.

Corollary 16. There exist correct, weakly AC-preserving, and safe implementations of PC

& PSP in RBAC0 & ugo.

146

6.4.5 Summary of Results

Observing the results of Figures 13a and 13b, it is clear that dissemination-centric systems

are sometimes able to meet basic security guarantees when operating within group-centric

scenarios. RBAC1 is the most successful, simulating the extrema systems and workloads with

all security guarantees. RBAC0 was able to implement rgSIS with strong guarantees, but

for other g-SIS parameterizations (those with multiple “views” of a single group), RBAC0

had to sacrifice homomorphism to admit feasible implementations. Finally, ugo was also

able to satisfy all workloads and systems, but (due to each object being associated with

only a single group) did not admit any homomorphic implementations. We note that we

also considered the π-system, a g-SIS system defined over the g-SIS0 model with support

for all action varieties [71], but were unable to construct a reduction from π-system to (or

implementation of 〈πgSIS, T 〉 in) any dissemination-centric system that was AC-preserving.

Consider these results in light of the (first half of the) hypothesis stated in Section 6.1

via [72]:

It may turn out that at a theoretical level, whatever dissemination-centric [systems]

can achieve, group-centric [systems] can also achieve, and vice-versa.

It is clear that this hypothesis is not entirely true. While there was some success among

dissemination-centric systems in implementing specific parameterizations of group-centric

workloads, these systems do not admit as readily implementations of the fully expressive

form of g-SIS without the sacrifice of basic security guarantees.

6.5 COST ANALYSIS

Now that we have a clear picture of each dissemination-centric system’s expressiveness

with respect to group-centric scenarios (which, recall, reflects their theoretical capability),

we investigate the second component of these systems’ suitability to this set of workloads:

efficiency and costs. To consider all of the candidate systems in practical contexts, we evaluate

correct, weak AC-preservation implementations, disregarding the homomorphic requirement,

147

0.5/yr

addG

0.01/yr
1

1

delG

(a) Create

1

delG addO

SLeave

LJoin

1

1

1

0.5/wk

1/mo

0.01/yr

0.5/yr

(b) Join

addO

1/mo

0.25/wk

0.25/wk

1

1

LLeave

SJoin

(c) Discuss

Figure 17: Program Committee actor machines

which some systems can not always satisfy feasibly (see Section 6.4.3). We conduct cost

analysis via Monte Carlo simulation (using ACCostEvalMC within Portuno—see Chapter 5

for details) driven by the structures built during expressiveness analysis.

We generate initial states and traces to analyze each of our group-centric scenarios as

follows.

Program Committee To simulate the PC workload, we select an initial state with 25–75

users. Traces are generated in three phases. First, PC groups are created. Next, PC members

join groups. Finally, discussion occurs, and users post objects and execute conflict-of-interest

workflows. The actor machines that formalize this behavior are shown in Fig. 17. Traces

simulate an eight month cycle, overall.3

Playstation Plus Initial states in PSP have 20–100 users and 2–5 regions (subscription

groups), with 50–400 objects distributed between them, each representing a current promotion

(free game or discount). Traces model users changing membership and administrators adding

and removing objects to the regions. The actor machines for this behavior are shown in

3While this workload has the same operational component as the case study presented in Sections 4.5
and 5.6, its invocational component is different.

148

1/wk

0.33/mo
1/mo

1

1

auth

LJoin

1
SLeave

(a) Player

3/wk

1

SRemove LRemove

LAdd

LAdd

1

1

9/wk

9/wk

1

(b) Administrators

Figure 18: Playstation Plus actor machines

Fig. 18. Each trace models a period of one year.

Extrema Systems To carry out cost analysis of top, bottom, and role-like g-SIS, we must

define usage models from scratch, since these systems are not part of workloads. We generate

initial states with 25–85 users, and a number of managers between 5 and 1/4 the number of

regular users. In traces, managers create groups and sometimes delete posts (e.g., those that

violate terms of service). Normal users join groups and share objects, both newly-created and

existing (re-shares). The actor machines that formalize this behavior are shown in Fig. 19.

Traces model three days to one week of heavy activity, with the average user posting multiple

times per day and joining a new group every two days, on average.

6.5.1 Cost Measures

While the type of expressiveness analysis carried out by an analyst is defined by a set of

security guarantees that must be upheld, the type of cost analysis is parameterized by

the costs to be examined. There are numerous forms of cost measures, from the storage

needed to maintain state, to the administrative overhead of executing commands, to the

149

3/day

1/day 1

1
1/day

LeaveJoin

Add

addO,
Add

1

1

0.5/day

(a) Users

delG addG

delO

1

1

1

1/day

0.25/day

0.25/day

(b) Administrators

Figure 19: Extrema system actor machines

computational cost of evaluating queries. In this analysis, we investigate costs representing

storage requirements (maximum state size during a run, number of roles); amount of data

read/written (average I/O per command, proportion of state changed per command); degree

to which atomicity of command execution is violated (number of stutter steps); and other

application-specific measures of “misuse” of the implementing systems (average number of

permission-assignments per role). To investigate the values of these measures, we plot them

against properties of the trace (e.g., number of users, maximum number of objects) and

against the workload’s own performance within the scenario (e.g., workload I/O, maximum

workload state size) for comparison purposes.

6.5.2 Selected Results

We carried out a comprehensive cost analysis of the implementations described in Section 6.4

using the Portuno simulation engine. Our cost analysis uncovered a variety of clear drawbacks

to implementing group-centric workloads with dissemination-centric systems; we present

several demonstrative examples in Figs. 20–22. Note that each subfigure reports on the result

of 200 runs of the workload being simulated.

150

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Maximum workload state size (×103)

0

2

4

6

8

10

12

14

16

18
M

ax
im

um
sy

st
em

st
at

e
si

ze
(×

10
4
)

RBAC1

RBAC0

ugo

(a)

0 2 4 6 8 10 12 14 16 18

Maximum system state size (×104)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
rc

en
t

of
sy

st
em

st
at

e
ch

an
ge

d
pe

r
ac

ti
on

(%
)

RBAC1

RBAC0

ugo

(b)

Figure 20: Group-centric cost analysis results, PlayStation Plus

Storage measures Figure 20a shows that, in the PSP workload, the amount of storage

required in each implementing system is superlinear in the size of the workload. This is

mostly caused by the blow-up in number of roles/groups required to safely implement the

group-centric workloads in systems without built-in temporal abilities. Although PSP is

particularly inefficient to implement in dissemination-centric systems, only rgSIS can be

implemented using state size comparable to the original workload size even in ugo.

Figure 20b shows another aspect of storage, the proportion of the state that is changed

on average per simulated (workload) action, again when implementing PSP. This figure

shows that our implementation in ugo is particularly inefficient. This is largely due to the

cached authorization table that must be maintained in ugo, making this system a poor

choice in scenarios where writes are costly. This pattern is seen across all workloads, and

implementations with lower state size generally have the highest proportion of state changing

(up to 10% per action), indicating that even those with (relatively) low storage requirements

are re-writing large amounts of data to simulate each action.

It is clear that, to support large numbers of users in groups with high object flux, not

even hierarchical roles are an efficient replacement for time-aware groups.

151

50 100 150 200 250 300 350 400

Number of objects

0

2

4

6

8

10

12
A

ve
ra

ge
sc

he
m

e
I/

O
pe

r
L

A
dd

op
er

at
io

n
(×

10
5
)

RBAC0

ugo

(a) Role-like g-SIS

20 40 60 80 100 120 140

Number of objects

0

1

2

3

4

5

6

7

A
ve

ra
ge

sc
he

m
e

I/
O

pe
r

L
Jo

in
op

er
at

io
n

(×
10

3
)

RBAC1

RBAC0

ugo

(b) Bottom g-SIS

Figure 21: Group-centric cost analysis results, rgSIS and bgSIS

I/O measures Figure 21a shows the I/O cost (in number of state elements accessed) for

simulating liberal add operations in rgSIS. Although RBAC0 is able to simulate role-like g-

SIS fairly naturally, ugo lacks the ability to natively grant multiple groups access to an object.

This missing capability is necessary in group-centric workloads, and thus we must simulate

it in ugo by assigning each object to a single group and assigning users to these special,

semantics-less groups as needed. The extra overhead of iterating over the Member relation

to extract the information from RBAC0’s UR and PA and rebuild the cached authorization

table is evident in Figure 21a from the superlinear increase in I/O needed to add objects to

groups as the number of total objects in the system increases. By comparison to RBAC0’s

simple lock-step implementation, ugo’s is much more inefficient. The consumer-grade ugo

system is not practical within even the most simple group-centric workloads.

Figure 21b demonstrates that high I/O is not restricted to implementations in ugo. This

figure shows I/O for (liberal) joining groups in bgSIS. Recall that this is the operation that

triggers the role hierarchy chain to expand in RBAC1’s simulation of bgSIS, and thus as

expected demands high I/O. Specifically, RBAC1 I/O per join is about 1/4 the total I/O of all

commands executed in bgSIS in an average full simulation, and RBAC0 regularly exceeds the

152

2 4 6 8 10 12 14 16 18

Number of objects (×100)

0

2

4

6

8

10

12

14
To

ta
ls

tu
tt

er
co

st
(×

10
3
)

RBAC1

RBAC0

ugo

(a)

20 30 40 50 60 70 80

Number of actors

0

1

2

3

4

5

6

7

M
ax

im
um

nu
m

be
r

of
ro

le
s

(×
10

3
)

RBAC1

RBAC0

ugo

(b)

Figure 22: Group-centric cost analysis results, Program Committee

workload’s full I/O. Although bgSIS in particular has expensive implementations of liberal

join, each g-SIS workload (except rgSIS which is efficiently implemented in RBAC0) has at

least one action which causes this characteristically high I/O.

We study the amount of “stuttering” per trace in Figure 22a, which is a description of

the number of extra operations that must be executed in implementing systems to simulate

single workload actions. We see a drastic increase in stuttering while implementing PC,

(especially in ugo) as more objects are added to the system. This quantifies the loss of

atomicity of operations, and allows us to understand the increasing frequency with which the

data structures must be locked to guarantee the desired security properties.

Role abuse Finally, we measure the maximum number of roles created to accommodate

the PC workload. It has been said that role-based systems lose their administrative value

when the number of roles exceeds the number of users [119]. In Figure 22b, we compare

the number of subjects in the PC workload to the number of roles (groups for ugo) in the

corresponding state of the implementing systems. Roles vastly outnumber users, starting

with RBAC1’s role hierarchy chain for each group, and getting worse in both RBAC0 and ugo,

each requiring more roles than the previous in order to guarantee weak AC-preservation.

153

Summary We have shown a number of measures for which dissemination-centric systems

RBAC1, RBAC0, and ugo prove to be very inefficient in implementing group-centric workloads

with strong security guarantees. Even the most space-efficient implementations use much

more state storage than an equivalent g-SIS parameterization, and require much more I/O to

operate. The number of roles created is often many times the number of users and several

times the number of objects. With the exception of implementing role-like g-SIS in RBAC, all

implementations also cause large amounts of stuttering, or non-atomic sequences of commands

to simulate a single workload action. Consider these results through the lens of the second

half of the hypothesis stated in Section 6.1 via [72]:

[A]t a pragmatic level, we believe these are significantly different approaches to

information sharing.

It seems that in most practical scenarios one must heavily compromise security guarantees or

suffer vastly inefficient implementations in order to utilize dissemination-centric systems in

the group-centric context. As such, these results confirm this hypothesis.

6.6 DISCUSSION AND FUTURE WORK

6.6.1 Dissemination-centric vs. Group-centric

We set out to evaluate the hypothesis stated by the creators of g-SIS [72]: that the group-

centric class of models is equal in collective expressiveness to the dissemination-centric class,

but that they are pragmatically different approaches and thus should complement, rather

than substitute for, one another. We found in our experiments that these approaches do

indeed yield pragmatically dissimilar systems, and that even on a theoretical expressiveness

level may not be equivalent.

First, in expressiveness analysis, we displayed the reduction from rgSIS to RBAC0,

the simplest role-based system. It was not surprising that the reduction achieved strong

security guarantees (rgSIS was, after all, modeled after role-based systems). However,

when we noticed that tgSIS (and, to a lesser extent, bgSIS) admitted a hierarchical set of

154

authorizations within each group, and that this allowed the hierarchical RBAC1 to implement

it just as strongly, we realized that rgSIS is not unique—other parameterizations of g-SIS

could be safely implemented using dissemination-centric systems.

This pair of strong implementations shows that in some cases a g-SIS parameterization and

a dissemination-centric system can provide the same theoretical capabilities, in part because of

structural similarities between how the group- and dissemination-centric counterparts manage

internal state. There does not seem to be anything special about these pairs that leads us to

believe they are unique. However, in other cases we find the dissemination-centric system

unable to fully match the g-SIS system, e.g. RBAC0 and tgSIS. Thus, although we cannot

count out the possibility that there is some traditional system with the same capabilities as

a given g-SIS system, this is not a claim we can confirm based on our investigation of several

commonly-used traditional systems and several natural g-SIS parameterizations.

To address the pragmatic differences between dissemination- and group-centric sharing,

we carried out cost analyses of the implementations that we developed. Implementations

that were bad fits in expressiveness analysis provided continuing evidence of their poor fit in

cost analysis. State storage was much higher in these systems than in the ideal systems of

the workloads. Executing workload actions often necessitated many stuttering steps in the

implementing system, required higher I/O within the implementing system, and changed a

high proportion of state for each action. However, these poorly-matched implementations

were not alone—even the strongly secure, relatively simple implementation of tgSIS in RBAC1

had inefficiencies that became evident during cost analysis. Though RBAC0 could not feasibly

satisfy the homomorphic guarantee when implementing tgSIS due to lacking a hierarchy,

RBAC1 required as much of a state space explosion as RBAC0. Even though it had much

lower I/O cost than RBAC0, RBAC1 required orders of magnitude greater I/O than in tgSIS

to execute its procedure for simulating a strict join.

Thus, we believe we have validated the second point in the hypothesis. Although certain

dissemination-centric systems are able to implement group-centric workloads, it does not mean

they should—even when they are theoretically capable, they are not necessarily pragmatically

suitable.

155

6.6.2 In Support of Suitability

Although expressive power analysis has long been the measuring stick for understanding and

ranking access control systems in the literature (e.g., [3,11,21,41,59,85,89,101,105,107,114]),

the analysis conducted in this chapter supports our central thesis that expressiveness alone

does not always tell the whole story. For instance, recall that RBAC1 was able to implement

many interesting g-SIS workloads while maintaining strong security guarantees. However, the

complexity required for these implementations to maintain this set of properties resulted in

loss of atomicity when executing certain actions, increased state size and state management

overheads, and (ultimately) a loss of the elegance of the original workload. From a theoretical

perspective, RBAC1 was expressive enough to encode a variety of group-centric workloads;

from a practical perspective, these implementations are less than ideal.

As a large, comprehensive analysis of both expressiveness and cost within the context of

a particular access control usage, this case study also firmly supports the feasibility of using

the suitability analysis workflow defined in Chapter 3, and the corresponding framework

developed in Chapters 4 and 5. Further, the results obtained by this analysis are significant

in that they provide a concrete data point indicating the potential dangers of relying too

heavily on any one measure of access control suitability when examining the needs of an

application. This further supports another central element of our thesis, that suitability

analyses must support a wide variety of expressiveness and cost metrics.

6.6.3 Towards an Expressiveness Taxonomy

One goal of parameterized expressiveness [59] is to allow one to choose the notion of expres-

siveness that best matches the workload in question. Unfortunately, it is not always easy

to decide whether to require a particular PE security guarantee, and furthermore PE has

not yet enabled the community to break down existing notions of expressiveness into their

component properties. For example, it is not known whether there is any combination of

parameterized expressiveness properties that yields expressiveness statements equivalent to

those made by, e.g., the state matching reduction [114]. We use this observation as motivation

for the continued investigation of PE-like techniques, hoping to gain knowledge of both the

156

properties of and relationships between expressiveness reductions as well as deeper, more

fundamental aspects of access control and state machine simulations. Work on this path

comes to fruition in Chapter 8.

6.7 SUMMARY

We examined in this chapter the capabilities of popular dissemination-centric access control

systems to operate within group-centric workloads. We formalized several group-centric

workloads within g-SIS, a family of information sharing models that has been formalized

in temporal logic but not yet implemented. We then conducted a large-scale two-phase

suitability analysis that we believe to be the first of its kind. We first evaluated whether the

dissemination-centric systems are expressive enough to implement the group-centric workloads,

assessing the strength of these implementations by examining the security guarantees they

preserve. We then conducted a cost analysis, investigating more pragmatic metrics that

provide insight into the efficiency of these systems when implementing group-centric workloads.

We found that while RBAC with role hierarchy was able to implement the workloads

that we considered with strong security guarantees, a more basic variant of RBAC without

role hierarchies could only implement one of our workloads without compromising the

guarantees to be upheld. Further, we found that standard UNIX-style user-group-other

permissions could not implement any of our group-centric workloads while upholding all

required security guarantees. In cost analysis, we found that, with limited exceptions, even

those implementations upholding strong security properties suffered from inefficiencies in

state size, I/O, and atomicity of operations. These results indicate that g-SIS is a practically

significant proposal that elegantly satisfies a class of workloads that existing access control

techniques struggle with.

Beyond answering open questions from the literature, this case study supports our thesis

by using suitability analysis to prove results that are impossible without it. We also motivate

ongoing subjects within suitability, namely the decomposition of expressiveness reductions,

which we present in Chapter 8.

157

7.0 BEYOND POINT STATES: UNDERSTANDING THE COSTS OF

DYNAMIC CRYPTOGRAPHIC ACCESS CONTROL IN THE CLOUD

Significant interest has been shown in using (H)IBE, ABE, PE, and FE and related technologies

to perform access control for files stored on untrusted cloud providers. Much of this work

studies static models, in which the access control policies being enforced do not change over

time. However, in most practical cases and in many of the motivations of these works, dynamic

access controls are necessary. In this chapter, we explore the application of suitability analysis

outside of the realm of classical access control evaluation, and begin to explore the viability

and costs of adapting these types of cryptosystems to perform dynamic access control on the

cloud under a threat model commonly assumed in the cryptographic literature. To this end,

we develop lightweight IBE/IBS- and PKI-based constructions for cryptographically enforcing

RBAC0 access controls over files hosted by a cloud storage provider. In adapting two-phase

suitability analysis to this problem, we first prove the correctness of these constructions,

and then leverage real-world RBAC datasets and Portuno to experimentally analyze their

associated cryptographic costs. Although IBE/IBS and PKI systems are a natural fit for

enforcing static RBAC policies, we show that supporting revocation, update, and other state

change functionality incurs significant overheads in realistic scenarios. We identify a number

of bottlenecks of such systems, and fruitful areas for future work that could lead to more

natural and efficient constructions for cryptographic enforcement of dynamic access controls.

The majority of our findings also extend to similar attempts to use HIBE, ABE, and PE

schemes to enforce dynamic RBAC1 or ABAC policies.1

1The material presented in this chapter is currently under review [49].

158

7.1 INTRODUCTION

With the rise of cloud computing, the economic motivations driving outsourced storage are

clear, and major cloud providers such as Google, Microsoft, Apple, and Amazon are providing

both industrial large-scale services, and smaller-scale, user-facing services. Similarly, there

are a number of user-focused cloud file sharing services, such as Dropbox, Box, and Flickr

that use the cloud. However, outsourcing data management raises new questions regarding

the maintenance and enforcement of complex—or even simple—access controls that were

previously managed in-house. Many times, cloud providers are only partially trusted. This

lack of trust is often due to fear of external hacking and data-disclosure (e.g., private photo

disclosure [94]), or even state-sponsored attacks against cloud organizations themselves (e.g.,

Operation Aurora, in which Chinese hackers infiltrated providers like Google, Yahoo, and

Rackspace [33, 88]). There has been much discussion about how to achieve access control

on the cloud, but in situations where confidentiality or integrity with respect to the cloud

provider itself is necessary, cryptographic systems are a natural—if not the only—solution.

With the advent of identity-based encryption (IBE) [16,97], hierarchical identity-based

encryption (HIBE) [15,50], and forms of attribute-based encryption (ABE) [53] and related

signature schemes such as identity-based signatures (IBS) [20], this discussion has further

accelerated, as these schemes embed support for many naturally-occurring access control

policies. There has also been significant work in the field of cryptography to further expand

the expressiveness of these policies. A key question is: How well-suited are these technologies

to solve real-world access control problems? To the best of our knowledge, there are no

cryptographically-enforced access control schemes for the cloud in widespread use. Given the

plethora of research in this area, one would expect such systems to be deployed. We believe

that this is, in part, due to the fact that much of the writing on using cryptographic schemes

as access control mechanisms seems to implicitly assume that the access control policies to

be enforced are static (e.g., [12,53,84,97]), or motivate with seemingly dynamic scenarios,

but provide static solutions (e.g, [52,70,90]).

This static nature is contrary to the majority of traditional access control systems,

which support dynamic policies and data. There has been some work in the cryptography

159

community that provides a level of dynamism for IBE, HIBE, and ABE. This work considers

the ability to revoke encryption keys (starting with [14]), with the goal of adding support for

dynamic policies and data. When combined with the ability to delegate re-encryption [54,96],

this allows for users’ access to be revoked from files. However, this work is not without

issues. For example, absent from the discussion of delegated re-encryption (e.g., [54]) is

that, in practice, hybrid encryption is used to encrypt files, and that, under reasonable

threat models, delegated re-encryption is not compatible with hybrid encryption. Although

IBE, HIBE, and ABE primitives seem well-suited for protecting point states in many access

control paradigms, supporting the transitions between these states that are triggered by

administrative actions requires addressing very subtle issues involving key management,

coordination, and consistency. These issues are not addressed explicitly in the literature, and

as the old saying goes, the devil is in the details.

In this chapter, we attempt to use suitability analysis techniques to narrow this gap. We

develop two constructions for cryptographically enforcing dynamic role-based access controls

(specifically, RBAC0 [103,104]) in cloud environments: one based on IBE/IBS techniques, and

another based on the standard public-key cryptographic techniques deployed in existing PKIs.

We use parameterized expressiveness [59] to prove the correctness of these constructions. To

quantify the costs of using these constructions in realistic access control scenarios, we leverage

our constrained, actor-based invocation structure and the Portuno simulation environment.

Our simulations, driven by real-world RBAC datasets [34], allow us to explore the costs

associated with using these constructions in a variety of environments where the RBAC0

policy and files in the system are subject to dynamic change. In doing so, we uncover several

design considerations that must be addressed, make explicit the complexities of managing

transitions that occur as policies or data are modified at runtime (which are often ignored

in the literature), and show that the resulting costs of using cryptography to correctly

enforce RBAC0 access controls in a dynamic environment are highly dependent on the mix of

administrative operations that occur at runtime. This provides us with a number of insights

toward the development of more effective cryptographic access controls. Through our analysis,

we make the following contributions:

• Prior work often dismisses the need for an access control reference monitor when using

160

cryptographically-enforced access controls (e.g., [12,52,53,90]). We discuss the necessity of

some minimal reference monitor on the cloud when supporting dynamic, cryptographically-

enforced access controls, and we outline other design considerations that must be addressed

in dynamic environments.

• We develop constructions that use either the IBE/IBS or public-key cryptographic

paradigms to enable dynamic outsourced RBAC0 access controls, and prove that they

correctly implement the RBAC0 specification. In an effort to lower-bound deployment

costs, our constructions sometimes make design choices that emphasize efficiency over

the strongest possible security (e.g., using lazy rather than online re-encryption, cf. Sec-

tion 7.4.3), but our constructions are easily extended to support stronger security guaran-

tees.

• We discuss the deficiencies of using revocation and delegated encryption techniques to

update roles/permissions in dynamic RBAC scenarios using hybrid encryption.

• We use real-world RBAC datasets and stochastic models of administrative behavior to

quantify the costs of using our constructions. Our findings demonstrate scenarios in which

IBE/IBS and public key cryptography are effective means of implementing RBAC access

controls, and many situations in which severe overheads are incurred through the use

of these techniques. For instance, we show that removing a single user from a role in a

moderately-sized organization can require hundreds or thousands of IBE encryptions. Our

simulations show that these inflection points in performance are a function of organization

size, role density, and administrative operational mix.

• Our experimental findings provide a number of insights into promising future research

directions that could lead to better support for cryptographic access controls in dynamic

environments. We note that although the use case we explore is based upon RBAC0, our

findings are also relevant to the use of hierarchical RBAC (RBAC1) or attribute-based

access controls (ABAC) implemented using HIBE or ABE techniques, respectively.

The remainder of this chapter is organized as follows. In Section 7.2, we discuss the relevant

background in cryptography. Section 7.3 documents our system model and assumptions,

and presents the cryptographic primitives used in this chapter. In Section 7.4, we describe

our IBE/IBS construction in detail, and overview the key differences between it and our

161

PKI-based construction. Section 7.5 presents the results of our suitability analysis. In

Section 7.6, we identify interesting directions for future work informed by our findings.

Section 7.7 summarizes our conclusions.

7.2 BACKGROUND

Starting with the development of practical identity-based encryption (IBE) schemes [16], there

has been considerable work put into the development of cryptographic systems that directly

support a number of access control functionalities, with examples including hierarchical

IBE [50, 61], attribute-based encryption [97], and functional encryption [95]. At a high

level, these encryption schemes allow one to encrypt data to a policy, so that only those

who have secret keys matching the policy can decrypt. What varies is the expressiveness

of the policies that are supported. With IBE and traditional public-key encryption, one

can encrypt specifically for a given target individual, and only that individual can decrypt.

With attribute-based encryption, a ciphertext can be encrypted to a certain policy, and

can be decrypted only by individuals whose secret keys satisfy that policy. With functional

encryption, a certain function is embedded in the ciphertext, and when one “decrypts,” one

does not retrieve the underlying value, but rather a function of the encrypted value and the

decryptor’s secret key. One underlying motivation in all of the above work is the ability to

encrypt data and store it on the cloud while still enforcing access control.

Much of the work on these advanced cryptographic systems allows for data to be stored

on the cloud, but it does not address the issue of revocation or dynamic modification of the

access control structure being used to store data on the cloud. This can, of course, be done

by downloading the data, decrypting it, and then re-encrypting under a new policy, but this

is communication intensive, and potentially computationally intensive too. Further, for large

files, clients making the changes in the access structure may not be able to support the entire

file locally (e.g., smartphones). Therefore, there has been some work done in considering

delegated encryption and revocation in these models (e.g., [14, 54,55,78,91,96,109]).

There has also been significant work on using cryptography as an access control mechanism,

162

starting with seminal works such as that by Gudes [56]. This work describes how access

controls can be enforced using cryptography, but does not address many practical issues

such as key distribution and management, policy updates, and costs. Furthermore, as the

motivation is a local file system, the access control system must be trusted with the keys

(and trusted to delete them from memory as soon as possible). Work by Akl and Taylor [1]

addresses some of the key management issues by proposing a key assignment scheme: a

system for deriving keys in a hierarchical access control policy, rather than requiring users

higher in the hierarchy to store many more keys than those lower in the hierarchy. Again, this

work does not consider key distribution or policy updates. Later work in key hierarchies by

Atallah et al. [7] proposes a method that allows policy updates, but in the case of revocation,

all descendants of the affected node in the access hierarchy must be updated, and the cost of

such an operation is not discussed. Continued work in key assignment schemes has improved

upon the efficiency of policy updates; see [29] for a survey of such schemes that discusses

tradeoffs such as how much private vs. public information must be stored and how much

information must be changed for policy updates. Much of this work focuses on the use of

symmetric-key cryptography, and so its use for the cloud is potentially limited.

De Capitani di Vimercati et al. [31,32] describe a method for cryptographic access controls

on outsourced data using double encryption (one layer by the administrator and one by

the service). An extension to this work also enforces write privileges [30]. However, this

solution requires a high degree of participation by the cloud provider or third party, and the

work does not address the high cost of such operations as deleting users (which can incur

cascading updates). Ibraimi’s thesis [65] proposes methods for outsourcing data storage using

asymmetric encryption. However, the proposed method for supporting revocation requires a

trusted mediator and keyshare escrow to verify all reads against a revocation list (and does

not address revoked users reusing cached keyshares). Furthermore, policy updates require an

active entity to re-encrypt all affected files under the new policy. Similarly, work by Nali et

al. [87] enforces role-based access control using public-key cryptography, but requires a series

of active security mediators.

Crampton has shown that cryptography is sufficient to enforce RBAC policies [26] and

general interval-based access control policies [27], but revocation and policy updates are not

163

considered (i.e., the constructions are shown only for static policies). Ferrara et al. [38] formally

define a cryptographic game for proving the security of cryptographically-enforced RBAC

systems and prove that such properties can be satisfied using an ABE-based construction.

This construction has since been extended to provide policy privacy and support writes

with less trust on the provider [37]. The latter is accomplished by eliminating the reference

monitor that checks if a write is allowed and instead accepting each write as a new version;

versions must then be verified when downloaded for reading to determine the most recent

permitted version (the provider is trusted to provide an accurate version ordering). However,

these works do not consider the costs and other practical considerations for using such a

system in practice (e.g., lazy vs. active re-encryption, hybrid encryption). In this chapter, we

consider exactly these issues in the cryptographic enforcement of access controls.

7.3 THREAT MODELS AND ASSUMPTIONS

Our goal is to understand the practical costs of leveraging public-key cryptographic primitives

to implement outsourced dynamic access controls in the cloud. In this section, we define

the system and threat models in which we consider this problem, specify the access control

model that we propose to enforce, and define the classes of cryptographic primitives that will

be used in our constructions.

7.3.1 System and Threat Models

Assumptions regarding trust are central to the specification of any access control approach.

Most traditional approaches to access control assume complete mediation of all access requests

by a trusted reference monitor, and therefore store resources in plaintext. While this is

reasonable when dealing with trusted infrastructure (e.g., a personal machine or corporate

server), it becomes less realistic when resources are to be stored on third-party infrastructure.

On the other extreme, much of the cryptographic literature on idealized cryptographic access

controls tend to assume that the infrastructure housing resources is untrusted and that

164

Organization Cloud storage

Admin

Users

UR
PA

Policy
data

Encrypted
files

Update policy

Read files

Write files

M
in

im
a
l
re

fe
re

n
ce

m
on

it
or

Figure 23: System Diagram

the enforcement of the access control policy is handled entirely cryptographically. These

can broken into three categories: (i) those that motivate and provide static access control

schemes (e.g., [12, 53, 84]); (ii) those that motivate with dynamic case-studies but provide

static solutions(e.g., [52, 70, 90]); and (iii) those that motivate and provide minimal dynamic

cryptographic protocols, but do not discuss the security model of reference monitors that

would execute the protocols, nor discuss whether the protocols are sufficient to implement a

fully featured dynamic access control system (e.g., [96]).

The specific environment that we consider—which is based on the untrusted cloud provider

typically assumed in the cryptographic literature—is depicted in Fig. 23. The system consists

of three main (classes of) entities: access control administrators, users/clients, and cloud

storage providers. Clients and administrators are assumed to belong to the same (perhaps

virtual) organization, which outsources some of its data management needs to the cloud. We

assume that all parties can communicate via pairwise authenticated and private channels (e.g.,

SSL/TLS tunnels). Access control administrators are tasked with managing the protection

state of the storage system. That is, they control the assignment of access permissions, which

entails the creation, revocation, and distribution of cryptographic keys used to protect files in

a role-based manner. Metadata to facilitate key distribution is stored in a cryptographically

165

protected manner on the cloud provider. Users may download any file stored on the storage

provider, but may decrypt, read, and (possibly) modify only the files for which they have

been issued the appropriate (role-based) keys. All files are encrypted and signed prior to

upload to the cloud storage provider.

The cloud storage provider is contracted to manage the storage needs of the users’ and

administrators’ organization. We assume that the cloud is not trusted to view the contents

of the files that it stores. However, it is trusted to ensure the availability of these files,

and to ensure that only authorized individuals update these files. File access is assumed to

occur directly though the cloud provider’s API, with read access permissions being enforced

cryptographically on the client side, and write access permissions being enforced by a minimal

reference monitor on the cloud provider that validates client signatures ensuring write

privileges prior to file updates. We believe this scenario to encode reasonable assumptions

regarding outsourced storage: the storage provider essentially ensures the consistency of this

file system by preventing unauthorized updates, yet does not maintain any ability to read or

make legitimate modifications to the content of files. In this case study, we explore several

cryptographic constructions that meet the above goals, and examine the costs associated

with the enforcement of dynamic access controls in this context.

In this chapter, we focus on cryptographic enforcement of RBAC0 (Example 2), given the

prevalence of this type of access control system in both the research literature and commercial

systems. Many variants of RBAC exist, but we focus on RBAC0 as it is conceptually the

simplest RBAC variants yet still provides adequate expressive power to be interesting for

realistic applications. Generalizing this model to richer RBAC variants (e.g., RBAC1) and

attribute-based access control (ABAC) is discussed in Section 7.6.3.

7.3.2 Cryptographic Primitives

Both of our constructions make use of symmetric-key authenticated encryption (GenSym,

EncSym, DecSym). Our PKI scheme uses public-key encryption and digital signatures

(GenPub, EncPub, DecPub, GenSig, SignSig, VerSig). While many attribute-based en-

cryption (ABE) schemes are being developed to support policy constructions of varying

166

expressivity, RBAC0 does not require this level of sophistication. To this end, we instead use

Identity-Based Encryption (IBE) schemes:

• MSKGenIBE(1n): Takes security parameter n; generates public parameters (which are

implicit parameters to every other IBE algorithm) and master secret key msk.

• KeyGenIBE(ID,msk): Generates a decryption key kID for identity ID.

• EncIBE
ID (M): Encrypts message M under identity ID.

• DecIBE
kID

(C): Decrypts ciphertext C using key kID; correctness requires that ∀ ID if

kID = KeyGenIBE(ID) then ∀M,DecIBE
kID

(EncIBE
ID (M)) = M .

We also use Identity-Based Signature (IBS) schemes:

• MSKGenIBS(1n): Takes security parameter n; generates public parameters (which are

implicit parameters to every other IBS algorithm) and master secret key msk.

• KeyGenIBS(ID,msk): Generates a signing key sID for identity ID.

• SignIBS
ID,sID

(M): Generates a signature sig on message M if sID is a valid signing key for

ID.

• VerIBS
ID (M, sig): Verifies whether sig is a valid signature on message M for identity ID;

requires that ∀ ID
if sID = KeyGenIBS(ID) then

∀MVerIBS
ID (M,SignIBS

ID,sID
(M)) = 1.

IBE (resp. IBS) schemes build upon traditional public-key schemes by allowing any desired

string to act as one’s encryption (resp. verification) key. This requires the introduction of a

third party who can generate the decryption and signing keys corresponding to these identity

strings. This third party, who holds the master keys, is able to produce decryption or signing

keys for anyone, and thus the system has inbuilt escrow. In our use of these systems, the

RBAC administrator(s) will act as this third party. Since administrators traditionally have

the power to access/assign arbitrary permissions, this escrow is not a weakness. In practice,

if this is still a concern, threshold/secret splitting schemes can be used to distribute trust

amongst several individuals. However, such schemes would increase the cryptographic costs

of operations associated with the master key.

167

7.4 IMPLEMENTATION

While cryptographic access control enforcement has been studied in the past, the focus has

been almost entirely on techniques that are best suited for mostly static scenarios lacking

a trusted reference monitor (e.g., [53,84]), in which the policies to be enforced and files to

be protected change very little over time. As such, the particulars associated with securely

managing policy change and the associated overheads have been largely under-explored.

In this section, we begin with a strawman construction for cryptographic access control

enforcement, and use it to highlight a variety of limitations and design considerations that

must be addressed. We conclude with a detailed description of our IBE/IBS and PKI

constructions, which address these issues.

7.4.1 A Strawman Construction

At first blush, it seems conceptually simple to provision a cryptographically-enforced RBAC0

system. We now overview such a system, which will allow us to highlight a variety of issues

that arise as a result. This strawman construction will make use of IBE/IBS; the use of a

more traditional PKI is a straightforward translation. We assume that the administrator

holds the master secret keys for the IBE/IBS systems.

• Registration. Each user, u, of the system must carry out an initial registration process

with the administrator. The result of this process is that the user will obtain identity-

based encryption and signing keys ku ← KeyGenIBE(u) and su ← KeyGenIBS(u) from

the administrator.

• Role Administration. For each role, r, the administrator will generate identity-based

encryption and signing keys kr ← KeyGenIBE(r) and sr ← KeyGenIBS(r). For each

user u that is a member of r (i.e., for each (u, r) ∈ UR in the RBAC0 state), the

administrator will create and upload a tuple of the form:

〈RK, u, r,EncIBE
u (kr, sr),SignIBS

SU 〉.

168

This tuple provides u with cryptographically-protected access to the encryption and

signing keys for r, and is signed by the administrator. Here, SignIBS
SU at the end of the

tuple represents an IBS signature by identity SU (the administrator), and RK is a sentinel

value indicating that this is a role key tuple.

• File Administration. For each file f to be shared with a role r (i.e., for each (r, 〈f,
op〉) ∈ PA in the RBAC0 state), the administrator will create and upload a tuple:

〈F, r, 〈fn, op〉,EncIBE
r (f),SignIBS

SU 〉.

This tuple contains a copy of f that is encrypted to members of r. Here, fn represents

the name of the file f , while op is the permitted operation—either Read or Write. As

before, SignIBS
SU is a signature by the administrator, and F is a sentinel value indicating

that this is a file tuple.

• File Access. If a user u who is authorized to read a file f (i.e., ∃r : (u, r) ∈ UR ∧ (r,

〈f,Read〉) ∈ PA) wishes to do so, she must (i) download an RK tuple for the role r and

an F tuple for f ; (ii) validate the signatures on both tuples; (iii) decrypt the role key kr

from the RK tuple using their personal IBE key ku; and (iv) decrypt the file f from the F

tuple using the role key kr.

Writes to a file are handled similarly. If u is authorized to write a file f via membership

in role r (i.e., ∃r : (u, r) ∈ UR ∧ (r, 〈f,Write〉) ∈ PA), she can upload a new F tuple

〈F, r, 〈fn,Write〉,EncIBE
r (f ′),SignIBS

r 〉. If the signature authorizing the write (SignIBS
r)

can be verified by the cloud provider, the existing F tuple for f will be replaced.

This construction describes a cryptographic analog to RBAC0. The UR relation is encoded

in the collection of RK tuples, while the PA relation is encoded in the collection of F tuples.

The authorization relation of RBAC0 is upheld cryptographically: to read a file f , a user u

must be able to decrypt a tuple granting her the permissions associated with a role r, which

can be used to decrypt a tuple containing a copy of f encrypted to role r.

169

7.4.2 Design Considerations

While conceptually straightforward, the strawman construction is by no means a complete

solution. We now use this construction as a guide to discuss a number of design tradeoffs

that must be addressed to support cryptographic enforcement of dynamic RBAC0 states.

Inefficiency Concerns. The strawman construction exhibits two key issues with respect

to efficiency. First, IBE (like public-key cryptography) is not particularly well-suited for the

bulk encryption of large amounts of data. As such, the performance of this construction

would suffer when large files are shared within the system. Second, this construction requires

a duplication of effort when a file, say f , is to be shared with multiple roles, say r1 and r2.

That is, f must actually be encrypted twice: once with r1 and once with r2. We note that

this also leads to consistency issues between roles when f is updated. Fortunately, both of

these concerns can be mitigated via the use of hybrid cryptography. Rather than storing F

tuples of the form:

〈F, r, 〈fn, op〉,EncIBE
r (f),SignIBS

SU 〉

We can instead store the following tuples, where k ← GenSym is a symmetric key:

〈FK, r, 〈fn, op〉,EncIBE
r (k),SignIBS

SU 〉

〈F, fn,EncSym
k (f),SignIBS

r 〉

The FK tuples are quite similar to the file encryption tuples in the strawman construction,

except that the ciphertext portion of the tuple now includes an IBE-encrypted symmetric

key rather than an IBE-encrypted file. The F tuples contain a symmetric-key-encrypted

(using an authenticated mode) version of the file f , and are IBS-signed using the role key

of the last authorized updater. This adjustment to the metadata improves the efficiency

of bulk encryption by making use of symmetric-key cryptography, and greatly reduces the

duplication of effort when sharing a file with multiple roles: a single F tuple can be created

for the file along with multiple FK tuples (i.e., one per role).

Handling Revocation. The strawman construction can neither revoke a permission

from a role, nor remove a user from a role. The former case can be handled by versioning

170

the F and FK tuples stored within the system, and the latter case handled by adding role

versioning to the role key tuples and FK tuples in the system:

〈RK, u, (r, vr),EncIBE
u (k(r,vr), s(r,vr)),SignIBS

SU 〉

〈FK, r, 〈fn, op〉, v,EncIBE
(r,vr)(k),SignIBS

SU 〉

〈F, fn, v,EncSym
k (f),SignIBS

(r,vr)〉

Here, v represents a version number for the symmetric key used to encrypt a file. Role names

have been replaced with tuples that include the role name (e.g., r), as well as a version

number (vr). Removing a permission from a role entails re-keying and re-encrypting the file

(i.e., creating a new F tuple), and creating new FK tuples for each role whose access to the file

have not been revoked. The roles increment their previous role number. Similarly, removing

a user u from a role r entails deleting u’s RK tuple for r, generating new role keys for r

(with an incremented version number) and encoding these into new RK tuples for each user

remaining in r, and re-versioning all files to which the role r holds some permission. We note

that both of these processes must be carried out by an administrator, as only administrators

can modify the RBAC0 state. There is much nuance to these processes, and we defer a full

discussion to Section 7.4.3.

Online, Lazy, and Proxy Re-Encryption. Supporting revocation leads to an interest-

ing design choice: should files be re-encrypted immediately upon re-key, or lazily re-encrypted

upon their next write? From a confidentiality standpoint, forcing an administrator—or

some daemon process running on her behalf—to re-encrypt files immediately upon re-key is

preferential, as it ensures that users who have lost the ability to access a file cannot later

read its contents. On the other hand, this comes with a potentially severe efficiency penalty

in the event that many files are re-keyed due to changes to some role, as access to these files

must be locked while they are downloaded, re-encrypted, and uploaded. In our construction,

we opt for a lazy re-encryption strategy, in which files are re-encrypted by the next user to

write to the file (cf., Section 7.4.3). We note that such a scheme is not appropriate for all

scenarios, but substantially reduces the computational burden on the cloud when allowing

for dynamic updates to the RBAC0 state (cf., Section 7.5.4). Adapting our construction to

instead use online re-encryption is a straightforward extension.

171

While appealing on the surface, IBE schemes that support proxy re-encryption or revoca-

tion (e.g., [14, 54]) are not suitable for use in our scenario. These types of schemes would

seemingly allow us to remove our reliance on lazy re-encryption, and have the cloud locally

update encryptions when a permission is revoked from a role, or a role from a user. This

would be done by creating an updated role name, using proxy re-encryption to move the

file from the old role name to the updated one, and then revoking all keys for the old file.

The significant issue, here, is that such schemes do not address how one would use them

with hybrid encryption. We do not believe that a reasonable threat model can assume that

even a limited adversary would be unable to cache all the symmetric keys for files she has

access to. Thus, using proxy re-encryption on the RK and FK tuples and not the F tuples

would allow users to continue to access files to which their access has been revoked, and so

our construction would still require online or lazy re-encryption of the files themselves.

As a final note, we acknowledge that key-homomorphic PRFs [17] could be combined with

revocation and proxy re-encryption schemes, solving the revocation problem completely on

the cloud in the hybrid model. However, current technology does not solve the computational

effort, as costs of current key-homomorphic PRFs are comparable to or greater than the IBE

and PK technologies in consideration.

Multiple Levels of Encryption. We note that our construction has levels of indirection

between RK, FK, and F tuples that mirror the indirection between users, roles, and permissions

in RBAC0. This indirection could be flattened to decrease the number of cryptographic

operations on the critical path to file access; this would be akin to using an access matrix

to encode RBAC0 states. While this is possible, it has been shown to cause computational

inefficiencies when roles’ memberships or permissions are altered [48]; in our case this

inefficiency would be amplified due to the cryptographic costs associated with these updates.

Other Issues and Considerations. Our constructions are measured without concern

for concurrency-related issues that would need to be addressed in practice. We note, however,

that features to handle concurrency would be largely independent of the proposed cryptography

used to enforce the RBAC0 policies. As such, we opt for the analysis of the conceptually-

simpler schemes presented in this case study. Finally, our analysis is agnostic to the underlying

achieved security guarantees and hardness assumptions of the public-key and IBE schemes.

172

Production implementations would need to consider these issues.

7.4.3 Detailed IBE/IBS Construction

We now flesh out the strawman and previously-discussed enhancements. This produces a

full construction for enforcing RBAC0 protections over an evolving collection managed by a

minimally-trusted cloud storage provider.

7.4.3.1 Overview and Preliminaries We reiterate that the administrators act as the

Master Secret Key Generator of the IBE/IBS schemes. Users add files to the system by

IBE-encrypting these files to the administrators, using hybrid cryptography and F tuples.

Administrators assign permissions (i.e., 〈file, op〉 pairs) to roles by distributing symmetric

keys using FK tuples. Role keys are distributed to users using RK tuples. Recall the format

of these tuples is as follows:

〈RK, u, (r, vr),EncIBE
u (k(r,vr), s(r,vr)),SignIBS

SU 〉

〈FK, r, 〈fn, op〉, v,EncIBE
(r,vr)(k),SignIBS

SU 〉

〈F, fn, v,EncSym
k (f),SignIBS

(r,vr)〉

Note that symmetric keys and role keys are associated with version information to handle

the cases where a user is removed from a role or a permission is revoked from a role.

We assume that files have both read and write permissions associated with them. However,

we cannot have write without read, since writing requires decrypting the file’s symmetric

key, which then can be used to decrypt and read the stored file. Thus we only assign either

Read or RW, and only revoke Write (Read is retained) or RW (nothing is retained). When a

user wishes to access a file, she determines which of her roles has access to the permission in

question. She then decrypts the role’s secret key using her identity, and then decrypts the

symmetric key for the file using the role’s secret key, and finally uses the symmetric key to

decrypt the symmetrically-encrypted ciphertext in question.

173

addU(u)

– Generate IBE private key ku ← KeyGenIBE(u) and IBS pri-

vate key su ← KeyGenIBS(u) for the new user u

– Give ku and su to u over private and authenticated channel

delU(u)

– For every role r that u is a member of:

∗ revokeU(u, r)

addPu(fn, f)

– Generate symmetric key k ← GenSym

– Send 〈F, fn, 1,Enc
Sym
k

(f),SignIBS
u 〉 and 〈FK, SU , 〈fn, RW〉,

1, EncIBE
SU (k), u, SignIBS

u 〉 to R.M.

– The R.M. receives 〈F, fn, 1, c, sig〉 and 〈FK, SU , 〈fn, RW〉, 1,

c′, u, sig′〉 and verifies that the tuples are well-formed and

the signatures are valid, i.e. VerIBS
u (〈F, fn, 1,Enc

Sym
k

(f)〉,
sig) = 1 and

VerIBS
u (〈FK, SU , 〈fn, RW〉, 1, c′, u〉, sig′) = 1.

– If verification is successful, the R.M. adds (fn, 1) to FILES and

stores 〈F, fn, 1, c〉 and 〈FK, SU , 〈fn, RW〉, 1, c′, u, sig′〉

delP (fn)

– Remove (fn, vfn) from FILES

– Delete 〈F, fn,−,−〉 and all 〈FK, −, 〈fn,−〉, −, −, −, −〉

addR(r)

– Add (r, 1) to ROLES

– Generate IBE private key k(r,1) ← KeyGenIBE((r, 1)) and

IBS private key s(r,1) ← KeyGenIBS((r, 1)) for role (r, 1)

– Send 〈RK, SU , (r, 1), EncIBE
SU

(
k(r,1), s(r,1)

)
, SignIBS

SU 〉 to

R.M.

delR(r)

– Remove (r, vr) from ROLES

– For all permissions p that r has access to:

∗ revokeP (p, r)

assignU(u, r)

– Find 〈RK, SU , (r, vr), c, sig〉 with VerIBS
SU (〈RK, SU , (r, vr),

c〉, sig) = 1

– Decrypt keys (k(r,vr), s(r,vr)) = DecIBE
kSU

(c)

– Send 〈RK, u, (r, vr), EncIBE
u

(
k(r,vr), s(r,vr)

)
, SignIBS

SU 〉 to

R.M.

revokeU(u, r)

– Delete 〈RK, SU , (r, vr), −, −〉
– Generate new role keys k(r,vr+1) ← KeyGenIBE((r, vr + 1)),

s(r,vr+1) ← KeyGenIBS((r, vr + 1))

– For all 〈RK, u′, (r, vr), c, sig〉 with u′ 6= u and VerIBS
SU (〈RK,

u′, (r, vr), c〉, sig) = 1:

∗ Send 〈RK, u′, (r, vr + 1), EncIBE
u′

(
k(r,vr+1), s(r,vr+1)

)
,

SignIBS
SU 〉 to R.M.

– For every p such that there exists 〈FK, (r, vr), p, vfn, c′, SU ,

sig〉 with VerIBS
SU (〈FK, (r, vr), p, vfn, c′, SU〉, sig) = 1:

∗ For every 〈FK, (r, vr), p, v, c′, SU , sig〉 with VerIBS
SU (〈FK,

(r, vr), p, v, c′, SU〉, sig) = 1:

· Decrypt key k = DecIBE
k(r,vr)

(c′)

· Send 〈FK, (r, vr +1), p, v, EncIBE
(r,vr+1)(k), SU , SignIBS

SU 〉
to R.M.

∗ Generate new symmetric key k′ ← GenSym for p

∗ For all 〈FK, id, p, vfn, c′′, SU , sig〉 with VerIBS
SU (〈FK, id,

p, vfn, c′′, SU〉, sig) = 1:

· Send 〈FK, id, p, vfn + 1, EncIBE
id (k′), SU , SignIBS

SU 〉 to

R.M.

∗ Increment vfn in FILES, i.e. set vfn := vfn + 1

– Delete all 〈RK, −, (r, vr), −, −〉
– Delete all 〈FK, (r, vr), −, −, −, −, −〉
– Increment vr in ROLES, i.e. set vr := vr + 1

assignP (〈fn, op〉, r)
– For all 〈FK, SU , 〈fn, RW〉, v, c, id, sig〉 with VerIBS

id (〈FK, SU ,

〈fn, RW〉, v, c, id〉, sig) = 1:

∗ If this adds Write permission to existing Read permission, i.e.

op = RW, op′ = Read, and there exists 〈FK, (r, vr), 〈fn, op′〉,
v, c, SU , sig〉 with VerIBS

SU (〈FK, (r, vr), 〈fn, op′〉, v, c, SU〉,
sig) = 1:

· Send 〈FK, (r, vr), 〈fn, RW〉, v, c, SU , SignIBS
SU 〉 to R.M.

· Delete 〈FK, (r, vr), 〈fn, Read〉, v, c, SU , sig〉
∗ If the role has no existing permission for the file, i.e. there

does not exist 〈FK, (r, vr), 〈fn, op′〉, v, c, SU , sig〉 with

VerIBS
SU (〈FK, (r, vr), 〈fn, op′〉, v, c, SU〉, sig) = 1:

· Decrypt key k = DecIBE
kSU

(c)

· Send 〈FK, (r, vr), 〈fn, op〉, v, EncIBE
(r,vr)(k), SU ,

SignIBS
SU 〉 to R.M.

revokeP (〈fn, op〉, r)
– If op = Write:

∗ For all 〈FK, (r, vr), 〈fn, RW〉, v, c, SU , sig〉 with

VerIBS
SU (〈FK, (r, vr), 〈fn, RW〉, v, c, id〉, sig) = 1:

· Send 〈FK, (r, vr), 〈fn, Read〉, v, c, SU , SignIBS
SU 〉 to R.M.

· Delete 〈FK, (r, vr), 〈fn, RW〉, v, c, SU , sig〉
– If op = RW:

∗ Delete all 〈FK, (r, vr), 〈fn,−〉, −, −, −〉
∗ Generate new symmetric key k′ ← GenSym

∗ For all 〈FK, id, 〈fn, op′〉, vfn, c, SU , sig〉 with VerIBS
SU (〈FK,

id, 〈fn, op′〉, v, c, SU〉, sig) = 1:

· Send 〈FK, id, 〈fn, op′〉, vfn + 1, EncIBE
id (k′), SU ,

SignIBS
SU 〉 to R.M.

∗ Increment vfn in FILES, i.e. set vfn := vfn + 1

readu(fn)

– Find 〈F, fn, v, c〉 with valid ciphertext c

– Find a role r such that the following hold:

∗ u is in role r, i.e. there exists 〈RK, u, (r, vr), c′, sig〉 with

VerIBS
SU (〈RK, u, (r, vr), c′〉, sig) = 1

∗ r has read access to version v of fn, i.e. there exists 〈FK,

(r, vr), 〈fn, op〉, v, c′′, SU , sig′〉 with VerIBS
SU (〈FK, (r, vr),

〈fn, op〉, v, c′′, SU〉, sig′) = 1

– Decrypt role key k(r,vr) = DecIBE
ku

(c′)

– Decrypt file key k = DecIBE
k(r,vr)

(c′′)

– Decrypt file f = Dec
Sym
k

(c)

writeu(fn, f)

– Find a role r such that the following hold:

∗ u is in role r, i.e. there exists 〈RK, u, (r, vr), c, sig〉 with

VerIBS
SU (〈RK, u, (r, vr), c〉, sig) = 1

∗ r has write access to the newest version of fn, i.e. there

exists 〈FK, (r, vr), 〈fn, op〉, vfn, c′, SU , sig′〉 and

VerIBS
SU (〈FK, (r, vr), 〈fn, op〉, v, c′, SU〉, sig′) = 1

– Decrypt role key k(r,vr) = DecIBE
ku

(c)

– Decrypt file key k = DecIBE
k(r,vr)

(c′)

– Send 〈F, fn, vfn,Enc
Sym
k

(f),SignIBS
(r,vr)〉 to R.M.

– The R.M. receives 〈F, fn, v, c′′, sig′′〉 and verifies the following:

∗ The tuple is well-formed with v = vfn

∗ The signature is valid, i.e. VerIBS
(r,vr)(〈F, fn, v, c′′〉, sig′′) =

1

∗ r has write access to the newest version of fn, i.e. there

exists 〈FK, (r, vr), 〈fn, op〉, vfn, c′, SU , sig′〉 and

VerIBS
SU (〈FK, (r, vr), 〈fn, op〉, vfn, c′, SU〉, sig′) = 1

– If verification is successful, the R.M. replaces 〈F, fn,−,−〉 with

〈F, fn, vfn, c
′′〉

Figure 24: Implementation of RBAC0 using IBE/IBS

174

addU(u)

– User u generates encryption key pair (kenc
u ,kdec

u) ←
GenPub(u) and signature key pair (kver

u ,ksig
u)← GenSig(u).

– Add (u,kenc
u ,kver

u) to USERS

delU(u)

– Delete kenc
u and kver

u
– For every role r that u is a member of:

∗ revokeU(u, r)

addPu(fn, f)

– Generate symmetric key k ← GenSym

– Send 〈F, fn, 1,Enc
Sym
k

(f),Sign
Sig

k
sig
u

〉 and 〈FK, SU , 〈fn, RW〉,

1, EncPub
SU (k), u, Sign

Sig

k
sig
u

〉 to R.M.

– The R.M. receives 〈F, fn, 1, c, sig〉 and 〈FK, SU , 〈fn, RW〉, 1,

c′, u, sig′〉 and verifies that the tuples are well-formed and the

signatures are valid, i.e. VerSig
u (〈F, fn, 1, c〉, sig) = 1 and

VerSig
u (〈FK, SU , 〈fn, RW〉, 1, c′, u〉, sig′) = 1.

– If verification is successful, the R.M. adds (fn, 1) to FILES and

stores 〈F, fn, 1, c〉 and 〈FK, SU , 〈fn, RW〉, 1, c′, u, sig′〉

delP (fn)

– Remove (fn, vfn) from FILES

– Delete 〈F, fn,−,−〉 and all 〈FK, −, 〈fn,−〉, −, −, −, −〉

addR(r)

– Generate encryption key pair (kenc
(r,1),k

dec
(r,1)) ← GenPub((r,

1)) and signature key pair (kver
(r,1),k

sig
(r,1)

)← GenSig((r, 1))

– Add (r, 1,kenc
(r,1),k

ver
(r,1)) to ROLES

– Send 〈RK, SU , (r, 1), EncPub
kenc
SU

(
kdec
(r,1),k

sig
(r,1)

)
, Sign

Sig
SU
〉 to

R.M.

delR(r)

– Remove (r, vr,−,−) from ROLES

– Delete all 〈RK,−, (r, vr),−,−〉
– For all permissions p = 〈fn, op〉 that r has access to:

∗ revokeP (r, 〈fn, RW〉)

assignU(u, r)

– Find 〈RK, SU , (r, vr), c, sig〉 with Ver
Sig
kver
SU

(〈RK, SU , (r, vr),

c〉, sig) = 1

– Decrypt keys (kdec
(r,vr),k

sig
(r,vr)

) = DecPub

kdec
SU

(c)

– Send 〈RK, u, (r, vr), EncPub
kenc
u

(
kdec
(r,vr),k

sig
(r,vr)

)
, Sign

Sig
SU
〉 to

R.M.

revokeU(u, r)

– Generate new role keys (kenc
(r,vr+1),k

dec
(r,vr+1))← GenPub((r,

vr + 1)), (kver
(r,vr+1),k

sig
(r,vr+1)

)← GenSig((r, vr + 1))

– For all 〈RK, u′, (r, vr), c, sig〉 with u′ 6= u and Ver
Sig
kver
SU

(〈RK,

u′, (r, vr), c〉, sig) = 1:

∗ Send 〈RK, u′, (r, vr + 1), EncPub
kenc
u′

(
kdec
(r,vr+1),k

sig
(r,vr+1)

)
,

Sign
Sig
SU
〉 to R.M.

– For every fn such that there exists 〈FK, (r, vr), 〈fn, op〉, vfn,

c, SU , sig〉 with Ver
Sig
kver
SU

(〈FK, (r, vr), p, vfn, c, SU〉, sig) = 1:

∗ For every 〈FK, (r, vr), 〈fn, op′〉, v, c′, SU , sig〉 with

Ver
Sig
kver
SU

(〈FK, (r, vr), 〈fn, op′〉, v, c′, SU〉, sig) = 1:

· Decrypt key k = DecPub

kdec
(r,vr)

(c′)

· Send 〈FK, (r, vr + 1), 〈fn, op′〉, v, EncPub
kenc
(r,vr+1)

(k), SU ,

Sign
Sig
SU
〉 to R.M.

∗ Generate new symmetric key k′ ← GenSym for p

∗ For all 〈FK, id, 〈fn, op′〉, vfn, c′′, SU , sig〉 with

Ver
Sig
kver
SU

(〈FK, id, 〈fn, op′〉, vfn, c′′, SU〉, sig) = 1:

· Send 〈FK, id, 〈fn, op′〉, vfn + 1, EncPub
kenc
id

(k′), SU ,

Sign
Sig
SU
〉 to R.M.

∗ Increment vfn in FILES, i.e. set vfn := vfn + 1

– Update r in ROLES, i.e. replace (r, vr,k
enc
(r,vr),k

ver
(r,vr)) with

(r, vr + 1,kenc
(r,vr+1),k

ver
(r,vr+1))

– Delete all 〈RK, −, (r, vr), −, −〉
– Delete all 〈FK, (r, vr), −, −, −, −, −〉

assignP (r, 〈fn, op〉)
– For all 〈FK, SU , 〈fn, RW〉, v, c, id, sig〉 with Ver

Sig
kver
id

(〈FK, SU ,

〈fn, RW〉, v, c, id〉, sig) = 1:

∗ If this adds Write permission to existing Read permission, i.e.

op = RW and there exists 〈FK, (r, vr), 〈fn, Read〉, v, c′, SU ,

sig〉 with Ver
Sig
kver
SU

(〈FK, (r, vr), 〈fn, op′〉, v, c′, SU〉, sig) =

1:

· Send 〈FK, (r, vr), 〈fn, RW〉, v, c′, SU , Sign
Sig
SU
〉 to R.M.

· Delete 〈FK, (r, vr), 〈fn, Read〉, v, c′, SU , sig〉
∗ If the role has no existing permission for the file, i.e. there

does not exist 〈FK, (r, vr), 〈fn, op′〉, v, c′, SU , sig〉 with

Ver
Sig
kver
SU

(〈FK, (r, vr), 〈fn, op′〉, v, c, SU〉, sig) = 1:

· Decrypt key k = DecPub

kdec
SU

(c)

· Send 〈FK, (r, vr), 〈fn, op〉, v, EncPub
kenc
(r,vr)

(k), SU ,

Sign
Sig
SU
〉 to R.M.

revokeP (r, 〈fn, op〉)
– If op = Write:

∗ For all 〈FK, (r, vr), 〈fn, RW〉, v, c, SU , sig〉 with

Ver
Sig
kver
SU

(〈FK, (r, vr), 〈fn, RW〉, v, c, SU〉, sig) = 1:

· Send 〈FK, (r, vr), 〈fn, Read〉, v, c, SU , Sign
Sig
SU
〉 to R.M.

· Delete 〈FK, (r, vr), 〈fn, RW〉, v, c, SU , sig〉
– If op = RW:

∗ Delete all 〈FK, (r, vr), 〈fn,−〉, −, −, −〉
∗ Generate new symmetric key k′ ← GenSym

∗ For all 〈FK, id, 〈fn, op′〉, vfn, c, SU , sig〉 with Ver
Sig
kver
SU

(〈FK,

id, 〈fn, op′〉, v, c, SU〉, sig) = 1:

· Send 〈FK, id, 〈fn, op′〉, vfn + 1, EncPub
kenc
id

(k′), SU ,

Sign
Sig
SU
〉 to R.M.

∗ Increment vfn in FILES, i.e. set vfn := vfn + 1

readu(fn)

– Find 〈F, fn, v, c〉 with valid ciphertext c

– Find a role r such that the following hold:

∗ u is in role r, i.e. there exists 〈RK, u, (r, vr), c′, sig〉 with

Ver
Sig
kver
SU

(〈RK, u, (r, vr), c′〉, sig) = 1

∗ r has read access to version v of fn, i.e. there exists 〈FK,

(r, vr), 〈fn, op〉, v, c′′, SU , sig′〉 with Ver
Sig
kver
SU

(〈FK, (r, vr),

〈fn, op〉, v, c′′, SU〉, sig′) = 1

– Decrypt role key kdec
(r,vr) = DecPub

kdec
u

(c′)

– Decrypt file key k = DecPub

kdec
(r,vr)

(c′′)

– Decrypt file f = Dec
Sym
k

(c)

writeu(fn, f)

– Find a role r such that the following hold:

∗ u is in role r, i.e. there exists 〈RK, u, (r, vr), c, sig〉 with

Ver
Sig
kver
SU

(〈RK, u, (r, vr), c〉, sig) = 1

∗ r has write access to the newest version of fn, i.e. there

exists 〈FK, (r, vr), 〈fn, op〉, vfn, c′, SU , sig′〉 and

Ver
Sig
kver
SU

(〈FK, (r, vr), 〈fn, op〉, v, c′, SU〉, sig′) = 1

– Decrypt role key kdec
(r,vr) = DecPub

kdec
u

(c)

– Decrypt file key k = DecPub

kdec
(r,vr)

(c′)

– Send 〈F, fn, vfn,Enc
Sym
k

(f),Sign
Sig
(r,vr)

〉 to R.M.

– The R.M. receives 〈F, fn, v, c′′, sig′′〉 and verifies the following:

∗ The tuple is well-formed with v = vfn

∗ The signature is valid, i.e. Ver
Sig
kver
(r,vr)

(〈F, fn, v, c′′〉,

sig′′) = 1

∗ r has write access to the newest version of fn, i.e. there

exists 〈FK, (r, vr), 〈fn, op〉, vfn, c′, SU , sig′〉 and

Ver
Sig
kver
SU

(〈FK, (r, vr), 〈fn, op〉, vfn, c′, SU〉, sig′) = 1

– If verification is successful, the R.M. replaces 〈F, fn,−,−〉 with

〈F, fn, vfn, c
′′〉

Figure 25: Implementation of RBAC0 using PKI

175

7.4.3.2 Full Construction Figure 24 lists every RBAC0 operation and shows how each

can be implemented using IBE, IBS, and the metadata structures described previously. This

figure uses the following notation: u is a user, r and q are roles, p is a permission, fn is a file

name, f is a file, c is a ciphertext (either IBE or symmetric), sig is an IBS signature, and v

is a version number. The identity corresponding to a role r is (r, v), where v is a positive

integer representing the version number. We use vr to denote the latest version number for

role r. Roles and versions are stored as (r, vr) pairs in a file called ROLES, which is publicly

viewable and can only be changed by the admin. Similarly, we use vfn to denote the latest

version number for the file with name fn. Filenames and versions are stored as (fn, vfn) pairs

in a file called FILES, which is publicly viewable and can only be changed by the admin or

reference monitor (R.M.). SU is the superuser identity possessed by the administrators. We

use “−” to represent a wildcard. SignIBS
id at the end of a tuple represents an IBS signature

by identity id over the rest of the tuple. The subscript after an operation name identifies

who performs the operation if it is not performed by an administrator.

Many operations described in Fig. 24 are straightforward given the discussion earlier in

this section. To demonstrate some of the more complicated aspects of this construction, we

now describe the procedure to revoke a role from a user, which demonstrates several types of

re-keys as well as our notion of lazy re-encryption. The procedure for removing a user u from

a role r consists of three steps: (i) re-keying r, (ii) re-encrypting existing file keys stored in

FK tuples to the new role key, and (iii) re-keying all files accessible by r.

To re-key a role r, we must transition from (r, vr) to (r, vr + 1), generating new IBE keys

for this new role version. The old RK tuples for r are deleted, and each remaining member u′

of role r is given the new RK tuples of the form of 〈RK, u′, (r, vr + 1), c,SignIBS
SU 〉, where c

contains the new IBE/IBS keys encrypted to u′’s identity key. Next, all (symmetric) file keys

encrypted to (r, vr) in FK tuples are replaced with file keys encrypted to (r, vr + 1). This

allows the remaining members of r to retain access to existing files, while preventing the

revoked user u from accessing any file keys that he has not already decrypted and cached.

Finally, each file to which r has access must be re-keyed to prevent u from accessing

future updates to this file using cached symmetric keys. For each file f , a new symmetric

key is generated via GenSym. This key is then encrypted for each role r′ that has access to

176

f (including r), and new FK tuples 〈FK, r′, 〈f, op〉, v + 1, c′,SignIBS
SU 〉 are uploaded alongside

existing 〈FK, r′, 〈f, op〉, v, c,SignIBS
SU 〉 tuples. Here, v + 1 is the new file key version, c is

the existing encrypted file key, and c′ is the new file key IBE-encrypted to identity r′. The

next time f is read, the key contained in c will be used for decryption; the next time f is

written, the key contained in c′ will be used for encryption. This process obviates the need

for a daemon to re-encrypt all files at revocation time, but prevents the revoked user u from

accessing any future modifications to these files using cached symmetric file keys.

7.4.4 PKI Construction Overview

In our PKI construction presented in Fig. 25, public-key encryption and signatures take the

place of IBE and IBS. Each role is assigned a public/private key pair rather than IBE/IBS

keys. The primary difference between the IBE and PKI constructions is that IBE/IBS clients

are given escrowed IBE/IBS identity private keys by the role administrator, while PKI clients

generate their own public/private key pairs and upload their public keys. Note that in both

systems, the administrators have access to all of the roles’ private keys.

7.5 ANALYSIS

In this section, we describe our evaluation of the suitability of IBE/IBS and PKI constructions

for enforcing RBAC0 access controls. We utilize a workflow similar to the two-phase suitability

analysis framework proposed in Chapter 4, in which we first evaluate the candidates’ expressive

power, then evaluate the cost of using each candidate using Monte Carlo simulation based on

initial states obtained from real-world datasets.

7.5.1 Qualitative Analysis

As with our previous case studies (Section 4.5 and Chapter 6), we analyze the correctness and

security guarantees of our implementations using parameterized expressiveness. In particular,

we ensure that the implementation properties of correctness, AC-preservation, and safety are

177

preserved by these constructions. For formal definitions of these properties, see Section 4.5.2.

Using parameterized expressiveness, we prove the following results (full proofs are available

in the technical report of [49]).

Theorem 17. The implementation of RBAC0 using IBE and IBS detailed in Fig. 24 is

correct, AC-preserving, and safe.

Theorem 18. The implementation of RBAC0 using public key cryptographic techniques

detailed in Fig. 25 is correct, AC-preserving, and safe.

7.5.2 Algebraic Costs

Table 1 lists the costs for each RBAC operation based on the system state. All costs are

incurred by the user or administrator running the operation unless otherwise noted. In order

to simplify the formulas, we employ a slight abuse of notation: we use the operation itself to

represent its cost (e.g., EncIBE is used to represent the cost of one EncIBE operation). We

use the following notation:

• roles(u) is the set of roles to which user u is assigned

• perms(r) is the set of permissions to which role r is assigned

• users(r) is the set of users to which role r is assigned

• roles(p) is the set of roles to which permission p is assigned

• versions(p) is the number of versions of permission p

7.5.3 Experimental Setup

To experimentally evaluate the costs of using our IBE construction to enforce RBAC0, we

utilize the Portuno framework proposed in Chapter 5. Within Portuno, we encode RBAC0 as a

workload, with implementations in IBE/IBS and PKI as described in Sections 7.4.3 and 7.4.4.

Finally, we add to this framework an adapter to start simulating from start states extracted

from real-world RBAC datasets. This adapter allows us to read RBAC datasets in .ur and .pa

format as commonly represented in the role mining community [34], and use these as initial

states for our simulation.

178

addU(u) : KeyGenIBE + KeyGenIBS

delU(u) :
∑
r∈roles(u) revokeU(u, r)

addP (p) : EncIBE + 2 · SignIBS and 2 ·VerIBS by R.M.

delP (p) : None

addR(r) : KeyGenIBE + EncIBE + KeyGenIBS + SignIBS

delR(r) :
∑
p∈perms(r) revokeP (p, r)

assignU(u, r) : EncIBE + DecIBE + SignIBS + VerIBS

revokeU(u, r) : KeyGenIBE + KeyGenIBS +
(
|users(r)|+∑p∈perms(r)(versions(p) + |roles(p)|)

)
·

(
EncIBE + SignIBS + VerIBS

)
+
(
DecIBE ·∑p∈perms(r) versions(p)

)

assignP (p, r) : versions(p) ·
(
SignIBS + VerIBS

)
; if r has no permissions for the file then also

versions(p) ·
(
EncIBE + DecIBE

)

revokeP (p, r) : Revokes all access: |roles(p)| ·
(
EncIBE + SignIBS + VerIBS

)
;

Revokes only write access: |versions(p)| ·
(
SignIBS + VerIBS

)

read(fn) : 2 ·
(
DecIBE + VerIBS

)

write(fn, f) : SignIBS + 2 ·
(
DecIBE + VerIBS

)
and 2 ·VerIBS by R.M.

Table 1: Algebraic costs of RBAC operations using IBE

We simulate one-month periods in which the administrator of the system behaves as

described in the actor machine depicted in Fig. 26. The administrative workload increases

with the number of users in the system, and we randomly sample an add bias parameter that

describes the relative proportion of assignment vs. revocation operations. We do not include

administrative actions that add or remove users or roles due to the unlikely occurrence of

these actions on such short timescales (one-month simulations).

While this administrative behavior model may not be the only reasonable one, it describes

a range of realistic scenarios and allows us to investigate the interactions in which we are

interested. The overall administrative rate is approximately
√
|U | (with |U | the number of

users), ranging from about 0.6 administrative actions per day on our smallest dataset to

2.2 on the largest. Up to 30% of the administrative load is in revocations, since in realistic

scenarios permissions tend to be assigned at a greater rate than they are revoked [110].

To quantify the costs associated with our cryptographic constructions, we record the

179

assign
user

revoke
user

revoke
perm.

assign
perm.

µAU

µRU

µAP

µRP1
1

1
1

var semantics value

R administrative rate 0.1×
√
|U |/day

µA add bias [0.7, 1.0]

µU UR bias [0.3, 0.7]

µAU Rate of assignUser µA × µU ×R
µRU Rate of revokeUser (1− µA)× µU ×R
µAP Rate of assignPermission µA × (1− µU)×R
µRP Rate of revokePermission (1− µA)× (1− µU)×R

Figure 26: Administrative mix of actions

number of instances of each cryptographic operation executed, including counts or averages

for traces of related operations (e.g., the average number of IBE encryptions needed to revoke

a role from a user).

As mentioned above, we initialize our simulation from start states extracted from real-

world RBAC datasets. We give a summary of the initial states used in our experiment in

Table 2. All of these datasets, aside from university, were originally provided by HP [34].

The domino dataset is from a Lotus Domino server, emea is from a set of Cisco firewalls,

firewall1 and firewall2 are generated from network reachability analysis, and healthcare is a

list of healthcare permissions from the US Veteran’s Administration. The university dataset

describes a university’s access control system, and was developed by IBM [83,112].

180

●

●

●●●●

em
ea

fir
ew

al
l1

fir
ew

al
l2

0
10

00
20

00
30

00
40

00

IBE encryptions per user revoked

Dataset

IB
E

 e
nc

ry
pt

io
ns

 p
er

 u
se

r
re

vo
ke

d

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

he
al

th
ca

re

un
iv

er
si

ty

do
m

in
o

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

(a) IBE encs. per user revoked

●

●

●

●

●

●

●
●
●
●

●

●

●
●●

●

em
ea

fir
ew

al
l1

fir
ew

al
l2

he
al

th
ca

re

un
iv

er
si

ty

do
m

in
o

5
10

15
20

IBE encryptions per permission revoked

Dataset

IB
E

 e
nc

ry
pt

io
ns

 p
er

 p
er

m
is

si
on

 r
ev

ok
ed

(b) IBE encs. per permission re-
voked

●●

●

●

●

●

●

● ●

●●

●

●

●

●●
●

●

●

●

●

●●● ●

●

●

● ●●

●

●

●●

●
●

●●●

● ●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0
50

00
10

00
0

15
00

0

IBE encryptions for user revocation vs. Add bias

Add bias

IB
E

 e
nc

ry
pt

io
ns

 fo
r

us
er

 r
ev

oc
at

io
n

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●●
●

● ●●●
●

●

●

●

●

●
●

●
●

●

●●

●

● ●
●

●

●
● ●

●
●

●

●

●

●
●

●

●

●●

●●

●●

●

● ● ●●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●●
●

●
●

●
●● ●

●
● ●

●
●

● ●

●

●

●

●
●
●

●● ●
●

●● ●

●

●

●
●

● ●

●●

●
●

●

●

●
● ●

●

●

●●

● ●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●●
●

● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●●

●● ●
●

●

●
●

●●

●

●

●
●

● ●●

●

●
●●

● ●

●
●●

●
●

● ● ●●

●●

●●●

●

● ●●● ●● ●● ●● ●● ●●
●
●● ●

●

● ●●● ●●

●

● ●● ● ● ●● ●● ●

●

●

●

●● ●●●● ●●● ●● ●● ● ●● ●

●
●● ●

●

● ●●● ●● ●●

●

● ● ●●

●●

● ●●●● ●● ●● ●
●

●

●

●

●

●

●

●

emea
firewall1
firewall2
healthcare
university
domino

(c) IBE encs. for user revocation
vs. add bias

●●

●

●

●

●

●●●●

em
ea

fir
ew

al
l1

fir
ew

al
l2

0
10

0
20

0
30

0
40

0
50

0
60

0

File rekeys per user revoked

Dataset

F
ile

 r
ek

ey
s

pe
r

us
er

 r
ev

ok
ed

● ●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

he
al

th
ca

re

un
iv

er
si

ty

do
m

in
o

0
20

40
60

80
10

0
12

0

(d) File rekeys per user revoked

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●● ●

●
●

● ●●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0
50

0
10

00
15

00
20

00
File rekeys for user revocation vs. Add bias

Add bias

F
ile

 r
ek

ey
s

fo
r

us
er

 r
ev

oc
at

io
n

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●
●

●

● ●
●

●●
● ●●

●
●

●

●

●●
●

● ●●●
●

●

●
●

●
●

●
● ●

●

●●
●

● ●●

●

●
● ●

●● ●
●

●

●
●●

●

●●
●●

●●

●

● ● ●●
●●

●
●

● ●

●
●

●
●

●

●

●● ●● ●●
●●

●● ●●
● ●●●

● ●

●

●

●

● ●●●● ●
●

●
● ●

●
●

● ●
● ●

●●
● ●

●
●

●● ●
●●

●●

● ●
●

● ●●●
●●

●
●

●● ●● ●●● ●
●● ● ●

●
●

●
●

●
●

●●●● ● ●
●● ● ●● ●●

●
●
●●● ●●● ●●●● ●● ●●●●

●
●●
●

●
● ●● ●●

●
● ●●●

●

●●●●

●

● ● ●●

●●

●●●

●

● ●●● ●● ●● ●● ●● ●●

●

●● ●

●

● ●●● ●●

●

● ●● ● ● ●● ●● ●

●

●

●

●● ●●●● ●●● ●● ●● ● ●● ●

●

●● ●

●

● ●●● ●● ●●

●

● ● ●●

●●

● ●●●● ●● ●● ●

●

●

●

●

●

●

●

●

emea
firewall1
firewall2
healthcare
university
domino

(e) File rekeys for user revoc. vs.
add bias

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0
50

00
10

00
0

20
00

0

Key encryptions vs. Add bias (firewall1)

Add bias
K

ey
 e

nc
ry

pt
io

ns

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●
● ●

●

●

IBE encryptions
Asymmetric encryptions

(f) Key encryptions vs. add bias
(firewall1)

Figure 27: Results

7.5.4 Experimental Results

Figure 27 presents a sampling of our results. First, we consider the cost of performing

revocations in our implementation of RBAC0 using IBE/IBS. Figure 27a shows the average

number of IBE encryptions needed for a single user revocation (i.e., removing a user from a

role), and Figure 27b shows the same for permission revocation (i.e., revoking a permission

from a role). This shows that revoking a permission can cost several IBE encryptions, while

user revocation incurs hundreds or thousands of IBE encryptions, on average. We note that,

by inspection of the code in Fig. 24, a user revocation also requires an equal number of IBS

181

roles/user users/role perm./role roles/perm.
set users |P| |R| |UR| |PA| max min max min max min max min

domino 79 231 20 75 629 3 0 30 1 209 1 10 1
emea 35 3046 34 35 7211 1 1 2 1 554 9 31 1

firewall1 365 709 60 1130 3455 14 0 174 1 617 1 25 1
firewall2 325 590 10 325 1136 1 1 222 1 590 6 8 1

healthcare 46 46 13 55 359 5 1 17 1 45 7 12 1
university 493 56 16 495 202 2 1 288 1 40 2 12 1

Table 2: Overview of datasets

signatures and verifications, a smaller number of IBE decryptions, and the generation of new

IBE and IBS keys for the role.

For our chosen distribution of administrative actions, Figure 27c shows the total number

of IBE encryptions performed over a month for all user revocations. As the add bias

approaches 1, the number of revocations (and thus the total number of IBE encryptions for

user revocation) approaches 0. However, even when only 5–10% of administrative actions are

revocation, the number of monthly IBE encryptions under this parameterization is often in

the thousands.

In Figure 27d, we show the number of files that must be re-keyed for a single user revocation.

This highlights the benefit of utilizing lazy re-encryption; if we had instead utilized active re-

encryption, each of these files would need to be locked, downloaded, decrypted, re-encrypted,

and re-uploaded immediately following revocation. In certain scenarios, active re-encryption

may not be computationally infeasible. For instance, in university, only ≈ 10 files must be

re-encrypted for the average user revocation, adding less than 1% to the total number of file

encryptions executed over the entire simulation, even at the highest rate of revocations that

we consider. However, in most other scenarios, a user revocation triggers the re-key of tens or

hundreds of files, such as in emea or firewall2, where active re-encryption increases the total

number of file encryptions by 63% and 12%, respectively (at 20–30% revocation rate). Thus,

in most scenarios, active re-encryption is likely to be infeasible, as discussed in Section 7.4.2.

Given the administrative behavior model depicted in Fig. 26, Figure 27e shows the total

number of file re-keys that take place over a month for the purpose of user revocation. For

182

scenarios with very user- and permission-dense roles (e.g., firewall1 and firewall2), we see

several times as many re-keys as total files, indicating that, on average, each file is re-keyed

multiple times per month for the purposes of user revocation. This further enforces that

inefficiencies that active re-encryption would bring, as each file (on average) would be locked

and re-encrypted by the administrator multiple times per month.

Finally, we note that the costs for our IBE/IBS- and PKI-based constructions for RBAC0

are not notably different. For instance, Figure 27f compares, for scenario firewall1, the number

of IBE encryptions with the number of asymmetric encryptions executed over each simulated

month and reveals the same distribution in both IBE/IBS- and PKI-based constructions.

Given the similarity in the cost of these classes of operations, we can conclude that these

constructions are similarly expensive from a computational standpoint.

7.6 DISCUSSION

There is no doubt that IBE and ABE can enable various forms of cryptographic access control

for data in the cloud. In fact, the results presented in Figures 27c, 27e and 27f show that in

situations in which the system grows in a monotonic manner (i.e., users and files are added to

the system and roles are provisioned with new permissions), there is no need for revocation,

re-keying, or complicated metadata management: IBE alone can enforce RBAC access controls

on the cloud. In fact, there are even implications or direct claims in the literature that, in the

static setting, the reference monitor can be removed entirely (e.g., [52, 53, 84]). However, this

does not imply that IBE or ABE alone can entirely replace the use of a reference monitor

when implementing outsourced access controls: it is not the case when dynamic controls are

required.

Specifically, this chapter shows that IBE and PKI systems are well-suited for implementing

point states of an RBAC0 system. However, managing transitions between these states—

specifically, supporting the removal of a user from a role, the revocation of a permission from

a role, and efficient updates to files shared with multiple roles—requires non-trivial metadata

management and a small, minimally-trusted reference monitor that verifies signatures prior

183

to file deletion and replacement. In some of the datasets that we analyzed, this could lead to

thousands of IBE encryptions (Figure 27a) and over one hundred file re-keys/re-encryptions

(Figure 27d) when a single user is removed from a role.

The above considerations lead to a tradeoff between confidentiality and efficiency that

must be weighed by both cryptographers and system designers. There are two obvious

ways that this can be accomplished: by altering the threat model assumed, or developing

cryptographic approaches that are more amenable to the dynamic setting. We now discuss

both of these approaches, and comment on lessons learned during our analysis that can be

applied to richer cryptographic access control, such as using HIBE to support RBAC1, or

ABE to support ABAC.

7.6.1 Alternate Threat Models

Many of the overheads that we report on in the previous section result from working within

the threat model often implied by the cryptographic literature (i.e., untrusted storage server,

minimal client-side infrastructure). Altering this model can reduce the cryptographic costs of

enforcing dynamic access controls on the cloud. Here we consider two such alternate models.

Encryption/Decryption Proxy. A large amount of overhead comes from relying the

cloud storage provider to act as a (cryptographic) metadata broker, as well as a file store.

An alternative approach might make use of an encryption/decryption proxy server situated

within an organization, using the cloud provider solely as a backing store for encrypted files.

This proxy would act as a traditional reference monitor, mediating all file access requests,

downloading and decrypting files for authorized readers2, and returning plaintext to the

user. This would obviate the need for any cryptography beyond authenticated symmetric key

encryption, and could make use of tried-and-true access control reference monitors. However,

this approach carries an extra infrastructure overhead (the proxy server, itself) that could

make it unappealing to individuals hoping to enforce access controls over cloud hosted files.

Large organizations may also have to deal with synchronizing access control policies and key

material across multiple proxies in the event that file I/O demands outpace the abilities of a

2Writes could be handled symmetrically.

184

single server.

Trusted Hardware. A more extreme approach to simplifying the cryptographic over-

heads of access control enforcement would be to use, e.g., an SGX enclave [66,81] to carry

out the work of the encryption/decryption proxy discussed above. In this scenario, files

could be stored encrypted on the cloud server, while file encryption keys and the access

control policy to be enforced would be managed by a process running within an SGX enclave.

To access a file, a user would negotiate an authenticated channel (e.g., using public key

cryptography) with this trusted process/reference monitor. The reference monitor could

then check the user’s permission to access the file, and transmit the encrypted file and its

associated key to the user using a session key that is unknown to any process outside of

the SGX enclave. This approach frees organizations from the overheads of running their

own encryption/decryption proxies, but is not without its limitations. For instance, this

approach will not work on commonly-used, storage-only services (e.g., Dropbox). Further,

this approach may be subject to architectural compromises or flaws (e.g., memory integrity

vulnerabilities) that cryptography-only solutions are not.

While these and other alterations to the threat model that we consider can lead to

decreased cryptographic overheads, each incurs other costs or tradeoffs. We now consider

future research directions that may decrease the costs associated with cryptography-only

solutions to the problem of outsourcing dynamic access controls.

7.6.2 Future Directions

The insight that our suitability analysis framework has enabled us to gain into

cryptographically-enforced access controls for cloud storage have led to a number of in-

teresting directions for future work:

Revocation It is unclear how to use IBE to enforce even RBAC0 without incurring high

costs associated with revocation-based state changes. Given our use of hybrid cryptography

for efficiency reasons, existing schemes for revocation or proxy re-encryption (e.g., [14,54])

cannot solve the problem. Developing techniques to better facilitate these forms of revocation

and efficient use of hybrid encryption is an important area of future work.

185

Trust Minimization Our construction makes use of a reference monitor on the cloud to

validate signatures prior to file replacement or metadata update. Moving to file versioning

(e.g., based on trusted timestamping or block-chaining) rather than file replacement may

result in a minimization of the trust placed in this reference monitor, but at the cost of

potential confidentiality loss, since old key material may remain accessible to former role

members. It is important to better explore this tradeoff between reference monitor trust and

confidentiality guarantees.

“Wrapper” Minimization Our construction required the management and use of three

types of metadata structures to correctly implement RBAC0 using IBE or PKI technologies.

It would be worth exploring whether the core cryptography used to support outsourced access

controls could be enhanced to reduce the use of trusted management code needed to maintain

these sorts of structures.

Deployability/Usability Costs We did not consider issues related to the use of the

cryptographic tools underlying our constructions. Further, our simulations do not separate

our IBE- and PKI-based constructions on the basis of RBAC0 implementation complexity.

However, it may be the case that the maturity of tools to support the use of PKIs or

the conceptual simplicity of IBE techniques tips the scales in one direction or the other.

Developing reasonable approaches for considering these types of tradeoffs would greatly

inform future analyses.

While we focused on the use of IBE/IBS and PKI schemes to enforce RBAC0 access

controls, our findings translate in a straightforward manner to the use of other cryptographic

tools (e.g., HIBE or ABE/ABS) to implement more complex access control policies (e.g.,

RBAC1 or ABAC). We now discuss some lessons learned when considering these richer access

control models.

7.6.3 Lessons Learned for More Expressive Systems

RBAC0 and IBE were natural choices for our initial exploration of the costs associated with

using cryptography to implement dynamic access control: RBAC0 is a simple, but widely

used, access control system; roles in RBAC0 have a natural correspondence to identities in

186

IBE; and the use of hybrid encryption allows us to easily share resources between roles.

Further, it seemed like an implementation of RBAC0 using IBE would be a jumping off point

for exploring the use of hierarchical roles in RBAC1 via an analogous use of HIBE. However,

many of the costs that we see with our IBE implementation of RBAC0 have analogues (or

worse) in any reasonable RBAC1 or ABAC implementation that we foresee based on respective

cryptographic operations.

We first note that we assume that any reasonable cryptographic access control system must

make use of hybrid encryption. Without hybrid encryption, we would need to continuously

apply expensive asymmetric operations to small “blocks” of a file that is to be encrypted.

Given the complexity of IBE/ABE encryption operations, the associated overheads of this

approach would be prohibitive, even for moderately-sized files. Additionally, depending on

the security requirements of the application (e.g., Chosen Ciphertext Attack security), even

more complicated constructions than this simple blocking will be required. The following

observations may not apply to an access control scheme where all files are small enough to

do away with the need of hybrid-encryption. However, the use cases for such schemes seem

limited.

A seemingly natural extension of our IBE based RBAC0 scheme to a HIBE based RBAC1

scheme exploits the fact that the HIBE can be used to encode hierarchical relationships,

such as those that exist between roles in a RBAC1 role hierarchy. However, the costs of

this implementation proved to be considerable. A large initial problem is that an RBAC1

role hierarchy can be an arbitrary DAG structure, while HIBE only supports trees. Yet,

even limiting RBAC1 to role hierarchies that form a tree structure comes with serious costs.

For example, removing non-leaf roles in the hierarchy cascades re-encryption down to all

files at descendant leaves of the role, the creation of new roles for each descendant node,

and associated rekeying. Similarly, practical operations like moving sub-trees in the access

structure can only be achieved by breaking the operation down into addition and deletion

of roles, which comes with the associated costs of these primitive operations. We note that

we have developed a full RBAC1 implementation using HIBE, which attempts to minimize

costs. Unfortunately, a simple inspection of this implementation shows that it would incur

significantly more computational expense than the RBAC0 scheme discussed herein.

187

Similarly, one might hope that the expressiveness of the ABE encryption schemes would

allow us to naturally implement ABAC access control schemes. Further, there has been some

initial work [96] supporting dynamic (restrictive) credentials and revocations. However, there

is still significant work associated with making a practical ABE implementation of ABAC, and

such schemes will still have significant costs and meta-data to manage (as in our IBE/RBAC0

implementation). For example, revoking a secret-key in an KP-ABE/ABAC setting requires

the dynamic re-encryption of every ciphertext whose attributes satisfy the policy in the

revoked user’s key. Each attribute in each ciphertext that is re-encrypted must given a new

version, and then finally all users whose keys have policies affected by the re-versioning of

the attributes must be re-issued. Further, there are ABAC design decisions that must be

informed by the ABE scheme being implemented. For example, suppose a single file is to

be accessed by multiple policies in a CP-ABE scheme. One can support multiple policies

p1, . . . , pn as individual public-key encryptions all encrypting the same hybrid key, or as a

single encryption supporting the disjunction of all previous policies, p1 ∨ p2 ∨ · · · ∨ pn. The

cost trade-offs are completely dependent on the ABE scheme used for the implementation, as

the cost of ABE encryption is highly dependent on the policy encoded into the ciphertext.

7.7 SUMMARY

IBE and ABE are promising approaches for cryptographically enforcing RBAC and ABAC

access controls in the cloud. While prior work has focused the types of policies that can be

represented by these approaches, little attention has been given to how these policies will

evolve over time. In this chapter, we move beyond the consideration of point states in an

access control system and develop an IBE-based construction that uses hybrid cryptography

to enforce RBAC0 access controls over files hosted on a third-party cloud storage provider. In

addition to proving the correctness of our construction, we use real-word RBAC datasets to

experimentally analyze its associated cryptographic costs. Our findings indicate that IBE

and ABE are a natural fit to this problem in instances where users, roles, and permissions

increase monotonically, but incur very high overheads when updates and revocation must

188

be supported—sometimes exceeding thousands of encryption operations to support a single

revocation. In doing so, we believe that we have identified a number of fruitful areas for

future work that could lead to more natural constructions for cryptographic enforcement of

access control policies in cloud environments.

More pointed toward the goals we set forth in our thesis statement, this case study shows

that suitability analysis can be applied to a wider range of scenarios than classic access

control. As alluded to in Section 3.4.4, there are many other security problems which share

this general structure—potential solutions should first be evaluated with respect to their

capabilities, to ensure they are able to satisfy the application in question, and then with

respect to their costs, to determine which is most efficient at satisfying that application. In

this chapter, we have shown that our workflow, mathematical framework, and simulation

engine Portuno have adapted well to a different problem domain, and in future work we will

continue to investigate other case studies that fit this general structure.

189

8.0 DECOMPOSING, COMPARING, AND SYNTHESIZING ACCESS

CONTROL EXPRESSIVENESS SIMULATIONS

The most common technique for analysis of access control, relative expressiveness analysis,

uses formal mappings called reductions to explore whether one access control system is

capable of emulating another, thereby comparing the expressive power of these systems.

Unfortunately, the notions of expressiveness reduction that have been explored vary widely,

which makes it difficult to compare results in the literature, and even leads to apparent

contradictions between results. Furthermore, some notions of expressiveness reduction make

use of non-determinism, and thus cannot be used to define mappings between access control

systems that are useful in practical scenarios. In this chapter, we define the minimum set of

properties for an implementable access control reduction; i.e., a deterministic “recipe” for

using one system in place of another. We then define a wide range of properties spread

across several dimensions that can be enforced on top of this minimum definition. These

properties define a taxonomy that can be used to separate and compare existing notions of

access control reduction, many of which were previously thought to be incomparable. We

position existing notions of reduction within our properties lattice by formally proving each

reduction’s equivalence to a corresponding set of properties. Lastly, we take steps towards

bridging the gap between theory and practice by exploring the systems implications of points

within our properties lattice. This shows that relative expressive analysis is more than just a

theoretical tool, and can also guide the choice of the most suitable access control system for

a specific application or scenario.1

1The material presented in this chapter was first published as [43].

190

8.1 INTRODUCTION

As noted in Section 2.2, the formal definitions of the various access control expressiveness

reductions used in the literature vary widely. Different reductions have been used to prove

various types of results, ranging from very specific properties about whole ranges of models

(e.g., monotonic access control models with multi-parent creation cannot be emulated by

monotonic models with only single-parent creation [3]) to the ability to replace certain specific

models with others in practice (e.g., role-based access control can be configured to enforce

mandatory and discretionary policies [89]). This disparity in the goals of these works has

led to many different definitions of access control reduction, often tailored to the particular

result sought. It has been shown that these different reductions prove wildly different notions

of expressiveness, often not preserving any particular security properties (see Chapter 2).

Furthermore, not all of these notions of reduction are practically useful. For instance,

some make use of non-determinism, manipulating the policy differently depending on which

future queries will be asked. While this may allow a theorist to show that system T is capable

of doing all the things S is, if a practitioner wants to use system T in place of system S, she

needs a deterministic procedure for doing so.

In this work, we build a taxonomy for expressiveness reductions based on the properties

that they satisfy. We determine the minimum requirements for a mapping to be imple-

mentable, or applicable toward using one system in place of another in practice. We use

these requirements to construct a general definition of implementable reduction, and provide

a taxonomy of additional restrictions on this definition for reductions that enforce more

stringent properties. We then position existing reductions from the literature within this

lattice, providing the first such comparison in the literature.

To this end, we make the following contributions.

• We propose a general definition of an implementable access control mapping that is broad

enough to encompass much of the wide range of existing access control reductions, yet

precise enough to guarantee implementability. Intuitively, an implementable reduction

from S to T shows that T can accomplish everything S can, and deterministically shows

how (Section 8.3).

191

• We decompose and expand upon the properties enforced by various access control

reductions from the literature, forming a lattice relating the range of access control

reductions to one another. This lattice allows us to formally compare the guarantees

offered by existing notions of access control reduction (many of which were not formerly

known to be comparable) and points to unexplored combinations of properties that can

yield different expressiveness results (Section 8.4).

• We construct formal proofs positioning existing notions of access control reduction within

our lattice of reduction properties, including a comparative discussion of reductions

that previously seemed incomparable. We thus systematize the formal relationships

between previously-published reductions, allowing reconciliation of previously disparate

expressiveness knowledge (Section 8.5).

• We observe that many of the dimensions upon which our reduction property lattice is

built have implications for the use of reductions for satisfying real-world requirements

using existing access control systems (e.g., required storage, whether data structures

must be locked for concurrent usage). Thus, in addition to positioning existing notions of

reduction within our lattice of properties, we assist in creating new notions of reduction

by selecting the properties that should be enforced in an expressiveness analysis based

upon the scenario in which an eventual access control deployment will occur. To this

end, we discuss in detail various interactions between reduction properties, the results

of enforcing different properties, and how a specific deployment scenario dictates which

properties are relevant (Section 8.6).

We then summarize our conclusions and future work in Section 8.7.

8.2 MOTIVATING EXAMPLES

An access control system’s expressiveness (or expressive power) is a measure of the range of

policies that it can represent and the transformations it can make to those policies. Statements

of relative expressiveness state that one system is capable of replacing another (that is, it can

represent all the same policies and transform them in equivalent ways). Assume, for instance,

192

that an organization is considering transitioning from one access control solution to another,

in order to accommodate evolving requirements. The organization may have specific desired

features for this new access control system, but it certainly must be able to represent all of

the policies that the existing system can, or it would not be a suitable replacement. Thus,

this organization is searching for a new system that is at least as expressive as its old system.

We have made extensive use of expressiveness analysis in this dissertation toward realizing

suitability analysis. While we have shown that expressive power alone is insufficient for

evaluating an access control system, expressiveness is a fundamentally important component

of the more general suitability analysis framework: one cannot determine which access control

system is best for a particular use case without first determining which are capable of satisfying

that use case.

Unfortunately, there are several indications that research on expressiveness analysis is

being held back by the inability to reconcile the vastly different notions of expressiveness

reductions and the disconnect between the properties preserved by a reduction and those

that are important to a practical deployment. Several works have demonstrated scenarios in

which static notions of expressiveness indicate two systems are equally capable of satisfying

a set of operational requirements, but in practice they are better-suited to very different

deployment scenarios [48,86]. Bourdier et al. point out the existence of several competing

techniques for expressiveness analysis, none of which consider the deployment. They approach

one facet of this problem by proposing a formalism for access control systems that can more

easily be transformed into implementations using rewrite-based tools [19]. Several others

simply express a desire to use expressiveness analysis, but never do so, presumably due to

the complexities of selecting and using the right notion of reduction [73,92].

A group at the National Institute of Standards and Technology has developed Policy

Machine, an attempt at a universal access control system (one that can represent any

policy via only configuration changes) [64]. However, in evaluating Policy Machine’s success,

they avoid formally proving its expressiveness and instead show informal mappings that

demonstrate how one might use Policy Machine to represent several existing access control

systems’ policies [35]. Soon after, the group published a report bemoaning the lack of quality

metrics for evaluating access control systems, noting that, in access control, “one size does

193

not fit all,” and thus said metrics must consider the deployment scenario [63].

This overview illustrates that while expressiveness is an important metric in evaluation

of access control, the body of knowledge is troublesome to interpret and utilize due to the

wide variation in the properties required by each reduction. Through the contributions of

this chapter, we fill this void in the literature.

8.3 IMPLEMENTABLE EXPRESSIVENESS REDUCTIONS

In this section, we revisit the implementability requirements first presented in Section 4.3 as

requirements for an expressiveness mapping to be usable as an implementation of a workload

in an access control system. Here, these same properties serve as requirements for a reduction

to be implementable, and motivate our general formulation of relative expressiveness analysis

through the lens of implementability.

8.3.1 Implementability Requirements

In this work, we aim to consider expressiveness reductions that are implementable: i.e.,

practically useful for making decisions about which system is most suitable for a particular

deployment. Implementability enforces the following intuition: if a system T is as expressive

as S, then one should be able to determine a general way to use T in place of S. Thus,

we rephrase the minimal set of properties for an expressiveness mapping to be considered

implementable.

IR4: State mapping (restated) In order to use T in place of S, it must be possible to

(uniquely) determine which T state to use in place of a particular S state. Thus, the state

mapping must be a function from the emulated system states to the emulating system states.2

IR5: Command mapping (restated) To use T in place of S, it must be possible to

execute commands in T that are equivalent to the commands in S. It is not necessarily

2It is possible that multiple states in S can be represented using the same state in T . Thus, we do not
require the state mapping to be an injection. Furthermore, there may be states in T that are not used to
emulate S, and thus the state mapping need not be an surjection.

194

the case that each S command can be emulated using a single T command, so we require

a function from S commands to sequences of T commands.3 Finally, it may be necessary

to map an S command differently depending upon the state in which it is intended to be

executed. Since using T in place of S means we only have a T state to inspect during

execution, this function should map an S command and a T state to a sequence of T
commands.

IR6: Query decider (restated) For some reductions of S in T , we may only care that

T allows the same set of accesses that S would. However some types of reductions may

allow the overriding of T ’s default method of deciding granted permissions (e.g., adding

the additional requirement that the requesting user is a member of the REAL USERS group, to

distinguish from other data stored in the user-set). While some types of reductions do not

allow this, to remain general we simply require a function that maps each S query and T
state to either true or false. In some formalisms, this only includes the queries requesting

access, while in other cases other types of queries are allowed (e.g., “Is user u a member of

role r?”).

We use these requirements to motivate our definition of the general case of implementable

relative expressiveness.

8.3.2 Expressiveness Mappings

Before we define relative expressiveness mappings, we first restate the definitions of the state

machines that represent access control systems.

An access control system is formalized as a state machine belonging to a particular access

control model that formalizes the way in which the access control system will store and

interpret information to make access control decisions.

Definition 1 (Access Control Model, restated). An access control model is defined as

M = 〈Γ,R〉, where Γ is the set of states and R is the set of authorization requests, where

each request r ∈ R is a function Γ → {true, false}. The entailment (`) of a request is

3Not sets of T commands, as commands may appear multiple times; and not bags of T commands, as
order matters.

195

 T
1

 S

 T
2

q

{t, f}

�S
1

�T
1a �T

1b �T
2

�S
2

��
�q

�

��

Figure 28: The general form of an implementable expressiveness mapping.

defined as γ ` r , r(γ) = true. ♦

When we refer to the size of a state, we are referring to the size of its decomposition into

primitive objects (e.g., users and roles) and tuples (e.g., entries in a user assignment relation).

Definition 28. Given an access control model M = 〈Γ,R〉 and a state γ ∈ Γ, the set

decomposition of γ is denoted [γ], and refers to the “set of sets” forming γ, in which γ is

represented as being comprised of primitive sets and relations. ♦

Thus, the size of an access control state γ is defined as |γ| = ∑S∈[γ] |S|. For example, if

[γ] = {U = {u1}, R = {r1, r2}, UR = {〈u1, r1〉, 〈u1, r2〉}}, then |γ| = |U |+ |R|+ |UR| = 5.

An access control system expands on a model by providing methods of transforming the

current state and additional methods of querying the states.

Definition 2 (Access Control System, restated). Given access control model M = 〈Γ,R〉,
an access control system within M is a state transition system, S = 〈Γ,Ψ, Q〉, where Ψ is

the set of commands, where each command ψ ∈ Ψ is a function Γ→ Γ, and Q ⊇ R is the set

of queries, where each query q ∈ Q is a function Γ→ {true, false}. ♦

Next, we define an access control mapping, which maps one system to another but does

not enforce any reduction properties. We define a mapping as motivated in Section 8.3.1 so

that it can represent any implementable expressiveness reduction.

196

Definition 29 (Implementable Access Control Mapping). Given two access control systems,

S = 〈ΓS ,ΨS , QS〉 and T = 〈ΓT ,ΨT , QT 〉, a mapping from S to T is a triple of functions

σ = 〈σΓ, σΨ, σQ〉, where:

• σΓ : ΓS → ΓT is the state mapping

• σΨ : ΨS × ΓT →
(
ΨT
)∗

is the command mapping

• σQ = QS × ΓT → {true, false} is the query decider

♦

This definition is demonstrated in Fig. 28. Each function takes its most general form that

satisfies the requirements from Section 8.3.1. Thus, the definition remains general (it does not

enforce any specific security requirements yet), while ensuring that any such mappings can

generate implementable procedures for using the emulating system in place of the emulated

system.

8.4 EXPRESSIVENESS REDUCTION PROPERTIES

In this section, we describe the lattice of properties that we use to taxonomize access control

expressiveness reductions.

8.4.1 Overview of dimensions of properties

In order for a mapping to be considered a reduction, it must enforce additional properties

over Definition 29. There are naturally three categories of restrictions to consider for

reductions, given their structure (a set of three functions): i.e., refinements to each of the

state correspondence, command mapping, and query decider. We also consider restrictions to

the reachability constraints required (a cross-cutting dimension describing how these functions

must relate to one another). A summary of these dimensions is depicted in Fig. 29.

Our state correspondence σΓ can be based on any of a handful of structural definitions,

defined by SC (i.e., what elements do we inspect to determine whether two states correspond?).

197

R

SC

SS

CD

CC

CS

CT

CA

QD

QC

QP

� = h�� , � , �Qi

Symbol Description
SC State correspondence
SS State storage

CD Command mapping dependence
CC Command mapping complexity
CS Command mapping stuttering
CT Trace structure
CA Actor preservation

QD Query decider dependence
QC Query decider complexity
QP Query preservation

R Reachability

Figure 29: An overview of the dimensions of expressiveness reduction properties

Further, SS can limit the amount of storage the state correspondence uses (e.g., T must

emulate S using only a linear amount of additional storage).

The command mapping σΨ can be restricted by CD in what state elements it can use to

map commands (e.g., whether it can inspect arbitrary state elements or only those that are

exposed via queries). CC considers limiting the time-complexity of the command mapping

routine. Since the command mapping returns a sequence of commands, CS can limit the

number of commands it can return (e.g., only one, or constant in the size of the state). We

identify CT, a dimension of concurrency-related trace structure restrictions, as well as CA,

requiring the reduction to map S commands executed by certain types of users only to T
commands executed by that category of users.

The query decider σQ can also be restricted in a number of ways. Like the command

mapping, we may limit what elements of the state the decider can inspect when deciding

how to answer queries within a specific state (QD), or the time-complexity of the routine

(QC). In some cases a reduction from S to T may be required to map certain S queries to

specific related queries in T , most notably authorization requests (e.g., to answer whether

user u should have permission p in S, T should simply check whether user u has permission

p in its current T state); this type of restriction is handled in QP.

198

Finally, our reachability restrictions R define how these three functions relate, by allowing

us to parameterize whether we require one-way reachability (T must be able to transition to

states corresponding to all reachable S states) or bidirectional reachability (T also cannot

transition to states that do not correspond to reachable S states).

The bare minimum set of properties that must be enforced on top of Definition 29 for

a mapping to be considered a reduction is (i) a notion of state correspondence, and (ii) a

reachability relation. We present the definition of implementable expressiveness reduction,

which refines the mapping by enforcing these properties.

Definition 30. Given two access control systems, S = 〈ΓS ,ΨS , QS〉 and T = 〈ΓT ,ΨT , QT 〉
and a mapping σ = 〈σΓ, σΨ, σQ〉 from S to T , an implementable expressiveness reduction of

S in T based on σ is defined as σ′ = 〈σΓ, σΨ, σQ,∼, R〉, where:

• ∼ ⊆ ΓS × ΓT is a state correspondence relation, and ∀γ ∈ ΓS , γ ∼ σΓ(γ)

• R is a reachability restriction

♦

We define all properties over the expressiveness reduction σ = 〈σΓ, σΨ, σQ,∼, R〉. Unless

otherwise noted, properties within a dimension are totally ordered from most to least strict.

8.4.2 State correspondence properties

As discussed in Section 8.3.2, the state correspondence of an implementable reduction of S in

T is a function, σΓ : ΓS → ΓT mapping each state in S to a state in T . There are several

ways in which we can restrict this mapping.

Dimension (SC: State correspondence structure).

This dimension of properties restricts the way in which corresponding states are struc-

turally similar. All properties within this dimension were inspired by state correspondence

relations from prior expressiveness reductions; other application-specific state correspondence

relations are conceivable.

Property (SCs: Structure-correspondent). γS
s∼ γT , ∀Si ∈

[
γS
]
.(Si ∈

[
γT
]
)

199

Property (SCq: Query-correspondent). γS
q∼ γT , ∀q ∈ QS .(γS ` q ⇐⇒ σQ

(
q, γT

)
=

true)

Property (SCa: Authorization-correspondent). γS
a∼ γT , ∀r ∈ RS .(γS ` r ⇐⇒

σQ
(
r, γT

)
= true)

Authorization-correspondent reductions enforce that every γS maps to a γT that agrees on

all authorization requests: any permission granted/denied in γS must also be granted/denied

in γT . Requests that exist in T but not in S are not restricted. This type of correspondence

is used in [21, 85, 89, 101, 105, 107]. Query-correspondence requires that γS and γT agree

on all queries, not just authorization requests. This type of correspondence is used in the

expressiveness reductions of [59,114].

Finally, structure-correspondent reductions require all corresponding state elements to be

identical. If γS structure-corresponds to γT , then every set in γS exists in γT , and contains

all the same elements (γT may contain additional sets or relations). Thus, if γS contains

sets of users and permissions, and a relation between them (a subset of users× permissions)

specifying accesses, γT must contain identical sets of users and permissions, and an identical

set of 〈user, permission〉 pairs. This notion of state correspondence is used in [3].

The type of state correspondence used is a central characteristic of a type of reduction.

Enforcing a state correspondence that is too weak can allow the emulating system to diverge

from the emulated system in unexpected ways, while a state correspondence that is too strong

will cause the emulating system to track the emulated system more closely than necessary

(e.g., by constraining the values of queries that the deployment never needs to ask). Thus,

choosing a particular state correspondence is choosing how closely the emulating system must

stay to the emulated system.

Dimension (SS: State storage).

An orthogonal class of restrictions that can be placed on the state correspondence relation

involve its allowed storage. Here, we restrict the size of γT = σΓ

(
γS
)

with respect to γS .

Property (SSl: Linear storage). ∃c ∈ R+, s ∈ Z+ : ∀γ ∈ ΓS : |γ| ≥ s⇒ |σΓ(γ)| ≤ c|γ|

Property (SSp: Polynomial storage). ∃k ∈ R+, s ∈ Z+ : ∀γ ∈ ΓS : |γ| ≥ s⇒ |σΓ(γ)| ≤ |γ|k

200

Property (SS∞: Unbounded storage). No restriction.

A linear storage reduction says that γT can grow at most linearly with γS , while in a

polynomial storage reduction, the size of γT is bounded by a polynomial in the size of γS .

The most obvious result of enforcing properties within SS is limited trusted storage, but it

can also limit iteration over the resulting state (e.g., if an action must be taken for each

document in the emulating system, SSl ensures that this sequence of actions is linear in the

size of the emulated state).

8.4.3 Command mapping properties

Recall that the command mapping for an implementable reduction (Definition 30) is a

function σΨ : ΨS ×ΓT →
(
ΨT
)∗

that returns the sequence of T commands needed to emulate

an S command starting from a particular T state. Thus, it allows us to emulate S commands

in an active emulation using T . We now discuss the ways in which we can restrict this

mapping.

Dimension (CD: Command mapping dependence).

While Definition 30 maps each S command and T state to a sequence of T commands,

some previous works use more strict command mappings, mapping each S command to

a sequence of T commands without considering the state [21]. In between these options,

we may map each S command and T theory, calculating the sequence of T commands by

observing only the queriable portions of the T state. Command mapping dependence thus

restricts the information that the command mapping can consider about a T state when

calculating the trace of T commands to execute.

Property (CDi: Independent command mapping). ∃σ′ : ΨS →
(
ΨT
)∗
.(σΨ(ψ, γ) ≡ σ′(ψ))

Property (CDt: Theory-dependent command mapping). ∃σ′ : ΨS × Th(T) →
(
ΨT
)∗
.(σΨ(ψ, γ) ≡ σ′(ψ,Th(γ)))

Property (CDs: State-dependent command mapping). No restriction.

With independent command reductions, S commands must be precompiled to T commands

which will work in any reachable T state. This is a restriction placed by [21]. Theory dependent

201

command mappings allow limited inspection of the T state; this restriction allows the sequence

of T commands to be determined based only on the theory of the T state: the values of all T
queries in the state. If two T states answer all queries the same way, the same T commands

would be used in both to emulate an S command. With this restriction, the monitor that

transforms S inputs into T procedures need not be more privileged than users of the access

control system, since queries are the user’s only API to observe the state.

Finally, state-dependent command mappings can arbitrarily observe the state. This

requires a monitor that is privileged enough to observe elements of the state that are not

queriable, and two states that answer all queries identically may emulate commands differently

depending on unobservable state.

Dimension (CC: Command mapping complexity).

Having considered the inputs available to the command mapping, we now consider the

time complexity of this mapping. Note that this is measured as the increase in time as the

state grows and thus is meaningless for independent command.

Property (CCc: Constant command mapping). ∀ψ ∈ ΨS , the algorithm for σψ(γ) = σΨ(ψ, γ)

has time complexity T (n) ∈ O(1)

Property (CCl: Linear command mapping). ∀ψ ∈ ΨS , the algorithm for σψ(γ) = σΨ(ψ, γ)

has time complexity T (n) ∈ O(n)

Property (CC∞: Unbounded command mapping). No restriction.

Constant command reductions do not allow more processing time for bigger states. Thus,

the command mapping cannot loop over sets within the state. With linear command, the

command mapping can take time linear in the size of the state, e.g., looping over sets in the

state, but cannot contain double loops over sets, sort sets, etc. Finally, unbounded command

reductions put no limit on the complexity of the command mapping (though we may expect

it to have to be tractable, e.g., poly-time).

Dimension (CS: Command mapping stuttering).

Since the command mapping maps an S state to a sequence of T states, we may restrict

the number of commands that can be used to emulate a single S command.

202

Property (CS1: Lock-step). ∀ψ ∈ ΨS , γ ∈ ΓT : |σΨ(ψ, γ)| ≤ 1

Property (CSc: Constant step). ∃c : ∀ψ ∈ ΨS , γ ∈ ΓT : |σΨ(ψ, γ)| ≤ c

Property (CS∞: Unbounded step). No restriction.

A lock-step reduction allows at most one T command for each emulated S command. This

mitigates concurrency issues for multiuser systems, since the system does not pass through

potentially inconsistent states between command executions. Constant step reductions allow

multiple commands to be used, but only a number constant in the size of the state. Thus,

multiple actions can be taken, but not, e.g., a command for each user in the system. Finally,

unbounded step does not restrict how many T commands can be executed per S command.

Dimension (CT: Trace structure).

This class of properties enforces structural constraints on the traces of commands returned

by the command mapping. This can address the potentially inconsistent states between

start and end states in traces generated by the command mapping. Here, we present several

examples of trace restrictions, using the notation terminal(γ, ψ1, · · · , ψj) to denote the end

state resulting from executing the sequence of commands ψ1, · · · , ψj, starting from the state

γ. Note that this dimension of properties is not totally ordered.

Property (CT1: Semantic lock-step).

∀ψ ∈ ΨS , γS ∈ ΓS , γT ∈ ΓT .(

∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈
(
ΨT
)∗
, i ∈ (1,m].(

σΨ

(
ψ, γT

)
= ψ ∧

∀j ∈ [1, i).(γS ∼ γT ⇒

γS ∼ terminal
(
γT , ψ1 · · ·ψj

)
) ∧

∀j ∈ [i,m].(γS ∼ γT ⇒

next
(
γS , ψ

)
∼ terminal

(
γT , ψ1 · · ·ψj

)
)))

First, a semantic lock-step reduction can appear to be lock-step (i.e., it does not enter any

inconsistent states), because even though it is allowed to execute multiple T commands to

203

�1 �2

�0
1 �0

2 �0
i

�0
i+1 �0

m

Figure 30: A graphical representation of semantic lock-step

emulate a single S command, only one of those commands is allowed to make correspondence-

related changes. That is, consider the sequence of T states constructed by executing the

sequence of commands σΨ

(
ψS , γT

)
. In semantic lock-step, all of these states must correspond

to the either the start state in S or the end state in S, and once the transition from start

state to end state is made, the remaining states must all be equivalent to the end state.

Thus, from the point of view of a user who can ask any combination of queries, the reduction

appears to be lock-step. This restriction is depicted in Fig. 30.

Property (CTq: Query monotonic). ∀ψ ∈ ΨS , γ ∈ ΓT , q ∈ QT .monotonic(ψ, γ, q), where:

monotonic(ψ, γ, q) , ∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈
(
ΨT
)∗
.(

σΨ(ψ, γ) = ψ ∧

∀i ∈ (1,m).(

terminal(γ, ψ1 · · ·ψi) ` q ⇒

(terminal(γ, ψ1 · · ·ψi−1) ` q ∨ terminal(γ, ψ1 · · ·ψm) ` q) ∧

terminal(γ, ψ1 · · ·ψi) 0 q ⇒

(terminal(γ, ψ1 · · ·ψi−1) 0 q ∨ terminal(γ, ψ1 · · ·ψm) 0 q)))

Consider the start and end states of a trace in T , γ and γ′, respectively. Let Q+ be the

set of queries that become true in γ′ that were false in γ, and Q− be the set of queries that

become false in γ′ that were true in γ. During the trace from γ to γ′, query monotonicity

enforces that no queries are made true except Q+, and no queries are made false except Q−.

204

Thus, from the point of view of a user who can ask only single queries, the reduction appears

to be lock-step.

Property (CTa: Access monotonic). ∀ψ ∈ ΨS , γ ∈ ΓT , r ∈ RT .monotonic(ψ, γ, r)

Access monotonicity is similar to query monotonicity but considering only authorization

requests. Let R+ be the set of requests that become allowed in γ′ that were denied in γ, and

R− be the set of requests that become denied in γ′ that were allowed in γ. During the trace

from γ to γ′, access monotonicity enforces that no requests are granted except R+, and no

requests are revoked except R−.

Property (CTs: Non-contaminating).

∀ψ ∈ ΨS , γT ∈ ΓT .(

∃ψ = 〈ψ1, ψ2, . . . , ψm〉 ∈
(
ΨT
)∗
.(

σΨ

(
ψ, γT

)
= ψ ∧

∀γTi ∈
{
γTi | ∃ψi ∈ ψ : γTi = terminal

(
γT , ψ1 · · ·ψi

)}
.(

Allowed
(
γTi
)
⊆ Allowed

(
γT
)
∨

Allowed
(
γTi
)
⊆ Allowed

(
terminal

(
γT , ψ

))
)))

The non-contaminating trace property ensures that no two accesses are allowed in the

same state that are not both allowed in either the start or end state. This prevents, e.g., an

intermediate state where a file can be accessed by two users simultaneously when emulating

a command intended to switch which user can access the file. This definition uses the

Allowed(γ) notation, indicating the set of all permissions p allowed in state γ (i.e., such that

γ ` p).

Dimension (CA: Actor preservation).

Actor preservation properties restrict which users can be invoked in T to handle S
commands. Here, we assume that α(ψ) denotes the actor executing the command ψ. Note

that this requires system support (e.g., the executing actor being an implicit argument passed

to a command) in order for a reduction to be executable.

Property (CA>: Self-execution). ∀ψS ∈ ΨS , γ ∈ ΓT ,∀ψT ∈ σΨ

(
ψS , γ

)
, α
(
ψS
)

= α
(
ψT
)

205

Property (CAa: Administration-preservation). Let A be the administrative subset of execut-

ing entities in the system. ∀ψS ∈ ΨS , γ ∈ ΓT ,∀ψT ∈ σΨ

(
ψS , γ

)
, α
(
ψT
)
∈ A⇒ α

(
ψS
)
∈ A

Self-execution says that any command in S executed by any user u must be mapped to

a sequence of commands in T , all of which are executed by u. Administration-preservation

prevents the invocation of administrators in T where they were not needed in S. In an

administration-preserving reduction, any command in S executed by a non-administrative

user is mapped to a sequence of commands in T , none of which is executed by an administrator.

Other forms of actor preservation, as well as defining the set of administrators, are application-

specific.

8.4.4 Query decider properties

Recall (Definition 30) that the query decider is a function σQ = QS × ΓT → {true, false}
that assigns a truth value to each query in system S, in each state in system T . As with

the command mapping, we can restrict what properties of the state the query decider can

observe, but in general it sees the whole state. Thus, it allows us to answer S queries in an

active emulation using T . We now discuss the ways in which we can restrict this decider.

Dimension (QD: Query decider dependence).

While Definition 30 maps each S query and T state to a truth value, previous works

use more strict query deciders, ranging from mapping each S query q to a T query q′

and returning γT ` q′ [114], to mapping each S query and T theory to a truth value [59]

(calculating the truth value by observing only the queriable portions of the T state). Query

decider dependence, similar to command mapping dependence, restricts the information that

the query decider can consider about a T state when deciding the truth value of an S query

in that state.

Property (QD1: Independent, unitary-range query decider). ∃σ′ : QS → QT .(σQ(q, γ) ≡
γ ` σ′(q))

Property (QDi: Independent query decider). ∃σ′ : QS → L
(
QT
)
.(σQ(q, γ) ≡ γ ` σ′(q))

206

Property (QDt: Theory-dependent query decider). ∃σ′ : QS × Th(T) →
{true, false}.σQ(q, γ) ≡ σ′(q,Th(γ))

Property (QDs: State-dependent query decider). No restriction.

First, independent, unitary-range query reductions first map each S query qS to a single

T query qT , then return the truth value of asking this T query in γT (i.e., returns γT ` qT).

This type of reduction was used in [114]. Independent query reductions, similarly, map qS

independent of the state, but in this case can map it to an element of L
(
QT
)
, a boolean

expression over QT , rather than a single query. This allows the reduction, for example, to

map the S query “Is user u a member of role r” to T query sentence “Does user u exist and

does user u have attribute role:r?”

Theory-dependent query allows the truth value to be determined based only on the theory

of the T state, or the values of all T queries in the state. This allows the query decider to

inspect the values of (potentially) all T queries, but does not allow the decider to consider

any features of the state that cannot be queried using QT . This version of the query decider

is used in [59]. Finally, we refer to the general case as state-dependent query, since in this case

the query decider can arbitrarily inspect the T state before returning a truth value for an S
query, rather than being restricted only to those elements of the state which are observable

by asking queries in QT .

The biggest impact a selection in QD has is to limit the privilege of the emulation agent:

under QD1 and QDi, the emulation agent need know nothing about the current state of the

system to map queries, and emulated queries are mapped statically to dynamic queries. Under

QDt, the emulation agent must be privileged to view the values of all queries at runtime,

while QDs assumes the ability to arbitrarily inspect the state at runtime (even the portions

of state that are not queriable).

Dimension (QC: Query decider complexity).

As with the command mapping, due to potential resource constraints, we may enforce

limits on the runtime complexity of the query decider routine, with respect to the size of

the state it is executed in. As with commands, this is not applicable for independent query

deciders.

207

Property (QCc: Constant query decider). ∀q ∈ QS , the algorithm for σq(γ) = σQ(q, γ) has

time complexity T (n) ∈ O(1)

Property (QC∞: Unbounded query decider). No restriction.

For theory-dependent and state-dependent query deciders, we can limit the complexity of

the procedure—here, we consider only the constant-time restriction explicitly, though other

restrictions may be useful in some cases.

Dimension (QP: Query preservation).

Query preservation is a property dimension that indicates which queries need to stay the

same as they are mapped from system S to system T . A particular application may require

any given set of queries to be preserved; here, we present several generic examples.

Property (QPf: Complete query preservation). ∀q ∈ QS , γ ∈ ΓT : σQ(q, γ) ≡ γ ` q

Property (QPa: Authorization preservation). ∀r ∈ RS , γ ∈ ΓT : σQ(r, γ) ≡ γ ` r

Property (QPw: Weak authorization preservation). ∃f : RS → RT such that the following

two conditions hold:

• ∀r ∈ RS , γ ∈ ΓT .(σQ(r, γ) = true⇒ γ ` f(r))

• ∀r ∈ RT , γ ∈ ΓT .(γ ` r ⇒ ∃rS .(σQ
(
rS , γ

)
= true ∧ f

(
rS
)

= r))

The most common property in this dimension is authorization preservation, which roughly

enforces that the query decider maps each S request to the value of the identical request in

the T state. This requires T to accept at least the same authorization requests as S, and

can be seen as ensuring that T is using its model “as intended” (i.e., forcing it to answer

emulated requests as it would its own native requests). Complete query preservation restricts

the query decider in the same way, but for all supported queries.

Authorization preservation was formalized in [59] (as AC-preservation), but has been used

implicitly in other reductions (e.g., [21]) that do not include any mapping from S requests

to T requests (i.e., assume the identity mapping). For formalisms that do not consider

queries other than requests, authorization preservation and complete query preservation are

equivalent.

208

A related property is weak authorization preservation, which we defined in Section 4.5.2

(as weak AC-preservation, Definition 25). This property is a weakened version of authorization

preservation: its intentions are similar, but the weak form can be used even when S and

T do not support the exact same requests (i.e., emulating a system with requests of the

form, “Does user u have access to permission p?” in a system with requests of the form,

“Does subject s have access read to object o?”). Weak authorization preservation allows a

request transformation function, which maps S requests to T requests. The definition of this

property ensures that each S request is mapped into T , and each T request that is granted

represents some S request.

8.4.5 Reachability

Dimension (R: Reachability).

The last dimension of properties we consider ties the mappings together to ensure

the reduction is indeed what one could consider a reduction in the classic sense. A state

correspondence, query decider, and command mapping do not automatically define a reduction

without reachability constraints. Here, we define forward and bidirectional reachability, two

variants of this type of constraint (note that these properties are presented in increasing

strictness since the latter builds upon the former).

Property (R→: Forward reachability).

∀γS0 , γS1 ∈ ΓS , γT0 ∈ ΓT .(

γS0 ∼ γT0 ∧ γS0 7→ γS1 ⇒ ∃γT1 ∈ ΓT .(

γT0
∗7→ γT1 ∧ γS1 ∼ γT1))

Property (R↔: Bidirectional reachability). Forward reachability, and:

∀γS0 ∈ ΓS , γT0 , γ
T
1 ∈ ΓT .(

γS0 ∼ γT0 ∧ γT0 7→ γT1 ⇒ ∃γS1 ∈ ΓS .(

γS0
∗7→ γS1 ∧ γS1 ∼ γT1))

209

In forward reachability, any transition made in S must be possible in T . If γS0 corresponds

to γT0 , and γS1 can be reached from γS0 via the commands of S, then γS1 must correspond to a

state γT1 in T that is reachable from γT0 . The notion of state correspondence is determined

by the property chosen in dimension SC.

Bidirectional reachability (or bi-reachability), also requries that T cannot enter a state

that does not correspond to a reachable state in S. If γS0 corresponds to γT0 , and γT1 is

reachable from γT0 by executing a command, then there must exist an S state γS1 that

corresponds to γT1 and that is reachable from γS0 by executing one or more commands. This

process may make use of multiple steps, since the procedure for finding the corresponding

S states does not need to be constructed, these states must simply exist. The operational

advantage of enforcing R↔ is that, even if the emulating system’s native operations are

exposed to users, the system can never enter a state that does not have an equivalent in the

emulated system.

8.5 POSITIONING EXISTING REDUCTIONS

As mentioned in Section 8.4.1, no set of properties can be proven to describe all conceivable

reductions. In this section, we support the set of properties defined in this work by showing

that it can precisely describe the wide range of existing expressiveness reductions.

8.5.1 Expressiveness using Reduction Properties

We will now draw the formal distinction between a reduction and expressiveness. Here, we

use T emu
X
S to denote, “T can admit a reduction of type X of S,” and S ≤X T to denote,

“T is at least as expressive as S with respect to reductions of type X .”

While previous work considers the expressiveness result to be equivalent to a reduction

(i.e., T emu
X
S ≡ S ≤X T), expressiveness in a practical sense is subject to a subtle distinction.

Since we mean for expressiveness to be implementable (i.e., if T is as expressive as S, then T
can be used in place of S), expressiveness within the domain of reduction properties should

210

mean the following: if T is as expressive as S, then T can emulate any system that S can

emulate. Thus, we define expressiveness in the context of a set of reduction properties.

Definition 31 (Expressiveness). Given access control systems S and T and a set of reduction

properties P , we say that T is at least as expressive as S with respect to P (denoted S ≤P T)

to mean that, for every system U , if S can emulate U while enforcing P , then T can emulate

U while enforcing P (∀U : S emu
P
U ⇒ T emu

P
U). ♦

We first point out that this definition of expressiveness is strictly more general than the

more traditional (often implied) notion. Since S can trivially emulate itself, S ≤X T implies

T emu
X
S. The additional generalization can be viewed from a formal standpoint as dropping

the (incorrect) assumption that all types of reduction are transitive (i.e., that T emu S and

S emu U imply T emu U). For instance, assume that T can emulate S and S can emulate

U , each with a quadratic increase in state storage. While T may be able to emulate U , this

reduction may require greater than quadratic storage.

From a more intuitive standpoint, we point out that, except in the case of custom-built

access control solutions, any deployment is an emulation of a workload (i.e., ideal operation)

using an existing system. That is, unless S is custom-made to exactly satisfy the desired

workload, replacing it with T is not a matter of whether T can emulate S, but whether

T can admit an equally good emulation of the (perhaps not formally specified) workload

that S is known to emulate. This concept is discussed by Kane and Browne [69], who

point out that an access control implementation is often only an approximation of the

desired policy. In particular, as policy languages get more complex, deployments often make

use of approximations that are easier to analyze and more efficient to enforce than the

overly-expressive policy language.

8.5.2 Decomposing Expressiveness Reductions to Properties

In order to use the set of expressiveness reduction properties detailed in Section 8.4 to

systematically compare previously proposed notions of reduction, we present our formal

way of stating that a notion of reduction and a set of reduction properties are equivalent.

We call this correspondence reduction decomposition: when a notion of reduction X can be

211

decomposed to a set of reduction properties P , then analyses using X and P yield equivalent

expressiveness results.

Definition 32 (Reduction Decomposition). Given a notion of access control reduction X
and a set of reduction properties P , X can be decomposed to P (denoted X =̈ P) if and only

if, for all systems S and T , T emu
X
S ⇐⇒ S ≤P T . That is, T admits an X reduction of S

if and only if T is at least as expressive as S with respect to properties P . ♦

Recall from Definition 31 that S ≤P T says that any system that can be emulated by S
while preserving properties P can can also emulated by T while preserving P. In light of

this, we will position an existing notion of reduction, X , within the lattice formed by our

reduction properties (i.e., prove X =̈ P) by proving the following for the set of properties P :

1. (Only-if direction) T emu
X
S ∧ S emu

P
U ⇒ T emu

P
U

2. (If direction) S ≤P T ⇒ T emu
X
S

We give an example of such a proof in the following section.

8.5.3 Example Decomposition

To demonstrate how reduction decomposition proofs are written, we now consider the

Ammann-Lipton-Sandhu (ALS) reduction [3], which we first discussed in Chapter 2. The

ALS reduction considers access control states as graphs: sets of primitive objects are node

types, and sets of relations are edge types. The set of node types and edge types in the states

of system S are denoted NT (S) and ET (S), respectively. The ALS state correspondence is

then defined as follows (reworded slightly from [3]).

Definition 5 (ALS State Correspondence, restated). A state in system S, an emulated

system, and a state in system T , an emulating system, correspond iff the graph defining the

state in S is identical to the subgraph obtained by taking the state in T and discarding all

nodes (edges) not in NT (S) (ET (S)). ♦

The ALS reduction is defined with respect to this state correspondence.

Definition 6 (ALS Reduction, restated). Under the definition of correspondence in Defini-

tion 5, system T emulates system S iff the following conditions hold:

212

Reduction Decomposition
ALS SCs QPa R↔

CDMw SCa QPa CDi R→
CDMs SCa QPa CDi CS1 R→
Ganta SCa QPa CTs R↔

HMG+ SCq QDt R→
HMG+a QPa
HMG+s CTa
HMG+p CAa

SMG SCa R→
TL-SMR SCq QD1 R↔

(a) Decompositions of surveyed reductions

SC

CD

CS

QD

R

a

c

1

$

q

t

SMG

CDMw CDMs

HMG+

TL-SMR

ALS

R

s

i

s

1

$
QP

a

QP
a

R

QD

!

QP CT

Ganta

! $

as

(b) Taxonomy of reductions

TL-SMR
SCq, QD1,

R$

HMG+
SCq, QDt,

R!

SMG
SCa, R!

ALS
SCs, QPa,

R$

CDMs
SCa, QPa,
CDi, CS1,

R!

CDMw
SCa, QPa,
CDi, R!

Ganta
SCa, QPa,
CTs, R$

(c) Partial lattice of re-
ductions

Figure 31: Results of decomposing notions of access control reduction from the literature

1. If system S can reach a given state, system T can reach a corresponding state.

2. If system T can reach a given state, system S can reach a corresponding state.

♦

We will now demonstrate the two-step reduction decomposition proof technique described

in Section 8.5.2 for the ALS reduction. For the purposes of this proof, let the set of reduction

properties P = {SCs,QPa,R↔}. Recall that SCs is structure state correspondence, which

says that the emulating state must include all of the unaltered sets from the emulated

state; QPa is authorization preservation, which says that each authorization request must

be mapped identically from emulated to emulating system (and thus the emulating system

must support the same set of requests as the emulated system); and R↔ is bireachability,

which says that the emulating system can reach a state which corresponds to each reachable

emulated state, and cannot reach a state which does not correspond to a reachable state in

the emulated system.

We will demonstrate the two steps of the proof technique by proving two requesite lemmas.

First, step 1 (only-if direction):

213

Lemma 19. Given access control systems S, T , and U ,

T emu
ALS
S ∧ S emu

P
U ⇒ T emu

P
U

That is, if T admits an ALS reduction of S, and S admits a reduction of U with properties

{SCs,QPa,R↔}, then T admits a reduction of U with properties {SCs,QPa,R↔}.

Proof. To prove this lemma, we let S, T , and U be access control systems such that T emu
ALS
S

and S emu
P
U but are otherwise arbitrary, and we show that T emu

P
U .

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU , and let next
(
γU0 , ψ

U) = γU1 .

Let γS0 ∈ ΓS such that γU0
s∼ γS0 . Since S emu

P
U ,

∃γS1 ∈ ΓS .(terminal
(
γS0 , σΨ

(
ψU , γS0

))
= γS1 ∧ γU1

s∼ γS1)

Let γT0 ∈ ΓT such that γS0
s∼ γT0 . Since T emu

ALS
S,

∃γT1 ∈ ΓT .(γT0
∗7→ γT1 ∧ γS1

s∼ γT1)

Thus, there exists a sequence of T commands ΨT0 such that terminal
(
γT0 ,Ψ

T
0

)
= γT1 . Define

σΨ : ΨU × ΓT →
(
ΨT
)∗

such that it returns ΨT0 for γT0 , ψ
U .

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that next

(
γU0 , ψ

U) = γU1 , and γU0
s∼ γT0 ,

∃γT1 ∈ ΓT .(terminal
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

s∼ γT1)

Hence, T emu
{SCs,R→}

U . Next, we show QPa.

Choose some arbitrary request rU0 ∈ RU and state γT0 ∈ ΓT .

Since S emu
P
U ,

∀rU ∈ RU , γS ∈ ΓS , σQ
(
rU , γS

)
= γS ` rU

Thus, we know that S supports all U requests, and corresponding S and U states will

answer U requests identically. Therefore, rU0 ∈ RS . Since T emu
ALS
S,

∀rS ∈ RS , γT ∈ ΓT , σQ
(
rS , γT

)
= γT ` rS

Thus, σQ
(
rU0 , γ

T) = γT ` rU0 .

Hence, T emu
{SCs,QPa,R→}

U . Next, we show R↔.

214

Choose some arbitrary states γT0 , γ
T
1 ∈ ΓT such that γT0 7→ γT1 . Let γS0 ∈ ΓS such that

γS0
s∼ γT0 . Since T emu

ALS
S,

∃γS1 .(γS0
∗7→ γS1 ∧ γS1

s∼ γT1)

Let γU0 ∈ ΓU such that γU0
s∼ γS0 . Since S emu

P
U ,

∃γU1 .(γU0
∗7→ γU1 ∧ γU1

s∼ γS1)

Thus, given γT0 , γ
T
1 ∈ ΓT , γU0 ∈ ΓU such that γT0 7→ γT1 and γU0

s∼ γT0 ,

∃γU1 ∈ ΓU .(γU0
∗7→ γU1 ∧ γU1

s∼ γT1)

Hence, T emu
P
U .

Next, we demonstrate step 2 (if direction):

Lemma 20. Given access control systems S and T and reduction properties P =

{SCs,QPa,R↔}, S ≤P T ⇒ T emu
ALS

S. That is, if T is at least as expressive as S with

respect to properties P, then T admits an ALS reduction of S.

Proof. To prove this lemma, we let S and T be arbitrary access control systems such that

S ≤P T , and we show that T emu
ALS
S.

Since S ≤P T , for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially emulate itself, S emu
P
S, and thus T emu

P
S.

Thus, given γS0 , γ
S
1 ∈ ΓS , γT0 ∈ ΓT , by forward reachability, if γS0

s∼ γT0 and γS0 7→ γS1 , then

∃γT1 .(γT0
∗7→ γT1 ∧ γS1

s∼ γT1)

Since SCs and QPa satisfy the ALS definition of state correspondence, this means we

have satisfied the first property of the ALS reduction.

1. If S can reach a given state, T can reach a corresponding state.

And by bidirectional reachability, given γS0 ∈ ΓS , γT0 , γ
T
1 ∈ ΓT , if γS0

s∼ γT0 and γT0 7→ γT1 ,

then

∃γS1 .(γS0
∗7→ γS1 ∧ γS1

s∼ γT1)

And therefore, we have satisfied the second property of the ALS reduction:

215

2. If T can reach a given state, S can reach a corresponding state.

These properties satisfy the definition for ALS reduction, and hence T admits an ALS

reduction of S (T emu
ALS
S).

Therefore, we have proved the decomposition of the ALS reduction:

Theorem 21. ALS =̈ {SCs,QPa,R↔}; that is, the ALS reduction decomposes to structure

correspondence, authorization preservation, and bidirectional reachability.

Proof. By Lemma 19, if T emu
ALS

S, then S ≤P T . By Lemma 20, if S ≤P T , then

T emu
ALS
S. Thus, S ≤P T if and only if T emu

ALS
S, and thus the ALS reduction decomposes

to {SCs,QPa,R↔}.

All other decomposition proofs can be found in Appendix B.

8.5.4 Results

Now, we present the results of decomposing the reductions from the series of previous

works discussed in Section 8.2 into sets of reduction properties from Section 8.4. First, a

chart of our results is shown in Figure 31a, which states the decomposition of the SMG

reduction [85, 89,101,105–107], the Ganta reduction [41], the ALS reduction [2, 3], the CDM

weak and strong reductions [21], the TL state-matching reduction [113, 114], and HMG+

parameterized expressiveness (along with several parameterized expressiveness properties) [59].

Properties are omitted if they are not explicitly required by the reduction’s definition but are

implied by other, explicit properties (e.g., CDMs decomposes to a set including CDi, which

also implies CCc). Section 8.6.1 discusses which properties imply others.

In Figure 31b, we arrange this data as a taxonomy, with each split representing a

dimension, with weaker properties positioned to the left and stronger properties to the right.

We split first on the state correspondence, which is perhaps the biggest difference among the

surveyed reductions. This separates reductions that preserve only the answers to authorization

requests (SCa) from those that preserve all queries (SCq) and those that preserve full state

structure (SCs). We note that the ALS reduction is alone in its decomposition including SCs;

all other surveyed reductions allowed the emulating system to store information in a different

216

SCq CDi QD1

SCs CDi QD1

SCs CDt QD1 SCs CDi QDi

SCa CDi QD1 SCq CDt QD1 SCq CDi QDiSCs CDs QD1 SCs CDt QDi SCs CDi QDt

SCa CDt QD1 SCa CDi QDiSCq CDs QD1
(TL-SMR) SCq CDt QDi SCq CDi QDtSCs CDs QDi SCs CDt QDt SCs CDi QDs

SCa CDs QD1 SCa CDt QDi SCa CDi QDtSCq CDs QDi SCq CDt QDt SCq CDi QDsSCs CDs QDt SCs CDt QDs

SCa CDs QDi SCa CDt QDt SCa CDi QDs
(CDM)

SCq CDs QDt
(HMG) SCq CDt QDs SCs CDs QDs

(ALS)

SCa CDs QDt SCa CDt QDs SCq CDs QDs

SCa CDs QDs
(SMG)

Figure 32: Lattice of state correspondence, command dependence, and query dependence

with positioned surveyed reductions

organization than the emulated system, so long as the required queriable information (requests

or queries) can be recovered. We also note that the predominant difference between the SMG

reduction and the CDM reductions is the command dependence: in SMG, a command can

be mapped completely differently if it is to be executed in different states, while in CDM,

each command must be mapped without knowing the state in which it will be executed.

The Ganta reduction is unique in enforcing the non-contamination trace restriction. HMG+

and TL-SMR use the same state correspondence, but HMG+ enforces a more relaxed query

dependence and does not require bireachability. Reductions that are positioned farther apart

are the most dissimilar. Most starkly different are SMG and ALS, positioned far left and far

right, which share no reduction properties except in dimensions in which both enforce only

minimum properties, despite their similar publication times.

In Figure 31c, we position the surveyed reductions within a lattice. Higher reductions

decompose to more strict properties, and an arrow from reduction X to reduction X ′ indicates

217

that X ′ decomposes to strictly stronger properties than X . Here we can see that the SMG

reduction is strictly weakest, which supports previous claims to this effect [41,114]. Several

orthogonal directions were taken in defining other reductions to enforce stronger properties.

The CDM reductions, as noted above, restrict the command dependence. The Ganta reduction

requires non-contamination and bireachability. The TL state-matching reduction and HMG+

parameterized expressiveness consider queries, and thus strengthen the state correspondence.

The ALS reduction enforces an even more strict state correspondence, requiring the structure

of a emulated system’s state to be preserved in the emulating system. Interestingly, we note

that while all are stronger than SMG, most pairs are incomparable due to being stronger in

orthogonal ways. In particular, while TL-SMR is considered to be a relatively strong notion

of reduction, this is not substantiated by the lattice, which shows TL-SMR to be stronger

than HMG+ and SMG, but incomparable to the CDM, ALS, and Ganta reductions.

Figure 32 presents a lattice of state correspondence, command dependence, and query

dependence, with the surveyed reductions positioned within it (in this space, the Ganta

reduction is at the same point as the SMG reduction). This figure makes evident the wide

range of points between existing reductions that have not been explored. In this figure,

we omit several dimensions for readability, namely reachability (which further separates

Ganta, ALS, and TL-SMR from SMG, CDM and HMG+) and stuttering (which would

break CDM into its weak and strong counterparts). Perhaps the most interesting points to

explore within this lattice are those that exist between two surveyed reductions. For example,

{SCq,CDs,QDs} adds to SMG the preservation of queries beyond requests, but stops short

of HMG+ by not restricting the query decider to consider only the theory of the state while

mapping queries. Similarly, {SCa,CDt,QDs} takes away some of SMG’s freedom to inspect

the state mapping commands, but rather than go all the way to the independent command

mapping of CDM, it still allows it to inspect the state’s responses to queries. We also point

out {SCq,CDs,QDi}, which differs from HMG+ by enforcing query decider independence

(mapping queries cannot consider the state or theory), but can map each emulated query to

a boolean expression over emulating queries.

218

8.6 SELECTING NEW SETS OF PROPERTIES

In Section 8.5, we positioned the reductions used in previous works within a comparative

lattice, allowing them to be formally compared for the first time. In this section, we enable

a second use of our lattice of expressiveness reduction properties: crafting new notions

of expressiveness by choosing the properties that most closely correspond to the scenario

in which an access control system will be deployed. We first discuss interactions between

dimensions; this discussion should act as a warning against choosing individual properties

in isolation. We then interpret the impact each identified dimension has on the reduction,

and identify properties of a deployment scenario that may dictate particular choices in each

dimension. Finally, we discuss the potential impact these techniques could have on future

expressiveness analysis.

8.6.1 Interactions Between Dimensions

We noted in Section 8.5 that some reductions decompose to sets of properties that include

implied properties, or properties that are redundant given the others in the set. For instance,

command independence (CDi) implies constant-time command mapping (CCc); if the com-

mand mapping does not depend on the state, then its procedure must be constant-time in the

size of the state. Further, CCc implies constant step (CSc), since a constant-time procedure

must have constant-size output.

Independence query decider (QDi) implies constant query decider (QCc), since a query

decider that does not depend on the state must be constant-time with respect to the state

size. Full query preservation (QPf) implies constant query decider (QCc), since the identity

mapping is a constant-time procedure, and implies unitary-range query decider (QD1), since

the identity mapping always outputs only one query.

An additional type of interaction is between basic properties and those properties whose

definition relies on the basic properties in the abstract. For example, the definition of forward

reachability (R→) refers to sequences of commands output by σΨ, the length of which may be

limited by command mapping stuttering (CS). Further, the definitions of both reachability

219

properties (R) and trace structure properties (CT) refer to corresponding states. Here, the

details of what makes states correspond is left to the state correspondence structure (SC).

These dependencies show that the proof of a property in one dimension may rely on the

properties chosen in another. Thus, e.g., changing to a stronger state correspondence requires

re-proving a reduction’s results for reachability and trace structure, since these are dependent

on state correspondence.

Several property dimensions are defined over the size of the emulated state: command

mapping complexity (CC), command mapping stuttering (CS), and query decider time-

complexity (QC). Thus, these dimensions can be altered with respect to the original,

emulated state by the state storage size (SS). For example, enforcing polynomial storage

(SSp) and linear-time command mapping (CCl) will guarantee a command mapping that is

linear-time with respect to the emulating state, which is a polynomial expansion over the

original emulated state.

8.6.2 Interpreting the Dimensions

We now discuss the practical impacts each identified dimensions, and what types of environ-

ments may cause one to prefer a particular property in these dimensions over others.

SC: State correspondence structure allows one to change what needs to be preserved

about the state during a reduction. If the deployment scenario in question assumes only

that the reduction allows the proper authorization requests, SCa should suffice. For scenarios

that require the access control system to support (and provide correct answers to) additional

queries such as, “Is user u a member of role r?”, SCq is more appropriate. Finally, in scenarios

that make use of additional code that has access to (and assumes a particular arrangement

of) the access control system’s internal data structures, SCs is the best choice.

SS: State storage limits the size of the emulated state with respect to the original state

(i.e., the state of the system being emulated). This can be restricted for several reasons. The

most obvious is storage space: if trusted storage for representing access control state is limited,

we may restrict the reduction from mapping states in a way that increases storage by more

than a linear factor (SSl) or a polynomial factor (SSp). However, the more interesting reason

220

comes from an interaction described in Section 8.6.1. Since other dimensions place restrictions

(e.g., on the number of commands executed) based on the size of the emulating state, we may

restrict the state expansion to linear (SSl) in order, e.g., to restrict the command mapping

procedure to be linear-time in the size of the original, emulated state. If state storage is

polynomial (SSp), then even if we enforce a command mapping that is linear in the emulating

state (CCl), this only restricts it to being polynomial-time with respect to the emulated state.

Thus, even when trusted storage space is unbounded in the deployment scenario, one may

desire to limit state size to limit later iteration over this state.

CD: Command mapping dependence allows one to require that the command

mapping be computable without full knowledge and inspection of the state in which a

command will be executed in. Independent command (CDi) requires that each command is

mapped independent of the state, and is useful in deployment scenarios in which the agent

calculating the emulating commands is completely unprivileged, and cannot inspect the state.

It is also useful when commands must be precompiled, thus adding no computation at runtime

beyond that of the emulating commands themselves. Theory-dependent command mapping

(CDt) allows the command mapping to inspect the theory of the state (i.e., the answers to

all queries). This property is useful in deployment scenarios in which the simulation agent

is no more privileged than normal users—calculating the mapped commands requires only

information available by asking queries. Finally, state-dependent command mapping (CDs)

allows the command mapping to arbitrarily inspect the state, requiring a powerful simulation

agent.

CC: Command mapping complexity restricts the time-complexity of the command

mapping with respect to the size of the emulating state. Constant command mapping (CCc)

can restrict the command mapping from taking any longer for larger states, and is thus

appropriate when states can be large but mapping commands must always remain fast. Linear

command mapping (CCl) prevents expensive nested loops over access control state as well as

operations such as sorting, while still allowing more processing for larger states.

CS: Command stuttering restricts the number of emulating commands executed

for each emulated command. Lock-step (CS1) reductions must execute no more than one

emulating command per emulated command, and thus ensure there is no intermediate state

221

exposed to users. In deployment scenarios without the ability to force atomic execution of a

sequence of commands (or without built-in data structure locking), this property is crucial to

preventing the inspection of intermediate (potentially inconsistent) states. Constant step

(CSc) reductions are allowed a constant number of commands for each emulated command,

and are thus appropriate when the state can grow to be large but the deployment scenario

requires that the number of steps for any emulated action remain bounded (e.g., to prevent

starvation due to locked structures).

CT: Trace structure properties restrict the path that the emulating system can take

during the simulation of a single command. Semantic lock-step (CT1, depicted in Fig. 30)

provides the benefits of a lock-step reduction in a slightly relaxed way: a “setup” phase

prepares for the transition by changing only internal data (i.e., while remaining equivalent

to the start state), then the transition occurs to a state equivalent to the end state, and

then the “cleanup” phase cleans up any unnecessary leftover data (again, while remaining

equivalent to the same end state). This is particularly useful when lock-step is too strict,

but the deployment scenario is sensitive to the exposure of intermediate states (since, in

CT1, no states are exposed except those equivalent to the start and end states). Query

monotonicity (CTq) ensures that no query changes its truth value except those that are

required to change between the start and end state. This allows multiple steps, but ensures

that intermediate states, while not corresponding with the start or end state, never answer

any query in a way that neither the start nor end state would. This is useful in scenarios

where intermediate states are undesirable, but users are not expected to execute more than a

single query between “valid” states (and will thus never detect the inconsistency). Access

monotonicity (CTa) is similar, but applies only to authorization requests, and is useful in

scenarios where inconsistent states are not a danger as long as they do not wrongly allow or

forbid a request. Finally, non-contamination (CTs) ensures that no two accesses are allowed

in an intermediate state that are not both allowed in either the start or end state. Thus, the

emulating system is restricted not only from allowing accesses forbidden in the emulated

system, but also combinations of individually-allowed accesses that are never combined in

the emulated system. This restriction is particularly useful in environments with operations

that “swap” accesses from one subject or object to another, or where separation of privilege

222

is utilized.

CA: Actor preservation restricts which users can be invoked to emulate commands.

Self-execution (CA>) requires each emulating command be executed by the same user

as the original, emulated command. This allows the emulation agent to be completely

unprivileged, mapping commands as a service to the user, but without executing them with

any privilege beyond the user’s own. Administration-preservation (CAa) requires any non-

administrative emulated command be mapped to a sequence of non-administrative commands

(i.e., a command that does not invoke administrative privileges cannot be emulated by an

administrative command). This corresponds to scenarios in which users will be expected to

operate largely without administrative intervention. No restriction in this dimension means

that the command mapping can return commands to be executed by any other user. This is

most appropriate when the emulating agent is trusted to execute administrative actions on

behalf of untrusted users, or when the commands returned can then be delegated to other

users to be approved and executed.

QD: Query dependence, similar to command dependence, can restrict the query

decider from using the full knowledge of the state in question when mapping queries to truth

values. Independent query decider (QD1 and QDi) map each emulated query to its emulating

queries, and its truth value is then determined by checking the values of these mapped queries

in the emulating state. This is useful, as with commands, for precompilation, and restricts

the emulation agent’s role to be akin to a Karp reduction (i.e., it can only return the value

of its emulating queries with no modifications) [51, p. 60]. Theory-dependent query decider

(QDt) allows the inspection of the full theory of the state, and thus arbitrary computation

over the values of all queries in the emulating system, corresponding to a query decider that

is only privileged enough to ask queries, but not inspect state. Finally, state-dependent query

decider (QDs) allows arbitrary inspection of the state, and thus may answer emulated queries

using state that is usually unqueriable in the emulating system; this requires a powerful

emulation agent that is trusted to view the full access control data structures.

QC: Query complexity restricts the time-complexity of the query decider with respect

to the size of the emulating state, and is thus chosen for reasons analogous to command

complexity (CC).

223

QP: Query preservation restricts certain queries to be mapped by a sort of “identity

function.” That is, certain emulated queries are mapped true if and only if the query is also

present in the emulating system, and the query returns true in the current emulating state.

This dimension of restrictions is strict in that it requires the emulating system to support

all of the included queries of the emulated system, but ensures that the emulating system is

used as per normal. If the deployment scenario is unable to cope with reduced throughput

caused by the query decider during emulation, QPf also ensures that we can pipe emulated

queries directly to the emulating system. Particularly useful is authorization preservation

(QPa) when using a emulating system based on a model with formally-proven properties;

Since all authorization requests must be mapped by the identity, the emulating system allows

an emulated request exactly when it would natively allow the same request.

Finally, R: reachability specifies whether the emulating system should be restricted

from entering a state that does not correspond to an emulated state. If the simulation

agent is users’ only interface to the deployed access control system, forward reachability

(R→) is sufficient. However, if users can access the emulating system’s native commands,

bireachability (R↔) ensures that the system cannot transition to a state that is inconsistent

with the emulated system.

8.6.3 Studying Canonical Usages

Next, we use the above interpretation of our expressiveness reduction properties to guide

a discussion about how each of the notions of reduction that we studied in Section 8.5 is

used by its creators. In many cases, the definition for a particular notion of reduction is

underconstrained, and the reductions written within the framework actually satisfy stronger

properties than the defined lower bound. We refer to the set of properties that the authors

seem to intend for a reduction to uphold as its canonical usage. In the case of Sandhu’s

reduction, the author recognizes that the given constructions are stronger than the definition,

noting that formalizing the definition of the stronger reduction is beyond the scope of the

work [101]. Here, we make conjectures regarding the decomposition of the canonical usage of

these reductions. A lattice view of these conjectures is shown in Fig. 33, where X indicates

224

TL-SMR
SCq, QD1,

R$

HMG+
SCq, QDt,

R!

SMG
SCa, R!

ALS
SCs, QPa,

R$

CDMs
SCa, QPa,
CDi, CS1,

R!

CDMw
SCa, QPa,
CDi, R!

ALS
SCs, QD1,
QPf, R$

TL-SMR
SCq, SSp,
QD1, R$ HMG+

SCq, SSl,
QDi, R!

CDMw
SCa, SSl,

QD1, QPf,
CDi, R!

CDMs
SCa, SSl, QD1,
QPf, CDi, CS1,

R!

SM
SCa, QD1,
QPf, CSc,

R!

Ganta
SCa, QPa,
CTs, R$

Ganta
SCa, SSl, QD1,
QPf, CTs, R$

Figure 33: Partial lattice of canonical usage

the canonical usage of reduction type X . For example, SM refers to the form of the SMG

reduction used in [85,107].

It is interesting to note that the relationships between notions of reduction are not

necessarily preserved in the canonical usage. While SMG by definition is the weakest reduction,

the canonical usage SM is incomparable to any reduction’s definition and positioned strictly

weaker than the canonical usage of the CDM reductions. While, by definition, the TL

state-matching reduction is more strict than HMG+ parameterized expressiveness, their

canonical usages are incomparable due to TL-SMR enforcing bireachability (R↔) and using

polynomial state size (SSp), compared to HMG+ enforcing forward reachability (R→) and

using linear state size (SSl). Finally, we note that all of CDMs, CDMw, SMG, and ALS

reductions are canonically used in such a way that enforces full query preservation (QPf); that

is, all of the constructed mappings of these types use the identity mapping for all supported

queries, despite the fact that none of them specifically require this by definition. This trend

of a notion of reduction’s usage being consistently more strict than its definition reveals the

difficulty in fully specifying the set of properties that a notion of expressiveness reduction

is intended to enforce. The discussion in this section, aimed at helping analysts choose a

reasonable set of properties for a deployment, can also help ensure that newer notions of

reduction are fully specified, and best match their intended usages.

225

8.7 SUMMARY AND FUTURE WORK

In this chapter, we organize the existing knowledge of expressiveness reductions by formalizing

a granular, property-based representation, proposing a wide range of dimensions of reduction

properties, and positioning influential notions of expressiveness reduction from the literature

within the lattice of these properties. In doing so, we provide the first systematic comparison

of existing reductions that were not previously known to be directly comparable, showing

how these notions of expressiveness reduction relate to one another.

Looking away from existing notions of reduction and rather between them, this work allows

us to explore an organized space of reductions to identify areas to explore in future research.

For instance, knowing expressiveness results derived using the SMG and ALS reductions,

which of these hold true for notions of reduction “between” the two existing notions? What

results can be shown for a reduction decomposing to the union of the properties of two existing

notions? How far up the lattice do all systems become incomparable? These questions can

only be explored thanks to the systematic means of reduction decomposition.

Finally, understanding the systems implications of various reduction properties will enable

analysts to select the notion of access control expressiveness that corresponds most closely

to the scenario in which they plan to deploy the target access control system(s). Thus, we

make inroads toward bringing expressiveness analysis techniques out of the strictly formal

realm, and repurpose these techniques for use as fine-grained metrics of capability within the

context of suitability analysis.

A question to be explored in future work is the identification of the set of analysis

questions that a particular set of reduction properties preserve. For example, Tripunitara

and Li showed that the state-matching reduction preserves compositional security analysis

instances : the set of questions containing a single quantifier (∃ or ∀), a propositional formula

over queries ϕ, and a start state γ [114]. Semantically, the question asks whether ϕ it is {ever,

always} true in states reachable from γ. If T admits a state-matching reduction of S, then

all compositional security analysis instances have the same value in S and T . Identifying

the types of analysis questions preserved by other notions of reduction would allow us even

greater understanding of the practical and theoretical impacts of reduction property choices.

226

9.0 CASE STUDY: THE OTHER STATE-MATCHING REDUCTIONS

The state-matching reduction [113,114] is a form of access control expressiveness reduction

that is justified through the proof that it preserves all compositional security analysis instances.

More precisely, a mapping from S to T is said to be strongly security-preserving when any

compositional security analysis instance in S is true if and only if its image is true in

T . Further, a mapping is strongly security-preserving if and only if it is a state-matching

reduction. In this chapter, we present several other related notions of reduction (both more

and less strict), each of which can also be shown to preserve this exact type of security

analysis question.

To show that the additional separations enabled by the properties lattice are meaningful,

we then investigate these different notions of reduction from the perspective of the expres-

siveness results attained using each. We show that, although these types of reduction are

indistinguishable from the perspective of preserving security analysis questions, they do not

lead to the same main results as the original state-matching reduction. We thus showcase

the importance of precisely specifying the type of reduction used in an analysis, further

supporting the use of the properties lattice over static justifications such as preserving security

analysis answers.

9.1 INTRODUCTION

The state-matching reduction [113,114] is a form of access control expressiveness reduction

that is thought to be more fundamentally interesting (or at least more principled) than earlier

forms from the literature. This claim is primarily based on the evaluation from [114], in

227

which it is proven that the state-matching reduction preserves all compositional security

analysis instances, a result that is used as the primary justification for the mapping. Here,

we restate the definition of this security analysis question.

Definition 10 (Compositional Security Analysis, restated). Given an access control system

〈Γ,Ψ, Q〉, a compositional security analysis instance has the form 〈γ, φ, ψ,Π〉, where γ ∈ Γ is

a state, φ is a propositional formula over Q, ψ ∈ Ψ is a state-transition rule, and Π ∈ {∀, ∃}
is a quantifier.

An instance 〈γ, φ, ψ, ∃〉 is said to be existential : it asks whether there exists state γ1 such

that γ
∗7→ψ γ1 and γ1 ` φ.

An instance 〈γ, φ, ψ,∀〉 is said to be universal : it asks whether for every state γ1 such

that γ
∗7→ψ γ1, γ1 ` φ. ♦

More precisely, a mapping from S to T is said to be strongly security-preserving when

any compositional security analysis instance in S is true if and only if its image is true in T ,

and a mapping is strongly security-preserving if and only if it is a state-matching reduction.

We note that this does not take into account any properties of the analysis in question or

the application for which it is being conducted. In contrast, our thesis statement motivates

fully application-aware evaluation metrics, and as such we believe that relying on preserved

analysis questions for identifying meaningful notions of reduction is too imprecise and fragile

to changes in the application. We thus advocate instead for determining the best notion

of reduction for a particular analysis by considering the lattice of properties presented in

Chapter 8, particularly how each dimension affects the application under consideration.

In this chapter, we support this view by showing that the relationship between the state-

matching reduction and the compositional security analysis instance is not fundamentally

unique. We show corresponding proofs of preservation of these analysis questions by other,

related notions of reduction (some more strict, and some less strict). We identify each of

these notions of reduction using the lattice of properties presented in Chapter 8. We thus

support our assertion that a modular lattice of reduction properties gives a more fine-grained

tool for selection notions of reduction than previously existed.

To show that the additional separations enabled by the properties lattice are meaningful,

228

we then investigate the differences between these notions of reduction, and the effects they

have on the expressiveness results attained. In doing so, we show within the context of the

alternative reductions (which are indistinguishable from the original state-matching reduction

from the perspective of preserving security analysis questions), several main conclusions

proved in [114] are invalidated. We thus showcase the importance of precisely specifying the

type of reduction used in an analysis, as such statements as, “TAM cannot emulate ATAM

while preserving compositional security,” are imprecise in a way that has a very real effect.

We also argue that an analyst should not rely on the overly broad and static concept of

preservation of security analysis questions when identifying a notion of reduction to use for

an analysis and instead should carefully consider appropriate values in each of the dimensions

of reduction properties.

In this chapter, we make the following contributions.

• Utilizing the space of implementable expressiveness reductions presented in Chapter 8,

we propose several alternative reductions to the state-matching reduction, one more

strict and two more relaxed. These variants highlight design decisions that were made

by Tripunitara and Li with the state-matching reduction [114] that are not explicitly

discussed, and which are made apparent by our lattice of reduction properties.

• We show that the state-matching reduction is not fundamentally unique in its preservation

of compositional security properties. We propose an accompanying variant on strong

security preservation for each of our alternative reductions, thus showing what it means

to preserve compositional security analysis instances within the context of each. We then

show that these variants are no less principled than the state-matching reduction, by

showing that each is necessary and sufficient for its own corresponding version of strong

security preservation (the same characteristic that previous work indicated as the defining

strength of the state-matching reduction). This shows the relative imprecision of using

preservation of security questions to evaluate a notion of reduction, and shows that our

properties lattice is able to more precisely separate expressiveness metrics.

• To show that the separations we discuss are meaningful, we conduct a case study to

investigate the effects on expressiveness results of different reductions that are equally

capable of preserving the same security questions. We show that considering a slightly

229

different notion of reduction can yield vastly different expressiveness results, even if those

perturbations that do not alter the security properties that are preserved. In particular,

we show that within the context of the alternative reductions to the state-matching

reduction (which also preserve compositional security), several main conclusions proved

using the original are invalidated. We thus showcase the importance of precisely specifying

a type of reduction used in an analysis, as such statements as, “TAM cannot emulate

ATAM while preserving compositional security,” are imprecise in a way that has a very

real effect.

• We identify the reduction properties that seem to have the greatest impact on expressive-

ness results based on our case study and prior work. That is, we identify those dimensions

of properties whose values have the greatest effect on whether a particular reduction is

possible or not. We then discuss how each changes the meaning of an expressiveness result

from the perspective of the application, highlighting the application-based issues that are

ignored entirely when evaluating the state-matching reduction in an application-agnostic

way (i.e., considering only preserved security questions).

The remainder of this chapter is structured as follows. In Section 9.2, we discuss the

state-matching reduction, its justification, and the results proved using it. We propose

our variants of the state-matching reduction using the implementable reductions properties

lattice in Section 9.3, and show that each preserves compositional security in Section 9.4. In

Section 9.5, we summarize the claims made in [113,114] and the ways in which our results

call them into question, particularly in light of the application-aware focus of this dissertation

as a whole. In Section 9.6, we show that the effect of the imprecision of these claims is very

impactful on the expressiveness results attained. We do so by evaluating several conclusions

drawn from the use of the state-matching reduction, and showing that they are invalidated

within the context of the variant reductions. We conclude with a summary of the presented

results in Section 9.7, including a discussion of the significance of the dimensions in which

the variants differ from the original.

230

9.2 THE STATE-MATCHING REDUCTION

Recall from Chapter 2 the motivation behind the state-matching reduction. Tripunitara

and Li [113,114] noted that many existing notions of reduction did not correspond to any

security analysis questions, and thus did not make any particular security guarantees. They

thus began by formalizing the security analysis questions that they felt a reduction should

satisfy: compositional security analysis (Definition 10). Intuitively, this analysis question

covers those that ask whether a certain set of access control queries will always, never, or

sometimes become true in any reachable state. It is a generalization of simple safety analysis

(Definition 3) that considers a propositional formula over queries and may use the ∀ quantifier

rather than being restricted only to the ∃ quantifier.

To prove that a mapping preserves compositional security analysis instances, a formal

notion of preservation of this analysis question was presented in the form of the strongly

security-preserving mapping.

Definition 33 (Strongly security-preserving mapping). Given a mapping σ from system S
to T , the image under σ of a compositional security analysis instance, 〈γS , φS , ψS ,Π〉 in S is

〈γT , φT , ψT ,Π〉, where 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
and φT is obtained by substituting every S

query qS in φS with T query σ
(
qS
)
.

A mapping σ is said to be strongly security-preserving when every compositional security

analysis instance in S is true if and only if the image of the instance under σ is true. ♦

The authors then present their notion of reduction that is tailor-made to preserve these

types of analysis questions: the state-matching reduction.

Definition 11 (State-Matching Reduction, restated). Given a mapping from S to T , σ :

(ΓS ×ΨS) ∪QS → (ΓT ×ΨT) ∪QT , we say that two states γS and γT are equivalent under

the mapping σ when, for every qS ∈ QS , γS ` qS if and only if γT ` σ
(
qS
)
. A mapping σ

from S to T is said to be a state-matching reduction if, for every γS ∈ ΓS and every ψS ∈ ΨS ,

〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
has the following two properties:

1. For every state γS1 in S such that γS
∗7→ψS γ

S
1 , there exists a state γT1 such that γT

∗7→ψT γ
T
1 ,

and γS1 and γT1 are equivalent under σ.

231

2. For every state γT1 in T such that γT
∗7→ψT γ

T
1 , there exists a state γS1 such that γS

∗7→ψS γ
S
1 ,

and γS1 and γT1 are equivalent under σ. ♦

The state-matching reduction uses a state correspondence that considers the values of all

possible queries. It maps each query qS in S to a single query qT in T , and the reduction must

then determine the value of qS in any state in T by checking the value of qT . Reachability

constraints ensure that T can reach a state corresponding to each reachable S state, and

cannot reach any state that does not have a reachable corresponding state in S. Thus, it is

expressed as SCq QD1 R↔ within the reductions properties lattice, as proved in Theorem 31.

Tripunitara and Li then justify Definition 11 through the following theorem.

Theorem 22. Given two access control systems S and T , a mapping σ from S to T is

strongly security-preserving if and only if σ is a state-matching reduction.

The state-matching reduction, then, preserves compositional security analysis in the

following sense. If there exists a state-matching reduction, σ, from S to T , then any

compositional security analysis instance 〈γ, φ, ψ,Π〉 evaluates to true in S if and only if its

image over σ evaluates to true in T . The image of instance 〈γ, φ, ψ,Π〉 over σ is 〈γ′, φ′, ψ′,Π〉,
where 〈γ′, ψ′〉 = σ(〈γ, ψ〉) and φ′ is obtained by substituting every query q in φ with σ(q).

Tripunitara and Li then use the existence or non-existence of state-matching reductions

between pairs of systems to make expressiveness statements, including several we will look at

closely in Section 9.6. It is shown that there is no state-matching reduction from ATAM to

TAM, formalizing the benefit of checking for the absence of rights in addition to the presence

of rights. A state-matching reduction is constructed from a particular RBAC administrative

scheme (AAR) to a trust management scheme (RT[∩]). A state-matching reduction is also

shown from a simple discretionary scheme, Strict DAC with Change of Ownership (SDCO),

to RBAC with ARBAC97, the first evidence of RBAC’s limited expressiveness compared to

DAC.

Although it is certainly true that the state-matching reduction is a seminal notion of

reduction, some of the conclusions drawn from these results can be questioned by using

of the reduction properties lattice proposed in Chapter 8. In particular, the idea that the

state-matching reduction is a fundamentally better choice of reduction for use in an analysis

232

is called into question, as we show that other reductions also satisfy the property of the state-

matching reduction that is used as its main justification. Furthermore, the expressiveness

results should be viewed through the specific lens of the state-matching reduction, since more

lofty claims (e.g., “TAM cannot emulate ATAM while preserving compositional security”)

are overestimating the reach of what the state-matching reduction can prove.

9.3 VARIANTS OF THE STATE-MATCHING REDUCTION

In this section, we define several variants of the state-matching reduction by perturbing

its properties along axes of the reduction properties lattice discussed in Chapter 8. These

reductions will highlight design decisions implicitly made in the development of the state-

matching reduction [114]; we will later exploit these assumptions to prove that this reduction

is not unique in its preservation of compositional security properties.

To assist us in defining our alternative reductions, as well as make it clearer what they

have in common, we first abstract the notion of the reachability requirement as it applies to

these reductions.

Definition 34 (Reachability). Given a mapping σ from S to T and a state equivalence

relation ∼ : ΓS × ΓT , σ enforces the reachability requirement over ∼ if, for every γS ∈ ΓS

and every ψS ∈ ΨS , 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
has the following two properties:

1. For every state γS1 in S such that γS
∗7→ψS γ

S
1 , there exists a state γT1 such that γT

∗7→ψT γ
T
1 ,

and γS1 ∼ γT1 .

2. For every state γT1 in T such that γT
∗7→ψT γ

T
1 , there exists a state γS1 such that γS

∗7→ψS γ
S
1 ,

and γS1 ∼ γT1 . ♦

To demonstrate how this definition can be used, we restate the definition of state-matching

reduction in terms of the reachability requirement.

Definition 11 (State-matching reduction, restated). Given a mapping from S to T of the

form σ : (ΓS ×ΨS)∪QS → (ΓT ×ΨT)∪QT , we say that two states γS and γT are equivalent

233

Reduction Decomposition

SMR SCq QD1 R↔
SMR+1 SCq QPf QD1 R↔
SMR-1 SCq QDi R↔
SMR-2 SCq QDs R↔

Table 3: Decompositions of the state-matching reduction and its variants

under σ (γS ∼ γT) when, for every qS ∈ QS , γS ` qS if and only if γT ` σ
(
qS
)
. Mapping σ is

said to be a state-matching reduction if it preserves the reachability requirement over ∼. ♦

We then define a variant reduction that is more strict than the state-matching reduction.

This reduction, which we call SMR+1, is defined as a state-matching reduction that addition-

ally enforces the property of full query preservation (QPf). Intuitively, this reduction is more

strict than the state-matching reduction in that it does not allow queries to be mapped at

all (in contrast to the state-matching reduction’s mapping from single S query to single T
query). A summary of the reduction properties to which the SMR+1 (as well as the other

reductions considered in this section) decomposes is shown in Table 3.

Definition 35 (SMR+1). Given a mapping from S to T of the form σ : ΓS×ΨS → ΓT ×ΨT ,

we say that two states γS and γT are equivalent under σ (γS ∼ γT) when, for every qS ∈ QS ,

γS ` qS if and only if γT ` qS . Mapping σ is said to be a SMR+1 if it preserves the

reachibility requirement over ∼. ♦

Next, we define reductions that are less strict than the state-matching reduction, in

this case considering the dimension of query decider dependence (QD). The first allows

each S query to map to a propositional formula over queries in T (in contrast with the

state-matching reduction, which maps each S query to a single T query). That is, it weakens

the state-matching reduction from enforcing QD1 to QDi; we call this reduction SMR-1.

Definition 36 (SMR-1). Given a mapping from S to T of the form σ : (ΓS ×ΨS) ∪QS →
(ΓT × ΨT) ∪L

(
QT
)
, we say that two states γS and γT are equivalent under σ (γS ∼ γT)

234

when, for every qS ∈ QS , γS ` qS if and only if γT ` σ
(
qS
)
. Mapping σ from S to T is said

to be a SMR-1 if it preserves the reachability requirement over ∼. ♦

Finally, our least strict reduction carries the trend of SMR-1 a step farther by weakening

the QDi all the way to QDs. That is, rather than defining a function from S queries to (some

form of) T queries, the SMR-2 defines a function whose domain is a S query and a T state

and whose range is {true, false}. Then, S state γS corresponds to T state if and only if,

for any S query q ∈ QS , S ` q ⇐⇒ σ
(
q, γT

)
= true.

Definition 37 (SMR-2). Given a mapping from S to T of the form σ : (ΓS ×ΨS) ∪ (QS ×
ΓT)→ (ΓT ×ΨT) ∪ {true, false}, we say that two states γS and γT are equivalent under

σ (γS ∼ γT) when, for every qS ∈ QS , γS ` qS if and only if σ
(
qS , γT

)
= true. Mapping σ

from S to T is said to be a SMR-2 if it preserves the reachability requirement over ∼. ♦

Although the state-matching reduction is very intuitive, inspection of the above reductions

shows that it is not fundamentally more or less valid than other alternatives; past work has

used QPf [2, 3, 21,41], while QDi is a natural generalization of QD1. Even QDs in SMR-2 is

closely related to the form used in parameterized expressiveness [59].

Thus, intuitively, the state-matching reduction does not seem to be fundamentally more

sound than the variants defined above. However, the state-matching reduction is evaluated

by showing its preservation of compositional security properties. In order to formalize our

claim that the state-matching reduction is not unique, we will next investigate the abilities of

these variants to similarly preserve such properties.

9.4 PRESERVING COMPOSITIONAL SECURITY PROPERTIES

When proposed, the state-matching reduction was evaluated formally by showing that it

preserves compositional security properties. In this section, we show that the same is true for

the reductions presented in Section 9.3.

Tripinatara and Li prove that a mapping is strongly security-preserving if and only

if it is a state-matching reduction [114]. However, although Definition 33 does encode a

235

particular method of preserving compositional security, it is far from the only way. A cursory

inspection reveals that Definition 33 is closely tied to the form of mapping upon which the

state-matching reduction is built. We therefore define SSP+1, SSP-1, and SSP-2, variants

of strongly security-preserving mapping that share a corresponding relationship with our

reduction variants SMR+1, SMR-1, and SMR-2, respectively. Note that none of these

mappings changes the definition of compositional security analysis instance (Definition 10),

only what it means to preserve those instances.

SSP+1 defines the image of a compositional security analysis instance to be more strict,

corresponding to the jump from the state-matching reduction to SMR+1. That is, it eliminates

the mapping’s ability to substitute different T queries for S queries.

Definition 38 (SSP+1). Given a mapping σ from system S to T , the image under σ of

a compositional security analysis instance, 〈γS , φS , ψS ,Π〉 in S is 〈γT , φS , ψT ,Π〉, where

〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
.

A mapping σ is said to be SSP+1 when every compositional security analysis instance in

S is true if and only if the image of the instance under σ is true. ♦

Similarly, SSP-1 allows the mapping to map each S query to a propositional formula over

T queries. Since φ in a compositional security analysis instance is already a propositional

formula over queries, the resulting image of a compositional security analysis instance in S is

still a compositional security analysis instance in T by the closure of propositional logic.

Definition 39 (SSP-1). Given a mapping σ from system S to T , the image under σ of

a compositional security analysis instance, 〈γS , φS , ψS ,Π〉 in S is 〈γT , φT , ψT ,Π〉, where

〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
and φT is obtained by substituting every S query qS in φS with the

propositional formula over T queries, σ
(
qS
)
.

A mapping σ is said to be SSP-1 when every compositional security analysis instance in

S is true if and only if the image of the instance under σ is true. ♦

Finally, since the query decider in SMR-2 can arbitrarily inspect the state, SSP-2 does

not define the image of a compositional security analysis instance at all. Instead, it maps the

semantics of the compositional security analysis instance across the mapping, rather than

preserving the original semantics and mapping the compositional security analysis instance

236

itself.

Definition 40 (SSP-2). Given a mapping σ from system S to T , σ is said to be SSP-2 when

the following conditions hold (let 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
):

1. Every existential compositional security analysis instance 〈γS , φS , ψS ,∃〉 is true in S if

and only if, there exists state γT1 such that γT
∗7→ψT γ

T
1 and σ

(
φ, γT1

)
= true.

2. Every universal compositional security analysis instance 〈γS , φS , ψS ,∀〉 is true in S if

and only if, for every state γT1 such that γT
∗7→ψT γ

T
1 , σ

(
φ, γT1

)
= true. ♦

Note that here we use σ(φ, γ) to denote the result of evaluating φ with every query q

substituted with σ(q, γ).

Now, we show that each of our variant reductions is necessary and sufficient for its

corresponding method of preserving compositional security properties.

Theorem 23. Given two systems S and T , a mapping σ from S to T is SSP+1 if and only

if σ is a SMR+1.

Proof. The “if” direction Given SMR+1 σ from S to T and compositional security analysis

instance 〈γS , φ, ψS ,Π〉 in S, let 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
. We show that 〈γS , φ, ψS ,Π〉 is true

if and only if 〈γT , φ, ψT ,Π〉 is true, and thus that σ is SSP+1.

First, consider the case where Π = ∃ (existential instance). If 〈γS , φ, ψS ,Π〉 is true, then

there exists a state γS1 that is ψS-reachable from γS such that γS1 ` φ. By Definition 35 and

Property 1 of Definition 34, there exists a state γT1 that is ψT -reachable from γT such that

γS1 ∼ γT1 . By the definition of ∼ in Definition 35, γT1 ` φ, and thus 〈γT , φ, ψT ,Π〉 is true.

On the other hand, if 〈γT , φ, ψT ,Π〉 is true, then there exists a state γT1 that is ψT -

reachable from γT such that γT1 ` φ. By Definition 35 and Property 2 of Definition 34, there

exists a state γS1 that is ψS-reachable from γS such that γS1 ∼ γT1 . By the definition of ∼ in

Definition 35, γS1 ` φ, and thus 〈γS , φ, ψS ,Π〉 is true.

Next, consider the case where Π = ∀ (universal instance). If 〈γS , φ, ψS ,Π〉 is false, then

there exists a state γS1 that is ψS-reachable from γS such that γS1 0 φ. By Definition 35 and

Property 1 of Definition 34, there exists a state γT1 that is ψT -reachable from γT such that

γS1 ∼ γT1 . By the definition of ∼ in Definition 35, γT1 0 φ, and thus 〈γT , φ, ψT ,Π〉 is false.

237

On the other hand, if 〈γT , φ, ψT ,Π〉 is false, then there exists a state γT1 that is ψT -

reachable from γT such that γT1 0 φ. By Definition 35 and Property 2 of Definition 34, there

exists a state γS1 that is ψS-reachable from γS such that γS1 ∼ γT1 . By the definition of ∼ in

Definition 35, γS1 0 φ, and thus 〈γS , φ, ψS ,Π〉 is false.

The “only if” direction Assume a mapping is not a SMR+1, and thus there is a

violation of one of the two properties of SMR+1. We show that this leads to a compositional

security analysis instance that is not (SSP+1) preserved, and thus the mapping is not SSP+1.

Given mapping σ from S to T , assume σ is not a SMR+1. Thus, there exists γS ∈ ΓS

and ψS ∈ ΨS such that 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
violates one of the reachability requirements

over ∼. We show that σ does not preserve some compositional security analysis instance

〈γS , φ, ψS ,Π〉, and thus that it is not SSP+1.

First, consider the case where Property 1 is violated. Thus, there exists a state γS1

reachable from γS such that no state γT1 reachable from γT satisfies γS1 ∼ γT1 . Construct

φ as a long conjunction such that, for every query qS ∈ QS , φ includes qS if γS1 ` qS , and

¬qS if γS1 0 qS . It is clear that φ is true in γS1 , but since no state γT1 reachable from γT

satisfies γS1 ∼ γT1 , φ is false in all states reachable from γT . Thus, compositional security

analysis instance 〈γS , φ, ψS ,∃〉 is true but mapped compositional security analysis instance

〈γT , φ, ψT ,∃〉 is false, and therefore σ is not SSP+1.

Next, consider the case where Property 2 is violated. Thus, there exists a state γT1

reachable from γT such that no state γS1 reachable from γS satisfies γS1 ∼ γT1 . Construct

φ as a long conjunction such that, for every query qS ∈ QS , φ includes qS if γT1 ` qS , and

¬qS if γT1 0 qS . It is clear that φ is true in γT1 , but since no state γS1 reachable from γS

satisfies γS1 ∼ γT1 , φ is false in all states reachable from γS . Thus, compositional security

analysis instance 〈γS , φ, ψS , ∃〉 is false but mapped compositional security analysis instance

〈γT , φ, ψT ,∃〉 is true, and therefore σ is not SSP+1.

Theorem 24. Given two systems S and T , a mapping σ from S to T is SSP-1 if and only

if σ is a SMR-1.

Proof. The “if” direction Given SMR-1 σ from S to T and compositional security analysis

instance 〈γS , φS , ψS ,Π〉 in S, let 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
and φT = σ

(
φS
)
. We show that

238

〈γS , φS , ψS ,Π〉 is true if and only if 〈γT , φT , ψT ,Π〉 is true, and thus that σ is SSP-1.

First, consider the case where Π = ∃ (existential instance). If 〈γS , φS , ψS ,Π〉 is true, then

there exists a state γS1 that is ψS-reachable from γS such that γS1 ` φS . By Definition 36 and

Property 1 of Definition 34, there exists a state γT1 that is ψT -reachable from γT such that

γS1 ∼ γT1 . By the definition of ∼ in Definition 36, γT1 ` φT , and thus 〈γT , φT , ψT ,Π〉 is true.

On the other hand, if 〈γT , φT , ψT ,Π〉 is true, then there exists a state γT1 that is ψT -

reachable from γT such that γT1 ` φT . By Definition 36 and Property 2 of Definition 34,

there exists a state γS1 that is ψS-reachable from γS such that γS1 ∼ γT1 . By the definition of

∼ in Definition 36, γS1 ` φS , and thus 〈γS , φS , ψS ,Π〉 is true.

Next, consider the case where Π = ∀ (universal instance). If 〈γS , φS , ψS ,Π〉 is false, then

there exists a state γS1 that is ψS-reachable from γS such that γS1 0 φS . By Definition 36 and

Property 1 of Definition 34, there exists a state γT1 that is ψT -reachable from γT such that

γS1 ∼ γT1 . By the definition of ∼ in Definition 36, γT1 0 φT , and thus 〈γT , φT , ψT ,Π〉 is false.

On the other hand, if 〈γT , φT , ψT ,Π〉 is false, then there exists a state γT1 that is ψT -

reachable from γT such that γT1 0 φT . By Definition 36 and Property 2 of Definition 34,

there exists a state γS1 that is ψS-reachable from γS such that γS1 ∼ γT1 . By the definition of

∼ in Definition 36, γS1 0 φS , and thus 〈γS , φS , ψS ,Π〉 is false.

The “only if” direction Assume a mapping is not a SMR-1, and thus there is a

violation of one of the two properties of SMR-1. We show that this leads to a compositional

security analysis instance that is not (SSP-1) preserved, and thus the mapping is not SSP-1.

Given mapping σ from S to T , assume σ is not a SMR-1. Thus, there exists γS ∈ ΓS

and ψS ∈ ΨS such that 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
violates one of the reachability requirements

over ∼. We show that σ does not preserve some compositional security analysis instance

〈γS , φS , ψS ,Π〉, and thus that it is not SSP-1.

First, consider the case where Property 1 is violated. Thus, there exists a state γS1

reachable from γS such that no state γT1 reachable from γT satisfies γS1 ∼ γT1 . Construct φS

as a long conjunction such that, for every query qS ∈ QS , φS includes qS if γS1 ` qS , and

¬qS if γS1 0 qS . It is clear that φS is true in γS1 , but since no state γT1 reachable from γT

satisfies γS1 ∼ γT1 , σ
(
φS
)

is false in all states reachable from γT . Thus, compositional security

analysis instance 〈γS , φS , ψS , ∃〉 is true but mapped compositional security analysis instance

239

〈γT , σ
(
φS
)
, ψT , ∃〉 is false, and therefore σ is not SSP-1.

Next, consider the case where Property 2 is violated. Thus, there exists a state γT1

reachable from γT such that no state γS1 reachable from γS satisfies γS1 ∼ γT1 . Construct φS

as a long conjunction such that, for every query qS ∈ QS , φS includes qS if γT1 ` σ
(
qS
)
, and

¬qS if γT1 0 σ
(
qS
)
. It is clear that σ

(
φS
)

is true in γT1 , but since no state γS1 reachable from

γS satisfies γS1 ∼ γT1 , φS is false in all states reachable from γS . Thus, compositional security

analysis instance 〈γS , φS , ψS , ∃〉 is false but mapped compositional security analysis instance

〈γT , σ
(
φS
)
, ψT , ∃〉 is true, and therefore σ is not SSP-1.

Theorem 25. Given two systems S and T , a mapping σ from S to T is SSP-2 if and only

if σ is a SMR-2.

Proof. The “if” direction Given SMR-2 σ from S to T and compositional security analysis

instance 〈γS , φ, ψS ,Π〉 in S, let 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
. We show that σ is SSP-2.

First, consider the case where Π = ∃ (existential instance). If 〈γS , φ, ψS ,Π〉 is true, then

there exists a state γS1 that is ψS-reachable from γS such that γS1 ` φ. By Definition 37 and

Property 1 of Definition 34, there exists a state γT1 that is ψT -reachable from γT such that

γS1 ∼ γT1 . By the definition of ∼ in Definition 37, σ
(
φ, γT1

)
is true.

On the other hand, assume that there exists a state γT1 that is ψT -reachable from γT such

that σ
(
φ, γT1

)
is true. By Definition 37 and Property 2 of Definition 34, there exists a state

γS1 that is ψS-reachable from γS such that γS1 ∼ γT1 . By the definition of ∼ in Definition 37,

γS1 ` φ, and thus 〈γS , φ, ψS ,Π〉 is true.

Next, consider the case where Π = ∀ (universal instance). If 〈γS , φ, ψS ,Π〉 is false, then

there exists a state γS1 that is ψS-reachable from γS such that γS1 0 φ. By Definition 37 and

Property 1 of Definition 34, there exists a state γT1 that is ψT -reachable from γT such that

γS1 ∼ γT1 . By the definition of ∼ in Definition 37, σ
(
φ, γT1

)
is false.

On the other hand, assume that there exists a state γT1 that is ψT -reachable from γT such

that σ
(
φ, γT1

)
is false. By Definition 37 and Property 2 of Definition 34, there exists a state

γS1 that is ψS-reachable from γS such that γS1 ∼ γT1 . By the definition of ∼ in Definition 37,

γS1 0 φ, and thus 〈γS , φ, ψS ,Π〉 is false.

The “only if” direction Assume a mapping is not a SMR-2, and thus there is a

240

violation of one of the two properties of SMR-2. Show that this leads to a compositional

security analysis instance that is not (SSP-2) preserved, and thus the mapping is not SSP-2.

Given mapping σ from S to T , assume σ is not a SMR-2. Thus, there exists γS ∈ ΓS

and ψS ∈ ΨS such that 〈γT , ψT 〉 = σ
(
〈γS , ψS〉

)
violates one of the reachability requirements

over ∼. We show that σ does not preserve some compositional security analysis instance

〈γS , φ, ψS ,Π〉, and thus that it is not SSP-2.

First, consider the case where Property 1 is violated. Thus, there exists a state γS1

reachable from γS such that no state γT1 reachable from γT satisfies γS1 ∼ γT1 . Construct φ

as a long conjunction such that, for every query qS ∈ QS , φ includes qS if γS1 ` qS , and ¬qS

if γS1 0 qS . It is clear that φ is true in γS1 , but since no state γT1 reachable from γT satisfies

γS1 ∼ γT1 , σ
(
φ, γT1

)
is false for all states γT1 reachable from γT . Thus, compositional security

analysis instance 〈γS , φ, ψS ,∃〉 is true but ∀γT1 such that γT
∗7→ψT γ

T
1 , σ

(
φ, γT1

)
= false, and

therefore σ is not SSP-2.

Next, consider the case where Property 2 is violated. Thus, there exists a state γT1

reachable from γT such that no state γS1 reachable from γS satisfies γS1 ∼ γT1 . Construct φ as

a long conjunction such that, for every query qS ∈ QS , φ includes qS if σ
(
qS , γT1

)
is true, ¬qS

if σ
(
qS , γT1

)
is false. It is clear that σ

(
φ, γT1

)
is true, but since no state γS1 reachable from

γS satisfies γS1 ∼ γT1 , φ is false in all states reachable from γS . Thus, compositional security

analysis instance 〈γS , φ, ψS ,∃〉 is false but there exists state γT1 such that γT
∗7→ψT γ

T
1 and

σ
(
φ, γT1

)
= true, and therefore σ is not SSP-2.

9.5 OVERVIEW OF REDUCTION FINDINGS

In this section, we overview the results of our reductions as they relate to the results presented

by Tripunitara and Li [113,114].

Primarily, we show that the justification of the state-matching reduction is incomplete.

Consider the following quote from [114].

With the following theorem [(Theorem 22)], we justify [Definition 11, the definition

241

of the state-matching reduction].

What have shown is that this justification is not unique: we can just as easily use it to justify

variants of reduction, both more and less strict.

Further, consider the motivation for the approach.

Our approach is to first identify the desirable and intuitive properties one would like

simulations to have and then come up with the conditions on simulations that are both

sufficient and necessary to satisfy those properties.

It is intuitively true that preserving security analysis questions is desirable, and the proof

that the state-matching reduction satisfies that requirement in a particular way is correct.

However, the step that is missing in this approach is justifying why the state-matching

reduction satisfies the properties in the right way, i.e., why this is the best way to preserve

compositional security, given that there are many others. Similarly, the following statement

is true, but only for a particular notion of “preservation” of compositional security properties

that is specific to the state matching reduction.

We show that state-matching reductions are necessary and sufficient for preserving

compositional security properties. . .

We note that we do not seek to delegitimize the state-matching reduction or the work

of Tripunitara and Li, but merely to point out that, given the development of techniques

since the publication of [114], the arguments are incomplete, and a full argument in favor of a

particular notion of expressiveness reduction needs to take into account additional information

about its properties. That is, the preservation of security analysis questions, while clearly a

desirable property, is not precise enough to justify a form of reduction alone. In addition, we

argue that the final decision for a particular analysis on, e.g., whether we should use SMR-1

or the state-matching reduction, needs to take into account the application that the analysis

is meant to consider.

242

9.6 EXPRESSIVENESS RESULTS USING VARIANTS OF THE

STATE-MATCHING REDUCTION

In this section, we investigate the effects of perturbing reduction properties on the results of

expressiveness results. First, we consider the comparison of TAM to ATAM. TAM, the typed

access matrix, is similar to HRU (see Section 2.2) except with added state to track the type

of each subject and object, which cannot change after creation. This allows the parameters

to commands to have a specified type. ATAM, the augmented typed access matrix, extends

TAM with the capability to check for the absence of rights in addition to checking for the

presence of rights.

Work using early forms of reduction showed that TAM was as expressive as ATAM, and

hence that checking for the absence of rights was theoretically unnecessary [105]. However,

with respect to the state-matching reduction, ATAM is strictly more expressive than TAM

(i.e., there does not exist a state-matching reduciton from ATAM to TAM, but there is a

trivial state-matching reduction from TAM to ATAM) [114].

The proof of the latter relies on a counting argument. Since TAM cannot check for the

absence of rights directly, a state-matching reduction from ATAM to TAM would have to

emulate such queries using presence queries. Observe that a TAM command can enter a

bounded number of rights in cells in the matrix at once, but a state can contain an unbounded

number of objects. Thus, adding a new subject would require changing an unbounded number

of absence queries to true (one for each object), which cannot be emulated in TAM without

passing through an invalid state.

However, when considering an SMR-1 reduction, we can represent an ATAM query using

a propositional formula over TAM queries. We can achieve an SMR-1 from ATAM to TAM

by using the following general strategy.

r /∈M [s, o]→ ¬(r ∈M [s, o]) ∧ s ∈ S ∧ o ∈ O (9.1)

Theorem 26. While there does not exist a state-matching reduction from ATAM to TAM,

there exists a SMR-1 (and thus a SMR-2) from ATAM to TAM.

243

Proof. By construction. Map all ATAM states to TAM unchanged. Map all ATAM state-

change rules and queries unchanged, except modify absence checks via the rule in Eq. (9.1).

It is easy to see that individual states are equivalent under the mapping. Unchanged

queries trivially yield the same result. Queries modified via Eq. (9.1) are equivalent, and thus

also yield the same result.

It is also easy to see that individual commands are unmodified under the transformation.

Thus, any state reachable in either the ATAM or TAM system is reachable in the other in

exactly the same way. Hence the reachability requirement over the SMR-1 state equivalence

is satisfied.

Next, we consider the Assignment and Revocation (AAR) administrative model of RBAC

compared to the trust managenment system RT[∩]. Tripunitara and Li show that there

exists a state-matching reduction from AAR to RT[∩] [77, 114]. We show that there is no

corresponding SMR+1.

While RT[∩] [77, 114] is a role-based trust management system, the key to the lack of

SMR+1 is simply that RBAC and AAR use unbounded roles, RT roles are bound to their

owner. That is, roles in RT are of the form A.r, which represents the role r belonging to

principle A.

Theorem 27. While there exists a state-matching reduction from AAR to RT[∩], there does

not exist a SMR+1 from AAR to RT[∩].

Proof. Assume there exists a SMR+1 from AAR to RT[∩].

Consider an AAR state γA where 〈u, r〉 ∈ UA. Note that γA ` r w u. If there exists

a SMR+1 from AAR to RT[∩], then there must be an RT[∩] state γR such that γA ∼ γR.

However, RT[∩] is not capable of including unbound role r in its state, and therefore cannot

answer true to r w u.

Thus, by contridiction, there does not exist a SMR+1 from AAR to RT[∩].

We note that this is not an issue for a state-matching reduction, which can map the AAR

query r w u to RT[∩] query Sys.r w u. However, a SMR+1 enforces QPf, which requires the

query mapping to be the identity. Thus, role r cannot be mapped to A.r for any principle A.

244

Finally, we consider a comparison between SDCO and Graham-Denning, two discretionary

access control systems. While SDCO defines the distinguished right own, Graham-Denning

also defines the control right that can only be held over other subjects. A full comparison of

these systems is available in [76].

Tripunitara and Li state without proof that there is a state-matching reduction from

SDCO to Graham-Denning. However, we show that there is no corresponding SMR+1 due

to the additional distinguished right in the latter.

Theorem 28. While there exists a state-matching reduction from SDCO to Graham-Denning,

there does not exist a SMR+1 from SDCO to Graham-Denning.

Proof. Consider the SDCO system with state γS where S = {s1}, O = {o1}, M [s1, o1] = own,

and R = {own, read, control}.

Assume there exists a SMR+1 reduction from SDCO to Graham-Denning. Thus, there

exists a Graham-Denning system that is SMR+1-equivalent to γS . Call this state γG.

It must be true than γG ` qi for each qi among o1 ∈ O, s1 ∈ S, and own ∈M [s1, o1].

Consider γS1 , reachable from γS by executing grant control(s1, s1, o1). Hence γS1 `
control ∈M [s1, o1]. By the definition of SMR+1, there must exist a Graham-Denning state

γG1 reachable from γG such that γG1 ` control ∈ M [s1, o1]. However, by the definition of

Graham-Denning, control can only be held over other subjects, and o1 is not a subject. Thus,

there is no state that is reachable from γG and equivalent to γS1 , since γS1 ` control ∈M [s1,

o1] ∧ o1 /∈ S, which cannot both be true in Graham-Denning.

We note that, unlike in the state-matching reduction, SMR+1 enforces QPf, and thus

effectively requires the query mapping to be the identity. This prevents, e.g., using escaping

of the distinguished right control.

Thus, given the above contradiction, there does not exist a SMR+1 reduction from SDCO

to Graham-Denning.

245

9.7 SUMMARY AND DISCUSSION OF RESULTS

The results discussed in Section 9.6 reveal several key results from [113,114] that are invalidated

when considering a varied notion of reduction. While Tripunitara and Li conclude that TAM

cannot simulate ATAM while preserving compositional security properties, we show that it

can when mapping compositional security analysis instances in a different way, corresponding

to a more relaxed notion of reduction. Futher, while RT[∩] admits a state-matching reduction

of AAR, and Graham-Denning admits a state-matching reduction of SDCO, we show that

neither is possible in the stricter sense of SMR+1.

These results demonstrate the fragility of relying solely on preservation of security

questions when consider a notion of expressiveness reduction. In Section 9.4, we showed that

each of SMR-2, SMR-1, and SMR+1 is necessary and sufficient for its own corresponding

method of preservation for compositional security analysis instances. Thus, if such a property

is sufficient justification for a notion of reduction as it has been viewed in prior work [114],

each of these reductions is equally valid. However, we then went on to show in Section 9.6 that

many results drawn from the state-matching reduction are invalid in these other reductions,

including both existence and non-existence results. We therefore argue that justifying a

notion of reduction via preservation of security analysis questions alone is insufficient.

We now discuss the dimensions of reduction properties as presented in Chapter 8 that

seem to be the most impactful in determining whether a reduction in question exists.

Reachability (R) appears to be an extremely important dimension. Bireachability (R↔)

seems to be the biggest factor in differentiating reductions such as the SMR from older,

so-called “implementation paradigm” reductions that have been shown to be too relaxed

to draw useful separations between systems. When considering applications whose access

control systems are sandbox-style TCBs with very limited, verified APIs, it may be sufficient

to consider forward reachability only, since it can be guaranteed that the simulating system’s

native commands cannot be used to manipulate the policy state. However, we postulate

that, in most cases, access control expressiveness analyses moving forward should consider

bireachability to be required, lest they fall into the implementation paradigm that has been

heavily criticized for not being strict enough to enforce strong enough guarantees.

246

Query dependence (QD) is the next most impactful indicator of expressiveness results,

and the biggest factor among our case studies. Query decider dependence separates the

state-matching reduction from the SMR-1 and SMR-2; we invalidated an influential several

state-matching reduction result simply by weakening the state-independence of the query

decider. With a state-dependent query decider, any aspect of the simulating system’s

data structures may be used to answer the simulated system’s queries. Depending on the

application, this can enable various undesirable reductions, including extreme examples

such as “encode the simulated system as a single string and store it as a user’s name in

the simulating system” (this particular type of undesirable reduction can be avoided by

requiring homomorphism, Definition 27). While authorization preservation (QPa) can prevent

such extreme abuses by requiring that authorization requests be mapped directly, it seems

appropriate to at least enforce query decider independence (QDi) as in SMR-1 to ensure that

the simulated queries are answered using queriable information from the simulating state.

Command dependence stuttering (CS) is an additional dimension of impactful reduction

properties. Although it is not highlighted in our case study, we reference previous work by

Chander et al. [21] that shows several separations made by constant vs. lock-step stuttering

(CSc vs. CS1). The ability to execute multiple simulating commands in the mapping of a single

simulated command is thus shown to be a powerful ability, and has practical implications for

scenarios such as multi-user systems and data structure locking (see, e.g., the cost analysis in

the case study presented in Chapter 6).

In future work, we aim to conduct a deeper case study investigating the effects of altering

additional reduction properties on established expressiveness results. Of particular interest

is investigating other points in the reduction properties lattice at which TAM can/cannot

simulate ATAM. Comparing the relative expressiveness of DAC and RBAC systems (e.g.,

SDCO vs. ARBAC97) using various notions of reduction may also be enlightening, since it

has similarly seen results on both sides of the spectrum in prior work.

Our main conclusion of this chapter is the advantage offered by the lattice of properties

presented in Chapter 8 when selecting a notion of reduction for an analysis. The previous

state of the art—preservation of security analysis questions—is shown here to be far too

imprecise to use alone. As we express in our thesis statement, impactful analysis of access

247

control needs to take into account the environment in which the access control system will

be expected to operate, and in this chapter we showed that this is true when considering

which notion of access control reduction to use in an expressiveness evaluation (either in the

context of suitability analysis or even in ordinary expressiveness analysis).

248

10.0 CONCLUSIONS

Access control has long been considered one of the most central components of computer

security. As such, much work has been done on both proposing new access control systems

and developing techniques for the formal study of access control systems. The primary focus

of the latter up to now has been evaluating the relative expressiveness of different access

control systems. Expressiveness measures the raw capabilities of a system, including both

static properties (what policies can be represented) and dynamic properties (how the policy

can or cannot be transformed over time).

There is no question that access control will continue to be an essential component

of computer security, nor that expressiveness analysis will continue to be an important

method for evaluating access control systems. That said, this dissertation has shown that

considering expressiveness alone, isolated from the usage requirements of the application,

is vastly insufficient for a complete analysis of how suitable an access control system is

for satisfying a particular workload. We thus proposed techniques for suitability analysis.

Suitability analysis is more precise due to its consideration of the desired usage scenario, but

also more expansive in that it includes costs in addition to raw capabilities.

10.1 CONTRIBUTIONS

This dissertation explored access control analyses whose end goals include deploying systems

within concrete applications. As such, the techniques developed therein took into account

the demands of those applications. Considering formal analysis from this perspective has

allowed us to make a range of novel contributions.

249

In Chapter 3, we justified the need for the application-aware analysis techniques that would

go on to inspire suitability analysis. We presented the first discussion of the shortcomings of

application-agnostic access control evaluation, namely relative expressiveness. We proposed

the novel concept of access control workload, a structure for capturing the access control

demands of an application, to evaluate against. We motivated access control analysis that

considers costs in addition to capabilities alone. We then discussed the general workflow of

application-aware access control analysis.

In Chapter 4, we took these motivations a step farther and developed the mathematical

underpinnings of suitability analysis, and in doing so proved that this conceptually new

type of analysis was feasible. We formalized the suitability analysis problem and articulated

a set of requirements for solving it. We developed the first two-phase suitability analysis

framework, including an algorithm for conducting cost analysis. We then evaluated the

framework formally by proving that it satisfied the stated requirements, and practically by

providing a full analysis of a realistic case study.

In Chapter 5, we made even more concrete the claims that access control cost analysis

was achievable by presenting Portuno, a Java-based simulation engine for conducting the cost

analysis phase of suitability analysis. We described the methods for generating traces of

representative workload usage, and discussed how they could be represented within Portuno.

We showed how our simulation framework could accommodate the wide range of costs

measures that were motivated in earlier chapters. Finally, we presented drivers for our general

cost analysis algorithm from the preceeding chapter, allowing analysts to use that procedure

to conduct Monte Carlo analysis to detect trends, or confidence-bounding simulation to target

a specific expected cost within a desired confidence. We then demonstrated the applicability

of Portuno by showing the details of how we represented the previous case study within the

simulation engine to achieve the previously-discussed results.

In Chapter 6, we showed that suitability analysis can enable separations between access

control systems and solve open questions that were not possible with prior work alone. We

answered an open problem by showing cases in which group-centric information sharing

workloads can be simulated by dissemination-centric access control systems, as well as cases

in which dissemination-centric systems lack the expressiveness to satisfy the usage scenarios

250

described by this new paradigm. We then showed that, even in cases where dissemination-

centric systems are capable of satisfying these workloads, they incur very large overhead in

doing so.

In Chapter 7, we demonstrated the wide reach and large potential impact of suitability

analysis by utilizing it toward analyzing a scenario outside of classic access control evaluation.

We developed cryptographic constructions for satisfying the demands of an an application

utilizing untrusted cloud storage provider. We then used two-phase suitability analysis to

prove that these constructions are capable of enforcing the desired policies, but that in

dynamic scenarios, are wildly inefficient in doing so. These findings provide a number of

insights into areas of future research directions that could lead to better support for dynamic

cryptographic access controls.

In Chapter 8, we deepened the existing view of expressiveness analysis by decomposing

the various notions of expressiveness reduction into a lattice of reduction properties that can

be enforced atop a minimal definition of mapping. This allowed for the consideration of a

wide range of possible expressiveness metrics, in contrast to the ad hoc proposal of reduction

techniques in prior work. We then decomposed the most influential notions of expressiveness

reduction from the literature into their component properties, formally proving each one’s

position within our lattice of properties and allowing many to be formally compared for the

first time.

Finally, in Chapter 9, we proved that the lattice of reduction properties is a better tool

for choosing a type of reduction for an analysis than the previous state of the art. We

noted that, previously, notions of reduction were justified either in a completely ad hoc

manner, or through their preservation of security analysis questions. We then considered

the state-matching reduction, a recent type of expressiveness reduction that has all but

superceded prior notions due to its preservation of a very expressive analysis question. We

presented several alternative notions of reduction, and proved using the same techniques that

each also preserves this form of analysis question. We thus showed that our properties lattice

for reductions is more fine-grained than considering analysis questions. Further, we then

showed that these alternative reductions led to very different expressiveness results, proving

that these separations are meaningful.

251

Recall that our goal in this dissertation was to support the following hypothesis.

We can develop techniques to evaluate access control systems against the specific

demands of the intended usage while considering a wide range of both expressiveness

and ordered cost metrics.

The contributions of Chapter 3 justified why this type of analysis is necessary. Chapter 4

proved that the desired application-aware analysis question could be formalized with precision,

and that developing the general framework for solving it was achievable. The contributions of

Chapter 5 showed that scalable software tools for the cost analysis component of the analysis

framework could be concretely developed, and Chapter 6 showed that it could be utilized

in a large-scale analysis that solved open questions that were impossible to answer with

previous techniques. We showed the framework’s applicability to a wider class of problems

in Chapter 7. We enabled a much wider range of expressiveness metrics in Chapter 8, and

showed that this wider range contributed in a real way in Chapter 9.

10.2 FUTURE WORK

While we consider the concept of suitability analysis to be relatively mature at this point,

there are several areas of future work that we will continue to explore. First, we note that

there is much space left to explore within the lattice of reduction properties. We would like

to continue to explore the guarantees offered by reductions of various strengths, especially in

the areas of the reduction lattice that have seen little attention. Further, we will continue

investigating case studies in the style of Section 9.6, determining what reduction properties

cause an established result to be invalidated. This will enable not only more informed

suitability analysis, but also a deeper understanding of foundational expressiveness questions

surrounding why a reduction does or does not exist.

Another exciting area of future work is the continued application of the general suitability

analysis workflow toward other problems in security. We have shown its use in cryptographic

enforcement of untrusted cloud storage protections, and continue to investigate its use in an-

252

alyzing alternative web security solutions. Web security is built on public key infrastructures

(PKIs) in which trusted certification authorities (CAs) provide certificates authorizing web

services to assert a DNS name. This infrastructure, while typically thought of as an authenti-

cation system, can be modeled as an access control system that authorizes cryptographic

keys held by web services to be bound to certain DNS names. Recently, there have been high

profile compromises of CAs in the web PKI domain [8,25]. These failures have made clear the

fragility of the trust model and revocation mechanisms in the web space, and have inspired

the community to examine methods both for reinforcing the system’s mechanisms to prevent

fraudulent certificate issuances and improving the robustness of the revocation infrastructure.

However, there is considerable debate in the community regarding what the appropriate

metrics for judging replacement systems should be, and how the different proposals compare

under realistic conditions.

We believe that problems such as these can be represented as suitability analysis problems.

For example, web services and their certificates can be represented within the operational

component of a workload. This workload’s commands could represent such operations as

issuing and revoking certificates, and its queries could formalize, for example, a web user

verifying the identity of a server. Candidate systems, then, could be constructed to describe

how each of these actions would be implemented in various proposed replacement architectures.

The required type of implementation would need to enforce, e.g., that identities are not

accepted without a certificate, and certificates are only be issued to the correct owner. The

costs of individual actions could then be combined with an invocational workload component

that describes the workflow of the typical web deployment, yielding a cost for each system.

Finally, we recognize the many components of the suitability analysis workflow that

require manual specification and proof. Systems must be manually specified, workloads must

be constructed, implementations built and formally proven, and Portuno data structures

encoded. Some of these can be improved through the development of “libraries” of common

access control systems (software and mathematical). For other tasks, we would like to consider

whether it is possible to develop automated tools, at least for certain subproblems (e.g.,

determining that a particular reduction does not exist).

253

APPENDIX A

INFEASIBLE REDUCTION

Here, we describe the infeasible reduction from RBAC1 to RBAC0 mentioned in Section 6.4.3.

The full reduction and proof are provided in the companion technical report [47].

In this reduction, we must store UR1, PA1, and RH1 from RBAC1 in only UR0 and PA0

in RBAC0. We accomplish this using the following homomorphic encoding. For each 〈u,
r〉 ∈ UR1, we generate two new constants a and b and store in UR0 each of {〈a, b〉, 〈u, a〉, 〈r, b〉}.
For each 〈r, p〉 ∈ PA1, we generate two new constants c and d and store in PA0 each of

{〈c, d〉, 〈c, r〉, 〈d, p〉}. Lastly, for each 〈s, j〉 ∈ RH1, we generate three new constants e, f , and

g and store in PA0 each of {〈e, f〉, 〈f, g〉, 〈e, s〉, 〈g, j〉}.
Under this (partial) encoding, the second element of each tuple in UR0 and the first

element of each tuple in PA0 are generated (information-less) constants. Since constants

are generated to avoid collisions, there is no join over UR0 and PA0, which would violate

AC-preservation. Finally, we add to the encoding the set of authorized requests, to fully

satisfy AC-preservation. For each request 〈u, p〉 which is authorized (i.e., for each 〈u, p〉 such

that ∃s, j : 〈u, s〉 ∈ UR1 ∧ 〈j, p〉 ∈ PA1 ∧ 〈s, j〉 ∈ RH1), we generate a new constant h and

store 〈u, h〉 in UR0 and 〈h, p〉 in PA0.

The reduction answers queries (besides authorization requests) by extracting the relevent

parts of UR1, PA1, and RH1. Generated constants are identified by their positions in tuples.

UR1 tuples can be extracted from UR0 by finding sets of three tuples which match the 〈a, b〉,
〈u, a〉, 〈r, b〉 pattern. Tuples from PA1 and RH1 can be extracted from PA0 similarly.

Finally, the reduction must update the encoding after each command. For example, if

254

user u is assigned role r, 〈u, r〉 is encoded and stored in UR0, then each permission pi which

u gains must be determined and encoded in UR0 and PA0 to satisfy AC-preservation.

255

APPENDIX B

DECOMPOSITION PROOFS

B.1 TL STATE-MATCHING REDUCTION

For the purposes of this proof, let the set of simulation properties P = {SCq,QD1,R↔}.

Lemma 29. Given access control systems S, T , and U ,

T emu
TL−SMR

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits a state-matching reduction of S, and S admits a simulation of U with

properties {SCq,QD1,R↔}, then T admits a simulation of U with properties {SCq,QD1,R↔}.

Proof. Let S, T , and U be arbitrary access control systems such that T emu
TL−SMR

S and

S emu
P
U . To prove Lemma 29, we must then show that T emu

P
U .

Since S emu
P
U , by QD1,

∃σQD1 : QU → QS .(σQ
(
qU , γS

)
≡ γS ` σQD1

(
qU
)
)

Since T emu
TL−SMR

S, the state-matching reduction provides a mapping from QS to QT .

Call this mapping σSMR.

Thus, let σ′ : QU → QT = σSMR · σQD1, and say σQ
(
qU , γT

)
≡ γT ` σ′

(
qU
)
). This forms

a query decider that satisfies QD1.

256

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU , and let next
(
γU0 , ψ

U) = γU1 .

Let γS0 ∈ ΓS such that γU0
q∼ γS0 . Since S emu

P
U ,

∃γS1 ∈ ΓS .(terminal
(
γS0 , σΨ

(
ψU , γS0

))
= γS1 ∧ γU1

q∼ γS1)

Let γT0 ∈ ΓT such that γS0
q∼ γT0 . Since T emu

TL−SMR
S,

∃γT1 ∈ ΓT .(γT0
∗7→ γT1 ∧ γS1

q∼ γT1)

Thus, there exists a sequence of T commands ΨT0 such that terminal
(
γT0 ,Ψ

T
0

)
= γT1 . Define

σΨ : ΨU × ΓT →
(
ΨT
)∗

such that it returns ΨT0 for γT0 , ψ
U . This is formed by concatenating

a sequence of sequences of commands: for each command ψSi that S needs to execute to

simulate ψU , concatenate the commands that T needs to execute to simulate ψSi .

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that next

(
γU0 , ψ

U) = γU1 , and γU0
q∼ γT0 ,

∃γT1 ∈ ΓT .(terminal
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

q∼ γT1)

Hence, T emu
{SCq,QD1,R→}

U . Next we show R↔.

Choose some arbitrary states γT0 , γ
T
1 ∈ ΓT such that γT0 7→ γT1 . Let γS0 ∈ ΓS such that

γS0
q∼ γT0 . Since T emu

TL−SMR
S,

∃γS1 .(γS0
∗7→ γS1 ∧ γS1

q∼ γT1)

Let γU0 ∈ ΓU such that γU0
q∼ γS0 . Since S emu

P
U ,

∃γU1 .(γU0
∗7→ γU1 ∧ γU1

q∼ γS1)

Thus, given γT0 , γ
T
1 ∈ ΓT , γU0 ∈ ΓU such that γT0 7→ γT1 and γU0

q∼ γT0 ,

∃γU1 ∈ ΓU .(γU0
∗7→ γU1 ∧ γU1

q∼ γT1)

Hence, T emu
P
U .

Lemma 30. Given access control systems S and T and simulation properties P =

{SCq,QD1,R↔}, S ≤P T ⇒ T emu
TL−SMR

S. That is, if T is at least as expressive as S
with respect to properties P, then T admits a state-matching reduction of S.

257

Proof. Let S and T be arbitrary access control systems such that S ≤P T . Since S ≤P T ,

for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

By QD1, ∃σ′ : QS → QT .(σQ
(
qS , γT

)
≡ γT ` σ′

(
qS
)
) Thus, σ′ satisfies the format of the

TL-SMR query mapping (i.e., σQ : QS → QT).

Then, given γS0 , γ
S
1 ∈ ΓS , γT0 ∈ ΓT , by R→, if γS0

q∼ γT0 and γS0 7→ γS1 , then

∃γT1 .(γT0
∗7→ γT1 ∧ γS1

q∼ γT1)

Since SCq satisfies the TL-SMR definition of state correspondence, this means we have

satisfied the first property of the state-matching reduction.

1. For every state γS1 in system S such that γS0
∗7→ γS1 , there exists a state γT1 such that

γT0
∗7→ γT1 and γS1 and γT1 are equivalent under σ.

And by bidirectional reachability, given γS0 ∈ ΓS , γT0 , γ
T
1 ∈ ΓT , if γS0

q∼ γT0 and γT0 7→ γT1 ,

then

∃γS1 .(γS0
∗7→ γS1 ∧ γS1

q∼ γT1)

And therefore, we have satisfied the second property of the state-matching reduction:

2. For every state γT1 in system T such that γT0
∗7→ γT1 , there exists a state γS1 such that

γS0
∗7→ γS1 and γT1 and γS1 are equivalent under σ.

These properties satisfy the definition for a state-matching reduction, and hence T admits

a state-matching reduction of S (T emu
TL−SMR

S).

Theorem 31. TL-SMR =̈ {SCq,QD1,R↔}; that is, the TL state-matching reduction decom-

poses to query correspondence; independent, unitary-range query; and bidirectional reachabil-

ity.

Proof. By Lemma 29, if T emu
TL−SMR

S, then S ≤P T . By Lemma 30, if S ≤P T , then

T emu
TL−SMR

S. Thus, S ≤P T if and only if T emu
TL−SMR

S, and thus the state-matching

reduction decomposes to {SCq,QD1,R↔}.

258

B.2 HMG+ PARAMETERIZED EXPRESSIVENESS SIMULATION

For the purposes of this proof, let the set of simulation properties P = {SCq,QDt,R→}.

Lemma 32. Given access control systems S, T , and U ,

T emu
HMG+

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits an HMG+ simulation of S, and S admits a simulation of U with properties

{SCq,QDt,R→}, then T admits a simulation of U with properties {SCq,QDt,R→}.

Proof. Let S, T , and U be arbitrary access control systems such that T emu
HMG+

S and S emu
P
U .

To prove Lemma 32, we must then show that T emu
P
U .

Since S emu
P
U , by QDt,

∃σ′ : QU × Th(S)→ {true, false}.σQ(q, γ) ≡ σ′(q,Th(γ))

Since T emu
HMG+

S, the HMG+ simulation contains the mapping π : QS × Th(T) →
{true, false}.

Thus, let σ′′ : QU × Th(T) → {true, false} be constructed as follows. Use σ′ :

QU × Th(S), and for each query q in Th(S) that is needed by σ′, consult π : QS × Th(T) to

obtain a truth value in the current T state. This forms a query decider that satisfies QDt.

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU , and let next
(
γU0 , ψ

U) = γU1 .

Let γS0 ∈ ΓS such that γU0
q∼ γS0 . Since S emu

P
U ,

∃γS1 ∈ ΓS .(terminal
(
γS0 , σΨ

(
ψU , γS0

))
= γS1 ∧ γU1

q∼ γS1)

Let γT0 ∈ ΓT such that γS0
q∼ γT0 . Since T emu

HMG+
S, we can map each command of the se-

quence σΨ

(
ψU , γS0

)
to a sequence of T commands using the HMG+ simulation. Concatenating

this sequence of sequences to a single sequence ΨT0 , and using HMG+ correctness:

∃γT1 ∈ ΓT .(terminal
(
γT0 ,Ψ

T
0

)
= γT1 ∧ γS1

q∼ γT1)

Define σΨ : ΨU × ΓT →
(
ΨT
)∗

such that it returns ΨT0 for γT0 , ψ
U .

259

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that next

(
γU0 , ψ

U) = γU1 , and γU0
q∼ γT0 ,

∃γT1 ∈ ΓT .(terminal
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

q∼ γT1)

Hence, T emu
{SCq,QDt,R→}

U .

Lemma 33. Given access control systems S and T and simulation properties P =

{SCq,QDt,R→}, S ≤P T ⇒ T emu
HMG+

S. That is, if T is at least as expressive as S
with respect to properties P, then T admits an HMG+ simulation of S.

Proof. Let S and T be arbitrary access control systems such that S ≤P T . Since S ≤P T ,

for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

By QDt,

∃σ′ : QS × Th(T)→ {true, false}.σQ
(
qS , γT

)
≡ σ′

(
qS ,Th(γT)

)

Thus, σ′ satisfies the format of the HMG+ query mapping (i.e., π : QS × Th(T) →
{true, false}), and by SCq, the state mapping preserves the query mapping, property

(i) for the HMG+ correct simulation.

Let γS0 ∈ ΓS , ψ ∈ ΨS be an arbitrary state and command in S, and γT0 ∈ ΓT a state in T
such that σΓ

(
γS0
)

= γT0 . Then, if next
(
γS0 , ψ

S) = γS1 ,

∃γT1 .(terminal
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

q∼ γT1)

Thus, the command mapping preserves the state mapping, property (ii) for the HMG+

correct simulation.

These properties satisfy the definition for HMG+ correct simulation, and hence T admits

an HMG+ simulation of S (T emu
HMG+

S).

Theorem 34. HMG+ =̈ {SCq,QDt,R→}; that is, the HMG+ parameterized expressiveness

simulation (correctness only) decomposes to query correspondence, theory-dependent query,

and forward reachability.

Proof. By Lemma 32, if T emu
HMG+

S, then S ≤P T . By Lemma 33, if S ≤P T , then T emu
HMG+

S.

Thus, S ≤P T if and only if T emu
HMG+

S, and thus the HMG+ simulation decomposes to

{SCq,QDt,R→}.

260

B.3 AC-PRESERVING HMG+ PARAMETERIZED EXPRESSIVENESS

For the purposes of this proof, let the set of simulation properties P = {SCq,QDt,R→,QPa}.

Lemma 35. Given access control systems S, T , and U ,

T emu
HMG+a

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits an HMG+ simulation with AC-preservation of S, and S admits a

simulation of U with properties {SCq,QDt,R→,QPa}, then T admits a simulation of U with

properties {SCq,QDt,R→,QPa}.

Proof. The proof of Lemma 32 proves all properties besides QPa with no change. Thus, we

now show QPa.

Choose an arbitrary request r ∈ RU and states γS ∈ ΓS , γT ∈ ΓT . Since S emu
P
U ,

σQ
(
r, γS

)
≡ γS ` r

Since T emu
HMG+a

S,

∀rS ∈ RS : σQ
(
rS , γT

)
≡ γT ` rS

Since S emu
P
U , by SCq, r ∈ RS . Thus,

σQ
(
r, γT

)
≡ γT ` r

Hence, T emu
{SCq,QDt,R→,QPa}

U .

Lemma 36. Given access control systems S and T and simulation properties P =

{SCq,QDt,R→,QPa}, S ≤P T ⇒ T emu
HMG+a

S. That is, if T is at least as expressive

as S with respect to properties P, then T admits an HMG+ simulation with AC-preservation

of S.

261

Proof. Let S and T be arbitrary access control systems such that S ≤P T . Since S ≤P T ,

for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

The proof of Lemma 33 proves all properties besides AC-preservation. By QPa,

∀rS ∈ RS : σQ
(
rS , γT

)
≡ γT ` rS

This satisfies the definition of AC-preservation, and hence T admits an HMG+ simulation

with AC-preservation of S (T emu
HMG+a

S).

Theorem 37. HMG+a =̈ {SCq,QDt,R→,QPa}; that is, HMG+ parameterized expressive-

ness with AC-preservation decomposes to query correspondence, theory-dependent query,

forward reachability, and authorization preservation.

Proof. By Lemma 35, if T emu
HMG+a

S, then S ≤P T . By Lemma 36, if S ≤P T , then

T emu
HMG+a

S. Thus, S ≤P T if and only if T emu
HMG+a

S, and thus the HMG+ simulation with

AC-preservation decomposes to {SCq,QDt,R→,QPa}.

B.4 MONOTONIC HMG+ PARAMETERIZED EXPRESSIVENESS

For the purposes of this proof, let the set of simulation properties P = {SCq,QDt,R→,CTa}.

Lemma 38. Given access control systems S, T , and U ,

T emu
HMG+s

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits a monotonic HMG+ simulation of S, and S admits a simulation of

U with properties {SCq,QDt,R→,CTa}, then T admits a simulation of U with properties

{SCq,QDt,R→,CTa}.

Proof. The proof of Lemma 32 proves all properties besides CTa with no change. Thus, we

now show CTa.

Choose an arbitrary command ψU ∈ ΨU and state γS0 ∈ ΓS . Let:

262

• 〈ψS1 , . . . , ψSn 〉 = σΨ

(
ψU , γS0

)

• γSi = terminal
(
γS0 , ψ

S
1 ◦ · · · ◦ ψSi

)

Since S emu
P
U , by CTa, this sequence of states γSi is monotonic.

Furthermore, let:

• γT0,0 = σΓ

(
γS0
)

• 〈ψTi,1, . . . , ψTi,m〉 = σΨ

(
ψSi , γ

T
i−1,0

)

• γTi,0 = terminal
(
γTi−1,0, ψ

T
i,1 ◦ · · · ◦ ψTi,m

)

• γTi,j = terminal
(
γTi,0, ψ

T
i+1,1 ◦ · · · ◦ ψTi+1,j

)

Put simply, ψU is simulated in T by the following sequence of commands:

ψT1,1, . . . , ψ
T
1,m, ψ

T
2,1, . . . , ψ

T
n,m

thus passing through the following trace of states:

γT0,0, . . . , γ
T
0,m−1, γ

T
1,0, . . . , γ

T
n−1,m−1, γ

T
n,0

Since T emu
HMG+s

S, each subsequence γTi,0, . . . , γ
T
i+1,0 is monotonic.

Since S emu
P
U , by CTa and SCq, the full sequence must also be monotonic.

Hence, T emu
{SCq,QDt,R→,CTa}

U .

Lemma 39. Given access control systems S and T and simulation properties P =

{SCq,QDt,R→,CTa}, S ≤P T ⇒ T emu
HMG+s

S. That is, if T is at least as expressive

as S with respect to properties P, then T admits a monotonic HMG+ simulation of S.

Proof. Let S and T be arbitrary access control systems such that S ≤P T . Since S ≤P T ,

for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

The proof of Lemma 33 proves all properties besides monotonicity. Since CTa satisfies

the definition of monotonicity, we thus have that T admits a monotonic HMG+ simulation

of S (T emu
HMG+s

S).

263

Theorem 40. HMG+s =̈ {SCq,QDt,R→,CTa}; that is, HMG+ parameterized expressive-

ness with monotonicity decomposes to query correspondence, theory-dependent query, forward

reachability, and access monotonicity.

Proof. By Lemma 38, if T emu
HMG+s

S, then S ≤P T . By Lemma 39, if S ≤P T , then

T emu
HMG+s

S. Thus, S ≤P T if and only if T emu
HMG+s

S, and thus the monotonic HMG+

simulation decomposes to {SCq,QDt,R→,CTa}.

B.5 ADMIN-PRESERVING HMG+ PARAMETERIZED

EXPRESSIVENESS

For the purposes of this proof, let the set of simulation properties P = {SCq,QDt,R→,CAa}.

Lemma 41. Given access control systems S, T , and U ,

T emu
HMG+p

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits an admin-preserving HMG+ simulation of S, and S admits a simulation

of U with properties {SCq,QDt,R→,CAa}, then T admits a simulation of U with properties

{SCq,QDt,R→,CAa}.

Proof. The proof of Lemma 32 proves all properties besides CAa with no change. Thus, we

now show CAa.

Consider arbitrary command ψU ∈ ΨU and state γS ∈ ΓS . Since S emu
P
U , by CAa,

∀ψS ∈ σΨ

(
ψU , γS

)
, α
(
ψS
)
∈ A⇒ α

(
ψU
)
∈ A

Consider state γT ∈ ΓT . Since T emu
HMG+p

S, by admin-preservation,

∀ψT ∈ σΨ

(
ψS , γT

)
, α
(
ψT
)
∈ A⇒ α

(
ψS
)
∈ A

Thus,

∀ψT ∈ σΨ

(
ψU , γT

)
, α
(
ψT
)
∈ A⇒ α

(
ψU
)
∈ A

Hence, T emu
{SCq,QDt,R→,CAa}

U .

264

Lemma 42. Given access control systems S and T and simulation properties P =

{SCq,QDt,R→,CAa}, S ≤P T ⇒ T emu
HMG+p

S. That is, if T is at least as expressive

as S with respect to properties P, then T admits an admin-preserving HMG+ simulation of

S.

Proof. Let S and T be arbitrary access control systems such that S ≤P T . Since S ≤P T ,

for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

The proof of Lemma 33 proves all properties besides admin-preservation. Since CAa

satisfies the definition of admin-preservation, we thus have that T admits an admin-preserving

HMG+ simulation of S (T emu
HMG+p

S).

Theorem 43. HMG+p =̈ {SCq,QDt,R→,CAa}; that is, HMG+ parameterized expressive-

ness with admin-preservation decomposes to query correspondence, theory-dependent query,

forward reachability, and administration preservation.

Proof. By Lemma 41, if T emu
HMG+p

S, then S ≤P T . By Lemma 42, if S ≤P T , then

T emu
HMG+p

S. Thus, S ≤P T if and only if T emu
HMG+p

S, and thus the admin-preserving HMG+

simulation decomposes to {SCq,QDt,R→,CAa}.

B.6 SMG SIMULATION

For the purposes of this proof, let the set of simulation properties P = {SCa,R→}.

Lemma 44. Given access control systems S, T , and U ,

T emu
SMG

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits an SMG simulation of S, and S admits a simulation of U with properties

{SCa,R→}, then T admits a simulation of U with properties {SCa,R→}.

265

Proof. Let S, T , and U be arbitrary access control systems such that T emu
SMG

S and S emu
P
U .

To prove Lemma 44, we must then show that T emu
P
U .

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU , and let next
(
γU0 , ψ

U) = γU1 .

Let γS0 ∈ ΓS such that γU0
a∼ γS0 . Since S emu

P
U ,

∃γS1 ∈ ΓS .(terminal
(
γS0 , σΨ

(
ψU , γS0

))
= γS1 ∧ γU1

a∼ γS1)

Let γT0 ∈ ΓT such that γS0
a∼ γT0 . Since T emu

SMG
S, request r can be granted in S if and

only if σ(r) can be granted in T . More concretely,

∃γT1 ∈ ΓT .(γT0
∗7→ γT1 ∧ γS1

a∼ γT1)

Thus, there exists a sequence of T commands ΨT0 such that terminal
(
γT0 ,Ψ

T
0

)
= γT1 . Define

σΨ : ΨU × ΓT →
(
ΨT
)∗

such that it returns ΨT0 for γT0 , ψ
U . This is formed by concatenating

a sequence of sequences of commands: for each command ψSi that S needs to execute to

simulate ψU , concatenate the commands that T needs to execute to simulate ψSi .

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that next

(
γU0 , ψ

U) = γU1 , and γU0
a∼ γT0 ,

∃γT1 ∈ ΓT .(terminal
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

a∼ γT1)

Hence, T emu
{SCa,R→}

U .

Lemma 45. Given access control systems S and T and simulation properties P = {SCa,R→},
S ≤P T ⇒ T emu

SMG
S. That is, if T is at least as expressive as S with respect to properties

P, then T admits an SMG simulation of S.

Proof. Let S and T be arbitrary access control systems such that S ≤P T . Since S ≤P T ,

for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

By SCa and QPa, request r can be granted in S if and only if σ(r) can be granted in T .

This satisfies the definition of the SMG simulation, and hence T admits an SMG simulation

of S (T emu
SMG

S).

Theorem 46. SMG =̈ {SCa,R→}; that is, the SMG simulation decomposes to authorization

correspondence and forward reachability.

266

Proof. By Lemma 44, if T emu
SMG

S, then S ≤P T . By Lemma 45, if S ≤P T , then T emu
SMG

S.

Thus, S ≤P T if and only if T emu
SMG

S, and thus the SMG simulation decomposes to

{SCa,R→}.

B.7 GANTA SIMULATION

For the purposes of this proof, let the set of simulation properties P = {SCa,QPa,CTs,R↔}.

Lemma 47. Given access control systems S, T , and U ,

T emu
Ganta

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits a Ganta simulation of S, and S admits a simulation of U with properties

{SCa,QPa,CTs,R↔}, then T admits a simulation of U with properties {SCa,QPa,CTs,R↔}.

Proof. Let S, T , and U be arbitrary access control systems such that T emu
Ganta

S and S emu
P
U .

To prove Lemma 47, we must then show that T emu
P
U .

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU , and let next
(
γU0 , ψ

U) = γU1 .

Let γS0 ∈ ΓS such that γU0
a∼ γS0 . Since S emu

P
U ,

∃γS1 ∈ ΓS .(terminal
(
γS0 , σΨ

(
ψU , γS0

))
= γS1 ∧ γU1

a∼ γS1)

Let γT0 ∈ ΓT such that γS0
a∼ γT0 . Since T emu

Ganta
S, by Property 2 there must exist an

equivalent history to γS0
∗7→ γS1 in T with an access-correspondent completion state. Thus,

∃γT1 ∈ ΓT .(γT0
∗7→ γT1 ∧ γS1

a∼ γT1)

Thus, there exists a sequence of T commands ΨT0 such that terminal
(
γT0 ,Ψ

T
0

)
= γT1 . Define

σΨ : ΨU × ΓT →
(
ΨT
)∗

such that it returns ΨT0 for γT0 , ψ
U . This is formed by concatenating

a sequence of sequences of commands: for each command ψSi that S needs to execute to

simulate ψU , concatenate the commands that T needs to execute to simulate ψSi .

267

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that next

(
γU0 , ψ

U) = γU1 , and γU0
a∼ γT0 ,

∃γT1 ∈ ΓT .(terminal
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

a∼ γT1)

Hence, T emu
{SCa,R→}

U . Next we show R↔.

Choose some arbitrary states γT0 , γ
T
1 ∈ ΓT such that γT0 7→ γT1 . Let γS0 ∈ ΓS such that

γS0
q∼ γT0 . Since T emu

Ganta
S, by Property 3 there must exist an equivalent history to γT0 7→ γT1

in S with an access-correspondent completion state. Thus,

∃γS1 ∈ ΓS .(γS0
∗7→ γS1 ∧ γS1

a∼ γT1)

Let γU0 ∈ ΓU such that γU0
a∼ γS0 . Since S emu

P
U ,

∃γU1 ∈ ΓU .(γU0
∗7→ γU1 ∧ γU1

a∼ γS1)

Thus, given γT0 , γ
T
1 ∈ ΓT , γU0 ∈ ΓU such that γT0 7→ γT1 and γU0

a∼ γT0 ,

∃γU1 ∈ ΓU .(γU0
∗7→ γU1 ∧ γU1

a∼ γT1)

Hence, T emu
{SCa,R↔}

U . Next we show QPa.

Choose an arbitrary request r ∈ RU and states γS ∈ ΓS , γT ∈ ΓT . Since S emu
P
U ,

σQ
(
r, γS

)
≡ γS ` r

Since T emu
Ganta

S, by Property 6,

∀rS ∈ RS : σQ
(
rS , γT

)
≡ γT ` rS

Since S emu
P
U , by SCa, r ∈ RS . Thus,

σQ
(
r, γT

)
≡ γT ` r

Hence, T emu
{SCa,QPa,R↔}

U . Next we show CTs.

Choose an arbitrary command ψU ∈ ΨU and state γS0 ∈ ΓS . Let:

• 〈ψS1 , . . . , ψSn 〉 = σΨ

(
ψU , γS0

)

• γSi = terminal
(
γS0 , ψ

S
1 ◦ · · · ◦ ψSi

)

268

Since S emu
P
U , by CTs,

Allowed
(
γSi
)
⊆ Allowed

(
γS0
)
∨ Allowed

(
γSi
)
⊆ Allowed

(
γSn
)

for any γSi .

Furthermore, let:

• γT0,0 = σΓ

(
γS0
)

• 〈ψTi,1, . . . , ψTi,m〉 = σΨ

(
ψSi , γ

T
i−1,0

)

• γTi,0 = terminal
(
γTi−1,0, ψ

T
i,1 ◦ · · · ◦ ψTi,m

)

• γTi,j = terminal
(
γTi,0, ψ

T
i+1,1 ◦ · · · ◦ ψTi+1,j

)

Put simply, ψU is simulated in T by the following sequence of commands:

ψT1,1, . . . , ψ
T
1,m, ψ

T
2,1, . . . , ψ

T
n,m

thus passing through the following trace of states:

γT0,0, . . . , γ
T
0,m−1, γ

T
1,0, . . . , γ

T
n−1,m−1, γ

T
n,0

Consider an arbitrary state γTi,j in this trace. Since T emu
Ganta

S, by Property 6

Allowed
(
γTi,j
)
⊆ Allowed

(
γTi,0
)
∨ Allowed

(
γTi,j
)
⊆ Allowed

(
γTi+1,0

)

Since S emu
P
U , by CTs and SCa,

Allowed
(
γTi,0
)
⊆ Allowed

(
γT0,0
)
∨ Allowed

(
γTi,0
)
⊆ Allowed

(
γTn,0
)

as well as for γTi+1,0 in place of γTi,0.

Thus,

Allowed
(
γTi,j
)
⊆ Allowed

(
γT0,0
)
∨ Allowed

(
γTi,j
)
⊆ Allowed

(
γTn,0
)

Hence, T emu
{SCa,QPa,CTs,R↔}

U .

Lemma 48. Given access control systems S and T and simulation properties P =

{SCa,QPa,CTs,R↔}, S ≤P T ⇒ T emu
Ganta

S. That is, if T is at least as expressive as

S with respect to properties P, then T admits a Ganta simulation of S.

269

Proof. Let S and T be arbitrary access control systems such that S ≤P T . Since S ≤P T ,

for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

By SCa, QPa, and the definition of σΨ, we have a Ganta scheme mapping from S to T ,

satisfying Ganta simulation Property 1.

By R→ and the definition of σΨ, all histories of S have equivalent serial histories of T ,

satisfying Property 2.

By R↔ and the definition of σΨ, all incomplete histories of T can be completed serially,

and all complete histories of T have equivalent histories of S, satisfying Properties 3–5.

Finally, by QPa and CTs, completion states are access-correspondent, and intermediate

states are non-contaminating, satisfying Property 6.

These properties define the Ganta simulation, and hence T admits a Ganta simulation of

S (T emu
Ganta

S).

Theorem 49. Ganta =̈ {SCa,QPa,CTs,R↔}; that is, the Ganta simulation decomposes

to access correspondence, authorization preservation, anti-contamination, and bidirectional

reachability.

Proof. By Lemma 47, if T emu
Ganta

S, then S ≤P T . By Lemma 48, if S ≤P T , then T emu
Ganta

S.

Thus, S ≤P T if and only if T emu
Ganta

S, and thus the Ganta simulation decomposes to

{SCa,QPa,CTs,R↔}.

B.8 CDM WEAK SIMULATION

For the purposes of this proof, let the set of simulation properties P = {SCa,QPa,CDi,R→}.

Lemma 50. Given access control systems S, T , and U ,

T emu
CDMw

S ∧ S emu
P
U ⇒ T emu

P
U

270

That is, if T admits a CDM weak simulation of S, and S admits a simulation of U
with properties {SCa,QPa,CDi,R→}, then T admits a simulation of U with properties

{SCa,QPa,CDi,R→}.

Proof. To prove this lemma, we let S, T , and U be access control systems such that T emu
CDMw

S
and S emu

P
U but are otherwise arbitrary, and we show that T emu

P
U .

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU , and let next
(
γU0 , ψ

U) = γU1 .

Let γS0 ∈ ΓS such that γU0
a∼ γS0 . Since S emu

P
U ,

∃γS1 ∈ ΓS .(terminal
(
γS0 , σΨ

(
ψU , γS0

))
= γS1 ∧ γU1

a∼ γS1)

Let γT0 ∈ ΓT such that γS0
a∼ γT0 . Since T emu

CDMw
S,

∃γT1 ∈ ΓT .(γT0
∗7→ γT1 ∧ γS1

a∼ γT1)

Thus, there exists a sequence of T commands ΨT0 such that terminal
(
γT0 ,Ψ

T
0

)
= γT1 . Define

σΨ : ΨU × ΓT →
(
ΨT
)∗

such that it returns ΨT0 for γT0 , ψ
U .

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that next

(
γU0 , ψ

U) = γU1 , and γU0
a∼ γT0 ,

∃γT1 ∈ ΓT .(terminal
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

a∼ γT1)

Hence, T emu
{SCa,R→}

U . Next, we show QPa.

Choose an arbitrary request r ∈ RU and states γS ∈ ΓS , γT ∈ ΓT . Since S emu
P
U ,

σQ
(
r, γS

)
≡ γS ` r

Since T emu
CDMw

S,

∀rS ∈ RS : σQ
(
rS , γT

)
≡ γT ` rS

Since S emu
P
U , by SCa, r ∈ RS . Thus,

σQ
(
r, γT

)
≡ γT ` r

Hence, T emu
{SCa,QPa,R→}

U . Next we show CDi.

Since S emu
P
U , by CDi, ∃σCDi : ΨU →

(
ΨS
)∗
.(σΨ(ψ, γ) ≡ σCDi(ψ)) Thus, σΨ maps U

commands to S commands without considering the state in which they will be executed.

271

Since T emu
CDMw

S, by weak model containment, S commands are mapped to T commands

without considering the state in which they will be executed. Call this mapping σCDM .

Thus, let σ′ : ΨU →
(
ΨT
)∗

= σCDM ◦ σCDi, and say σΨ

(
ψU , γT

)
≡ σ′

(
ψU
)
. This forms a

command mapping that satisfies CDi.

Hence, T emu
P
U .

Lemma 51. Given access control systems S and T and simulation properties P =

{SCa,QPa,CDi,R→}, S ≤P T ⇒ T emu
CDMw

S. That is, if T is at least as expressive as

S with respect to properties P, then T admits a CDM weak simulation of S.

Proof. To prove this lemma, we let S and T be arbitrary access control systems such that

S ≤P T , and we show that T emu
CDMw

S.

Since S ≤P T , for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

Thus, given γS0 , γ
S
1 ∈ ΓS , γT0 ∈ ΓT , by SCa and R→, if γS0

a∼ γT0 and γS0 7→ γS1 , then

∃γT1 .(γT0
∗7→ γT1 ∧ γS1

a∼ γT1)

By CDi,

∃σCDi : ΨS →
(
ΨT
)∗
.(σΨ(ψ, γ) ≡ σCDi(ψ))

This relation is thus a weak access-containment relation, which satisfies the definition for

a CDM weak simulation, and hence T admits a CDM weak simulation of S (T emu
CDMw

S).

Theorem 52. CDMw =̈ {SCa,QPa,CDi,R→}; that is, the CDM weak simulation decomposes

to authorization correspondence, authorization preservation, independent command mapping,

and forward reachability.

Proof. By Lemma 50, if T emu
CDMw

S, then S ≤P T . By Lemma 51, if S ≤P T , then T emu
CDMw

S.

Thus, S ≤P T if and only if T emu
CDMw

S, and thus the CDM weak simulation decomposes to

{SCa,QPa,CDi,R→}.

272

B.9 CDM STRONG SIMULATION

For the purposes of this proof, let the set of simulation properties P =

{SCa,QPa,CDi,CS1,R→}.

Lemma 53. Given access control systems S, T , and U ,

T emu
CDMs

S ∧ S emu
P
U ⇒ T emu

P
U

That is, if T admits a CDM strong simulation of S, and S admits a simulation of U
with properties {SCa,QPa,CDi,CS1,R→}, then T admits a simulation of U with properties

{SCa,QPa,CDi,CS1,R→}.

Proof. To prove this lemma, we let S, T , and U be access control systems such that T emu
CDMs

S
and S emu

P
U but are otherwise arbitrary, and we show that T emu

P
U .

Choose an arbitrary state γU0 ∈ ΓU and command ψU ∈ ΨU , and let next
(
γU0 , ψ

U) = γU1 .

Let γS0 ∈ ΓS such that γU0
a∼ γS0 . Since S emu

P
U ,

∃γS1 ∈ ΓS .(terminal
(
γS0 , σΨ

(
ψU , γS0

))
= γS1 ∧ γU1

a∼ γS1)

Let γT0 ∈ ΓT such that γS0
a∼ γT0 . Since T emu

CDMs
S,

∃γT1 ∈ ΓT .(γT0 7→ γT1 ∧ γS1
a∼ γT1)

Thus, there exists a T command ψT0 such that next
(
γT0 , ψ

T
0

)
= γT1 . Define σΨ : ΨU×ΓT → ΨT

such that it returns ψT0 for γT0 , ψ
U .

Then, given γU0 , γ
U
1 ∈ ΓU , γT0 ∈ ΓT , ψU ∈ ΨU such that next

(
γU0 , ψ

U) = γU1 , and γU0
a∼ γT0 ,

∃γT1 ∈ ΓT .(next
(
γT0 , σΨ

(
ψ, γT0

))
= γT1 ∧ γS1

a∼ γT1)

Hence, T emu
{SCa,R→}

U . Next, we show QPa.

Choose an arbitrary request r ∈ RU and states γS ∈ ΓS , γT ∈ ΓT . Since S emu
P
U ,

σQ
(
r, γS

)
≡ γS ` r

273

Since T emu
CDMs

S,

∀rS ∈ RS : σQ
(
rS , γT

)
≡ γT ` rS

Since S emu
P
U , by SCa, r ∈ RS . Thus,

σQ
(
r, γT

)
≡ γT ` r

Hence, T emu
{SCa,QPa,R→}

U . Next we show CDi and CS1.

Since S emu
P
U , by CDi and CS1, ∃σCDi : ΨU → ΨS .(σΨ(ψ, γ) ≡ σCDi(ψ)) Thus, σΨ maps

U commands to S commands without considering the state in which they will be executed.

Since T emu
CDMs

S, by strong model containment, S commands are mapped to single T
commands without considering the state in which they will be executed. Call this mapping

σCDM .

Thus, let σ′ : ΨU → ΨT = σCDM ◦ σCDi, and say σΨ

(
ψU , γT

)
≡ σ′

(
ψU
)
. This forms a

command mapping that satisfies CDi and CS1.

Hence, T emu
P
U .

Lemma 54. Given access control systems S and T and simulation properties P =

{SCa,QPa,CDi,CS1,R→}, S ≤P T ⇒ T emu
CDMs

S. That is, if T is at least as expressive as

S with respect to properties P, then T admits a CDM strong simulation of S.

Proof. To prove this lemma, we let S and T be arbitrary access control systems such that

S ≤P T , and we show that T emu
CDMs

S.

Since S ≤P T , for any access control system U , if S emu
P
U , then T emu

P
U .

Since S can trivially simulate itself, S emu
P
S, and thus T emu

P
S.

Thus, given γS0 , γ
S
1 ∈ ΓS , γT0 ∈ ΓT , by SCa and R→, if γS0

a∼ γT0 and γS0 7→ γS1 , then

∃γT1 .(γT0 7→ γT1 ∧ γS1
a∼ γT1)

By CDi and CS1,

∃σCDi : ΨS → ΨT .(σΨ(ψ, γ) ≡ σCDi(ψ))

This relation is thus a strong access-containment relation, which satisfies the definition for

a CDM strong simulation, and hence T admits a CDM strong simulation of S (T emu
CDMs

S).

274

Theorem 55. CDMs =̈ {SCa,QPa,CDi,CS1,R→}; that is, the CDM strong simulation de-

composes to authorization correspondence, authorization preservation, independent command

mapping, lock-step, and forward reachability.

Proof. By Lemma 53, if T emu
CDMs

S, then S ≤P T . By Lemma 54, if S ≤P T , then T emu
CDMs

S.

Thus, S ≤P T if and only if T emu
CDMs

S, and thus the CDM strong simulation decomposes to

{SCa,QPa,CDi,CS1,R→}.

275

BIBLIOGRAPHY

[1] Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access control
in a hierarchy. ACM Transactions on Computer Systems (TOCS), 1(3):239–248, 1983.

[2] Paul Ammann, Richard J. Lipton, and Ravi S. Sandhu. The expressive power of
multi-parent creation in a monotonic access control model. In 5th IEEE Computer
Security Foundations Workshop (CSFW), pages 148–156, June 1992.

[3] Paul Ammann, Richard J. Lipton, and Ravi S. Sandhu. The expressive power of
multi-parent creation in monotonic access control models. Journal of Computer Security
(JCS), 4(2/3):149–166, 1996.

[4] Kay S. Anderson, Joseph P. Bigus, Eric Bouillet, Parijat Dube, Nagui Halim, Zhen Liu,
and Dimitrios E. Pendarakis. SWORD: scalable and flexible workload generator for
distributed data processing systems. In Winter Simulation Conference (WSC), pages
2109–2116, December 2006.

[5] Ross J. Anderson. Security engineering - a guide to building dependable distributed
systems (2. ed.). Wiley, 2008.

[6] Apache Shiro. http://shiro.apache.org.

[7] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dynamic and
efficient key management for access hierarchies. ACM Transactions on Information and
System Security (TISSEC), 12(3), 2009.

[8] BBC News. Iranians hit in email hack attack. http://www.bbc.co.uk/news/technology-14802673,
September 2011.

[9] David Elliot Bell and Leonard J. LaPadula. Secure computer system: Mathematical
foundations. Technical Report MTR-2547, MITRE Corporation, May 1973.

[10] David Elliot Bell and Leonard J. LaPadula. Secure computer system: Unified exposition
and multics interpretation. Technical Report MTR-2997, MITRE Corporation, March
1976.

276

http://shiro.apache.org
http://www.bbc.co.uk/news/technology-14802673

[11] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework
for reasoning about access control models. ACM Transactions on Information and
System Security (TISSEC), 6(1):71–127, 2003.

[12] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy (S&P), pages 321–334, May
2007.

[13] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
IEEE Symposium on Security and Privacy (S&P), pages 164–173, May 1996.

[14] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption
with efficient revocation. In ACM Conference on Computer and Communications
Security (CCS), pages 417–426, October 2008.

[15] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages 440–456, May
2005.

[16] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
SIAM Journal on Computing (SICOMP), 32(3):586–615, 2003.

[17] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In 33rd Annual International Cryptology
Conference (CRYPTO), pages 410–428, August 2013.

[18] Eric Bouillet, Parijat Dube, David George, Zhen Liu, Dimitrios E. Pendarakis, and
Li Zhang. Distributed multi-layered workload synthesis for testing stream processing
systems. In Winter Simulation Conference (WSC), pages 1003–1011, December 2008.

[19] Tony Bourdier, Horatiu Cirstea, Mathieu Jaume, and Hélène Kirchner. Formal specifi-
cation and validation of security policies. In 4th Canada-France MITACS Workshop on
Foundations and Practice of Security, pages 148–163, May 2011.

[20] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-
hellman groups. In 6th International Workshop on Practice and Theory in Public Key
Cryptography (PKC), pages 18–30, January 2003.

[21] Ajay Chander, Drew Dean, and John C. Mitchell. A state-transition model of trust
management and access control. In 14th IEEE Computer Security Foundations Workshop
(CSFW), pages 27–43, June 2001.

[22] Yuan Cheng, Jaehong Park, and Ravi S. Sandhu. Relationship-based access control for
online social networks: Beyond user-to-user relationships. In 4th IEEE International
Conference on Privacy, Security, Risk and Trust, (PASSAT), pages 646–655, September
2012.

277

[23] Yuan Cheng, Jaehong Park, and Ravi S. Sandhu. A user-to-user relationship-based
access control model for online social networks. In 26th Annual WG 11.3 Conference
on Data and Applications Security and Privacy (DBSec), pages 8–24, July 2012.

[24] David Cohen, Jason Crampton, Andrei Gagarin, Gregory Gutin, and Mark Jones.
Iterative plan construction for the workflow satisfiability problem. Journal of Artificial
Intelligence Research (JAIR), 51:555–577, 2014.

[25] Comodo report of incident. https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html, March
2011.

[26] Jason Crampton. Cryptographic enforcement of role-based access control. In 7th
International Workshop on Formal Aspects of Security and Trust (FAST), pages 191–
205, September 2010.

[27] Jason Crampton. Practical and efficient cryptographic enforcement of interval-based ac-
cess control policies. ACM Transactions on Information and System Security (TISSEC),
14(1):14, 2011.

[28] Jason Crampton, Gregory Gutin, and Anders Yeo. On the parameterized complexity and
kernelization of the workflow satisfiability problem. ACM Transactions on Information
and System Security (TISSEC), 16(1):4, 2013.

[29] Jason Crampton, Keith M. Martin, and Peter R. Wild. On key assignment for hierar-
chical access control. In 19th IEEE Computer Security Foundations Workshop (CSFW),
pages 98–111, July 2006.

[30] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Giovanni Livraga,
Stefano Paraboschi, and Pierangela Samarati. Enforcing dynamic write privileges in
data outsourcing. Computers & Security, 39:47–63, 2013.

[31] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. Over-encryption: Management of access control evolution on
outsourced data. In 33rd International Conference on Very Large Data Bases (VLDB),
pages 123–134, September 2007.

[32] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. Encryption policies for regulating access to outsourced data.
ACM Transactions on Database Systems (TODS), 35(2), 2010.

[33] David Drummond. A new approach to China. https://googleblog.blogspot.com/2010/01/
new-approach-to-china.html, January 2010.

[34] Alina Ene, William G. Horne, Nikola Milosavljevic, Prasad Rao, Robert Schreiber, and
Robert Endre Tarjan. Fast exact and heuristic methods for role minimization problems.
In 13th ACM Symposium on Access Control Models and Technologies (SACMAT), pages
1–10, June 2008.

278

https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://googleblog.blogspot.com/2010/01/new-approach-to-china.html
https://googleblog.blogspot.com/2010/01/new-approach-to-china.html

[35] David F. Ferraiolo, Serban I. Gavrila, Vincent C. Hu, and D. Richard Kuhn. Composing
and combining policies under the policy machine. In 10th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages 11–20, June 2005.

[36] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed NIST standard for role-based access control. ACM
Transactions on Information and System Security (TISSEC), 4(3):224–274, 2001.

[37] Anna Lisa Ferrara, Georg Fuchsbauer, Bin Liu, and Bogdan Warinschi. Policy privacy in
cryptographic access control. In IEEE 28th Computer Security Foundations Symposium
(CSF), pages 46–60, July 2015.

[38] Anna Lisa Ferrara, Georg Fuchsbauer, and Bogdan Warinschi. Cryptographically
enforced RBAC. In IEEE 26th Computer Security Foundations Symposium (CSF),
pages 115–129, June 2013.

[39] Philip W. L. Fong. Relationship-based access control: protection model and policy
language. In First ACM Conference on Data and Application Security and Privacy,
(CODASPY), pages 191–202, February 2011.

[40] Gregory R. Ganger. Generating representative synthetic workloads: An unsolved
problem. In 21st International Computer Measurement Group Conference (CMG),
pages 1263–1269, December 1995.

[41] Srinivas Ganta. Expressive Power of Access Control Models Based on Propagation of
Rights. PhD thesis, George Mason University, 1996.

[42] Simson L. Garfinkel, Gene Spafford, and Alan Schwartz. Practical Unix and internet
security. O’Reilly Media, 3 edition, 2003.

[43] William C. Garrison III and Adam J. Lee. Decomposing, comparing, and synthesizing
access control expressiveness simulations. In IEEE 28th Computer Security Foundations
Symposium (CSF), pages 18–32, July 2015.

[44] William C. Garrison III and Adam J. Lee. Decomposing, comparing, and synthesiz-
ing access control expressiveness simulations (extended version). Technical Report
arXiv:1504.07948, Computing Research Repository, April 2015.

[45] William C. Garrison III, Adam J. Lee, and Timothy L. Hinrichs. The need for
application-aware access control evaluation. In The New Security Paradigms Workshop
(NSPW), pages 115–126, September 2012.

[46] William C. Garrison III, Adam J. Lee, and Timothy L. Hinrichs. An actor-based,
application-aware access control evaluation framework. In 19th ACM Symposium on
Access Control Models and Technologies (SACMAT), pages 199–210, June 2014.

279

http://arxiv.org/abs/1504.07948

[47] William C. Garrison III, Yechen Qiao, and Adam J. Lee. On the suitability of
dissemination-centric access control systems for group-centric sharing: Full proofs.
http://www.cs.pitt.edu/~adamlee/pubs/2014/garrison2014proofs.pdf, January 2013.

[48] William C. Garrison III, Yechen Qiao, and Adam J. Lee. On the suitability of
dissemination-centric access control systems for group-centric sharing. In Fourth ACM
Conference on Data and Application Security and Privacy (CODASPY), pages 1–12,
March 2014.

[49] William C. Garrison III, Adam Shull, Steven Myers, and Adam J. Lee. Dynamic and
private cryptographic access control for untrusted clouds: Costs and constructions,
2015.

[50] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In 8th In-
ternational Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), pages 548–566, December 2002.

[51] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008.

[52] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext
policy attribute based encryption. In 35th International Colloquium on Automata,
Languages and Programming (ICALP), pages 579–591, July 2008.

[53] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In 13th ACM Conference on
Computer and Communications Security (CCS), pages 89–98, October 2006.

[54] Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In 5th
International Conference on Applied Cryptography and Network Security (ACNS), pages
288–306, June 2007.

[55] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryption of
ABE ciphertexts. In 20th USENIX Security Symposium, August 2011.

[56] Ehud Gudes. The design of a cryptopgraphy based secure file system. IEEE Transactions
on Software Engineering (TSE), 6(5):411–420, 1980.

[57] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating
systems. Communications of the ACM (CACM), 19(8):461–471, 1976.

[58] Timothy L. Hinrichs, William C. Garrison III, Adam J. Lee, Skip Saunders, and
John C. Mitchell. TBA: A hybrid of logic and extensional access control systems. In
8th International Workshop on Formal Aspects of Security and Trust (FAST), pages
198–213, September 2011.

[59] Timothy L. Hinrichs, Diego Martinoia, William C. Garrison III, Adam J. Lee, Alessandro
Panebianco, and Lenore D. Zuck. Application-sensitive access control evaluation using

280

http://www.cs.pitt.edu/~adamlee/pubs/2014/garrison2014proofs.pdf

parameterized expressiveness. In IEEE 26th Computer Security Foundations Symposium
(CSF), pages 145–160, June 2013.

[60] Horizontal integration: Broader access models for realizing information dominance.
Technical Report JSR-04-13, MITRE Corporation JASON Program Office, 2004.

[61] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 466–481, May 2002.

[62] Juraj Hromkovic. Algorithmics for Hard Problems: Introduction to Combinatorial
Optimization, Randomization, Approximation, and Heuristics. Springer, 2001.

[63] Vincent C. Hu, David F. Ferraiolo, and D. Rick Kuhn. Assessment of access control
systems. Technical Report NIST-7316, National Institute of Standards and Technolog,
September 2006.

[64] Vincent C. Hu, Deborah A. Frincke, and David F. Ferraiolo. The policy machine for
security policy management. In International Conference on Computational Science
(ICCS), pages 494–506, May 2001.

[65] Luan Ibraimi. Cryptographically enforced distributed data access control. PhD thesis,
University of Twente, 2011.

[66] Intel software guard extensions programming references. Technical Report 329298–002,
Intel, October 2014.

[67] Trevor Jim. SD3: A trust management system with certified evaluation. In IEEE
Symposium on Security and Privacy (S&P), pages 106–115, May 2001.

[68] Xin Jin, Ram Krishnan, and Ravi S. Sandhu. A unified attribute-based access control
model covering DAC, MAC and RBAC. In 26th Annual WG 11.3 Conference on Data
and Applications Security and Privacy (DBSec), pages 41–55, July 2012.

[69] Kevin Kane and James C. Browne. On classifying access control implementations
for distributed systems. In 11th ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 29–38, June 2006.

[70] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. Journal of Cryptology, 26(2):191–
224, 2013.

[71] Ram Krishnan, Jianwei Niu, Ravi S. Sandhu, and William H. Winsborough. Group-
centric secure information-sharing models for isolated groups. ACM Transactions on
Information and System Security (TISSEC), 14(3):23, 2011.

[72] Ram Krishnan, Ravi S. Sandhu, Jianwei Niu, and William H. Winsborough. A con-
ceptual framework for group-centric secure information sharing. In ACM Symposium

281

on Information, Computer and Communications Security (ASIACCS), pages 384–387,
March 2009.

[73] Ram Krishnan, Ravi S. Sandhu, Jianwei Niu, and William H. Winsborough. Foundations
for group-centric secure information sharing models. In 14th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages 115–124, June 2009.

[74] Averill Law. Simulation Modeling and Analysis. McGraw-Hill, 5 edition, 2014.

[75] Ninghui Li, John C. Mitchell, and William H. Winsborough. Beyond proof-of-compliance:
security analysis in trust management. Journal of the ACM (JACM), 52(3):474–514,
2005.

[76] Ninghui Li and Mahesh V. Tripunitara. On safety in discretionary access control. In
IEEE Symposium on Security and Privacy (S&P), pages 96–109, May 2005.

[77] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access control.
ACM Transactions on Information and System Security (TISSEC), 9(4):391–420, 2006.

[78] Benôıt Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based
encryption. In Topics in Cryptology, The Cryptographers’ Track at the RSA Conference
(CT-RSA.

[79] Thomas Milton Liggett. Continuous Time Markov Processes: An Introduction. Graduate
Studies in Mathematics Series. American Mathematical Society, 2010.

[80] Richard J. Lipton and Lawrence Snyder. A linear time algorithm for deciding subject
security. Journal of the ACM (JACM), 24(3):455–464, 1977.

[81] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software
model for isolated execution. In The Second Workshop on Hardware and Architectural
Support for Security and Privacy (HASP), page 10, June 2013.

[82] Microsoft Web Protection Library. http://wpl.codeplex.com.

[83] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa Bertino,
Seraphin B. Calo, and Jorge Lobo. Mining roles with semantic meanings. In 13th ACM
Symposium on Access Control Models and Technologies (SACMAT), pages 21–30, June
2008.

[84] Sascha Müller and Stefan Katzenbeisser. Hiding the policy in cryptographic access
control. In 7th International Workshop on Security and Trust Management (STM),
pages 90–105, June 2011.

[85] Qamar Munawer and Ravi S. Sandhu. Simulation of the augmented typed access
matrix model (ATAM) using roles. In International Conference on Information Security
(INFOSECU), 1999.

282

http://wpl.codeplex.com

[86] Prasad Naldurg and Roy H. Campbell. Dynamic access control: preserving safety and
trust for network defense operations. In 8th ACM Symposium on Access Control Models
and Technologies (SACMAT), pages 231–237, June 2003.

[87] Deholo Nali, Carlisle M. Adams, and Ali Miri. Using mediated identity-based cryptog-
raphy to support role-based access control. In 7th Information Security Conference
(ISC), pages 245–256, September 2004.

[88] Operation Aurora. https://en.wikipedia.org/wiki/Operation_Aurora.

[89] Sylvia L. Osborn, Ravi S. Sandhu, and Qamar Munawer. Configuring role-based
access control to enforce mandatory and discretionary access control policies. ACM
Transactions on Information and System Security (TISSEC), 3(2):85–106, 2000.

[90] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In ACM Conference on Computer and Communications
Security (CCS), pages 195–203, October 2007.

[91] Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable
identity-based encryption from multilinear maps. IEEE Transactions on Information
Forensics and Security, 10(8):1564–1577, 2015.

[92] Bryan D. Payne, Reiner Sailer, Ramón Cáceres, Ronald Perez, and Wenke Lee. A
layered approach to simplified access control in virtualized systems. Operating Systems
Review, 41(4):12–19, 2007.

[93] PlayStation Plus. http://us.playstation.com/psn/playstation-plus.

[94] Tim Ring. Cloud computing hit by celebgate. http://www.scmagazineuk.com/
cloud-computing-hit-by-celebgate/article/370815/, 2015.

[95] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In 17th ACM Conference on Computer and Communications Security
(CCS), pages 463–472, October 2010.

[96] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext
delegation for attribute-based encryption. In 32nd Annual International Cryptology
Conference (CRYPTO), pages 199–217, August 2012.

[97] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 457–473, May 2005.

[98] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

283

https://en.wikipedia.org/wiki/Operation_Aurora
http://us.playstation.com/psn/playstation-plus
http://www.scmagazineuk.com/cloud-computing-hit-by-celebgate/article/370815/
http://www.scmagazineuk.com/cloud-computing-hit-by-celebgate/article/370815/

[99] Ravi Sandhu. Attribute-based access control models and beyond. In 10th ACM
Symposium on Information, Computer and Communications Security (ASIACCS), page
677, April 2015.

[100] Ravi S. Sandhu. The schematic protection model: its definition and analysis for acyclic
attenuating schemes. Journal of the ACM (JACM), 35(2):404–432, 1988.

[101] Ravi S. Sandhu. Expressive power of the schematic protection model. Journal of
Computer Security (JCS), 1(1):59–98, 1992.

[102] Ravi S. Sandhu. The typed access matrix model. In IEEE Symposium on Security and
Privacy (S&P), pages 122–136, July 1992.

[103] Ravi S. Sandhu. Rationale for the RBAC96 family of access control models. In ACM
Workshop on Role-Based Access Control, 1995.

[104] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, 1996.

[105] Ravi S. Sandhu and Srinivas Ganta. On testing for absence of rights in access control
models. In 6th IEEE Computer Security Foundations Workshop (CSFW), pages 109–118,
June 1993.

[106] Ravi S. Sandhu and Srinivas Ganta. On the expressive power of the unary transformation
model. In Third European Symposium on Research in Computer Security (ESORICS),
pages 301–318, November 1994.

[107] Ravi S. Sandhu and Qamar Munawer. How to do discretionary access control using
roles. In ACM Workshop on Role-Based Access Control, pages 47–54, 1998.

[108] Andrew Sciberras. Lightweight directory access protocol (LDAP): Schema for user
applications. Technical Report RFC 4519, eB2Bcom, 2006.

[109] Jae Hong Seo and Keita Emura. Revocable identity-based cryptosystem revisited:
Security models and constructions. IEEE Transactions on Information Forensics and
Security (TIFS), 9(7):1193–1205, 2014.

[110] Sara Sinclair, Sean W. Smith, Stephanie Trudeau, M. Eric Johnson, and Anthony
Portera. Information risk in financial institutions: Field study and research roadmap.
In 3rd International Workshop in Enterprise Applications and Services in the Finance
Industry (FinanceCom), pages 165–180, December 2007.

[111] Spring Security. http://static.springsource.org/spring-security/site/.

[112] Scott D. Stoller, Ping Yang, C. R. Ramakrishnan, and Mikhail I. Gofman. Efficient
policy analysis for administrative role based access control. In ACM Conference on
Computer and Communications Security (CCS), pages 445–455, October 2007.

284

[113] Mahesh V. Tripunitara and Ninghui Li. Comparing the expressive power of access
control models. In 11th ACM Conference on Computer and Communications Security
(CCS), pages 62–71, October 2004.

[114] Mahesh V. Tripunitara and Ninghui Li. A theory for comparing the expressive power
of access control models. Journal of Computer Security (JCS), 15(2):231–272, 2007.

[115] U.S. Air Force Scientific Advisory Board. Networking to enable coalition operations.
Technical report, MITRE Corporation, 2004.

[116] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-based framework for
attribute based access control. In ACM Workshop on Formal Methods in Security
Engineering (FMSE), pages 45–55, October 2004.

[117] Qihua Wang and Ninghui Li. Satisfiability and resiliency in workflow authorization
systems. ACM Transactions on Information and System Security (TISSEC), 13(4):40,
2010.

[118] William H. Winsborough and Jay Jacobs. Automated trust negotiation in attribute-
based access control. In 3rd DARPA Information Survivability Conference and Exposi-
tion (DISCEX-III), page 252, April 2003.

[119] Dana Zhang, Kotagiri Ramamohanarao, Steven Versteeg, and Rui Zhang. Rolevat:
Visual assessment of practical need for role based access control. In Twenty-Fifth
Annual Computer Security Applications Conference (ACSAC), pages 13–22, December
2009.

285

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Algebraic costs of RBAC operations using IBE
	2. Overview of datasets
	3. Decompositions of the state-matching reduction and its variants

	LIST OF FIGURES
	1. Workflow of an application-aware suitability analysis framework for access control
	2. Overview of an application-aware analysis framework for access control
	3. Example invocational structures
	4. An example role hierarchy implementing the PC workload in RBAC 1
	5. Program Committee invocation: Author actor machines
	6. Program Committee invocation: Reviewer actor machines
	7. Program Committee invocation: Chair actor machines
	8. Program Committee invocation: Workflows
	9. Conference workload cost analysis results using ACCostEvalSim and 200 runs
	10. Overview of the architecture of our suitability analysis simulator
	11. A summary of the Portuno components discussed thus far
	12. Example accesses in a single group in g-SIS
	13. Expressiveness analysis results
	14. An example role hierarchy implementing top g-SIS in RBAC 1
	15. An example role hierarchy implementing bottom g-SIS in RBAC 1
	16. An example role hierarchy implementing the PSP workload in RBAC 1
	17. Program Committee actor machines
	18. Playstation Plus actor machines
	19. Extrema system actor machines
	20. Group-centric cost analysis results, PlayStation Plus
	21. Group-centric cost analysis results, rgSIS and bgSIS
	22. Group-centric cost analysis results, Program Committee
	23. System Diagram
	24. Implementation of RBAC 0 using IBE/IBS
	25. Implementation of RBAC 0 using PKI
	26. Administrative mix of actions
	27. Results
	28. The general form of an implementable expressiveness mapping.
	29. An overview of the dimensions of expressiveness reduction properties
	30. A graphical representation of semantic lock-step
	31. Results of decomposing notions of access control reduction from the literature
	32. Lattice of state correspondence, command dependence, and query dependence with positioned surveyed reductions
	33. Partial lattice of canonical usage

	LIST OF ALGORITHMS
	1. ACCostEvalSim: A simulation procedure for application-aware cost analysis of access control
	2. ACCostEvalMC: A Monte Carlo driver for ACCostEvalSim
	3. ACCostEvalCI: A confidence-bounding driver for ACCostEvalSim

	1.0 INTRODUCTION
	2.0 BACKGROUND AND RELATED WORK
	2.1 Modeling access control
	2.2 Access control analysis

	3.0 THE NEED TO MOVE BEYOND EXPRESSIVENESS
	3.1 Introduction
	3.2 Motivating Scenarios
	3.3 Analysis Workflow Overview
	3.4 Key Challenges
	3.4.1 Workloads and Application-Aware Expressiveness Analysis
	3.4.2 Conducting Cost Analysis
	3.4.3 Application-Aware Expressiveness Metrics
	3.4.4 Wider Security Applications

	3.5 Summary

	4.0 INSTANTIATING SUITABILITY ANALYSIS
	4.1 Introduction
	4.2 The Suitability Analysis Problem
	4.3 Phase 1: Expressiveness Analysis
	4.4 Phase 2: Cost Analysis
	4.4.1 Trace Generation
	4.4.2 Calculating the Costs of Traces
	4.4.3 Simulation Procedure

	4.5 Case Study
	4.5.1 Workload and Candidate Systems
	4.5.2 Qualitative Analysis
	4.5.3 Quantitative Analysis
	4.5.4 Summary of Findings

	4.6 Requirements, Redux
	4.7 Summary

	5.0 Portuno: AN ACTOR-BASED SIMULATOR FOR ACCESS CONTROL SUITABILITY ANALYSIS
	5.1 Introduction
	5.2 Simulating for Cost Analysis
	5.2.1 Solution Requirements
	5.2.2 Key Processes
	5.2.3 Simulator Design

	5.3 Trace Generation
	5.3.1 Summary

	5.4 Calculating Cost of Traces
	5.4.1 Cost Functions

	5.5 Drivers for ACCostEvalMC
	5.6 Case Study
	5.6.1 Workloads Operational Component
	5.6.2 Cost Analysis

	5.7 Summary

	6.0 CASE STUDY: DISSEMINATION-CENTRIC SYSTEMS FOR GROUP-CENTRIC SHARING
	6.1 Introduction
	6.2 The g-SIS Models
	6.3 Instantiations of g-SIS
	6.3.1 The g-SIS0 Model
	6.3.2 Extrema Systems
	6.3.3 Workloads

	6.4 Expressiveness Analysis
	6.4.1 Security Guarantees
	6.4.2 Dissemination-Centric Systems
	6.4.3 Expressiveness via System Reductions
	6.4.4 Expressiveness via Implementations
	6.4.5 Summary of Results

	6.5 Cost Analysis
	6.5.1 Cost Measures
	6.5.2 Selected Results

	6.6 Discussion and Future Work
	6.6.1 Dissemination-centric vs. Group-centric
	6.6.2 In Support of Suitability
	6.6.3 Towards an Expressiveness Taxonomy

	6.7 Summary

	7.0 BEYOND POINT STATES: UNDERSTANDING THE COSTS OF DYNAMIC CRYPTOGRAPHIC ACCESS CONTROL IN THE CLOUD
	7.1 Introduction
	7.2 Background
	7.3 Threat Models and Assumptions
	7.3.1 System and Threat Models
	7.3.2 Cryptographic Primitives

	7.4 Implementation
	7.4.1 A Strawman Construction
	7.4.2 Design Considerations
	7.4.3 Detailed IBE/IBS Construction
	7.4.3.1 Overview and Preliminaries
	7.4.3.2 Full Construction

	7.4.4 PKI Construction Overview

	7.5 Analysis
	7.5.1 Qualitative Analysis
	7.5.2 Algebraic Costs
	7.5.3 Experimental Setup
	7.5.4 Experimental Results

	7.6 Discussion
	7.6.1 Alternate Threat Models
	7.6.2 Future Directions
	7.6.3 Lessons Learned for More Expressive Systems

	7.7 Summary

	8.0 DECOMPOSING, COMPARING, AND SYNTHESIZING ACCESS CONTROL EXPRESSIVENESS SIMULATIONS
	8.1 Introduction
	8.2 Motivating Examples
	8.3 Implementable Expressiveness Reductions
	8.3.1 Implementability Requirements
	8.3.2 Expressiveness Mappings

	8.4 Expressiveness Reduction Properties
	8.4.1 Overview of dimensions of properties
	8.4.2 State correspondence properties
	8.4.3 Command mapping properties
	8.4.4 Query decider properties
	8.4.5 Reachability

	8.5 Positioning Existing Reductions
	8.5.1 Expressiveness using Reduction Properties
	8.5.2 Decomposing Expressiveness Reductions to Properties
	8.5.3 Example Decomposition
	8.5.4 Results

	8.6 Selecting New Sets of Properties
	8.6.1 Interactions Between Dimensions
	8.6.2 Interpreting the Dimensions
	8.6.3 Studying Canonical Usages

	8.7 Summary and Future Work

	9.0 CASE STUDY: THE OTHER STATE-MATCHING REDUCTIONS
	9.1 Introduction
	9.2 The State-Matching Reduction
	9.3 Variants of the State-Matching Reduction
	9.4 Preserving Compositional Security Properties
	9.5 Overview of Reduction Findings
	9.6 Expressiveness Results Using Variants of the State-Matching Reduction
	9.7 Summary and Discussion of Results

	10.0 CONCLUSIONS
	10.1 Contributions
	10.2 Future Work

	APPENDIX A. INFEASIBLE REDUCTION
	APPENDIX B. DECOMPOSITION PROOFS
	 B.1 TL State-Matching Reduction
	 B.2 HMG+ Parameterized Expressiveness Simulation
	 B.3 AC-Preserving HMG+ Parameterized Expressiveness
	 B.4 Monotonic HMG+ Parameterized Expressiveness
	 B.5 Admin-Preserving HMG+ Parameterized Expressiveness
	 B.6 SMG Simulation
	 B.7 Ganta Simulation
	 B.8 CDM Weak Simulation
	 B.9 CDM Strong Simulation

	BIBLIOGRAPHY

